JP4853940B2 - High frequency power measuring device in high frequency heating device - Google Patents
High frequency power measuring device in high frequency heating device Download PDFInfo
- Publication number
- JP4853940B2 JP4853940B2 JP2004319110A JP2004319110A JP4853940B2 JP 4853940 B2 JP4853940 B2 JP 4853940B2 JP 2004319110 A JP2004319110 A JP 2004319110A JP 2004319110 A JP2004319110 A JP 2004319110A JP 4853940 B2 JP4853940 B2 JP 4853940B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- frequency power
- waveguide
- dielectric plate
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Plasma Technology (AREA)
Description
本発明は、核融合装置の高周波加熱装置に係わり、特に高周波電力測定装置に関する。 The present invention relates to a high-frequency heating device for a nuclear fusion device, and more particularly to a high-frequency power measuring device.
高周波加熱装置では、高温プラズマに大電力高周波を入射して、効率良く核融合反応が発生する1億度以上の超高温に加熱するひとつの目的がある。発振管や増幅器で生成されたMW級の高周波は、プラズマに到達するまでに伝送路等で損失し、発振した電力の全てがプラズマには入射できない。 A high-frequency heating device has one purpose of heating a super-high temperature of 100 million degrees or higher where high-power high-frequency waves are incident on high-temperature plasma and a nuclear fusion reaction occurs efficiently. The MW class high frequency generated by the oscillation tube and the amplifier is lost in the transmission line until reaching the plasma, and all of the oscillated power cannot enter the plasma.
本発明の装置は、伝送された高周波電力を実測して、プラズマへ入射された電力を計測することや、伝送路の任意の場所での高周波電力を計測することで、特定範囲での伝送損失や伝送回路を構成する機器の異常損失(高周波放電等)を知ることができる。 従来の装置では、以下の方式(1)、(2)及び(3)で高周波電力測定が行われていた。 The apparatus of the present invention measures transmission power in a specific range by measuring the transmitted high-frequency power and measuring the power incident on the plasma, or by measuring the high-frequency power at an arbitrary location on the transmission path. And abnormal loss (high frequency discharge, etc.) of the equipment constituting the transmission circuit. In the conventional apparatus, high-frequency power measurement has been performed by the following methods (1), (2), and (3).
(1) 伝送路の90°ベンド部のミラー部分に高周波の漏れる小さな穴を開けて、これから漏れ出る高周波を計測することにより、伝送電力を較正する方式(非特許文献1)。
(2) 主伝送路から高周波ビームを分枝して、全ての高周波をダミーロードと呼ばれる高周波吸収用円筒状タンクに入射して、内部で反射をくりかえさせることにより高周波を吸収、冷却水により除熱する。この発生熱から電力量を測定する方式(非特許文献2)。
(1) A method of calibrating the transmission power by making a small hole that leaks high frequency in the mirror part of the 90 ° bend portion of the transmission line and measuring the high frequency leaking from the hole (Non-Patent Document 1).
(2) A high-frequency beam is branched from the main transmission line, and all high-frequency waves are incident on a cylindrical tank for high-frequency absorption called a dummy load. heat. A method of measuring the amount of electric power from this generated heat (Non-Patent Document 2).
(3) 上記(2)と類似した構造であるが、高周波吸収用タンクの内部で反射をくりかえさせて除熱する方式ではなく、高周波ビームを高周波吸収用タンクの中心に入射、この高周波ビームを円錐上のアルミニウム反射板中心に入射することで高周波を散乱させ、円筒状セラミック製の測板で高周波を吸収、冷却水で除熱する。この発生熱から電力量を測定する方式。
上記背景技術(1)の課題は
1) 高周波の偏波及びモード状態により電力量が変化する。
2) 穴より漏れ出た微小高周波を検波するため検波器を使用する。したがって検波器固有の性能に左右される。100GHz帯の検波器は特性が不安定で、経年変化や環境条件により一定の性能を維持できない。
The problem of the background technology (1) is
1) The amount of power varies depending on the high frequency polarization and mode.
2) Use a detector to detect the minute high frequency leaking from the hole. Therefore, it depends on the performance inherent to the detector. The 100GHz band detector has unstable characteristics and cannot maintain a certain level of performance due to aging and environmental conditions.
上記背景技術(2)の課題は
1) 主伝送路の高周波ビームの方向を変化させてダミーロード内にビームを入射しなければならないので、その過程での損失が生じる。
The problem of the background technology (2) is
1) Since the beam must enter the dummy load by changing the direction of the high-frequency beam in the main transmission path, a loss occurs in the process.
2) ダミーロード内部に高周波が散乱するため、条件によっては真空度が上昇しやすく、放電を併発する可能性が大きい。
3) 小型、軽量化がしにくく、高所や煩雑な場所で簡単に設置ができない。
2) Since high-frequency waves are scattered inside the dummy load, the degree of vacuum is likely to increase depending on the conditions, and there is a high possibility of simultaneous discharge.
3) It is difficult to reduce the size and weight, and cannot be easily installed in high places or complicated places.
4) 主伝送路に直接設置ができない。(高周波をダミーロードに導くため導波管切換器等で伝送路の変更が必要)
上記背景技術(3)の課題は
1) 主伝送路の高周波ビームの方向を変化させてダミーロード内にビームを入射しなければならないので、その過程での損失が生じる。
4) Cannot be installed directly on the main transmission line. (In order to guide high frequency to the dummy load, it is necessary to change the transmission line with a waveguide switch etc.)
The problem of the background technology (3) is
1) Since the beam must enter the dummy load by changing the direction of the high-frequency beam in the main transmission path, a loss occurs in the process.
2) 高周波ビームの中心軸が、円錐上のアルミニウム反射板の中心からずれるとある方向の一部に高周波が集中して円筒状セラミックが破損する。
3) セラミックが破損すると冷却水が伝送路である導波管内に漏れ出し、真空破壊と同時に導波管内の酸化と損傷が発生する。
2) When the center axis of the high-frequency beam deviates from the center of the aluminum reflector on the cone, the high frequency concentrates in a certain direction and the cylindrical ceramic is damaged.
3) When the ceramic breaks, cooling water leaks into the waveguide that is the transmission path, and oxidation and damage in the waveguide occur simultaneously with the vacuum break.
本発明は、主伝送路の導波管内を伝搬する大電力高周波を直接誘電体に通過させ、そこで熱に変換された高周波電力を測定するもので、全偏波、モードの異なる高周波でも高い精度で測定ができる。また、電力量に応じて最適な誘電正接値の誘電体を使用することで、誘電体検出部の温度上昇を制御できる装置である。 In the present invention, high power high frequency waves propagating in the waveguide of the main transmission path are directly passed through the dielectric, and the high frequency power converted into heat is measured there. Can be measured. In addition, by using a dielectric having an optimum dielectric loss tangent value according to the amount of electric power, the device can control the temperature rise of the dielectric detector.
上記全偏波とは、電界方向の向きで表現され、0〜360度のあらゆる偏波角を有するもので、直線偏波、楕円偏波、円偏波を意味している。又、上記誘電正接とは、物質を交流電界の中に置いた時、電界の変化にしたがって激しく向きを変える部分が存在すると、分子レベルで摩擦抵抗が生じて発熱が起きることであるが、誘電正接値とは、この発熱の大小を表す、誘電体の種類に固有な値である。 The total polarization is expressed in the direction of the electric field direction and has any polarization angle of 0 to 360 degrees, and means linear polarization, elliptical polarization, and circular polarization. Also, the dielectric loss tangent means that when a substance is placed in an alternating electric field and there is a part that changes its direction violently according to the change of the electric field, frictional resistance is generated at the molecular level and heat is generated. The tangent value is a value specific to the type of dielectric that represents the magnitude of this heat generation.
従来技術で課題のあった装置内の冷却構造(冷却水漏れ)は、大電力高周波の影響が無い、発熱する電力検出部外にあり、電力測定終了後に検出部が伝送路から引き抜き位置に移動した時点で冷却媒体と接触することにより除熱する構造で解決している。 The cooling structure (cooling water leakage) in the device, which was problematic in the prior art, is outside the power detection unit that generates heat without being affected by high power and high frequency, and after the power measurement is completed, the detection unit moves to the extraction position from the transmission line At this point, the problem is solved by removing the heat by contacting the cooling medium.
即ち、本発明は、高周波電力検出部、吸収電力保持部、駆動部、断熱部、除熱部、検出器固定部、導波管、可動導波管及び真空排気ポートから構成される高周波電力測定装置であって、高周波電力測定時には、駆動部を作動させて電力検出部を高周波伝送路の導波管内に移動させ、導波管内を伝搬する大電力高周波を直接検出部の誘電体に通過させ、そこで熱に変換された高周波電力を温度計で測定し、測定温度に対して予め決められた関係から高周波電力を見出し、電力測定が終了すると電力検出部を移動して伝送路外に格納し、電力検出部挿入位置には、可動導波管が移動して伝送路の導波管ギャップを埋める構造を有することにより、伝送回路の高周波損失を増大させることなく、且つ測定器内に進入する漏れ高周波を減少させる高周波電力測定装置である。 That is, the present invention is a high frequency power measurement unit comprising a high frequency power detection unit, an absorbed power holding unit, a drive unit, a heat insulation unit, a heat removal unit, a detector fixing unit, a waveguide, a movable waveguide, and a vacuum exhaust port. When measuring high-frequency power, the drive unit is operated to move the power detection unit into the waveguide of the high-frequency transmission path, and the high-power high-frequency wave propagating in the waveguide is directly passed through the dielectric of the detection unit. Therefore, the high frequency power converted into heat is measured with a thermometer, the high frequency power is found from a predetermined relationship with the measured temperature, and when the power measurement is completed, the power detection unit is moved and stored outside the transmission line. In the power detector insertion position, the movable waveguide moves and fills the waveguide gap of the transmission line, thereby entering the measuring instrument without increasing the high frequency loss of the transmission circuit. High frequency to reduce leakage high frequency It is a power measurement device.
本発明の高周波電力測定装置は、全偏波、全モードの電力計測が可能で、主伝送路のいずれの場所にでも設置ができ、主高周波伝送路の大電力伝送を妨害しない特色がある。これにより、伝送路の任意の場所での伝送効率測定や、全偏波に対応した高周波電力測定ができる利点がある。以下に特徴的な効果を示す。 The high-frequency power measuring device of the present invention can measure power of all polarized waves and all modes, and can be installed at any location on the main transmission line, and does not interfere with high-power transmission on the main high-frequency transmission line. Thereby, there is an advantage that transmission efficiency measurement at an arbitrary place on the transmission path and high-frequency power measurement corresponding to all polarized waves can be performed. The characteristic effects are shown below.
(1)偏波、モードの異なる高周波の電力測定ができる
(2)長い伝送路導波管においても任意の場所に設置ができる。
(3)電力検出部の断熱構造により高周波により発熱した熱が逃げないため、高精度の測定ができる。
(1) High-frequency power measurement with different polarization and mode can be performed. (2) Long transmission path waveguides can be installed at any location.
(3) Since the heat generated by the high frequency does not escape due to the heat insulation structure of the power detector, high-precision measurement is possible.
(4)電力検出部にペーパー状のヒーターを内蔵するため入熱較正が簡単にできる。
上記入熱較正とはつぎの意味である。誘電体に高周波が通過すると分子レベルで摩擦抵抗が生じて発熱するが、この時の発熱温度上昇を入熱量と表現する。本発明の装置では電気ヒーターを内蔵することで、通電した電圧と電流から高周波電力検出部に供給した電力が判り、この時の検出部の上昇温度を測定することで、供給電力と上昇温度の関係が判り、この較正値と誘電体に高周波が通過した時の温度から電力較正を行うが、かかる操作が入熱較正である。
(4) Since a paper heater is built in the power detector, heat input calibration can be performed easily.
The above heat input calibration has the following meaning. When high frequency passes through the dielectric, frictional resistance is generated at the molecular level and heat is generated. The increase in heat generation temperature at this time is expressed as heat input. In the device of the present invention, by incorporating an electric heater, the power supplied to the high-frequency power detection unit can be determined from the energized voltage and current, and by measuring the rising temperature of the detection unit at this time, the supply power and the rising temperature The relationship is known, and power calibration is performed from this calibration value and the temperature when a high frequency passes through the dielectric, and this operation is heat input calibration.
(5)大電力伝送時は電力検出部が可動して、任意で導波管ギャップを閉止する機能を装備したことにより、主伝送路の高周波伝送損失を増大させない、また測定器内に進入する漏れ高周波を最小限にできる効果がある。 (5) During high power transmission, the power detector is movable and optionally equipped with a function to close the waveguide gap, so that it does not increase the high-frequency transmission loss of the main transmission path and enters the measuring instrument. This has the effect of minimizing leakage high frequency.
(6)高周波電力検出部の除熱は、主伝送路から引き抜いた位置で冷却部との接触で行い、設置場所の環境に応じて水冷/空冷どちらにも対応可能である。水冷の場合の冷却水流路は発熱する電力検出部外にあり、冷却水路の金属が機械的に破断されない限り、装置内への水漏れは無に近くできる。 (6) The heat removal of the high-frequency power detection unit is performed by contact with the cooling unit at the position pulled out from the main transmission path, and can be either water-cooled or air-cooled depending on the environment of the installation site. In the case of water cooling, the cooling water flow path is outside the power detection unit that generates heat, and water leakage into the apparatus can be made almost as long as the metal in the cooling water path is not mechanically broken.
(7)MW級の大電力高周波電力の測定装置としては、小型、軽量、取付が簡単で、主伝送経路に直接結合ができ多様な環境で活用できる。 (7) MW-class high-power, high-frequency power measuring device is compact, lightweight, easy to install, can be directly coupled to the main transmission path, and can be used in various environments.
MW級大電力測定用高周波電力検出部では、誘電体素子に人工ダイヤモンドを使用する。理由は、熱伝導に優れ(ダイヤモンド検出部の発熱を逃がしやすい)、誘電体損失が小さい(大きな高周波電力がダイヤモンド検出部を通過しても発熱しにくい)ため、MW級大電力高周波電力測定に適している。 In the high-frequency power detector for measuring MW class high power, artificial diamond is used for the dielectric element. The reason is that it is excellent in heat conduction (it is easy to escape the heat generated by the diamond detector) and the dielectric loss is small (it is difficult to generate heat even when a large high frequency power passes through the diamond detector). Is suitable.
高周波電力検出器は、高周波電力測定時のみに主高周波伝送路に挿入して、測定終了後には伝送路から引きだし冷却する。高周波伝送路に高周波電力検出器を挿入するために、導波管断面にギャップ(できるだけ狭いギャップの方が高周波伝送損失は小さい)を開けているが、高周波電力測定時外の場合は、主伝送路の導波管ギャップは、高周波電力検出器と入れ替わりに可動導波管が主伝送路に挿入固定されることで、主高周波伝送路の伝送損失を損なわずに全偏波、全モードに対応した大電力高周波電力測定装置が実現できる。導波管ギャップとは、導波管11a,11b間の設けられた切断部のギャップで、その切断部間に高周波電力検出部が測定時に挿入され、測定時外には引く上げられ、そのギャップを導波管と同径の可動導波管で密閉する。 The high-frequency power detector is inserted into the main high-frequency transmission line only at the time of measuring the high-frequency power, and is cooled by being drawn out from the transmission line after the measurement is completed. In order to insert a high-frequency power detector into the high-frequency transmission line, a gap is opened in the waveguide cross section (the narrowest possible gap has a lower high-frequency transmission loss). The waveguide gap of the path is compatible with all polarized waves and all modes without losing the transmission loss of the main high-frequency transmission line by replacing the high-frequency power detector with the movable waveguide inserted and fixed in the main transmission line A high-power high-frequency power measuring device can be realized. The waveguide gap is a gap of a cut portion provided between the waveguides 11a and 11b. A high-frequency power detector is inserted between the cut portions at the time of measurement, and pulled up outside the time of measurement. Is sealed with a movable waveguide having the same diameter as the waveguide.
本発明の実施例を図1,図2により説明する。図1は、高周波電力測定時の高周波電力測定装置の縦断面図である。図2は、高周波電力測定時外の高周波電力測定装置の縦断面図である。 主構成要素は、高周波電力検出部1、吸収電力熱保持部2、断熱部3a、3b、駆動機構5、除熱部6、冷却接触子7、可動導波管12、電力検出部固定部13、電力較正用電気ヒーター19、温度計測用熱電対20が主な構成部品であり、高周波伝送経路に接続するために高周波伝送経路と同じ導波管11a、11bを本体外筒14に導波管用真空フランジ18を介して取付ける。導波管には、断面に狭いギャップ(できるだけ狭いギャップの方が測定精度上望ましいが、構造上の制約から3〜4mmとした)を開けることにより、図1に示すように高周波電力検出部1を挿入して、導波管を伝送する高周波電力を検出する。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a vertical cross-sectional view of a high-frequency power measuring device during high-frequency power measurement. FIG. 2 is a longitudinal sectional view of the high-frequency power measuring device outside the high-frequency power measurement time. The main components are a high-frequency power detection unit 1, an absorbed power heat holding unit 2, heat insulation units 3a and 3b, a drive mechanism 5, a heat removal unit 6, a cooling contact 7, a movable waveguide 12, and a power detection unit fixing unit 13. An electric heater 19 for power calibration and a thermocouple 20 for temperature measurement are main components, and the same waveguides 11a and 11b as the high-frequency transmission path are connected to the main body outer cylinder 14 for connection to the high-frequency transmission path. It is attached via a vacuum flange 18. The waveguide has a narrow gap in the cross section (a narrow gap as much as possible is desirable in terms of measurement accuracy, but is 3 to 4 mm due to structural limitations), so that the high-frequency power detector 1 as shown in FIG. Is inserted to detect the high-frequency power transmitted through the waveguide.
高周波検出部1は材料の選定と形状設計、製作精度が重要である。誘電体検出素子材料の選定では測定する高周波電力の大きさ、周波数に応じて、誘電正接の異なった誘電体を使用する。実施例では、110 GHz、1MW級、短パルスでの大電力高周波電力測定を前提として設計を行った。誘電体損失は、周波数と材料の誘電正接に比例するため、110GHzのような高い周波数になるほど誘電正接が低い材料が適している。このため、高周波検出部1の材料は、誘電体検出素子の発熱を除熱しやすく(熱伝導率が大きい〜10W/cmK)、また1MW級大電力高周波による発熱が比較的小さい(誘電正接〜5x10-4)人工ダイヤモンド(人工ダイヤモンドの中では比較的誘電正接が大きいものを選択している)を使用した。 For the high-frequency detector 1, selection of materials, shape design, and manufacturing accuracy are important. In selecting a dielectric detection element material, dielectric materials having different dielectric loss tangents are used according to the magnitude and frequency of the high-frequency power to be measured. In the examples, the design was performed on the premise of high-power high-frequency power measurement at 110 GHz, 1 MW class, and short pulses. Since the dielectric loss is proportional to the frequency and the dielectric loss tangent of the material, a material having a lower dielectric loss tangent is suitable for a higher frequency such as 110 GHz. For this reason, the material of the high-frequency detection unit 1 can easily remove the heat generated by the dielectric detection element (having a high thermal conductivity up to 10 W / cmK), and the heat generated by the 1 MW class high power high frequency is relatively low (dielectric loss tangent up to 5 × 10 5 -4) Artificial diamonds (artificial diamonds with a relatively large dielectric loss tangent were selected) were used.
誘電体検出素子の厚さtは、
t=n・λL / 2 (t:厚さ n:整数)
λLは誘電体中での波長で真空中の波長をλ0とすると
λL=1/ √ε・λ0 (ε:誘電体の誘電率)
ここでの実施例では、ダイアモンド誘電率ε=5.68、周波数f=110GHzとして
λL / 2 = 0.572 (mm)
従って誘電体検出素子の厚さは、n=2で 1.14 mm、n=3で1.72 mmの厚さとなる。また、厚さが異なると誘電体素子部で反射波が生じるため、製作精度は±0.01mmとした。実施例では、n=2で 1.14 mm±0.01mmで製作した。
The thickness t of the dielectric detection element is
t = n · λL / 2 (t: thickness n: integer)
λL is the wavelength in the dielectric, and the wavelength in vacuum is λ0
λL = 1 / √ε ・ λ0 (ε: dielectric constant of dielectric)
In this example, the diamond dielectric constant ε = 5.68 and the frequency f = 110 GHz.
λL / 2 = 0.572 (mm)
Therefore, the thickness of the dielectric detection element is 1.14 mm when n = 2 and 1.72 mm when n = 3. Further, since the reflected wave is generated in the dielectric element portion when the thickness is different, the manufacturing accuracy is set to ± 0.01 mm. In the example, n = 2 and 1.14 mm ± 0.01 mm.
検出部1の誘電体検出素子は導波管内を伝搬してきた高周波により発熱して、吸収電力熱保持部2に伝達される。熱は、温度計測用熱電対20、温度測定観測窓ポート16に取り付けた赤外温度計あるいは放射温度計等により計測する。吸収電力熱保持部2は断熱部3a、断熱部3b、真空断熱層で熱絶縁され、誘電体検出素子で熱に変換された高周波電力を発熱温度として、外部に逃さず計測することができる。 The dielectric detection element of the detection unit 1 generates heat due to the high frequency propagated in the waveguide and is transmitted to the absorbed power heat holding unit 2. Heat is measured by an infrared thermometer or a radiation thermometer attached to the temperature measurement thermocouple 20 and the temperature measurement observation window port 16. The absorbed power heat holding unit 2 is thermally insulated by the heat insulating unit 3a, the heat insulating unit 3b, and the vacuum heat insulating layer, and can measure the high frequency power converted into heat by the dielectric detection element as the heat generation temperature without escaping to the outside.
断熱部3a、断熱部3bは誘電正接が小さい〔〜2x10-4/106 MHz 〕、熱伝導率が小さい〔〜3x10-3 W/cm・K〕、耐熱温度が高い〔〜150℃〕、真空中での放出ガス量が小さい〔〜2x10-8 Pa・m3・s-1・m-2〕材料を選択した。ここでの実施例では、ポリテトタラフロロエチレンを使用した。 Heat insulation part 3a and heat insulation part 3b have a low dielectric loss tangent [~ 2x10-4 / 106 MHz], low thermal conductivity [~ 3x10-3 W / cm · K], high heat resistance [~ 150 ° C], vacuum The material with a small amount of gas [~ 2 × 10-8 Pa · m3 · s-1 · m-2] was selected. In this example, polytetrafluoroethylene was used.
断熱部3bと電力検出部固定部13は、吸収電力熱保持部2を数mm(実施例では3〜4mm)の導波管ギャップに接しない構造と、意図しない大気開放や真空排気時の応力にも固定強度を有するため、断熱部3bと電力検出部固定部13は、固定部の断熱部3bへの挿入時に有効なテーパー構造と固定強度、固定精度に優れたはめ込み構造とした。また、導波管11a、11bのギャップ端面と可動導波管12の端面は高周波放電防止と良好な駆動動作を可能にするために面取り加工を施してある。したがって、可動導波管12は、導波管11a、11bと同径の管で構成されているので、高周波電力測定時外に検出部1が引き上げられと、伝送路の導波管ギャップを密閉する。 The heat insulation part 3b and the power detection part fixing part 13 have a structure in which the absorbed power heat holding part 2 is not in contact with the waveguide gap of several millimeters (3 to 4 mm in the embodiment), and unintentional release to the atmosphere or stress at the time of evacuation. In addition, since the heat insulating portion 3b and the power detecting portion fixing portion 13 have a fixed strength, they are provided with a taper structure, a fixing strength, and a fitting structure excellent in fixing accuracy that are effective when the fixing portion is inserted into the heat insulating portion 3b. Further, the gap end faces of the waveguides 11a and 11b and the end face of the movable waveguide 12 are chamfered to prevent high-frequency discharge and enable a good driving operation. Therefore, since the movable waveguide 12 is composed of a tube having the same diameter as the waveguides 11a and 11b, the waveguide gap of the transmission line is sealed when the detection unit 1 is pulled up outside the time of high frequency power measurement. To do.
電力測定終了後、図2に示すように高周波電力検出部1、吸収電力熱保持部2は可動して伝送路外に格納され、可動導波管12により、高周波電力検出部1が引きだされた位置に移動して固定される。可動導波管12により、高周波伝送経路の導波管ギャップを埋めるため、高周波伝送主回路の高周波伝送損失を増大させない効果が期待でき、電力測定時外では長パルス伝送、定常伝送にも対応できる構造とした。また、可動導波管12が規定の位置に移動、固定された位置で、吸収電力熱保持部2で保持された熱は、冷却水あるいは空冷(空冷フィン8と必要により設置する空冷ファン)により冷却された除熱部6に接触する構造により除熱される。冷却接触子7は接触面の改善のためインジウムを使用した。 After the power measurement is completed, as shown in FIG. 2, the high frequency power detection unit 1 and the absorbed power heat holding unit 2 are moved and stored outside the transmission path, and the high frequency power detection unit 1 is pulled out by the movable waveguide 12. Moves to a fixed position and is fixed. Since the movable waveguide 12 fills the waveguide gap of the high-frequency transmission path, an effect of not increasing the high-frequency transmission loss of the high-frequency transmission main circuit can be expected, and long-pulse transmission and steady-state transmission can be handled outside the time of power measurement. The structure. Further, the heat held by the absorbed power heat holding unit 2 at the position where the movable waveguide 12 is moved and fixed to a specified position is cooled by cooling water or air cooling (air cooling fins 8 and an air cooling fan installed if necessary). Heat is removed by the structure in contact with the cooled heat removal unit 6. The cooling contact 7 used indium to improve the contact surface.
本体外筒14の真空シールは高周波遮蔽のため、全て金属ガスケット10a、10b、10c、10d、10eで構成、その他の真空シール部は溶接またロウ付けで製作した。また、電力測定時の導波管ギャップから、一部高周波が漏れ出すため本体外筒14内に漏れ高周波吸収用誘電体(誘電正接が大きい、耐熱性が高い、真空特性に優れている)、実施例ではSiC製セラミック円筒21a、21bを装着、本体外筒14内壁とは、放出ガスのガス排気のため約0.5mmの空間を開けて固定してある。このセラミック円筒は、導波管11aと導波管11bの中心軸ずれ精度を保持するための固定座の役割も有する。 The vacuum seal of the main body outer cylinder 14 is composed of metal gaskets 10a, 10b, 10c, 10d, and 10e for high-frequency shielding, and the other vacuum seals are manufactured by welding or brazing. In addition, since a part of the high frequency leaks from the waveguide gap at the time of power measurement, the leakage high frequency absorption dielectric (large dielectric loss tangent, high heat resistance, excellent vacuum characteristics) in the main body outer cylinder 14, In the embodiment, SiC ceramic cylinders 21a and 21b are mounted, and a space of about 0.5 mm is opened and fixed to the inner wall of the main body outer cylinder 14 for gas exhaust of the released gas. This ceramic cylinder also has a role of a fixed seat for maintaining the accuracy of the center axis deviation of the waveguides 11a and 11b.
高周波電力検出部1の誘電体素子で熱に変換された高周波電力量の絶対値は、吸収電力熱保持部2に内蔵した電力較正用電気ヒーター19(ヒーター絶縁材は真空性能、耐熱性、耐電気絶縁性に優れたものが望ましく、実施例ではポリイミドシートを使用した)により、入熱較正を実施する。ここで検出された高周波電力量は、全高周波電力量の一部であり、全電力の較正では、全電力を吸収してその全熱量を測定する基準計測器により比較較正を実施する。実際の較正では、本高周波電力測定装置の下流側の導波管に基準計測器を取付て、伝送される高周波電力を同時測定することにより、比較換算して全電力量の絶対値を得る。 The absolute value of the amount of high-frequency power converted into heat by the dielectric element of the high-frequency power detection unit 1 is the electric heater 19 for power calibration built in the absorbed power heat holding unit 2 (the heater insulation is vacuum performance, heat resistance, A material having excellent electrical insulation is desirable, and in the examples, a polyimide sheet is used), and heat input calibration is performed. The detected high-frequency power amount is a part of the total high-frequency power amount, and in the calibration of the total power, comparative calibration is performed by a reference measuring instrument that absorbs the total power and measures the total heat amount. In actual calibration, a reference measuring instrument is attached to the waveguide on the downstream side of the high-frequency power measuring apparatus, and the transmitted high-frequency power is measured at the same time.
本高周波電力測定装置は小型、軽量で、簡単な導波管脱着操作で、発振器出力近傍や数10〜100mになる大型核融合装置の長い伝送路や核融合プラズマ近傍の狭い場所においても設置できる利点がある。また、長い伝送路の始点と終点に設置することで、伝送損失が測定でき、長い伝送路内の不具合(放電等)についても数箇所設置すれば、異常箇所の判断にも貢献できる可能性を持つ。 This high-frequency power measuring device is small and light, and can be installed in the vicinity of an oscillator output or in a long transmission line of a large fusion device of several 10 to 100 meters or in a narrow place near the fusion plasma by a simple waveguide attachment / detachment operation. There are advantages. In addition, it is possible to measure transmission loss by installing it at the start and end points of a long transmission line, and if there are several places in trouble (discharge etc.) in a long transmission line, there is a possibility that it can contribute to the determination of abnormal parts. Have.
本発明の高周波電力測定装置は、核融合装置、大型加速器装置、高周波を利用した産業(たとえば高周波焼却炉等)、導波管で伝送させる高周波機器等において使用することができる。 The high-frequency power measuring device of the present invention can be used in nuclear fusion devices, large accelerator devices, high-frequency industries (for example, high-frequency incinerators), high-frequency devices that transmit through waveguides, and the like.
1 ・・・高周波電力検出部
2 ・・・吸収電力熱保持部
3a・・・断熱部a
3b・・・断熱部b
4 ・・・誘電体駆動機構軸
5 ・・・駆動機構
6 ・・・除熱部
7 ・・・冷却接触子
8 ・・・空冷フィン
9 ・・・冷却水管
10a・・ 金属真空ガスケットa
10b・・ 金属真空ガスケットb
10c・・ 金属真空ガスケットc
10d・・ 金属真空ガスケットd
10e・・ 金属真空ガスケットe
11a・・・導波管
11b・・・導波管
12・・・可動導波管
13 ・・・電力検出部固定部
14 ・・・本体外筒
15 ・・・誘電体可動部真空フランジ
16・・・温度測定観測窓ポート
17・・・真空排気ポート
18 ・・・導波管用真空フランジ
19 ・・・電力較正用電気ヒーター
20 ・・・温度計測用熱電対
21a ・・・SiCセラミック円筒a
21b ・・・SiCセラミック円筒b
1 ・ ・ ・ High frequency power detector
2 ・ ・ ・ Absorption power heat holding part
3a ・ ・ ・ Heat insulation part a
3b ・ ・ ・ Insulation part b
4 ・ ・ ・ Dielectric drive mechanism shaft
5 ・ ・ ・ Drive mechanism
6 ・ ・ ・ Heat removal part
7 ・ ・ ・ Cooling contact
8 ・ ・ ・ Air cooling fins
9 ・ ・ ・ Cooling water pipe
10a ・ ・ Metal vacuum gasket a
10b ・ ・ Metal vacuum gasket b
10c ・ ・ Metal vacuum gasket c
10d ・ ・ Metal vacuum gasket d
10e ・ ・ Metal vacuum gaskete
11a ・ ・ ・ Waveguide
11b ・ ・ ・ Waveguide
12 ... Moveable waveguide
13 ・ ・ ・ Power detector fixing part
14 ・ ・ ・ Main body outer cylinder
15 ... Dielectric movable part vacuum flange
16 ... Temperature measurement observation window port
17 ... Vacuum exhaust port
18 ... Vacuum vacuum flange
19 ・ ・ ・ Electric heater for power calibration
20 ... Thermocouple for temperature measurement
21a ・ ・ ・ SiC ceramic cylinder a
21b ・ ・ ・ SiC ceramic cylinder b
Claims (9)
前記隙間に差し込んだ誘電体板、並びに、
前記導波管の外に設置された温度計及び除熱用金属板、
を備え、
前記誘電体板を高周波が通過することで発生する熱を測定することで高周波電力を前記温度計で測定する高周波電力測定装置であって、
前記誘電体板に駆動機構を取り付け、隙間から抜き去り、除熱用金属板に接触させることを可能にした高周波電力測定装置。 A waveguide with a gap having a plane perpendicular to the waveguide of the waveguide;
A dielectric plate inserted into the gap, and
A thermometer and a heat removal metal plate installed outside the waveguide;
With
Said dielectric plate a RF power measuring device that measure the high frequency power at the thermometer by measuring the heat generated by high frequency to pass through,
It said dielectric plate mounting a driving mechanism, drained off from the gap, the high-frequency power measurement apparatus capable of contacting the rejector plate.
前記隙間に差し込んだ誘電体板、並びに、 A dielectric plate inserted into the gap, and
前記導波管の外に設置された温度計及び除熱用金属板、 A thermometer and a heat removal metal plate installed outside the waveguide;
を備え、With
前記誘電体板を高周波が通過することで発生する熱を測定することで高周波電力を前記温度計で測定する高周波電力測定装置であって、 A high-frequency power measuring device that measures high-frequency power with the thermometer by measuring heat generated by high-frequency passage through the dielectric plate,
前記誘電体板に駆動機構を取り付け、隙間から抜き去り、除熱用金属板に接触させることを可能にした高周波電力測定装置を用いた高周波電力測定に際して、 At the time of high-frequency power measurement using a high-frequency power measurement device that allows a drive mechanism to be attached to the dielectric plate, removed from the gap, and brought into contact with the metal plate for heat removal,
前記誘電体板を隙間から抜き去る際に、前記除熱用金属板に接触させるステップを備えることによって、測定後に高周波誘電体板を速やかに冷却できる高周波電力測定方法。 A high frequency power measurement method capable of quickly cooling a high frequency dielectric plate after measurement by providing a step of bringing the dielectric plate into contact with the heat removal metal plate when removing the dielectric plate from the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319110A JP4853940B2 (en) | 2004-11-02 | 2004-11-02 | High frequency power measuring device in high frequency heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319110A JP4853940B2 (en) | 2004-11-02 | 2004-11-02 | High frequency power measuring device in high frequency heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006132960A JP2006132960A (en) | 2006-05-25 |
JP4853940B2 true JP4853940B2 (en) | 2012-01-11 |
Family
ID=36726642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004319110A Expired - Fee Related JP4853940B2 (en) | 2004-11-02 | 2004-11-02 | High frequency power measuring device in high frequency heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4853940B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5099475B2 (en) * | 2006-12-20 | 2012-12-19 | 独立行政法人日本原子力研究開発機構 | Abnormality diagnosis device for high power millimeter wave transmission system |
CN102680870A (en) * | 2012-05-31 | 2012-09-19 | 刘志万 | Insulation performance testing method of electric power devices |
RU2615054C1 (en) * | 2015-12-25 | 2017-04-03 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) | Method of measuring absorbed power per unit volume of microwave discharge plasma in hydrogen-containing gas |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60145370A (en) * | 1984-01-07 | 1985-07-31 | Sumitomo Electric Ind Ltd | Manufacture of sintered soft magnetic parts having superior corrosion resistance |
JPS60145370U (en) * | 1984-08-14 | 1985-09-26 | 工業技術院長 | Heat load for calorimeter type high frequency power detector |
JPS6433900A (en) * | 1987-07-29 | 1989-02-03 | Hitachi Ltd | Phase shifter for nuclear fusion device |
JPH03102795A (en) * | 1989-09-18 | 1991-04-30 | Toshiba Corp | Shutter for protection of launcher |
JPH04310867A (en) * | 1991-04-10 | 1992-11-02 | Mitsubishi Electric Corp | High frequency power measuring device |
-
2004
- 2004-11-02 JP JP2004319110A patent/JP4853940B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006132960A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5660740A (en) | Treatment apparatus control method | |
CN103234804B (en) | High-power non-contact type rapid laser heating device | |
KR19980033219A (en) | Temperature control device of the sample mount | |
US8011827B1 (en) | Thermally compensated dual-probe fluorescence decay rate temperature sensor | |
Pan et al. | Development of a 500 MHz high power RF test stand | |
US6401653B1 (en) | Microwave plasma generator | |
JP4853940B2 (en) | High frequency power measuring device in high frequency heating device | |
JPS6338121B2 (en) | ||
KR20200131165A (en) | Electric field sensor, surface wave plasma source, and surface wave plasma processing apparatus | |
JP5070570B2 (en) | Thermal expansion coefficient measuring method and measuring apparatus | |
KR101724333B1 (en) | System and method for measuring dielectric properties of materials by using fabry-perot resonance | |
JP2012093223A (en) | Electrical characteristics measuring device for dielectric material | |
CN101441114B (en) | Heat flow and kinetic pressure composite test device of plasma jet flow field | |
JP5099475B2 (en) | Abnormality diagnosis device for high power millimeter wave transmission system | |
KR20230014954A (en) | Chamber system for measuring dielectric constant and method for measuring dielectric constant using the same | |
Kaboli | A microscopic assessment about the fracture of alumina in the pillbox-type RF window of high-power electron tubes | |
CN115315056B (en) | High-power beam cutter with measurement function | |
JP2007059384A (en) | Sample-cooling device and electron beam irradiation type analysis/observation apparatus having the same | |
Ota et al. | Development of HOM absorbers for CW superconducting cavities in energy recovery linac | |
Vanderkooy et al. | Design and characteristics of a 2 m continuous wave HCN laser | |
RU64374U1 (en) | MICROWAVE HYGROMETER MEASURING CELL | |
JP4403274B2 (en) | Electromagnetic wave output measuring device | |
JPH0722403A (en) | Control for treating apparatus | |
JPH05172610A (en) | Oil level detection device within closed container according to ultrasonic wave | |
Olstad et al. | Progress on corrugated waveguide components suitable for ITER ECH&CD transmission lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110207 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110922 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111020 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |