[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04310867A - High frequency power measuring device - Google Patents

High frequency power measuring device

Info

Publication number
JPH04310867A
JPH04310867A JP7776191A JP7776191A JPH04310867A JP H04310867 A JPH04310867 A JP H04310867A JP 7776191 A JP7776191 A JP 7776191A JP 7776191 A JP7776191 A JP 7776191A JP H04310867 A JPH04310867 A JP H04310867A
Authority
JP
Japan
Prior art keywords
frequency
high frequency
measuring device
frequency power
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7776191A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kikunaga
敏之 菊永
Kunihiko Nakajima
中島 国彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7776191A priority Critical patent/JPH04310867A/en
Publication of JPH04310867A publication Critical patent/JPH04310867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To obtain an inexpensive high frequency power measuring device capable of being relatively easily repaired even when damage occurs and capable of monitoring high frequency power even during the transmission to a utilization apparatus. CONSTITUTION:A solid plate-shaped dielectric layer 11 is provided on the waveguide 2 from a high frequency oscillator 5 and a cooling medium is circulated to the peripheral edge part of the solid plate-shaped dielectric layer 11 by a cooling medium circulating device 4. By detecting the temp. rise of the cooling medium by a temp. measuring device 6, the temp. rise due to the thermalization quantity of high frequency power is detected to measure high frequency power.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、高周波電力測定器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency power measuring instrument.

【0002】0002

【従来の技術】図5は、例えば特開平1−186794
号公報に示された従来の高周波電力測定器の一種である
高周波用模擬負荷を示す構成図である。図において、1
は例えばアルミナなどのセラミックで構成された中空三
角錐、2は導波管、3は冷却水ジャケット、4は冷却水
循環器、5は高周波発振器を示す。
2. Description of the Related Art FIG.
1 is a configuration diagram showing a high-frequency simulated load, which is a type of conventional high-frequency power measuring device disclosed in the above publication. In the figure, 1
is a hollow triangular pyramid made of ceramic such as alumina, 2 is a waveguide, 3 is a cooling water jacket, 4 is a cooling water circulator, and 5 is a high frequency oscillator.

【0003】高周波発振器5で発生して導波管2を伝播
している高周波電力は、その途中に装着されたセラミッ
クの中空三角錐1を透過する際に、その一部を失いセラ
ミック1の温度を上昇させる。透過した高周波は、冷却
水3中を伝播する過程で冷却水3に吸収される。冷却水
3は冷却水循環器4により流動され、セラミック1を冷
却する。冷却水3の温度上昇より、高周波模擬負荷中で
吸収された電力が換算され、高周波伝播電力を算定する
The high-frequency power generated by the high-frequency oscillator 5 and propagating through the waveguide 2 loses a part of it when it passes through the ceramic hollow triangular pyramid 1 installed in the middle, and the temperature of the ceramic 1 increases. to rise. The transmitted high frequency waves are absorbed by the cooling water 3 while propagating through the cooling water 3. Cooling water 3 is made to flow through a cooling water circulator 4 to cool ceramic 1 . Based on the temperature rise of the cooling water 3, the power absorbed in the high frequency simulated load is converted to calculate the high frequency propagation power.

【0004】0004

【発明が解決しようとする課題】上記のような従来の高
周波電力測定器では、伝播電力の増大に伴って、セラミ
ック1とその沿面層の温度上昇が高くなり、セラミック
1の熱応力破壊をもたらす。また、冷却水3が高周波電
力吸収によって突沸し、セラミック1に衝撃破壊をもた
らす危険性がある。このため、セラミック1の形状とし
ては、三角錐の頂角を小さくして発熱領域を拡大させて
発熱の電力密度を下げる必要があり、セラミック1は一
体で且つ益々大形のものが要求されるという問題があっ
た。
[Problems to be Solved by the Invention] In the conventional high-frequency power measuring device as described above, as the propagation power increases, the temperature of the ceramic 1 and its creeping layer increases, resulting in thermal stress fracture of the ceramic 1. . Furthermore, there is a risk that the cooling water 3 will bump due to absorption of high-frequency power, causing shock damage to the ceramic 1. For this reason, it is necessary to reduce the power density of heat generation by reducing the apex angle of the triangular pyramid to expand the heat generation area, and the ceramic 1 is required to be integral and larger. There was a problem.

【0005】さらに、従来の高周波電力測定器は、高周
波利用装置への高周波の伝送を遮断する形で伝送回路に
挿入されるため、高周波利用中での伝送電力の測定には
利用できなかった。このため、従来、伝送電力のモニタ
ーには、方向性結合器などを利用しているが、伝送波の
大電力化、高周波数化が進むと方向性結合器の設計や伝
送電力の正確なモニターが困難になるという問題もあっ
た。
[0005]Furthermore, conventional high-frequency power measuring instruments are inserted into the transmission circuit in a manner that blocks the transmission of high-frequency waves to high-frequency devices, and therefore cannot be used to measure transmitted power while high-frequency waves are being used. For this reason, conventionally, directional couplers have been used to monitor transmitted power, but as transmission waves become larger in power and frequency, it becomes necessary to design directional couplers and accurately monitor transmitted power. There was also the problem that it became difficult.

【0006】この発明は、かかる問題点を解決するため
になされたもので、安価であり、破損が生じても比較的
容易に修復が可能であり、かつ高周波電力をその利用装
置へ伝送中も伝送電力をモニターできる高周波電力測定
器を得ることを目的としている。
The present invention has been made to solve these problems, and is inexpensive, can be repaired relatively easily even if damage occurs, and can be used while transmitting high frequency power to the equipment that uses it. The aim is to obtain a high-frequency power measuring device that can monitor transmitted power.

【0007】[0007]

【課題を解決するための手段】この発明に係る高周波電
力測定器は、高周波の導波路に設けた固体板状誘電体層
、冷媒を循環して誘電体層を冷却する冷媒循環器、及び
層での高周波電力の熱化量による温度上昇を検出する温
度測定器を備えたものである。
[Means for Solving the Problems] A high-frequency power measuring device according to the present invention includes a solid plate-like dielectric layer provided in a high-frequency waveguide, a coolant circulator that cools the dielectric layer by circulating a coolant, and a layer The system is equipped with a temperature measuring device that detects the temperature rise due to the amount of heat generated by high-frequency power.

【0008】また、高周波の導波路に設けた固体板状誘
電体層の表面を冷却する冷媒によって、高周波の導波路
に冷媒層を形成し、温度測定器は固体板状誘電体層及び
冷媒層での高周波電力の熱化量による温度上昇を検出す
るようにしたものである。
[0008] In addition, a coolant layer is formed in the high-frequency waveguide by a coolant that cools the surface of the solid plate-like dielectric layer provided in the high-frequency waveguide, and the temperature measuring device is connected to the solid plate-like dielectric layer and the coolant layer. This system detects the temperature rise due to the amount of heat generated by high-frequency power.

【0009】[0009]

【作用】上記のように構成された高周波電力測定器では
、高周波をセラミック平板もしくはセラミック平板とこ
れを冷却する冷媒層とを透過させることによって高周波
を熱化させ、減衰させるもので、セラミック板冷媒の温
度上昇より高周波電力を算定する。従って、導波管断面
程度の小形円板状セラミックを使用するため、安価であ
り、複数の固体板状誘電体層を高周波の導波路に設置し
て1つの固体板状誘電体層で測定する電力量を低くする
ことも可能である。また、破損が生じてもそのセラミッ
ク板を交換することで修復が可能であり、さらに、高周
波電力をその利用装置へ伝送中も伝送電力をモニターで
きる。
[Operation] The high frequency power measuring device configured as described above thermalizes and attenuates the high frequency waves by transmitting them through a ceramic flat plate or a ceramic flat plate and a refrigerant layer that cools it. Calculate the high frequency power from the temperature rise. Therefore, it is inexpensive because it uses a small ceramic disc with the same size as the cross section of the waveguide, and it is possible to install multiple solid plate dielectric layers in a high-frequency waveguide and measure with one solid plate dielectric layer. It is also possible to reduce the amount of power. Furthermore, even if damage occurs, it can be repaired by replacing the ceramic plate, and furthermore, the transmitted power can be monitored while the high-frequency power is being transmitted to the device that uses it.

【0010】0010

【実施例】実施例1.図1はこの発明の一実施例による
高周波電力測定器を示す構成図である。図において、2
は例えば銅で構成され、高周波の導波路を構成する導波
管、3は冷却水ジャケット、4は冷却水循環器、5は高
周波発振器、6は冷却水温度測定器、7は両端に設けら
れたフランジである。また、10は第1の高周波減衰器
、11は固体板状誘電体層で、例えば円板状のセラミッ
ク板、20は第2の高周波減衰器、30は多数の高周波
減衰器であり、高周波減衰器10,20,30はフラン
ジ7によって導波管2に固着されて高周波の導波路に設
置されている。なお、この実施例では、セラミック板1
を冷却する冷媒として水を用いている。
[Example] Example 1. FIG. 1 is a block diagram showing a high frequency power measuring device according to an embodiment of the present invention. In the figure, 2
is a waveguide made of copper and constitutes a high frequency waveguide, 3 is a cooling water jacket, 4 is a cooling water circulator, 5 is a high frequency oscillator, 6 is a cooling water temperature measuring device, and 7 is provided at both ends. It is a flange. Further, 10 is a first high-frequency attenuator, 11 is a solid plate-like dielectric layer, for example, a circular ceramic plate, 20 is a second high-frequency attenuator, and 30 is a large number of high-frequency attenuators. The devices 10, 20, and 30 are fixed to the waveguide 2 by the flange 7 and installed in the high-frequency waveguide. Note that in this example, the ceramic plate 1
Water is used as a refrigerant to cool the

【0011】図2はこの発明の一実施例に係る1つの単
位の高周波減衰器を示す構成図である。図において、9
は高周波の入射方向を示す矢印である。
FIG. 2 is a block diagram showing one unit of a high frequency attenuator according to an embodiment of the present invention. In the figure, 9
is an arrow indicating the direction of incidence of high frequency waves.

【0012】高周波発生器5で発生して導波管2を伝播
している高周波は、その途中に設けた第1の高周波減衰
器10に導波される。セラミック板11を透過する際に
、その一部を失いセラミック板11の温度を上昇させる
。冷却水3はセラミック板11と周縁部で接しており、
セラミック板11の温度上昇分を吸収する。冷却水3の
温度上昇を冷却水温度測定器6で測定することにより、
高周波模擬負荷中で吸収された電力が換算され、高周波
伝播電力が算定できる。
The high frequency wave generated by the high frequency generator 5 and propagating through the waveguide 2 is guided to a first high frequency attenuator 10 provided in the middle. When passing through the ceramic plate 11, some of it is lost and the temperature of the ceramic plate 11 increases. The cooling water 3 is in contact with the ceramic plate 11 at the peripheral edge,
The temperature rise of the ceramic plate 11 is absorbed. By measuring the temperature rise of the cooling water 3 with the cooling water temperature measuring device 6,
The power absorbed in the high frequency simulated load is converted, and the high frequency propagation power can be calculated.

【0013】この実施例では、複数個の高周波減衰器で
構成されており、全ての冷却水温度検出器からの出力の
和を計算することにより、高周波伝播電力が算定できる
In this embodiment, a plurality of high-frequency attenuators are used, and the high-frequency propagation power can be calculated by calculating the sum of the outputs from all the cooling water temperature detectors.

【0014】この実施例1の高周波電力測定器を構成す
る単位の高周波減衰器10,20,30は、個別には高
周波を透過させる従来の高周波窓と同一原理である。高
周波窓としては、減衰を抑えるためにセラミック板また
は面冷却する冷媒層での高周波損の小さい構成とされる
。この実施例における高周波電力測定器を構成する単位
の高周波減衰器は、それが健全性を維持できる程度の高
周波損を生じるようセラミック、冷媒の材質、厚さが選
択される。高周波は複数の単位の高周波減衰器を透過す
る過程で熱化される。
The high-frequency attenuators 10, 20, and 30 that constitute the high-frequency power measuring device of the first embodiment are individually based on the same principle as a conventional high-frequency window that transmits high frequencies. The high-frequency window is configured to have a ceramic plate or a surface-cooled refrigerant layer with low high-frequency loss in order to suppress attenuation. The ceramic, refrigerant material, and thickness of the unit high-frequency attenuator constituting the high-frequency power measuring device in this embodiment are selected so as to generate high-frequency loss to the extent that it can maintain its integrity. The high frequency waves are thermalized in the process of passing through a plurality of units of high frequency attenuators.

【0015】周波数f、電界の強さEの高周波が、誘電
率ε、誘電損係数tanδの媒質に入射する際の単位体
積当りの損失Qは、下記の数式1で評価される。
The loss Q per unit volume when a high frequency wave having a frequency f and an electric field strength E is incident on a medium having a dielectric constant ε and a dielectric loss coefficient tan δ is evaluated by the following equation 1.

【0016】[0016]

【数1】[Math 1]

【0017】また、セラミック板1の表面でのインピー
ダンス不整合を避けるために、セラミック板1の厚さt
は下記の数式2の制限を考慮して、応力破壊を生じない
厚さに選択されている。
Furthermore, in order to avoid impedance mismatch on the surface of the ceramic plate 1, the thickness t of the ceramic plate 1 is
is selected to have a thickness that does not cause stress failure, taking into account the limitations of Equation 2 below.

【0018】[0018]

【数2】[Math 2]

【0019】数式2でβはセラミック板1の伝播定数、
nは整数である。この実施例のような構造の高周波減衰
器を高周波窓として従来用いることもあった。ところが
高周波窓として機能するには、減衰を抑えるためにセラ
ミック板の高周波損の小さい構成とされる。即ち、損失
Qを小さくできる媒質が選択され、従って層厚さtも小
さくできる媒質が選択される。これに対し、この発明の
実施例1における高周波減衰器10,20,30は、冷
却し得る範囲で損失Qが大きい媒質が採用される。誘電
体層1の材質としては熱的条件、機械的条件を勘案して
セラミックディスクを慣用する。
In Equation 2, β is the propagation constant of the ceramic plate 1,
n is an integer. Conventionally, a high frequency attenuator having a structure like this embodiment has been used as a high frequency window. However, in order to function as a high-frequency window, the ceramic plate must have a structure with low high-frequency loss in order to suppress attenuation. That is, a medium is selected that can reduce the loss Q, and therefore a medium that can also reduce the layer thickness t. On the other hand, in the high frequency attenuators 10, 20, and 30 according to the first embodiment of the present invention, a medium having a large loss Q within a cooling range is used. As the material for the dielectric layer 1, a ceramic disk is commonly used in consideration of thermal and mechanical conditions.

【0020】この実施例によれば、小形の円板状のセラ
ミック板を使用した同一規格の高周波減衰器の組合せに
よって得られ、さらに高周波減衰器は伝送電力の一部を
吸収するだけで良いので、装置を安価に提供できる。ま
た、単位の高周波減衰器はフランジ7によって容易に高
周波の導波管2に取り付けられるので、破損時の修復も
容易である。
According to this embodiment, the high frequency attenuator can be obtained by combining the high frequency attenuators of the same standard using small disc-shaped ceramic plates, and furthermore, since the high frequency attenuator only needs to absorb a part of the transmitted power, , the device can be provided at low cost. Further, since the unit high frequency attenuator can be easily attached to the high frequency waveguide 2 by the flange 7, it is easy to repair it when it is damaged.

【0021】また、単位の高周波減衰器は、従来の高周
波窓としての機能を備えた高周波減衰器であるため、高
周波電力のその利用装置への伝送途中に挿入しておけば
、高周波電力をその利用装置へ伝送中でも伝送電力をモ
ニターできることは言うまでもない。伝送電力をモニタ
ーする場合は1つの高周波減衰器で構成すれば良い。 冷媒流量を可変にし、低出力時の温度上昇低下を補償す
れば、高周波窓でのモニターに比較して低出力時の精度
を向上させることができる。
Furthermore, since the unit high-frequency attenuator is a high-frequency attenuator that has the function of a conventional high-frequency window, if it is inserted in the middle of transmitting high-frequency power to the device that uses it, the high-frequency power can be Needless to say, the transmitted power can be monitored even during transmission to the device being used. When monitoring transmission power, it is sufficient to configure one high-frequency attenuator. By making the refrigerant flow rate variable and compensating for temperature rise and fall at low output, accuracy at low output can be improved compared to monitoring with a high-frequency window.

【0022】さらに、高周波発振器5側の高周波減衰器
より内側の高周波減衰器が破損した場合にも、高周波発
振器5側への影響の波及が軽減される効果がある。
Furthermore, even if the high-frequency attenuator on the inner side of the high-frequency attenuator on the high-frequency oscillator 5 side is damaged, the effect on the high-frequency oscillator 5 side is reduced.

【0023】実施例2.実施例1では、セラミック板で
成る固体板状誘電体層11の冷却にはその周縁部を冷却
する水を用いたが、セラミック板2枚の間隙に冷媒を流
し、面冷却すると共に、冷媒で形成される層で高周波を
減衰させるようにしたダブルディスク型の高周波減衰器
を構成してもよい。実施例2による高周波電力測定器の
構成を図3に示す。図4はこの実施例2に係るダブルデ
ィスク型の高周波減衰器を示す構成図である。図におい
て、8は冷媒層、11a,11bは固体板状誘電体層で
、例えば円板状のセラミック板であり、高周波の導波路
において、セラミック板11a,11bの間に冷媒層8
が介在する構成となっている。また、12は冷媒ジャケ
ットである。
Example 2. In Example 1, water was used to cool the peripheral edge of the solid plate dielectric layer 11 made of a ceramic plate. A double disk type high frequency attenuator may be constructed in which the formed layer attenuates high frequencies. FIG. 3 shows the configuration of a high frequency power measuring device according to the second embodiment. FIG. 4 is a configuration diagram showing a double disk type high frequency attenuator according to the second embodiment. In the figure, reference numeral 8 denotes a coolant layer, and 11a and 11b indicate solid plate-like dielectric layers, such as disk-shaped ceramic plates.
It has a configuration in which there is an intervention. Further, 12 is a refrigerant jacket.

【0024】この実施例2における動作も実施例1の場
合とほぼ同様であるが、高周波は冷媒層8でも吸収され
る。即ち、高周波発振器5で発生して導波管2を伝播し
ている高周波は、その途中に装着された第1の高周波減
衰器10に導波される。セラミック板11a,冷媒層8
,セラミック板11bを透過する際に、その一部を失い
それらの温度を上昇させる。冷媒層8はセラミック板1
1a,bを面冷却しており、その温度上昇分も吸収する
。冷媒12の温度上昇を温度測定器6で測定することに
より、高周波模擬負荷中で吸収された電力が換算され、
高周波伝播電力が算定できる。
The operation in this second embodiment is almost the same as that in the first embodiment, but the high frequency is also absorbed by the refrigerant layer 8. That is, the high frequency wave generated by the high frequency oscillator 5 and propagating through the waveguide 2 is guided to the first high frequency attenuator 10 installed in the middle. Ceramic plate 11a, coolant layer 8
, when passing through the ceramic plate 11b, some of it is lost and their temperature increases. Coolant layer 8 is ceramic plate 1
1a and 1b are surface cooled, and the temperature increase is also absorbed. By measuring the temperature rise of the refrigerant 12 with the temperature measuring device 6, the power absorbed during the high frequency simulated load is converted,
High frequency propagation power can be calculated.

【0025】この実施例においても損失Qは実施例1と
同様に評価され、冷媒層8の厚さをt´、伝播定数をβ
´とするとn´を整数として、数式3で厚さt´が選択
される。誘電体材質としては熱的条件、機械的条件を勘
案してセラミックディスクを慣用する。
In this example, the loss Q is evaluated in the same manner as in Example 1, with the thickness of the coolant layer 8 being t' and the propagation constant being β.
', then the thickness t' is selected using Equation 3, where n' is an integer. As the dielectric material, a ceramic disk is commonly used in consideration of thermal and mechanical conditions.

【0026】[0026]

【数3】[Math 3]

【0027】高周波発振器の出力特性は、伝送回路の電
圧定在波比(VSWR)によって影響を受け、さらにこ
の値が高く、反射波が大きい場合には、伝送回路中での
放電を引き起こす危険性がある。単位の高周波減衰器を
伝送回路に挿入することによって、その度にVSWRは
変化する。ダブルディスク型の冷媒層8の厚さt´を調
整できるようにしているので、後段の伝送回路系からの
反射波も含めて発振器5に対するVSWRを最適化する
ことが可能である。
[0027] The output characteristics of a high-frequency oscillator are affected by the voltage standing wave ratio (VSWR) of the transmission circuit, and if this value is high and the reflected wave is large, there is a risk of causing discharge in the transmission circuit. There is. By inserting a unit of high-frequency attenuator into the transmission circuit, the VSWR changes each time. Since the thickness t' of the double-disk type coolant layer 8 can be adjusted, it is possible to optimize the VSWR for the oscillator 5, including the reflected waves from the subsequent transmission circuit system.

【0028】また、この実施例では、冷媒流量を可変に
し、低出力時の温度上昇低下を補償すれば、低出力時の
精度を向上させることができる。実施例1でセラミック
板11の温度上昇が僅かで電力測定が困難である場合に
は、冷媒層8で高周波を吸収する高周波電力測定器が有
効である。即ち、発振モードによっては、高周波発振器
に低損失材料を用いた実施例1のシングルディスク型の
高周波電力測定器が有効であり、その冷却水の温度上昇
が僅かで、電力測定が困難である場合には、実施例2に
示すダブルディスク型の高周波電力測定器が有効である
Furthermore, in this embodiment, by making the refrigerant flow rate variable and compensating for temperature rise and fall at low output, accuracy at low output can be improved. In Example 1, if the temperature rise of the ceramic plate 11 is small and power measurement is difficult, a high frequency power measuring device that absorbs high frequency waves in the coolant layer 8 is effective. That is, depending on the oscillation mode, the single-disk type high-frequency power measuring device of Example 1, which uses a low-loss material for the high-frequency oscillator, is effective, and when the temperature rise of the cooling water is small and power measurement is difficult. The double-disc type high-frequency power measuring device shown in Example 2 is effective for this purpose.

【0029】また、伝送回路の導波路を真空とする場合
には、実施例1で示したシングルディスク型を高周波発
振器5側に設置し、実施例2で示したダブルディスク型
をその後段側に設置すれば、破損時における冷媒の導波
路への漏洩による高周波発振器5側への影響の拡大を軽
減する効果が期待できる。
In addition, when the waveguide of the transmission circuit is made into a vacuum, the single disk type shown in Example 1 is installed on the high frequency oscillator 5 side, and the double disk type shown in Example 2 is installed on the subsequent stage side. This can be expected to have the effect of reducing the spread of the influence on the high frequency oscillator 5 side due to leakage of refrigerant into the waveguide at the time of breakage.

【0030】[0030]

【発明の効果】以上のようにこの発明によれば、高周波
の導波路に設けた固体板状誘電体層、冷媒を循環して誘
電体層を冷却する冷媒循環器、及び層での高周波電力の
熱化量による温度上昇を検出する温度測定器を備えたの
で、小形の平板状のセラミックを使用した同一規格の減
衰器の組合せによって得られるので、安価に提供でき、
破損時の修復も容易で、さらに高周波電力をその利用装
置へ伝送中も伝送電力をモニターできる高周波電力測定
器が得られる効果がある。
As described above, according to the present invention, there is provided a solid plate dielectric layer provided in a high frequency waveguide, a refrigerant circulator that cools the dielectric layer by circulating a refrigerant, and a high frequency power supply in the layer. Equipped with a temperature measuring device that detects the temperature rise due to the amount of heatization of
The present invention has the advantage of providing a high-frequency power measuring instrument that is easy to repair in the event of damage and that can monitor the transmitted power even while the high-frequency power is being transmitted to the device that uses it.

【0031】また、高周波の導波路に設けた固体板状誘
電体層の表面を冷却する冷媒によって、高周波の導波路
に冷媒層を形成し、温度測定器は固体板状誘電体層及び
冷媒層での高周波電力の熱化量による温度上昇を検出す
るようにしたので、低出力時の精度を向上させることが
できる高周波電力測定器が得られる効果がある。
[0031] Furthermore, a coolant layer is formed in the high-frequency waveguide by a coolant that cools the surface of the solid plate-like dielectric layer provided in the high-frequency waveguide, and the temperature measuring device is connected to the solid plate-like dielectric layer and the coolant layer. Since the temperature rise due to the amount of thermalization of the high-frequency power is detected at , there is an effect that a high-frequency power measuring instrument that can improve accuracy at low outputs can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1による高周波電力測定器を
示す構成図である。
FIG. 1 is a configuration diagram showing a high frequency power measuring device according to a first embodiment of the present invention.

【図2】この発明の実施例1による高周波電力測定器に
係る高周波減衰器を示す構成図である。
FIG. 2 is a configuration diagram showing a high frequency attenuator related to the high frequency power measuring device according to the first embodiment of the present invention.

【図3】この発明の実施例2による高周波電力測定器を
示す構成図である。
FIG. 3 is a configuration diagram showing a high frequency power measuring device according to a second embodiment of the present invention.

【図4】この発明の実施例2による高周波電力測定器に
係る高周波減衰器を示す構成図である。
FIG. 4 is a configuration diagram showing a high frequency attenuator related to a high frequency power measuring device according to a second embodiment of the present invention.

【図5】従来の高周波電力測定器を示す構成図である。FIG. 5 is a configuration diagram showing a conventional high frequency power measuring device.

【符号の説明】[Explanation of symbols]

2  導波管 4  冷媒循環器 5  高周波発振器 6  温度測定器 8  冷媒層 11  固体板状誘電体層 2 Waveguide 4 Refrigerant circulator 5 High frequency oscillator 6 Temperature measuring device 8 Refrigerant layer 11 Solid plate dielectric layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  高周波の導波路に設けた固体板状誘電
体層、冷媒を循環して上記誘電体層を冷却する冷媒循環
器、及び上記層での高周波電力の熱化量による温度上昇
を検出する温度測定器を備えたことを特徴とする高周波
電力測定器。
Claim 1: A solid plate-shaped dielectric layer provided in a high-frequency waveguide, a refrigerant circulator that circulates a refrigerant to cool the dielectric layer, and a temperature rise due to the amount of heat generated by the high-frequency power in the layer. A high frequency power measuring device characterized by being equipped with a temperature measuring device for detecting temperature.
【請求項2】  高周波の導波路に設けた固体板状誘電
体層の表面を冷却する冷媒によって、上記高周波の導波
路に冷媒層を形成し、温度測定器は固体板状誘電体層及
び上記冷媒層での高周波電力の熱化量による温度上昇を
検出するようにしたことを特徴とする請求項第1項記載
の高周波電力測定器。
2. A coolant layer is formed in the high-frequency waveguide by a coolant that cools the surface of the solid plate-like dielectric layer provided in the high-frequency waveguide, and the temperature measuring device is connected to the solid plate-like dielectric layer and the above-mentioned solid plate-like dielectric layer. 2. The high-frequency power measuring device according to claim 1, wherein the high-frequency power measuring device detects a temperature rise due to the amount of heat generated by the high-frequency power in the refrigerant layer.
JP7776191A 1991-04-10 1991-04-10 High frequency power measuring device Pending JPH04310867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7776191A JPH04310867A (en) 1991-04-10 1991-04-10 High frequency power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7776191A JPH04310867A (en) 1991-04-10 1991-04-10 High frequency power measuring device

Publications (1)

Publication Number Publication Date
JPH04310867A true JPH04310867A (en) 1992-11-02

Family

ID=13642921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7776191A Pending JPH04310867A (en) 1991-04-10 1991-04-10 High frequency power measuring device

Country Status (1)

Country Link
JP (1) JPH04310867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132960A (en) * 2004-11-02 2006-05-25 Japan Atomic Energy Agency High frequency power measurement device in high frequency induction heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132960A (en) * 2004-11-02 2006-05-25 Japan Atomic Energy Agency High frequency power measurement device in high frequency induction heating device

Similar Documents

Publication Publication Date Title
JP2792695B2 (en) Apparatus and method for measuring flow rate using surface acoustic waves
US7750859B2 (en) Generic pick-up horn for high power thermal vacuum testing of satellite payloads at multiple frequency bands and at multiple polarizations
Pan et al. Development of a 500 MHz high power RF test stand
Reece et al. Observation of 4× 10-17 cm harmonic displacement using a 10 GHz superconducting parametric converter
JPH04310867A (en) High frequency power measuring device
Olyphant et al. Strip-line methods for dielectric measurements at microwave frequencies
Kim et al. ZnO films on {001}-cut< 110>-propagating GaAs substrates for surface acoustic wave device applications
Met Absorptive filters for microwave harmonic power
KR100400744B1 (en) anechoic system
Anderson et al. Design and Performance of Microwave Components for ECH and ECE Applications at General Atomics
US2724800A (en) High frequency measuring apparatus
Okada et al. The development of a high-power microwave circulator for use in breaking of concrete and rock
Ganapolskii et al. Observation of an electromagnetic absorption peak in the millimeter wave range in liquid helium at the superfluid λ transition
Cochran et al. Apparatus for the study of the transmission of 24 GHz radiation through metal plates and for the study of FMR absorption lineshapes
Mi et al. Thermal analysis of TeO2-based acousto-optic tunable filters for spectral imaging
JP4853940B2 (en) High frequency power measuring device in high frequency heating device
Smith High-power resonance isolators
Young Energy spectral density of the sonic boom
Fellers Measurements in the millimeter to micron range
JP7495607B2 (en) Balanced disk resonator, dielectric characteristic measuring method and dielectric characteristic measuring system
JP2827286B2 (en) Anechoic chamber
CN113296063B (en) Device and method for measuring linearity of millimeter wave radiometer
Castera Magnetostatic volume wave resonators
Ali et al. Temperature distribution in uniform and layered microwave absorbers in waveguide
Winslow et al. Multiple film microwave acoustic transducers