[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3962300B2 - Aluminum oxide coated tool - Google Patents

Aluminum oxide coated tool Download PDF

Info

Publication number
JP3962300B2
JP3962300B2 JP2002235535A JP2002235535A JP3962300B2 JP 3962300 B2 JP3962300 B2 JP 3962300B2 JP 2002235535 A JP2002235535 A JP 2002235535A JP 2002235535 A JP2002235535 A JP 2002235535A JP 3962300 B2 JP3962300 B2 JP 3962300B2
Authority
JP
Japan
Prior art keywords
film
layer
oxide
bonding layer
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002235535A
Other languages
Japanese (ja)
Other versions
JP2004074324A (en
Inventor
敏夫 石井
広志 植田
有三 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2002235535A priority Critical patent/JP3962300B2/en
Publication of JP2004074324A publication Critical patent/JP2004074324A/en
Application granted granted Critical
Publication of JP3962300B2 publication Critical patent/JP3962300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、切削用及び耐摩耗用の酸化アルミニウム被覆工具に関する。
【0002】
【従来の技術】
一般に、被覆工具は超硬質合金、高速度鋼、特殊鋼よりなる基体表面に硬質皮膜を化学蒸着法(以下、CVD法と称する。)や物理蒸着法により成膜することにより作製される。このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。特に、高硬度材を高速で切削する場合に、切削工具の刃先温度は1000℃前後まで上がるとともに、このような高温で被削材との接触による摩耗や断続切削等の機械的衝撃に耐える必要があり、耐摩耗性と強靭性及び耐熱性を兼ね備えた被覆工具が重宝されている。硬質皮膜には、耐摩耗性と靭性とが優れる周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物からなる非酸化膜や耐酸化性が優れる酸化膜が単層或いは多層膜として用いられる。非酸化膜では例えばTiC、TiN、Ti(CN)が利用され、酸化膜では特にκ型酸化アルミニウム(以下、κ−Alと称する。)やα型酸化アルミニウム(以下、α−Alと称する。)が利用されている。上記非酸化膜の欠点は酸化され易いことであり、この欠点を補うため、これらの非酸化膜の上に耐酸化性が優れる酸化アルミニウムを形成することにより非酸化膜の酸化を防止することが一般に行われている。この非酸化膜/酸化アルミニウム膜の多層膜構造の欠点は非酸化膜と酸化アルミニウム膜との間の密着性が低いこと、或いは高温で機械強度が安定しないことである。このようなα−Al膜の欠点を解消するため、特開平09−29512号公報及び特開平08−276305号公報では、α−Al層の下地層となる結合層にTi(CNO)を用い、この結合層の表面形態が等軸又は針状の結晶粒となっていることが開示されている。更に、特許第3250134号公報では、酸化アルミニウム層の下地層としてTi(CNO)を用い、該下地層の表面状態を先鋭化針状結晶とすることにより、酸化アルミニウム層とTi(CNO)からなる下地層との密着性を向上しようとする事例を開示している。しかし、これらTi系の酸炭窒化物単独から成る結合層ではその表面にα−Al膜との密着性を高める効果が期待される突起が形成し難く、このためその化学蒸着装置内全体で結合層の表面にα−Al膜を密着性良く成膜することは困難であった。一方、比較的容易に突起を形成しやすい結合層としてTiとAlの両者を含有した結合層も提案されている。すなわち、特開平03−138368号公報では、炭化物結合焼結体からなる基体上にα−Al層とκ−Al層とを積層する場合において、(AlTi)(OC)からなる2種類の結合層(α変態層、κ変態相)を使い分ける事により、純粋なα−Al層とκ−Al層との堆積の制御を可能とした事例が開示されている。
【0003】
【発明が解決しようとする課題】
しかし、これらの結合層が酸素を含有することによる酸化膜の生成基点と、突起構造による密着性が強化されるアンカー効果の両機能が1つの層により担われているため、例えば突起組織のみを強化することによりα−Alの密着性を更に高める、或いは結合層の酸素含有量を高めることによりα−Alが安定して成膜されるようにする等の調整が難しいという欠点がある。また、TiとAlの両者を含有した結合層では酸素含有量の制御が難しく、酸素が少ないとその表面にα−Alよりもむしろκ−Alが生成されやすくなり、酸素量が多すぎると結合層自体が機械的に脆くなり、結合層の部分からα−Alが剥離しやすくなる欠点がある。例えば、現状の量産型のCVD装置では内径260mm×高さ700mmの範囲内に約5000個のインサート工具をセットし成膜するが、装置内全体のインサート工具にα−Alを安定して成膜するために、酸素量を上げると、装置内の一部が酸素量過剰になりα−Alが剥がれやすくなり、一方α−Alの密着性を高めるため酸素量を下げると、CVD装置内に多数個セットしたインサート工具の一部にα−Alが成膜されずκ−Alが成膜されてしまう欠点があらわれる。上記問題を踏まえて、本発明が解決しようとする課題は、CVD装置内全体で安定して下地の非酸化膜との密着性が優れるα−Alを主とする酸化膜が成膜でき、その結果、品質のばらつきが少なく優れた特性を有する酸化アルミニウム被覆工具を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、基体表面に周期律表の4a、5a、6a族金属の炭化物、窒化物、炭窒化物、酸化物、酸炭化物、酸窒化物及び酸炭窒化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜が形成され、該皮膜表面に結合層を介してα型酸化アルミニウムを主とする酸化膜が形成されている酸化アルミニウム被覆工具において、該結合層が少なくとも基体側から順にTi及びAlの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層とα型酸化アルミニウムを主とする酸化膜側に形成されたTiの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層とにより構成されており、該結合層表面が略膜厚方向に突き出た多数の突起を有していることを特徴とする酸化アルミニウム被覆工具である本発明を適用することによりα−Alを主とする酸化膜とその下地である非酸化膜との間にあり両膜に直接接触する結合層を複層構造にし、各層にアンカー効果による密着性強化機能と酸化膜生成機能とを別個に担わせることにより、下地非酸化膜との密着性が優れるα−Alを主とする酸化膜がCVD装置内全体で安定して成膜されるようになり、上記問題点が解消する。また、本発明のα−Alを主とする酸化膜とは、80vol%以上のα−Alを含み、残りがκ−Al、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウム等、他の構造の酸化アルミニウム、酸化ジルコニウム等の酸化物からなる混合組織のものをいう。
【0005】
第1に、結合層を二層に分けることによりα−Alを主とする酸化膜との密着性を強化する機能とα−Alが生成されやすくする機能とが分離でき各機能を別個に制御することができ下地非酸化膜との密着性が優れるα−Alを主とする酸化膜がCVD装置内全体で安定して成膜できるようになる。即ち、Ti及びAlの酸化物、酸炭化物、酸窒化物又は酸炭窒化物から成る層が略膜厚方向に突き出た多数の突起を有する組織から成っていることにより、いわゆるアンカー効果等により上層のα−Alを主とする酸化膜の密着性を高めることができ、しかも結合層の表面側にTiの酸化物、酸炭化物、酸窒化物又は酸炭窒化物から成る層を形成しその酸素含有量を最適化することによりCVD装置内全体でα−Alが安定して成膜されるようになる。
【0006】
第2に、結合層内に略膜厚方向に突き出た多数の突起を有する組織が含有されているため結合層の表面も略膜厚方向に突き出た多数の突起を有する組織になる。尚、上記のように結合層を層別に区分けしたのは成膜過程から区分けしたものであり、成膜後の皮膜を観察した時には外観上からは明確に区分け出来ないことが多い。この場合も、エネルギー分散型X線分析装置(以下、EDXと称する。)や電子プローブマイクロアナライザー装置(以下、EPMAと称する。)を用いてAlとTiの分布を膜厚方向に分析した時、ある膜厚領域にAl成分が多く検出され、他の膜厚領域ではAlがほとんど検出されないことから結合層が上記のような複層構造で形成されていることがわかる。特に、結合層の厚さが数100nmであり、結合層を層別に明確に分析することが出来ない場合はAlとTiを膜厚方向に線分析した時、Al/Ti比がある膜厚領域で明確に高くなることにより上記のような層状に結合層が形成されていることがわかる。透過電子顕微鏡(以下、TEMと称する。)に内蔵されたEDXを用いて数10nmの微少領域を分析する場合はTEM用の薄い試料を作製する時にイオンミリング等で掘られたAlやTi、W、Co等の元素がTEM試料に再付着する。この時、AlやTiは膜中から、WやCoは超硬合金製基体から再付着する。このためAlやTi等の有無が明確に識別出来ないことがある。この時も上記と同様に膜厚方向に異なる位置でAl/Ti比を分析することにより結合層が上記のような層状に形成されていることがわかる。この場合、TEM試料作製時の付着により検出されるAl/Ti比量、即ちAl/Ti比のゼロ点はTiCN等の本来Alを含有していない下地非酸化膜のAl/Ti比を測定することにより得られる。
【0007】
第3に、本発明は、該結合層が少なくとも基体側から順にTiの酸化物、酸炭化物又は酸窒化物からなる層、Ti及びAlの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層及びTiの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層の3層により構成されている。下地の非酸化膜の上にTiと酸素を含有した皮膜から成る第1層を介してTi、Al及び酸素を含有する第2層を成膜することにより下地の非酸化膜と第2層間の密着性が更に高まり、結合層と下地非酸化膜の間に更に高い密着性が得られる。また、成膜ガスとして、より少ない酸素ガス供給量で略膜厚方向に突き出た多数の突起を有する第2層の組織が安定して成膜出来るようになり第2層の高い機械強度と上層の酸化膜との密着性が更に高まり、更に優れた工具特性を有する被覆工具が得られる。
【0008】
第4に、本発明は、該結合層表面の略膜厚方向に突き出た多数の突起が鉤型に屈曲している。鉤型に屈曲させることにより、結合層とα−Alを主とする酸化膜との間に更に高い密着性が得られ、更に優れた工具特性を有する被覆工具が得られる。
【0009】
第5に、本発明は、該結合層表面の略膜厚方向に突き出た多数の突起の先端が丸くなっている。先端が丸くなっているとは先端が先鋭でなく緩やかな曲面で形成されていることをいい、突起先端の断面積が大きくなり突起自体の機械強度が高まり、結合層とα−Alを主とする酸化膜との間に更に高い密着性が得られ、更に優れた工具特性を有する被覆工具が得られる。
【0010】
第6に、本発明は、結合層の少なくとも一部の層の断面が基体と略垂直方向に細長い結晶粒郡からなっていることより、結合層の表面が突起に富みアンカー効果等によりα−Alを主とする酸化膜の密着性を更に高めることができる。層の断面が基体と略垂直方向に細長い結晶粒郡からなっていることはSEM又はTEMで観察することにより確認できる。
【0011】
第7に、本発明は、α−Alを主とする酸化膜の表面に少なくとも有色のTi、Zr又はHfの窒化物、炭化物、炭窒化物、酸化物、酸窒化物、酸炭化物、酸炭窒化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜が形成されており、工具表面の摺動性がより高まり更に優れた工具特性が得られるとともに、有色の皮膜で工具の外層部分を構成することになり工具として使用済みの有無が容易に判別出来るようになる。
【0012】
第8に、本発明は、上記皮膜を形成した後に少なくとも刃先部周辺の最外層の一部が除去され、α−Alを主とする酸化膜が露出させることにより、被削材との接触頻度が高い刃先部の少なくとも1部が耐酸化性と耐溶着性とが特に優れているα−Alを主とする酸化膜で構成されていることになり被削材と溶着することが特に少なくなり特に優れた切削耐久特性が実現できる。
【0013】
本発明における被覆方法には既知の成膜方法を適用することが可能である。例えば、通常の熱化学蒸着法、プラズマを付加した化学蒸着法等を用いることができる。用途は切削工具に限るものではなく、α−Alを主とする酸化膜を含む単層或いは多層の硬質皮膜により被覆された耐摩耗材や金型、溶湯部品等でも良い。酸化膜はα−Al単層に限るものではなく、α−Alが主であれば、他の酸化物、例えばα−Alとκ−Alとの混合膜や、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウム等、他の構造の酸化アルミニウムとの混合膜或いはα−Alと酸化ジルコニウム等他の酸化物との混合膜であっても同様の作用効果を得ることが可能である。次に、本発明の被覆工具を実施例により具体的に説明するが、これら実施例により本発明が限定されるものではない。
【0014】
【発明の実施の形態】
(実施例1)
本発明例1としてまず、WC:72質量%、TiC:8質量%、(TaNb)C:11質量%、Co:9質量%の成分組成よりなるJIS規格CNMG120408形状の切削工具用超硬合金基体200個を万遍なくセットした内径260mm、高さ25mmのカーボン製トレーを23段、縦方向に積み上げ、CVD反応装置内にセットした。尚、成膜の安定性を確保するため、有効な23段のトレーの上下にダミートレーをそれぞれ2段と3段セットした。そして、HキヤリヤーガスとTiClガスとNガスとを原料ガスに用いて0.5μm厚さのTiN膜を900℃で形成後、HキャリヤーガスとTiClガス、Nガス、CHCNガスを原料ガスに用いて6μm厚さのTiCN膜を890℃で形成した後、1000℃でHキヤリヤーガスとTiClガス、CHガス、Nガスとを原料ガスに用いてTi(CN)膜を15分間成膜した。その後、Ti(CN)の成膜に用いたのと同じ構成からなるガス郡にCOガスとAlClガスとを追加して(TiAl)(CNO)膜を1000℃で10分間成膜し、そのまま更にHキヤリヤーガスとTiClガス、CHガス、Nガス及びCOガスとCOガスとを原料ガスに用いてTi(CNO)膜を7分間成膜することにより(TiAl)(CNO)とTi(CNO)との2層からなる結合層を成膜した。その後、Hキャリヤーガス、AlClガス、COガスを原料ガスに用いて4μm厚さのAl膜を1020℃で形成し、更に、HキヤリヤーガスとHfClガス及びNガスとを原料ガスに用いて厚さ1μmのHfN膜を1050℃で形成した後、室温まで冷却した。次に、CVD装置から取り出した試料の刃先部のホーニング部分周辺をラバー砥石により研磨することによって、内層のAl膜を露出させ本発明の酸化膜被覆工具を作製した。
【0015】
作製した本発明例の皮膜を理学電気製のX線回折装置(RU−200BH)でX線源にCuKα1線を用いて2θ−θ走査法によりX線回折図形を測定した結果、有効トレーの最上段23段目の内側、外側の試料番号を23A、23B、中段12段目の内側、外側の試料位置番号を12A、12B及び最下段1段目の内側、外側の試料位置番号を1A、1Bの何れの位置にセットした試料もα−AlのX線回折ピークのみが検出されκ−Al等のピーク強度は検出限界以下であった。このことから、有効トレー内全体の試料にα−Alが成膜されたと考えられる。
【0016】
本発明例を17度傾けて研磨し基体表面からα−Al膜迄を倍率1000倍で撮影した光学顕微鏡写真を図1に、またその模式図を図2に示す。図1、2には、超硬合金製基体1の表面にTiN膜2とTi(CN)膜3が形成され、その上に結合層4を介してα−Al膜5が形成されていることが示されている。図1、2より、結合層4の表面から多数の突起がα−Al膜5側に突き出ておりα−Al膜5中に食い込んでいることがわかる。また、図3は上記試料の結合層4とα−Al膜5間の界面近傍をSEMにより倍率5000倍で撮影したもの、図4はその模式図である。図3、4より、結合層)の表面に略膜厚方向に多数の突起が突き出ており、しかも先端が鉤型に屈曲していることが、特に図3、4の左から3番目と右から3番目の突起から良くわかる。また、これらの突起の先端が先鋭ではなく丸くなっていることがわかる。
【0017】
本発明例の成膜面の膜断面を厚さ20μm以下に研磨した後、更に、イオンミリングにより膜断面の厚さを極端に薄くしてTEM観察用の試料を作製した。そして日立製作所製のTEM(H−800)を用い、加速電圧200kVの条件でTi(CN)膜部とAl膜部の間にある薄い結合層部を同定した後、TEM内蔵のNORAN社製のEDXで元素分析した結果、結合層は2層に分離でき、基体側の第1層はTiとAl、第2層はTiのみから形成されていることがわかった。尚、EDX分析のため軽元素であるC、N、Oは分析できなかった。また、TEM試料作製時に発生した再付着物量を求めるため結合層直下のTiCN皮膜中央部でWとCo量及びAl膜直上のHfN膜中央部でTiとAl量とを測定し、その値を再付着物量として結合層部の分析値から差し引いた。また、上記TEM観察の結果、結合層中でAlが多い膜厚領域は断面が略膜厚方向に細長い結晶粒郡で形成されておりその一部が膜厚方向に突き出し突起が形成されていること、そして結合層の表面にTiは分析されるがAlは再付着物量分しか分析されない膜厚領域がありこの領域は粒状の結晶粒郡から形成されていることが観察された。
【0018】
(実施例2)
本発明例2としてまず、本発明例1と同じ材質と形状の基体を本発明例1と同様にCVD反応装置内に設置し、本発明例1と同じ条件でTiN膜と2種類のTi(CN)膜を成膜した。その後、2番目のTi(CN)の成膜に用いたのと同じ構成からなるガス郡にCOガスを追加してTi(CNO)膜を1000℃で15分間成膜した後、更にAlClガスを追加して(TiAl)(CNO)膜を10分間成膜し、そして更にHキヤリヤーガスとTiClガス、CHガス、Nガス及びCOガスとCOガスとを原料ガスに用いてTi(CNO)膜を7分間成膜することによりTi(CNO)−(TiAl)(CNO)−Ti(CNO)の3層からなる結合層を成膜した。その後、本発明例1と同じ条件でAl膜をした後、更に、HキヤリヤーガスとCHガス、Nガス及びZrClガスとを原料ガスに用いて厚さ1μmのZr(CN)膜を1020℃で形成した後、室温まで冷却した。次に、CVD装置から取り出した試料の刃先部のホーニング部分周辺をダイヤモンド砥粒とブラシにより研磨することによって内層のAl膜を露出させ本発明例2を作製した。本発明例2のX線回折図形を本発明例1と同じ方法で試料位置番号:23A、23B、12A、12B、1A、1Bの試料を測定した結果、全てα−AlのX線回折ピークのみが検出されκ−Al等のピーク強度は検出限界以下であった。本発明例1と同様に有効トレー内全体の試料にα−Alが成膜された。また、本発明例1と同様に本発明例2の研磨面を光学顕微鏡とSEMで観察した結果、結合層の表面に略膜厚方向に多数の突起が突き出ており、しかもその多くの先端が鉤型に屈曲しており、突起の先端も丸くなっていることが確認された。本発明例2の成膜面の膜断面を本発明例1と同様にTEM−EDXにより分析した結果、結合層は3層に分離でき、基体側の第1層はTiのみ、第2層はTiとAl、第3層はTiのみから形成されていることがわかった。軽元素であるC、N、Oは本発明例1と同様に分析できなかった。結合層の第1層は粒状の結晶粒郡で形成されており、第2層は断面が略膜厚方向に細長い結晶粒郡で形成されておりその1部が膜厚方向に突起を形成しており、第3層は再び粒状の結晶粒郡で形成されていることが観察された。
【0019】
(実施例3)
比較例3としてまず、結合層の構造の差異によるα−Alを主とする酸化膜の密着性及び切削特性への影響を明らかにするために、本発明例1と同じ材質と形状の基体を本発明例1と同様にCVD反応装置内に設置し、本発明例1と同じ条件でTiN膜と2種類のTi(CN)膜を成膜した。その後、HキャリヤーガスとTiClガスとCHガスを原料ガスに用い1010℃で5〜30分間反応させTiC膜を成膜した後、そのままTiClガスとCHガスとを止めHキャリヤーガスとCOガスとを15分間流し既に成膜したTiC膜表面を酸化することにより結合層を作製した。その後、本発明例1と同じ条件で4μm厚さのAl膜と厚さ1μmのHfN膜を形成した後室温まで冷却し、比較例3を作製した。比較例3のX線回折図形を本発明例1と同じ方法で試料位置番号:23A、23B、12A、12B、1A、1Bの試料を測定した結果、全てα−AlのX線回折ピークのみが検出されκ−Al等のピーク強度は検出限界以下であった。有効トレー内全体の試料にα−Alが成膜されたと考えられる。比較例3の研磨面を光学顕微鏡とSEMで観察した結果、結合層の表面は粒状の結晶粒からなっており穏やかな曲面が形成されており、本発明1、本発明例2のような突起は形成されていないことがわかった。比較例3の皮膜断面をTEMで観察した結果、基体表面から順にTiN、Ti(CN)、TiC、結合層、Alの各層が形成されていること、また、結合層は粒状の結晶粒から構成され膜厚方向に細長い結晶粒郡からは構成されていないことが判明した。また、結合層の組成をEDXで分析した結果、Tiのみが検出されAlは再付着量分しか検出されず、結合層は金属成分としてTiのみを含有しておりAlは含有していないことがわかった。
【0020】
(実施例4)
比較例4として、結合層の構造の差異によるα−Alを主とする酸化膜のCVD装置内全体での安定成膜性及び切削特性への影響を明らかにするために、本発明例1と同じ材質と形状の基体を本発明例1と同様にCVD反応装置内に設置し、本発明例1と同じ条件でTiN膜と2種類のTi(CN)膜を成膜した。その後、Ti(CN)の成膜に用いたのと同じ構成からなるガス郡にCOガスとAlClガスとを追加して(TiAl)(CNO)膜を10分間成膜した。上記の(TiAl)(CNO)単層からなる結合層の表面に直接、本発明例1と同じ条件で4μm厚さのAl膜と厚さ1μmのHfN膜を形成した。そして、本発明例1と同じ条件でホーニング部分周辺を研磨することにより内層のAl膜を露出させて比較例4を作製した。比較例4のX線回折図形を本発明例1と同じ方法で試料位置番号:23A、23B、12A、12B、1A、1Bの試料を測定した結果、試料位置番号:23A、23B、12A、1Bの試料はα−AlのX線回折ピークのみが検出されκ−Al等のピーク強度は検出限界以下であったが、試料位置番号:12A、1Aの試料はκ−Alのピークが大部分であり、α−Alは(104)のピークが弱く検出されるだけであった。比較例4では安定してα型酸化アルミニウムを主とする酸化膜が製作できないことがわかる。比較例4の研磨面を光学顕微鏡とSEMで観察した結果、結合層の表面には略膜厚方向に多数の突起が突き出てはいるが、これらの突起先端は鋭くなっており丸くないことが確認された。比較例4の成膜面の膜断面を本発明例1と同じ条件でTEM観察した結果、結合層はTiとAlの両者を含有する単一層から成っておりその上にTiのみからなる第2層は形成されていないことがわかった。
【0021】
次に、本発明例1、本発明例2の条件で製作した切削工具と比較例3、4の条件で製作した工具の各5個を用いて、以下の切削条件で1分間と10分間連続切削試験した後に酸化アルミニウム皮膜の剥離状況を倍率200倍の光学顕微鏡により観察し、評価した。切削諸元は、被削材:FCD700、切削速度:300m/min、送り:0.3mm/rev、切り込み:2.0mm、水溶性切削油使用である。この切削試験の結果、比較例3は1分間切削後にすくい面の酸化アルミニウム皮膜が大きく剥離したのに対して、本発明例1、本発明例2と比較例4はいずれも1分間連続切削後も酸化アルミニウム皮膜の剥離が見られず、下地膜に対する酸化アルミニウム膜の密着性が優れていることが判明した。更に10分間連続切削した後に本発明1、2と比較例4を観察すると、κ−AlのX線回折ピークが強く現れた比較例4の試料位置番号:12B、1Bの試料はすくい面の酸化アルミニウム皮膜中に大きくクラックが発生しており、所々で皮膜が大きく剥離していることが観察された。これは、10分間の連続切削により皮膜表面の温度が上がり、κ−Alの一部がα−Alに変態し、体積が収縮したためクラックが発生し、そこを起点にして膜が剥離したと考えられる。そして残った試料を更に10分間連続切削した結果、比較例4の試料位置番号:23A、23B、12A、1Bの試料は、すくい面が剥離したのに対して、本発明例1、本発明例2はいずれの試料も剥離しなかった。本発明例1、本発明例2はCVD装置内全体で下地膜との密着性と耐熱・耐クラック性が優れた酸化アルミニウム膜が形成されていることがわかる。
【0022】
【発明の効果】
上述のように、本発明によれば、下地の非酸化膜との密着性が優れるα−Alを主とする酸化膜がCVD装置内全体で安定して成膜できるようになり、その結果、品質のばらつきが少なく、多層膜間の密着性と耐熱・耐クラック性とが優れ、優れた工具特性有し、工具寿命の長い優れた酸化アルミニウム被覆工具が実現できる。
【図面の簡単な説明】
【図1】図1は、本発明例の組織写真を示す。
【図2】図2は、図1の模式図を示す。
【図3】図3は、図1の結合膜とα−Al膜間の界面近傍組織写真を示す。
【図4】図4は、図3の模式図を示す。
【符号の説明】
1 超硬合金製基体
2 TiN膜
3 TiCN膜
4 結合層
5 Al
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum oxide coated tool for cutting and wear resistance.
[0002]
[Prior art]
In general, a coated tool is produced by forming a hard film on a substrate surface made of super hard alloy, high speed steel, or special steel by chemical vapor deposition (hereinafter referred to as CVD method) or physical vapor deposition. Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. In particular, when cutting high-hardness materials at high speed, the cutting edge temperature of the cutting tool rises to around 1000 ° C, and it is necessary to withstand mechanical impacts such as wear and intermittent cutting due to contact with the work material at such high temperatures. Therefore, a coated tool having wear resistance, toughness, and heat resistance is useful. The hard film has a single layer or multiple layers of non-oxide film made of carbide, nitride, carbonitride of the periodic table 4a, 5a, 6a metal having excellent wear resistance and toughness or oxide film having excellent oxidation resistance. Used as a membrane. For example, TiC, TiN, and Ti (CN) are used for non-oxide films, and κ-type aluminum oxide (hereinafter referred to as κ-Al) is particularly used for oxide films. 2 O 3 Called. ) And α-type aluminum oxide (hereinafter α-Al) 2 O 3 Called. ) Is used. The disadvantage of the non-oxide film is that it is easily oxidized. In order to compensate for this disadvantage, it is possible to prevent oxidation of the non-oxide film by forming aluminum oxide having excellent oxidation resistance on these non-oxide films. Generally done. The disadvantage of this multilayer structure of non-oxide film / aluminum oxide film is that the adhesion between the non-oxide film and the aluminum oxide film is low, or the mechanical strength is not stable at high temperatures. Such α-Al 2 O 3 In order to eliminate the drawbacks of the film, in Japanese Patent Laid-Open Nos. 09-29512 and 08-276305, α-Al 2 O 3 It is disclosed that Ti (CNO) is used for the bonding layer serving as an underlayer of the layer, and the surface form of the bonding layer is equiaxed or needle-like crystal grains. Further, in Japanese Patent No. 3250134, Ti (CNO) is used as the underlayer of the aluminum oxide layer, and the surface state of the underlayer is made into sharpened needle crystals, thereby comprising an aluminum oxide layer and Ti (CNO). An example of improving the adhesion with the underlayer is disclosed. However, in the bonding layer made of Ti-based oxycarbonitride alone, α-Al 2 O 3 Protrusions that are expected to increase the adhesion to the film are difficult to form, and for this reason, α-Al is formed on the surface of the bonding layer throughout the chemical vapor deposition apparatus. 2 O 3 It was difficult to form a film with good adhesion. On the other hand, a bonding layer containing both Ti and Al has also been proposed as a bonding layer in which protrusions can be formed relatively easily. That is, in Japanese Patent Laid-Open No. 03-138368, α-Al is formed on a substrate made of a carbide bonded sintered body. 2 O 3 Layer and κ-Al 2 O 3 In the case of laminating layers, pure α-Al can be obtained by properly using two types of bonding layers (α transformation layer, κ transformation phase) made of (AlTi) (OC). 2 O 3 Layer and κ-Al 2 O 3 Examples have been disclosed that allow control of deposition with layers.
[0003]
[Problems to be solved by the invention]
However, since both the functions of the oxide film formation base due to the oxygen contained in these bonding layers and the anchor effect that enhances the adhesion by the protrusion structure are carried by one layer, for example, only the protrusion structure Α-Al by strengthening 2 O 3 Α-Al by further improving the adhesion of the binder layer or increasing the oxygen content of the bonding layer 2 O 3 However, it is difficult to make adjustments such as forming a stable film. In addition, in the bonding layer containing both Ti and Al, it is difficult to control the oxygen content. 2 O 3 Rather κ-Al 2 O 3 If the amount of oxygen is too large, the bonding layer itself becomes mechanically brittle, and α-Al 2 O 3 There is a drawback that it is easy to peel off. For example, in the current mass production type CVD apparatus, about 5000 insert tools are set in a range of an inner diameter of 260 mm and a height of 700 mm, and a film is formed. 2 O 3 In order to form a stable film, when the amount of oxygen is increased, a part of the apparatus becomes excessive in oxygen amount and α-Al 2 O 3 Tends to peel off, while α-Al 2 O 3 When the amount of oxygen is lowered to improve the adhesion of the steel, α-Al is added to some of the insert tools set in the CVD apparatus. 2 O 3 Is not deposited, and κ-Al 2 O 3 There is a drawback that the film is formed. Based on the above problems, the problem to be solved by the present invention is that α-Al is stable throughout the CVD apparatus and has excellent adhesion to the underlying non-oxide film. 2 O 3 It is an object to provide an aluminum oxide coated tool having excellent characteristics with little variation in quality.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have provided carbides, nitrides, carbonitrides, oxides, oxycarbides, oxynitrides, and oxycarbonitrides of Group 4a, 5a, and 6a metals in the periodic table on the substrate surface. An aluminum oxide-coated tool in which a single-layer film or a multilayer film composed of two or more kinds is formed, and an oxide film mainly composed of α-type aluminum oxide is formed on the surface of the film via a bonding layer In this case, the bonding layer is formed of Ti and Al oxides, oxycarbides, oxynitrides or oxycarbonitrides in order from the substrate side, and a Ti layer formed on the oxide film side mainly composed of α-type aluminum oxide. Oxidized by an oxide, oxycarbide, oxynitride or oxycarbonitride layer, and the bonding layer surface has a number of protrusions protruding substantially in the film thickness direction. Application of the present invention which is an aluminum coated tool Α-Al 2 O 3 The bonding layer between the main oxide film and the underlying non-oxide film is in a multi-layer structure, and each layer has a separate adhesion enhancement function and oxide film generation function by the anchor effect. Α-Al with excellent adhesion to the underlying non-oxide film 2 O 3 As a result, the above-mentioned problem is solved. Further, α-Al of the present invention 2 O 3 An oxide film mainly composed of α-Al of 80 vol% or more 2 O 3 And the rest is κ-Al 2 O 3 Γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, χ-type aluminum oxide, and the like, which have a mixed structure composed of oxides of other structures such as aluminum oxide and zirconium oxide.
[0005]
First, α-Al is obtained by dividing the bonding layer into two layers. 2 O 3 Α-Al and the function to strengthen the adhesion to the oxide film mainly composed of 2 O 3 Α-Al which can be separated from the function that makes it easy to form and can control each function separately and has excellent adhesion to the underlying non-oxide film 2 O 3 Thus, an oxide film mainly composed of can be formed stably throughout the CVD apparatus. That is, the layer made of Ti and Al oxide, oxycarbide, oxynitride or oxycarbonitride is composed of a structure having a number of protrusions protruding substantially in the film thickness direction. Α-Al 2 O 3 It is possible to improve the adhesion of the oxide film mainly composed of Ti and form a layer made of Ti oxide, oxycarbide, oxynitride or oxycarbonitride on the surface side of the bonding layer, and optimize its oxygen content The α-Al in the entire CVD apparatus 2 O 3 Can be formed stably.
[0006]
Second, since the bonding layer contains a structure having a large number of protrusions protruding in the film thickness direction, the surface of the bonding layer also has a structure having a large number of protrusions protruding in the film thickness direction. In addition, as described above, the bonding layers are classified according to the film formation process, and when the film after film formation is observed, it is often impossible to clearly distinguish from the appearance. Also in this case, when an Al and Ti distribution was analyzed in the film thickness direction using an energy dispersive X-ray analyzer (hereinafter referred to as EDX) or an electron probe microanalyzer (hereinafter referred to as EPMA), Since a large amount of Al component is detected in a certain film thickness region and Al is hardly detected in other film thickness regions, it can be seen that the coupling layer is formed in the multilayer structure as described above. In particular, when the thickness of the bonding layer is several 100 nm and the bonding layer cannot be clearly analyzed for each layer, when the Al and Ti are linearly analyzed in the film thickness direction, the film thickness region has an Al / Ti ratio. It can be seen that the bonding layer is formed in the above-described layer shape by clearly increasing. When analyzing a small region of several tens of nanometers using EDX built in a transmission electron microscope (hereinafter referred to as TEM), Al, Ti, W, or the like excavated by ion milling or the like when a thin sample for TEM is prepared. , Co and other elements reattach to the TEM sample. At this time, Al and Ti reattach from the film, and W and Co reattach from the cemented carbide substrate. For this reason, the presence or absence of Al or Ti may not be clearly identified. Also at this time, it is found that the bonding layer is formed in the above-described layer shape by analyzing the Al / Ti ratio at different positions in the film thickness direction as described above. In this case, the amount of Al / Ti ratio detected by adhesion at the time of TEM sample preparation, that is, the zero point of the Al / Ti ratio, measures the Al / Ti ratio of the base non-oxide film that originally does not contain Al such as TiCN. Can be obtained.
[0007]
Thirdly, according to the present invention, the bonding layer is a layer composed of an oxide of Ti, an oxycarbide or an oxynitride in order from the substrate side, an oxide of Ti and Al, an oxycarbide, an oxynitride or an oxycarbonitride. And a layer made of Ti oxide, oxycarbide, oxynitride or oxycarbonitride. A second layer containing Ti, Al, and oxygen is formed on the underlying non-oxide film through a first layer made of a film containing Ti and oxygen, thereby forming a gap between the underlying non-oxide film and the second layer. Adhesion is further enhanced, and higher adhesion is obtained between the bonding layer and the base non-oxide film. Further, as a film forming gas, a second layer having a large number of protrusions protruding substantially in the film thickness direction with a smaller oxygen gas supply amount can be stably formed, and the second layer has a high mechanical strength and an upper layer. The adhesion with the oxide film is further improved, and a coated tool having further excellent tool characteristics can be obtained.
[0008]
Fourthly, in the present invention, a large number of protrusions protruding in the substantially film thickness direction on the surface of the bonding layer are bent in a bowl shape. By bending it into a saddle shape, the bonding layer and α-Al 2 O 3 Higher adhesion can be obtained with an oxide film mainly composed of the above, and a coated tool having further excellent tool characteristics can be obtained.
[0009]
Fifth, in the present invention, the tips of many protrusions protruding in the substantially film thickness direction on the surface of the bonding layer are rounded. The rounded tip means that the tip is not sharp but is formed with a gentle curved surface. The sectional area of the tip of the protrusion is increased, the mechanical strength of the protrusion itself is increased, and the bonding layer and α-Al 2 O 3 Higher adhesion can be obtained with an oxide film mainly composed of the above, and a coated tool having further excellent tool characteristics can be obtained.
[0010]
Sixth, according to the present invention, since the cross section of at least a part of the bonding layer is formed of crystal grains elongated in a direction substantially perpendicular to the substrate, the surface of the bonding layer is rich in protrusions, and α- Al 2 O 3 It is possible to further improve the adhesion of the oxide film mainly composed of. It can be confirmed by observing with SEM or TEM that the cross section of the layer is composed of crystal grains elongated in a direction substantially perpendicular to the substrate.
[0011]
Seventh, the present invention provides α-Al 2 O 3 Single-layer coating of any one of nitride, carbide, carbonitride, oxide, oxynitride, oxycarbide and oxycarbonitride of at least colored Ti, Zr or Hf on the surface of the oxide film mainly containing Or a multi-layer coating consisting of two or more types is formed, the slidability of the tool surface is further increased, and further excellent tool properties are obtained, and the outer layer portion of the tool is composed of a colored coating and used as a tool It becomes possible to easily determine whether or not it has been completed.
[0012]
Eighth, in the present invention, at least a part of the outermost layer around the blade edge portion is removed after the formation of the film, and α-Al 2 O 3 By exposing the oxide film mainly composed of α-Al, at least one part of the blade edge part having high contact frequency with the work material is particularly excellent in oxidation resistance and welding resistance. 2 O 3 Therefore, it is possible to realize particularly excellent cutting durability characteristics because the welding with the work material is particularly reduced.
[0013]
A known film forming method can be applied to the coating method in the present invention. For example, a normal thermal chemical vapor deposition method, a chemical vapor deposition method with plasma added, or the like can be used. Applications are not limited to cutting tools, α-Al 2 O 3 It is also possible to use a wear-resistant material, a mold, a molten metal part, or the like covered with a single-layer or multilayer hard film containing an oxide film mainly composed of. The oxide film is α-Al 2 O 3 Not limited to a single layer, α-Al 2 O 3 Other oxides such as α-Al 2 O 3 And κ-Al 2 O 3 Mixed film with γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, χ-type aluminum oxide, etc., or α-Al 2 O 3 Similar effects can be obtained even with a mixed film of aluminum and other oxides such as zirconium oxide. Next, although the coated tool of this invention is demonstrated concretely by an Example, this invention is not limited by these Examples.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
As Example 1 of the present invention, first, a cemented carbide substrate for a cutting tool having a JIS standard CNMG120408 shape having a component composition of WC: 72% by mass, TiC: 8% by mass, (TaNb) C: 11% by mass, and Co: 9% by mass. Carbon trays having an inner diameter of 260 mm and a height of 25 mm, in which 200 pieces were uniformly set, were stacked in 23 stages in the vertical direction and set in a CVD reactor. In order to ensure the stability of the film formation, two and three dummy trays were set above and below the effective 23-stage tray, respectively. And H 2 Carrier gas and TiCl 4 Gas and N 2 After forming a 0.5 μm thick TiN film at 900 ° C. using a gas as a source gas, 2 Carrier gas and TiCl 4 Gas, N 2 Gas, CH 3 After forming a 6 μm-thick TiCN film at 890 ° C. using CN gas as the source gas, H at 1000 ° C. 2 Carrier gas and TiCl 4 Gas, CH 4 Gas, N 2 A Ti (CN) film was formed for 15 minutes using gas as a source gas. After that, CO gas and AlCl were added to the gas group having the same structure as that used for the film formation of Ti (CN). 3 (TiAl) (CNO) film was formed at 1000 ° C. for 10 minutes by adding gas, 2 Carrier gas and TiCl 4 Gas, CH 4 Gas, N 2 Gas and CO 2 A Ti (CNO) film was formed for 7 minutes using a gas and a CO gas as source gases to form a bonding layer composed of two layers of (TiAl) (CNO) and Ti (CNO). Then H 2 Carrier gas, AlCl 3 Gas, CO 2 4 μm thick Al using gas as source gas 2 O 3 A film is formed at 1020 ° C., and H 2 Carrier gas and HfCl 4 Gas and N 2 An HfN film having a thickness of 1 μm was formed at 1050 ° C. using a gas as a source gas, and then cooled to room temperature. Next, the periphery of the honing portion of the cutting edge portion of the sample taken out from the CVD apparatus is polished with a rubber grindstone, so that the inner layer of Al 2 O 3 The film was exposed to produce the oxide film-coated tool of the present invention.
[0015]
As a result of measuring the X-ray diffraction pattern by the 2θ-θ scanning method with the X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. using the CuKα1 line as the X-ray source, The inner and outer sample numbers of the upper 23rd stage are 23A and 23B, the inner and outer sample position numbers of the middle 12th stage are 12A and 12B, and the inner and outer sample position numbers of the lowermost first stage are 1A and 1B. The sample set at any position of α-Al 2 O 3 Only the X-ray diffraction peak of κ-Al was detected. 2 O 3 Etc. The peak intensity was below the detection limit. From this, α-Al is added to the entire sample in the effective tray. 2 O 3 Is considered to have been formed.
[0016]
An example of the present invention is tilted by 17 degrees and polished from the substrate surface to α-Al 2 O 3 FIG. 1 shows a photomicrograph of the film up to 1000 × magnification, and FIG. 2 shows a schematic diagram thereof. 1 and 2, a TiN film 2 and a Ti (CN) film 3 are formed on the surface of a cemented carbide substrate 1, and α-Al is formed thereon via a bonding layer 4. 2 O 3 It is shown that a film 5 is formed. 1 and 2, a large number of protrusions from the surface of the bonding layer 4 are α-Al. 2 O 3 Α-Al protruding to the membrane 5 side 2 O 3 It can be seen that the film 5 bites into the film 5. FIG. 3 shows the bonding layer 4 and α-Al of the above sample. 2 O 3 FIG. 4 is a schematic view of the vicinity of the interface between the films 5 taken by SEM at a magnification of 5000 times. 3 and 4, the surface of the bonding layer) has a large number of protrusions protruding substantially in the film thickness direction, and the tip is bent in a bowl shape, particularly the third and right from the left in FIGS. It can be seen from the third protrusion. It can also be seen that the tips of these protrusions are not sharp but round.
[0017]
After the film cross section of the film formation surface of the example of the present invention was polished to a thickness of 20 μm or less, the thickness of the film cross section was extremely reduced by ion milling to prepare a sample for TEM observation. Then, using TEM (H-800) manufactured by Hitachi, Ltd., Ti (CN) film part and Al under the condition of acceleration voltage 200 kV 2 O 3 After identifying the thin bonding layer portion between the membrane portions, elemental analysis was performed using ERAN manufactured by NORAN with built-in TEM. As a result, the bonding layer could be separated into two layers, the first layer on the substrate side was Ti and Al, It was found that the two layers were formed only from Ti. Note that light elements C, N, and O could not be analyzed for EDX analysis. In addition, in order to determine the amount of redeposits generated during the preparation of the TEM sample, the amount of W, Co, and Al at the center of the TiCN film directly under the bonding layer 2 O 3 Ti and Al amounts were measured at the central portion of the HfN film immediately above the film, and the values were subtracted from the analysis value of the bonding layer portion as the amount of reattachment. Further, as a result of the TEM observation, the film thickness region with a large amount of Al in the bonding layer is formed by crystal grain groups whose cross section is elongated in the film thickness direction, and a part thereof protrudes in the film thickness direction and has protrusions. In addition, it was observed that there was a film thickness region in which Ti was analyzed on the surface of the bonding layer but Al was analyzed only for the amount of the reattachment, and this region was formed from granular crystal grains.
[0018]
(Example 2)
As Example 2 of the present invention, first, a substrate having the same material and shape as Example 1 of the present invention was placed in a CVD reactor in the same manner as Example 1, and a TiN film and two types of Ti ( CN) film was formed. After that, CO gas was added to the gas group having the same configuration as that used for the second Ti (CN) film formation to form a Ti (CNO) film at 1000 ° C. for 15 minutes, and then further AlCl. 3 A gas was added to form a (TiAl) (CNO) film for 10 minutes, and more H 2 Carrier gas and TiCl 4 Gas, CH 4 Gas, N 2 Gas and CO 2 A Ti (CNO) film is formed for 7 minutes by using gas and CO gas as source gases, thereby forming a bonding layer composed of three layers of Ti (CNO)-(TiAl) (CNO) -Ti (CNO). did. Thereafter, Al under the same conditions as Example 1 of the present invention. 2 O 3 After filming, further H 2 Carrier gas and CH 4 Gas, N 2 Gas and ZrCl 4 A Zr (CN) film having a thickness of 1 μm was formed at 1020 ° C. using gas as a source gas, and then cooled to room temperature. Next, the periphery of the honing portion of the cutting edge portion of the sample taken out from the CVD apparatus is polished with diamond abrasive grains and a brush to thereby form an inner layer of Al. 2 O 3 The film was exposed to produce Inventive Example 2. As a result of measuring the X-ray diffraction patterns of Example 2 of the present invention in the same manner as in Example 1 of the present invention, the samples at sample position numbers: 23A, 23B, 12A, 12B, 1A and 1B were all α-Al 2 O 3 Only the X-ray diffraction peak of κ-Al was detected. 2 O 3 Etc. The peak intensity was below the detection limit. Similar to Example 1 of the present invention, α-Al was added to the entire sample in the effective tray. 2 O 3 Was deposited. Moreover, as a result of observing the polished surface of Invention Example 2 with an optical microscope and SEM in the same manner as in Invention Example 1, many protrusions protrude in the film thickness direction on the surface of the bonding layer, and many of the tips are formed. It was confirmed that it was bent into a saddle shape and the tip of the protrusion was rounded. As a result of analyzing the film cross section of the film formation surface of Invention Example 2 by TEM-EDX as in Invention Example 1, the bonding layer can be separated into three layers, the first layer on the substrate side is Ti only, and the second layer is It was found that Ti and Al and the third layer were formed only from Ti. The light elements C, N, and O could not be analyzed in the same manner as Example 1 of the present invention. The first layer of the bonding layer is formed of granular crystal grains, and the second layer is formed of crystal grains whose cross section is elongated in the film thickness direction, and one part thereof forms protrusions in the film thickness direction. It was observed that the third layer was again formed of granular crystal grains.
[0019]
(Example 3)
As Comparative Example 3, first, α-Al due to the difference in structure of the bonding layer. 2 O 3 In order to elucidate the influence on the adhesion and cutting characteristics of the oxide film mainly composed of the substrate, a substrate having the same material and shape as in the present invention example 1 was installed in the CVD reactor as in the present invention example 1, A TiN film and two types of Ti (CN) films were formed under the same conditions as in Invention Example 1. Then H 2 Carrier gas and TiCl 4 Gas and CH 4 After forming a TiC film by reacting at 1010 ° C. for 5 to 30 minutes using a gas as a source gas, TiCl is used as it is. 4 Gas and CH 4 Stop gas and H 2 Carrier gas and CO 2 A bonding layer was prepared by flowing a gas for 15 minutes to oxidize the surface of the TiC film already formed. Thereafter, Al having a thickness of 4 μm under the same conditions as Example 1 of the present invention. 2 O 3 A film and a 1 μm thick HfN film were formed and then cooled to room temperature to produce Comparative Example 3. As a result of measuring the X-ray diffraction pattern of Comparative Example 3 in the same manner as in Example 1 of the present invention, the samples at the sample position numbers: 23A, 23B, 12A, 12B, 1A, 1B, all α-Al 2 O 3 Only the X-ray diffraction peak of κ-Al was detected. 2 O 3 Etc. The peak intensity was below the detection limit. Α-Al on the entire sample in the effective tray 2 O 3 Is considered to have been formed. As a result of observing the polished surface of Comparative Example 3 with an optical microscope and SEM, the surface of the bonding layer was formed of granular crystal grains and formed a gentle curved surface, and the projections as in Invention 1 and Invention Example 2 Was found not formed. As a result of observing the film cross section of Comparative Example 3 with TEM, TiN, Ti (CN), TiC, bonding layer, Al in order from the substrate surface. 2 O 3 It was found that each of the layers was formed, and that the bonding layer was composed of granular crystal grains and was not composed of elongated crystal grains in the film thickness direction. Moreover, as a result of analyzing the composition of the bonding layer by EDX, only Ti was detected and Al was detected only for the amount of redeposition, and the bonding layer contained only Ti as a metal component and did not contain Al. all right.
[0020]
Example 4
As Comparative Example 4, α-Al due to the difference in structure of the bonding layer 2 O 3 In order to clarify the influence on the stable film-forming property and the cutting characteristics of the oxide film mainly composed of the above in the CVD apparatus, a substrate having the same material and shape as the present invention example 1 is formed by CVD as in the present invention example 1. The TiN film and two types of Ti (CN) films were formed under the same conditions as in the first example of the present invention. After that, CO gas and AlCl were added to the gas group having the same structure as that used for the film formation of Ti (CN). 3 (TiAl) (CNO) film was formed for 10 minutes by adding gas. 4 μm-thick Al directly under the same conditions as Example 1 of the present invention, directly on the surface of the bonding layer comprising the (TiAl) (CNO) single layer. 2 O 3 A HfN film having a thickness of 1 μm was formed. And by polishing the periphery of the honing part under the same conditions as Example 1 of the present invention, the inner layer of Al 2 O 3 Comparative Example 4 was prepared by exposing the film. As a result of measuring the X-ray diffraction pattern of Comparative Example 4 using the same method as in Example 1 of the present invention, the sample position numbers: 23A, 23B, 12A, 12B, 1A, 1B, the sample position numbers: 23A, 23B, 12A, 1B Sample of α-Al 2 O 3 Only the X-ray diffraction peak of κ-Al was detected. 2 O 3 Although the peak intensities of the samples were below the detection limit, the samples of sample position numbers: 12A and 1A were κ-Al 2 O 3 The peak of 2 O 3 The (104) peak was only weakly detected. It can be seen that Comparative Example 4 cannot stably produce an oxide film mainly composed of α-type aluminum oxide. As a result of observing the polished surface of Comparative Example 4 with an optical microscope and SEM, a large number of protrusions protrude in the film thickness direction on the surface of the bonding layer, but the tips of these protrusions are sharp and not round. confirmed. As a result of TEM observation of the film cross section of the film formation surface of Comparative Example 4 under the same conditions as Example 1 of the present invention, the bonding layer is composed of a single layer containing both Ti and Al, and a second layer consisting of only Ti is formed thereon. It was found that no layer was formed.
[0021]
Next, using each of the five cutting tools manufactured under the conditions of Invention Example 1 and Invention Example 2 and the tools manufactured under the conditions of Comparative Examples 3 and 4, the following cutting conditions were continued for 1 minute and 10 minutes. After the cutting test, the peeling state of the aluminum oxide film was observed and evaluated with an optical microscope having a magnification of 200 times. Cutting specifications are: work material: FCD700, cutting speed: 300 m / min, feed: 0.3 mm / rev, cutting: 2.0 mm, use of water-soluble cutting oil. As a result of this cutting test, in Comparative Example 3, the aluminum oxide film on the rake face was largely peeled after cutting for 1 minute, whereas in Invention Example 1, Invention Example 2 and Comparative Example 4, all were cut for 1 minute continuously. No peeling of the aluminum oxide film was observed, and it was found that the adhesion of the aluminum oxide film to the base film was excellent. Further, when the present invention 1 and 2 and comparative example 4 were observed after continuous cutting for 10 minutes, κ-Al 2 O 3 In the sample of Comparative Example 4 where the X-ray diffraction peak of No. 12B and No. 12B of Sample No. 12B and 1B had a large crack in the aluminum oxide film on the rake face, the film was largely peeled off in some places. Observed. This is because the surface temperature of the film increases by continuous cutting for 10 minutes, and κ-Al 2 O 3 Part of α-Al 2 O 3 It is considered that cracks were generated because the volume was shrunk and the volume contracted, and the film was peeled off starting from the cracks. Then, as a result of continuous cutting of the remaining sample for 10 minutes, the sample position numbers: 23A, 23B, 12A, and 1B of Comparative Example 4 had the rake face peeled off, whereas the present invention example 1 and the present invention example No sample 2 peeled off. It can be seen that in Invention Example 1 and Invention Example 2, an aluminum oxide film having excellent adhesion to the base film and excellent heat resistance and crack resistance is formed throughout the CVD apparatus.
[0022]
【The invention's effect】
As described above, according to the present invention, α-Al has excellent adhesion to the underlying non-oxide film. 2 O 3 As a result, there is little variation in quality, excellent adhesion between multilayer films, heat resistance and crack resistance, and excellent tooling. An excellent aluminum oxide coated tool having characteristics and a long tool life can be realized.
[Brief description of the drawings]
FIG. 1 shows a structure photograph of an example of the present invention.
FIG. 2 shows a schematic diagram of FIG.
FIG. 3 shows the coupling film of FIG. 1 and α-Al. 2 O 3 The structure photograph of the interface vicinity between films is shown.
FIG. 4 shows a schematic diagram of FIG. 3;
[Explanation of symbols]
1 Cemented carbide substrate
2 TiN film
3 TiCN film
4 bonding layers
5 Al 2 O 3 film

Claims (6)

基体表面に周期律表の4a、5a、6a族金属の炭化物、窒化物、炭窒化物、酸化物、酸炭化物、酸窒化物及び酸炭窒化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜が形成され、該皮膜表面に結合層を介してα型酸化アルミニウムを主とする酸化膜が形成されている酸化アルミニウム被覆工具において、該結合層が少なくとも基体側から順にTi及びAlの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層とα型酸化アルミニウムを主とする酸化膜側に形成されたTiの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層とにより構成されており、該結合層表面が略膜厚方向に突き出た多数の突起を有していることを特徴とする酸化アルミニウム被覆工具。Single layer film or two kinds of carbides, nitrides, carbonitrides, oxides, oxycarbides, oxynitrides and oxycarbonitrides of Group 4a, 5a, and 6a metals of the periodic table on the substrate surface In the aluminum oxide-coated tool in which a multilayer coating composed of the above is formed and an oxide film mainly composed of α-type aluminum oxide is formed on the surface of the coating via a bonding layer, the bonding layer is formed of Ti and at least in order from the substrate side. Ti oxide, oxycarbide, oxynitride or oxycarbonitride formed on a layer made of Al oxide, oxycarbide, oxynitride or oxycarbonitride and an oxide film mainly composed of α-type aluminum oxide An aluminum oxide-coated tool characterized in that it is composed of a layer made of a material, and the surface of the bonding layer has a number of protrusions protruding substantially in the film thickness direction. 請求項1記載の被覆工具において、該結合層が少なくとも基体側から順にTiの酸化物、酸炭化物又は酸窒化物からなる層、Ti及びAlの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層及びTiの酸化物、酸炭化物、酸窒化物又は酸炭窒化物からなる層の3層により構成されていることを特徴とする酸化アルミニウム被覆工具。2. The coated tool according to claim 1, wherein the bonding layer is at least a layer composed of an oxide of Ti, an oxycarbide or an oxynitride in order from the substrate side, an oxide of Ti and Al, an oxycarbide, an oxynitride or an oxycarbonitride. An aluminum oxide-coated tool comprising three layers: a layer made of a material and a layer made of an oxide of Ti, an oxycarbide, an oxynitride, or an oxycarbonitride. 請求項1又は2記載の被覆工具において、前記結合層表面の突起が鉤型に屈曲していることを特徴とする酸化アルミニウム被覆工具。The coated tool according to claim 1 or 2, wherein the protrusion on the surface of the bonding layer is bent in a bowl shape. 請求項1乃至3のいずれかに記載の被覆工具において、前記突起の先端が丸くなっていることを特徴とする酸化アルミニウム被覆工具。The coated tool according to any one of claims 1 to 3, wherein a tip of the protrusion is rounded. 請求項1乃至4のいずれかに記載の被覆工具において、前記結合層の少なくとも一部の層の断面が略膜厚方向に細長い結晶粒郡からなっていることを特徴とする酸化アルミニウム被覆工具。The coated tool according to any one of claims 1 to 4, wherein a cross section of at least a part of the bonding layer is formed of crystal grains elongated in a substantially film thickness direction. 請求項1乃至5のいずれかに記載の被覆工具において、前記α型酸化アルミニウムを主とする酸化膜の表面に少なくともTi、Zr又はHfの窒化物、炭化物又は炭窒化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜が形成されていることを特徴とする酸化アルミニウム被覆工具。6. The coated tool according to claim 1, wherein at least one of a nitride, carbide, or carbonitride of Ti, Zr, or Hf is formed on the surface of the oxide film mainly composed of α-type aluminum oxide. A single layer coating or a multilayer coating consisting of two or more types is formed.
JP2002235535A 2002-08-13 2002-08-13 Aluminum oxide coated tool Expired - Lifetime JP3962300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235535A JP3962300B2 (en) 2002-08-13 2002-08-13 Aluminum oxide coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235535A JP3962300B2 (en) 2002-08-13 2002-08-13 Aluminum oxide coated tool

Publications (2)

Publication Number Publication Date
JP2004074324A JP2004074324A (en) 2004-03-11
JP3962300B2 true JP3962300B2 (en) 2007-08-22

Family

ID=32020000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235535A Expired - Lifetime JP3962300B2 (en) 2002-08-13 2002-08-13 Aluminum oxide coated tool

Country Status (1)

Country Link
JP (1) JP3962300B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181645A (en) * 2004-12-24 2006-07-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2006175560A (en) * 2004-12-22 2006-07-06 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
EP1757389A4 (en) * 2004-12-22 2012-02-08 Sumitomo Elec Hardmetal Corp Surface-coated cutting tool
JP5235449B2 (en) * 2008-02-27 2013-07-10 京セラ株式会社 Cutting tools
JP5321094B2 (en) * 2009-01-30 2013-10-23 三菱マテリアル株式会社 Surface coated cutting tool
WO2019146785A1 (en) * 2018-01-29 2019-08-01 京セラ株式会社 Coated tool, and cutting tool comprising same
JP7037580B2 (en) * 2018-01-29 2022-03-16 京セラ株式会社 Covering tool and cutting tool equipped with it
WO2019146786A1 (en) * 2018-01-29 2019-08-01 京セラ株式会社 Coated tool, and cutting tool comprising same
US20220258253A1 (en) * 2019-07-29 2022-08-18 Kyocera Corporation Coated tool and cutting tool including the same
CN114144272B (en) 2019-07-29 2024-02-20 京瓷株式会社 Coated cutting tool and cutting tool provided with same
US20220250163A1 (en) 2019-07-29 2022-08-11 Kyocera Corporation Coated tool and cutting tool including the same
KR20220024686A (en) 2019-07-29 2022-03-03 교세라 가부시키가이샤 Coated tool and cutting tool having same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827562A (en) * 1994-07-15 1996-01-30 Toshiba Tungaloy Co Ltd Oxidation resistant coated member
DE19962056A1 (en) * 1999-12-22 2001-07-12 Walter Ag Cutting tool with multi-layer, wear-resistant coating
JP2002028803A (en) * 2000-05-10 2002-01-29 Mitsubishi Materials Corp Throw-away cutting tip made of surface coated tungsten carbide-base cemented carbide having good interlayer adhesiveness of hard coat layer
JP2001328005A (en) * 2000-05-19 2001-11-27 Mitsubishi Materials Corp Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion
JP3476749B2 (en) * 2000-06-14 2003-12-10 東芝タンガロイ株式会社 Ultra-high pressure and high pressure sintered body

Also Published As

Publication number Publication date
JP2004074324A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP3678924B2 (en) Aluminum oxide coated tool
JP4312989B2 (en) α Alumina coated cutting tool
JP3418066B2 (en) Alumina-coated tool and manufacturing method thereof
KR960015546B1 (en) Diffusion barrier coating material
JP4824173B2 (en) PVD coated cutting tool and manufacturing method thereof
KR101104493B1 (en) Coating materials for a cutting tool or an abrasion resistance tool
JP2002205205A (en) Cutting tool having body coated by hard wear resistant film
JP2007528941A (en) Coated body and method for coating substrate
KR20110083633A (en) A coated tool and a method of making thereof
JP3658949B2 (en) Coated cemented carbide
JP3962300B2 (en) Aluminum oxide coated tool
JP5683190B2 (en) Surface covering member
JP2012144766A (en) Coated member
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP4142955B2 (en) Surface coated cutting tool
EP4041931A1 (en) A coated cutting tool
KR100600573B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
JP4114741B2 (en) Titanium chromium compound coating tool
JP4107433B2 (en) α-type aluminum oxide coated member
JP5693039B2 (en) Surface covering member
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP2001025905A (en) Titanium carbonitroxide coated tool
JP4480090B2 (en) Coated tool
JPH11114704A (en) Titanium-carbide-covered tool
JP3347031B2 (en) Titanium carbide coated tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070518

R150 Certificate of patent or registration of utility model

Ref document number: 3962300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term