JPH04236781A - Plasma cvd device - Google Patents
Plasma cvd deviceInfo
- Publication number
- JPH04236781A JPH04236781A JP532991A JP532991A JPH04236781A JP H04236781 A JPH04236781 A JP H04236781A JP 532991 A JP532991 A JP 532991A JP 532991 A JP532991 A JP 532991A JP H04236781 A JPH04236781 A JP H04236781A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- ladder
- planar coil
- substrate
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 20
- 239000012495 reaction gas Substances 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 18
- 230000005684 electric field Effects 0.000 abstract description 10
- 239000000376 reactant Substances 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 optical sensors Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はアモルファスシリコン太
陽電池、薄膜半導体、光センサ、半導体保護膜など各種
電子デバイスに使用される大面積薄膜の製造に適したプ
ラズマCVD(化学蒸着)装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD (chemical vapor deposition) apparatus suitable for manufacturing large area thin films used in various electronic devices such as amorphous silicon solar cells, thin film semiconductors, optical sensors, and semiconductor protective films.
【0002】0002
【従来の技術】大面積のアモルファスシリコン薄膜を製
造するために、従来より用いられているプラズマCVD
装置の構成を図9を参照して説明する。この技術的手段
は例えば特願昭61−106314号などに開示されて
いるように公知である。[Prior Art] Plasma CVD has been conventionally used to produce large-area amorphous silicon thin films.
The configuration of the device will be explained with reference to FIG. This technical means is well known, as disclosed in, for example, Japanese Patent Application No. 106314/1982.
【0003】反応容器1内には、グロー放電プラズマを
発生させるための電極2、3が平行に配置されている。
これら電極2、3には、低周波電源4から例えば60H
zの商用周波数の電力が供給される。なお、電源として
は、直流電源や高周波電源を用いることもできる。反応
容器1の周囲には、これを囲むようにコイル5が巻かれ
ており、交流電源6から交流電力が供給される。反応容
器1内には、図示しないボンベから反応ガス導入管7を
通して例えばモノシランとアルゴンとの混合ガスが供給
される。反応容器1内のガスは排気管8を通して真空ポ
ンプ9により排気される。基板10は、電極2、3が形
成する放電空間の外側に、電極2、3の面と直交するよ
うに適宜の手段で支持される。[0003] Inside the reaction vessel 1, electrodes 2 and 3 for generating glow discharge plasma are arranged in parallel. These electrodes 2 and 3 are connected to a low frequency power source 4 of, for example, 60H.
z commercial frequency power is supplied. Note that a DC power source or a high frequency power source can also be used as the power source. A coil 5 is wound around the reaction vessel 1 so as to surround it, and AC power is supplied from an AC power source 6 . A mixed gas of, for example, monosilane and argon is supplied into the reaction vessel 1 from a cylinder (not shown) through a reaction gas introduction pipe 7 . The gas in the reaction vessel 1 is exhausted by a vacuum pump 9 through an exhaust pipe 8. The substrate 10 is supported by appropriate means outside the discharge space formed by the electrodes 2 and 3 so as to be orthogonal to the planes of the electrodes 2 and 3.
【0004】この装置を用い、以下のようにして薄膜を
製造する。真空ポンプ9を駆動して反応容器1内を排気
する。反応ガス導入管7を通して例えばモノシランとア
ルゴンとの混合ガスを供給し、反応容器1内の圧力を0
.05〜0.5Torrに保ち、低周波電源4から電極
2、3に電圧を印加すると、グロー放電プラズマが発生
する。コイル5に例えば100Hzの交流電圧を印加し
、電極2、3間に発生する電界Eと直交する方向に磁界
Bを発生させる。この磁界における磁束密度は10ガウ
ス程度でよい。[0004] Using this apparatus, a thin film is manufactured in the following manner. The inside of the reaction vessel 1 is evacuated by driving the vacuum pump 9. For example, a mixed gas of monosilane and argon is supplied through the reaction gas introduction pipe 7, and the pressure inside the reaction vessel 1 is brought to zero.
.. When the voltage is maintained at 0.05 to 0.5 Torr and a voltage is applied to the electrodes 2 and 3 from the low frequency power source 4, glow discharge plasma is generated. For example, an AC voltage of 100 Hz is applied to the coil 5 to generate a magnetic field B in a direction perpendicular to the electric field E generated between the electrodes 2 and 3. The magnetic flux density in this magnetic field may be about 10 Gauss.
【0005】反応ガス導入管7から供給されたガスのう
ちモノシランガスは電極2、3間に生じるグロー放電プ
ラズマによって分解される。この結果、ラジカルSiが
発生し、基板10表面に付着して薄膜を形成する。Among the gases supplied from the reaction gas introduction tube 7, monosilane gas is decomposed by glow discharge plasma generated between the electrodes 2 and 3. As a result, radical Si is generated and adheres to the surface of the substrate 10 to form a thin film.
【0006】アルゴンイオンなどの荷電粒子は、電極2
、3間で電界Eによるクーロン力F1 =qEと、ロー
レンツ力F2 =q(V・B)(ここで、Vは荷電粒子
の速度)とによっていわゆるE・Bドリフト運動を起こ
す。荷電粒子は、E・Bドリフトにより初速を与えられ
た状態で、電極2、3と直交する方向に飛びだし、基板
10に向けて飛んでいく。しかし、電極2、3間に生じ
る電界の影響が小さい放電空間では、コイル5により生
じた電界Bによるサイクロトロン運動により、Larm
or軌道を描いて飛んでいく。したがって、アルゴンイ
オンなどの荷電粒子が基板10を直撃することは少ない
。Charged particles such as argon ions are
, 3, a so-called E·B drift motion is caused by the Coulomb force F1 = qE due to the electric field E and the Lorentz force F2 = q(V·B) (here, V is the velocity of the charged particle). The charged particles fly in a direction perpendicular to the electrodes 2 and 3 and fly toward the substrate 10 while being given an initial velocity by the E/B drift. However, in the discharge space where the influence of the electric field generated between the electrodes 2 and 3 is small, the Larm
It flies in an orbit. Therefore, charged particles such as argon ions rarely hit the substrate 10 directly.
【0007】電気的に中性であるラジカルSiは、磁界
Bの影響を受けず、上記荷電粒子群の軌道からそれて基
板10に至り、その表面に非晶質薄膜を形成する。ラジ
カルSiはLarmor軌道を飛んでいく荷電粒子と衝
突するため、電極2、3の前方だけでなく、左又は右に
広がった形で非晶質薄膜が形成される。しかも、磁界B
を交流電源6により変動させているので、基板10の表
面に非晶質薄膜を均一に形成することが可能となる。な
お、電極2、3の長さは、反応容器1の長さの許すかぎ
り長くしても何ら問題がないので、基板10が長尺のも
のであっても、その表面に均一な非晶質薄膜を形成する
ことが可能となる。The electrically neutral radical Si is not affected by the magnetic field B, deviates from the trajectory of the charged particle group, reaches the substrate 10, and forms an amorphous thin film on the surface thereof. Since the radical Si collides with the charged particles flying in the Larmor orbit, an amorphous thin film is formed not only in front of the electrodes 2 and 3 but also spread to the left or right. Moreover, the magnetic field B
Since this is varied by the AC power source 6, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10. Note that there is no problem in making the lengths of the electrodes 2 and 3 as long as the length of the reaction vessel 1 allows. It becomes possible to form a thin film.
【0008】[0008]
【発明が解決しようとする課題】上記の従来の装置では
、グロー放電プラズマを発生させる電極間の放電電界E
と直交する方向に磁界Bを発生させることにより、大面
積の成膜を容易に可能としている。しかし、次のような
問題がある。[Problems to be Solved by the Invention] In the above-mentioned conventional device, the discharge electric field E between the electrodes that generates glow discharge plasma is
By generating the magnetic field B in the direction orthogonal to the direction, it is possible to easily form a film over a large area. However, there are the following problems.
【0009】(i) 大面積の成膜を行う場合、電極と
して長尺のものを用いる必要がある。長尺の電極を用い
て安定したプラズマを発生させるには、その電源の周波
数は可能なかぎり低いほうが容易であるため、数10H
z〜数100Hzの電源が用いられている。しかし、周
波数が低くなり、半周期の間のイオン移動距離が電極間
隔を越えるような条件の下では、直流放電の場合と同様
に、プラズマを維持するために、イオン衝突によって陰
極より放出された二次電子が本質的な役割を担うことに
なる。そのため電極に膜が付着して絶縁されると、その
部分では放電が起こらないようになる。この場合、電極
表面を常にクリーンに保つ必要がある。そのため、電極
を頻繁に交換したり頻繁に清掃するなどの煩雑な作業が
必要となり、コスト高の要因の一つとなっている。(i) When forming a film over a large area, it is necessary to use a long electrode. In order to generate stable plasma using a long electrode, it is easier to keep the frequency of the power source as low as possible, so it is easier to generate stable plasma using a long electrode.
A power source with a frequency of 100 Hz to several 100 Hz is used. However, under conditions where the frequency is low and the ion travel distance during a half cycle exceeds the electrode spacing, ions are emitted from the cathode by collision to maintain the plasma, just as in the case of DC discharge. Secondary electrons will play an essential role. Therefore, if a film is attached to the electrode to insulate it, discharge will not occur in that area. In this case, it is necessary to keep the electrode surface clean at all times. Therefore, complicated operations such as frequent replacement of electrodes and frequent cleaning are required, which is one of the causes of high costs.
【0010】(ii)上記(i) の欠点を補うために
、プラズマ発生源に例えば13.56MHzの高周波電
源を用いると、放電維持に対する電極放出二次電子は本
質的なものでなくなり、電極上に膜などの絶縁物が存在
していても、電極間にはグロー放電が形成される。しか
しながら、長尺の電極を用いる場合には、高周波による
表皮効果により電流の大部分が表面(約0.01mm)
を流れるため、電気抵抗が増加する。例えば、電極の長
さが約1m以上になると、電極上に電位分布が現れて一
様なプラズマが発生しなくなる。これを分布定数回路で
考えると、図10に示すようになる。図10において、
xは電極の長さ方向の距離を示している。すなわち、電
極の単位長さ当りの抵抗Rが放電部分のインピーダンス
Z1 、Z2 、…、Zn に比べて無視できないほど
大きくなってくると、電極内に電位分布が現れる。した
がって、高周波電源を用いる場合には、大面積の成膜を
行うことは非常に困難であり、実際上これまでは実現で
きなかった。(ii) In order to compensate for the drawback of (i) above, if a high frequency power source of 13.56 MHz is used as the plasma generation source, the secondary electrons emitted from the electrode are no longer essential for sustaining the discharge, and the secondary electrons emitted from the electrode are no longer essential. Even if an insulating material such as a film is present between the electrodes, a glow discharge is formed between the electrodes. However, when using long electrodes, most of the current is transferred to the surface (approximately 0.01 mm) due to the skin effect caused by high frequency.
, the electrical resistance increases. For example, if the length of the electrode is about 1 m or more, a potential distribution will appear on the electrode and uniform plasma will not be generated. If this is considered as a distributed constant circuit, it will be as shown in FIG. In FIG. 10,
x indicates the distance in the length direction of the electrode. That is, when the resistance R per unit length of the electrode becomes so large that it cannot be ignored compared to the impedance Z1, Z2, . . . , Zn of the discharge portion, a potential distribution appears within the electrode. Therefore, when using a high frequency power source, it is extremely difficult to form a film over a large area, and this has not been possible in practice to date.
【0011】(iii) 上記(i) 、(ii)の方
法では、50cm×50cm以上の大面積のアモルファ
スシリコン薄膜を製造する際、膜厚分布を±10%以下
に維持し、かつ成膜速度を0.1nm/sec以上に保
つことは非常に困難であった。(iii) In the methods (i) and (ii) above, when manufacturing an amorphous silicon thin film with a large area of 50 cm x 50 cm or more, the film thickness distribution is maintained within ±10% and the film formation rate is It was extremely difficult to maintain the rate at 0.1 nm/sec or higher.
【0012】0012
【課題を解決するための手段】本発明のプラズマCVD
装置は、反応容器と、この反応容器内に反応ガスを導入
し、排出する手段と、上記反応容器内に収容された放電
用電極と、この放電用電極にグロー放電用電力を供給す
る電源とを有し、反応容器内に設置された基板表面に非
晶質薄膜を形成するプラズマCVD装置において、上記
放電用電極を数本の線材をはしご状に組んだ平面形コイ
ルで形成し、上記基板を上記放電用電極と平行に支持し
たことを特徴とするものである。[Means for solving the problems] Plasma CVD of the present invention
The apparatus includes a reaction vessel, a means for introducing and discharging a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and a power source that supplies glow discharge power to the discharge electrode. In a plasma CVD apparatus that forms an amorphous thin film on the surface of a substrate placed in a reaction vessel, the discharge electrode is formed of a planar coil made of several wires arranged in a ladder shape, and is characterized in that it is supported in parallel with the discharge electrode.
【0013】本発明において、放電用電極にグロー放電
用電力を供給する電源としては、例えば13.56MH
zの高周波電源を用いることが好ましい。In the present invention, the power supply for supplying glow discharge power to the discharge electrode is, for example, a 13.56 MH
It is preferable to use a high frequency power source of z.
【0014】本発明において、はしご状の平面形コイル
電極の隣接する線材間の間隔は50mm以下であること
が好ましい。この間隔が50mmを超えると、基板表面
に成膜されるアモルファスシリコンの膜厚分布が±30
%以上となるので、好ましくない。In the present invention, it is preferable that the interval between adjacent wires of the ladder-like planar coil electrode is 50 mm or less. If this distance exceeds 50 mm, the thickness distribution of the amorphous silicon film formed on the substrate surface will be ±30 mm.
% or more, which is not preferable.
【0015】本発明においては、電源とはしご状の平面
形コイル電極との間に、コイルとコンデンサから構成さ
れるインピーダンスマッチング回路を設置し、電極にプ
ラズマ発生のための電力を供給することが好ましい。In the present invention, it is preferable that an impedance matching circuit consisting of a coil and a capacitor be installed between the power supply and the ladder-like planar coil electrode to supply power for plasma generation to the electrode. .
【0016】本発明においては、放電用電極の周囲を囲
み、電極間に発生した電界Eと直交する方向に磁界Bを
発生させるコイルと、このコイルに磁界B発生用の電流
を供給する電源とを設置し、磁界によりプラズマを揺動
させることが好ましい。ただし、必ずしも磁界によりプ
ラズマを揺動させる必要はない。In the present invention, a coil that surrounds the discharge electrode and generates a magnetic field B in a direction perpendicular to the electric field E generated between the electrodes, and a power supply that supplies current for generating the magnetic field B to this coil are provided. It is preferable to install a magnetic field and oscillate the plasma using a magnetic field. However, it is not always necessary to oscillate the plasma using a magnetic field.
【0017】[0017]
【作用】本発明においては、プラズマ発生用の電極とし
て、従来の複数平行平板電極に代えて、数本の線材をは
しご状に組んだ平面形コイル電極を反応容器内に設置し
たことにより、電極まわりの電界が強くなり、かつその
強度分布が平坦となる。例えば、反応ガスとしてSiH
4 を用いた場合、SiH発光強度分布(波長414n
mの発光)は一様な強さとなる。このため、基板表面に
成膜されるアモルファスシリコンはほぼ均一な膜厚分布
を持ち、かつ高速成膜が可能になる。したがって、本発
明のプラズマCVD装置は、大面積の非晶質薄膜の製造
に適している。[Function] In the present invention, instead of the conventional multiple parallel plate electrodes, a flat coil electrode made of several wires arranged in a ladder shape is installed in the reaction vessel as an electrode for plasma generation. The surrounding electric field becomes stronger and its intensity distribution becomes flat. For example, SiH as a reaction gas
4, SiH emission intensity distribution (wavelength 414n
m) has a uniform intensity. Therefore, the amorphous silicon film formed on the substrate surface has a substantially uniform film thickness distribution and can be formed at high speed. Therefore, the plasma CVD apparatus of the present invention is suitable for manufacturing large-area amorphous thin films.
【0018】[0018]
【実施例】以下、本発明の実施例を図面を参照して説明
する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
【0019】[実施例1]図1は本発明の一実施例のプ
ラズマCVD装置の構成を示す断面図である。なお、従
来の装置(図9)と同一の部材には同一番号を付してい
る。反応容器1内には、グロー放電プラズマを発生させ
るためのはしご状平面形コイル電極11が配置されてい
る。このはしご状平面形コイル電極11は、図2(平面
図)及び図5(断面図)に示すように、2本の線材に対
して垂直に数本の線材をはしご状に組んだ構造を有し、
外周部が四角形状をなしている。はしご状平面形コイル
電極11の電力供給点11a、11bには、高周波電源
14から例えば13.56MHzの周波数の電力がイン
ピーダンスマッチング回路12を介して供給される。な
お、はしご状平面形コイル電極11の電力供給点11a
、11bの位置は図3に示すように線材の中央部でもよ
いし、図4に示すように4隅でもよい。反応容器1の周
囲には、コイル5が設けられており、交流電源6から交
流電力が供給される。なお、この電源は直流電源でもよ
い。本実施例では、コイル5により50〜120ガウス
の磁界が発生される。反応容器1内には、図示しないボ
ンベから反応ガス導入管7を通して例えばモノシランと
アルゴンとの混合ガスが供給される。反応容器1内のガ
スは排気管8を通して真空ポンプ9により排気される。
図6に示すように、基板10は、はしご状平面形コイル
電極11と平行に設置され、図示しない基板ホルダに支
持される。[Embodiment 1] FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention. Note that the same members as in the conventional device (FIG. 9) are given the same numbers. A ladder-like planar coil electrode 11 for generating glow discharge plasma is disposed within the reaction vessel 1 . As shown in FIG. 2 (plan view) and FIG. 5 (cross-sectional view), this ladder-like planar coil electrode 11 has a structure in which several wire rods are assembled in a ladder shape perpendicularly to two wire rods. death,
The outer periphery has a rectangular shape. Power at a frequency of, for example, 13.56 MHz is supplied from a high-frequency power source 14 to power supply points 11a and 11b of the ladder-like planar coil electrode 11 via an impedance matching circuit 12. Note that the power supply point 11a of the ladder-like planar coil electrode 11
, 11b may be at the center of the wire as shown in FIG. 3, or at the four corners as shown in FIG. A coil 5 is provided around the reaction container 1, and AC power is supplied from an AC power source 6. Note that this power source may be a DC power source. In this embodiment, the coil 5 generates a magnetic field of 50 to 120 Gauss. A mixed gas of, for example, monosilane and argon is supplied into the reaction vessel 1 from a cylinder (not shown) through a reaction gas introduction pipe 7 . The gas in the reaction vessel 1 is exhausted by a vacuum pump 9 through an exhaust pipe 8. As shown in FIG. 6, the substrate 10 is placed parallel to the ladder-like planar coil electrode 11 and supported by a substrate holder (not shown).
【0020】この装置を用い、以下のようにして薄膜を
製造する。真空ポンプ9を駆動して反応容器1内を排気
する。反応ガス導入管7を通して例えばモノシランとア
ルゴンとの混合ガスを100〜200cc/min程度
の流量で供給し、反応容器1内の圧力を0.05〜0.
5Torrに保ち、高周波電源14からインピーダンス
マッチング回路12を介してはしご状平面形コイル電極
11に電圧を印加すると、電極11の周囲にグロー放電
プラズマが発生する。その発光状態を、波長414nm
近傍のみの光を通過させる光フィルタを介して観測する
と、図7のように見える。すなわち、電極11と基板1
0との間でほぼ一様な発光強度を示す。このことから、
基板10表面に付着するアモルファスシリコン薄膜は、
その膜厚分布が一様になることが推測される。Using this apparatus, a thin film is produced in the following manner. The inside of the reaction vessel 1 is evacuated by driving the vacuum pump 9. For example, a mixed gas of monosilane and argon is supplied through the reaction gas introduction pipe 7 at a flow rate of about 100 to 200 cc/min, and the pressure inside the reaction vessel 1 is adjusted to 0.05 to 0.0 cc/min.
When the voltage is maintained at 5 Torr and a voltage is applied from the high frequency power supply 14 to the ladder-shaped planar coil electrode 11 via the impedance matching circuit 12, glow discharge plasma is generated around the electrode 11. The light emitting state is measured at a wavelength of 414 nm.
When observed through an optical filter that allows only nearby light to pass through, it appears as shown in Figure 7. That is, the electrode 11 and the substrate 1
The luminescence intensity is almost uniform between 0 and 0. From this,
The amorphous silicon thin film attached to the surface of the substrate 10 is
It is assumed that the film thickness distribution becomes uniform.
【0021】アモルファスシリコン薄膜の膜厚分布は、
反応ガスの流量、圧力、SiH4 濃度、電力などのほ
か、シグザク状平面形コイル電極11の隣接する線材間
の距離(図6に表示)にも依存する。そこで、下記条件
で成膜実験を行った。The thickness distribution of the amorphous silicon thin film is as follows:
In addition to the flow rate and pressure of the reaction gas, the SiH4 concentration, and the electric power, it also depends on the distance between adjacent wires of the staggered planar coil electrode 11 (as shown in FIG. 6). Therefore, a film formation experiment was conducted under the following conditions.
【0022】基板材料:ガラス、基板面積:30cm×
30cm、反応ガス:100%SiH4 、反応ガス流
量:50cc/分、反応容器圧力:0.05Torr、
高周波電力:30Wにおいて、はしご状平面形コイル電
極11の隣接する線材間の距離を10mmから50mm
の範囲に設定した。そして、磁界を印加した状態及び印
加しない状態で、膜厚の平均値が500nmの薄膜を成
膜した。隣接する線材間の距離と膜厚分布との関係を図
8に示す。[0022] Substrate material: glass, substrate area: 30 cm x
30 cm, reaction gas: 100% SiH4, reaction gas flow rate: 50 cc/min, reaction vessel pressure: 0.05 Torr,
High frequency power: 30W, the distance between adjacent wires of the ladder-like planar coil electrode 11 is 10 mm to 50 mm.
The range was set to . Then, a thin film having an average thickness of 500 nm was formed with and without applying a magnetic field. FIG. 8 shows the relationship between the distance between adjacent wire rods and the film thickness distribution.
【0023】図8に示されるように、磁界を印加しない
場合には、線材間の距離が30mm以下で±10%以下
の膜厚分布が得られている。これに対して、正弦波(周
波数10Hz)による±80ガウスの交番磁界を印加し
た場合には、磁界を印加しない場合より膜厚分布が良好
である。すなわち、線材間の距離が50mm以下で±1
0%以下の膜厚分布が得られている。As shown in FIG. 8, when no magnetic field is applied, a film thickness distribution of ±10% or less is obtained when the distance between the wires is 30 mm or less. On the other hand, when an alternating magnetic field of ±80 Gauss with a sine wave (frequency: 10 Hz) is applied, the film thickness distribution is better than when no magnetic field is applied. In other words, ±1 when the distance between the wires is 50 mm or less
A film thickness distribution of 0% or less was obtained.
【0024】本実施例では、放電用電極として図2に示
すはしご状平面形コイル電極11を用い、プラズマ発生
電源として13.56MHzの高周波電源を用い、かつ
電界と直交する方向に磁界を印加することにより、0.
3〜0.5nm/secという高速の成膜速度で大面積
、かつ膜厚分布が均一なアモルファスシリコン薄膜を製
造することができる。In this example, a ladder-like planar coil electrode 11 shown in FIG. 2 is used as a discharge electrode, a 13.56 MHz high frequency power source is used as a plasma generation power source, and a magnetic field is applied in a direction perpendicular to the electric field. By this, 0.
It is possible to produce an amorphous silicon thin film with a large area and uniform thickness distribution at a high deposition rate of 3 to 0.5 nm/sec.
【0025】[実施例2]図11は実施例2におけるは
しご状平面形コイル電極15を示すものである。このは
しご状平面形コイル電極15は、線材を六角形に組んで
外周部を形成し、その内側に数本の線材を平行に組んだ
構造を有している。このはしご状平面形コイル電極15
の電力供給点15a、15bには、高周波電源14から
13.56MHzの周波数の電力がインピーダンスマッ
チング回路12を介して供給される。[Embodiment 2] FIG. 11 shows a ladder-like planar coil electrode 15 in Embodiment 2. This ladder-like planar coil electrode 15 has a structure in which wires are assembled in a hexagonal shape to form an outer peripheral part, and several wires are arranged in parallel inside the outer peripheral part. This ladder-like planar coil electrode 15
Power at a frequency of 13.56 MHz is supplied from a high frequency power source 14 to the power supply points 15a and 15b via an impedance matching circuit 12.
【0026】このはしご状平面形コイル電極15を設置
したプラズマCVD装置を用い、実施例1と同一の条件
でアモルファスシリコン薄膜を製造した。その結果、実
施例1と同様に、膜厚分布が均一なアモルファスシリコ
ン薄膜を製造することができた。An amorphous silicon thin film was produced under the same conditions as in Example 1 using a plasma CVD apparatus equipped with this ladder-like planar coil electrode 15. As a result, as in Example 1, an amorphous silicon thin film with a uniform thickness distribution could be manufactured.
【0027】なお、図11では外周部の形状を六角形と
したが、外周部が三角形や、八角形などの形状でも本実
施例と同様の効果が得られることが確認されている。Although the shape of the outer periphery is hexagonal in FIG. 11, it has been confirmed that the same effect as in this embodiment can be obtained even if the outer periphery is triangular or octagonal.
【0028】[実施例3]図12は実施例3におけるは
しご状平面形コイル電極16を示すものである。このは
しご状平面形コイル電極16は、線材を円形に加工して
外周部を形成し、その内側に数本の線材を平行に組んだ
構造を有している。このはしご状平面形コイル電極16
の電力供給点16a、16bには、高周波電源14から
13.56MHzの周波数の電力がインピーダンスマッ
チング回路12を介して供給される。[Embodiment 3] FIG. 12 shows a ladder-like planar coil electrode 16 in Embodiment 3. This ladder-like planar coil electrode 16 has a structure in which a wire is processed into a circular shape to form an outer peripheral part, and several wires are arranged in parallel inside the outer peripheral part. This ladder-like planar coil electrode 16
Power at a frequency of 13.56 MHz is supplied from a high-frequency power source 14 to the power supply points 16a and 16b via an impedance matching circuit 12.
【0029】このはしご状平面形コイル電極16を設置
したプラズマCVD装置を用い、実施例1と同一の条件
でアモルファスシリコン薄膜を製造した。その結果、実
施例1と同様に、膜厚分布が均一なアモルファスシリコ
ン薄膜を製造することができた。An amorphous silicon thin film was produced under the same conditions as in Example 1 using a plasma CVD apparatus equipped with this ladder-like planar coil electrode 16. As a result, as in Example 1, an amorphous silicon thin film with a uniform thickness distribution could be manufactured.
【0030】[実施例4]図13は実施例4におけるは
しご状平面形コイル電極17を示すものである。このは
しご状平面形コイル電極17は、数本の線材を格子状に
組んではしご状にした構造を有し、外周部が四角形状を
なしている。このはしご状平面形コイル電極17の電力
供給点17a、17bには、高周波電源14から13.
56MHzの周波数の電力がインピーダンスマッチング
回路12を介して供給される。[Embodiment 4] FIG. 13 shows a ladder-like planar coil electrode 17 in Embodiment 4. This ladder-like planar coil electrode 17 has a ladder-like structure in which several wires are assembled in a lattice shape, and the outer periphery thereof has a rectangular shape. Power supply points 17a and 17b of this ladder-like planar coil electrode 17 are connected to a high frequency power source 14 and 13.
Power at a frequency of 56 MHz is supplied through an impedance matching circuit 12.
【0031】このはしご状平面形コイル電極17を設置
したプラズマCVD装置を用い、実施例1と同一の条件
でアモルファスシリコン薄膜を製造した。その結果、実
施例1と同様に、膜厚分布が均一なアモルファスシリコ
ン薄膜を製造することができた。An amorphous silicon thin film was produced under the same conditions as in Example 1 using a plasma CVD apparatus equipped with this ladder-like planar coil electrode 17. As a result, as in Example 1, an amorphous silicon thin film with a uniform thickness distribution could be manufactured.
【0032】なお、図13では外周部の形状を四角形と
したが、外周部が他の多角形や、円形などの形状でも本
実施例と同様の効果が得られることが確認されている。In FIG. 13, the shape of the outer periphery is a square, but it has been confirmed that the same effect as in this embodiment can be obtained even if the outer periphery has a shape other than a polygon or a circle.
【0033】[0033]
【発明の効果】以上詳述したように本発明によれば、放
電用電極としてはしご状平面形コイル電極を用いること
により、電極近傍の電界強度が強くなり、かつ均一にな
ったことから、高速で大面積のアモルファスシリコン薄
膜を製造することができる。したがって、アモルファス
シリコン太陽電池、薄膜半導体、光センサ、半導体保護
膜などの製造分野で工業的価値が大きい。Effects of the Invention As described in detail above, according to the present invention, by using a ladder-like planar coil electrode as the discharge electrode, the electric field strength near the electrode becomes stronger and more uniform. It is possible to produce large-area amorphous silicon thin films. Therefore, it has great industrial value in the fields of manufacturing amorphous silicon solar cells, thin film semiconductors, optical sensors, semiconductor protective films, etc.
【図1】本発明の実施例のプラズマCVD装置の構成を
示す断面図。FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention.
【図2】本発明の実施例1のプラズマCVD装置に用い
られるはしご状平面形コイル電極の平面図。FIG. 2 is a plan view of a ladder-like planar coil electrode used in the plasma CVD apparatus of Example 1 of the present invention.
【図3】本発明の変形例のはしご状平面形コイル電極の
平面図。FIG. 3 is a plan view of a ladder-like planar coil electrode according to a modification of the present invention.
【図4】本発明の他の変形例のはしご状平面形コイル電
極の平面図。FIG. 4 is a plan view of a ladder-like planar coil electrode according to another modification of the present invention.
【図5】図2、図3又は図4のV−V線に沿う断面図[Fig. 5] Cross-sectional view taken along line V-V in Fig. 2, Fig. 3, or Fig. 4
【
図6】本発明の実施例1のプラズマCVD装置における
電極と基板との配置を示す説明図[
FIG. 6 is an explanatory diagram showing the arrangement of electrodes and substrates in the plasma CVD apparatus of Example 1 of the present invention
【図7】本発明の実施例における電極近傍のSiH発光
強度分布を示す説明図。FIG. 7 is an explanatory diagram showing the SiH emission intensity distribution near the electrode in an example of the present invention.
【図8】はしご状平面形コイル電極の隣接する線材間の
間隔とアモルファスシリコンの膜厚分布との関係を示す
特性図。FIG. 8 is a characteristic diagram showing the relationship between the distance between adjacent wires of a ladder-like planar coil electrode and the film thickness distribution of amorphous silicon.
【図9】従来のプラズマCVD装置の構成を示す断面図
。FIG. 9 is a sectional view showing the configuration of a conventional plasma CVD apparatus.
【図10】従来のプラズマCVD装置の欠点を説明する
図。FIG. 10 is a diagram illustrating the drawbacks of a conventional plasma CVD apparatus.
【図11】本発明の実施例2のプラズマCVD装置に用
いられるはしご状平面形コイル電極の平面図。FIG. 11 is a plan view of a ladder-like planar coil electrode used in the plasma CVD apparatus of Example 2 of the present invention.
【図12】本発明の実施例3のプラズマCVD装置に用
いられるはしご状平面形コイル電極の平面図。FIG. 12 is a plan view of a ladder-like planar coil electrode used in the plasma CVD apparatus of Example 3 of the present invention.
【図13】本発明の実施例4のプラズマCVD装置に用
いられるはしご状平面形コイル電極の平面図。FIG. 13 is a plan view of a ladder-like planar coil electrode used in the plasma CVD apparatus of Example 4 of the present invention.
1…反応容器、5…コイル、6…交流電源、7…反応ガ
ス導入管、8…排気管、9…真空ポンプ、10…基板、
11…はしご状平面形コイル電極、12…インピーダン
スマッチング回路、14…高周波電源、15、16、1
7…はしご状平面形コイル電極。DESCRIPTION OF SYMBOLS 1... Reaction container, 5... Coil, 6... AC power supply, 7... Reaction gas introduction pipe, 8... Exhaust pipe, 9... Vacuum pump, 10... Substrate,
DESCRIPTION OF SYMBOLS 11... Ladder-shaped planar coil electrode, 12... Impedance matching circuit, 14... High frequency power supply, 15, 16, 1
7...Ladder-shaped planar coil electrode.
Claims (1)
スを導入し、排出する手段と、上記反応容器内に収容さ
れた放電用電極と、この放電用電極にグロー放電用電力
を供給する電源とを有し、反応容器内に設置された基板
表面に非晶質薄膜を形成するプラズマCVD装置におい
て、上記放電用電極を数本の線材からなるはしご状の平
面形コイルで形成し、上記基板を上記放電用電極と平行
に支持したことを特徴とするプラズマCVD装置。1. A reaction vessel, means for introducing and discharging a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and supplying glow discharge power to the discharge electrode. In a plasma CVD apparatus that has a power supply and forms an amorphous thin film on the surface of a substrate placed in a reaction vessel, the above-mentioned discharge electrode is formed by a ladder-like planar coil made of several wires, and the above-mentioned A plasma CVD apparatus characterized in that a substrate is supported in parallel with the discharge electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005329A JP2989279B2 (en) | 1991-01-21 | 1991-01-21 | Plasma CVD equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005329A JP2989279B2 (en) | 1991-01-21 | 1991-01-21 | Plasma CVD equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04236781A true JPH04236781A (en) | 1992-08-25 |
JP2989279B2 JP2989279B2 (en) | 1999-12-13 |
Family
ID=11608209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3005329A Expired - Lifetime JP2989279B2 (en) | 1991-01-21 | 1991-01-21 | Plasma CVD equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989279B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08330235A (en) * | 1995-05-30 | 1996-12-13 | Mitsubishi Heavy Ind Ltd | Plasma cvd apparatus |
AU715335B2 (en) * | 1998-04-28 | 2000-01-20 | Mitsubishi Heavy Industries, Ltd. | Plasma chemical vapor deposition apparatus |
US6189485B1 (en) | 1998-06-25 | 2001-02-20 | Anelva Corporation | Plasma CVD apparatus suitable for manufacturing solar cell and the like |
EP1107653A1 (en) * | 1999-06-17 | 2001-06-13 | Mitsubishi Heavy Industries, Ltd. | Discharge electrode, high-frequency plasma generator, method of power feeding, and method of manufacturing semiconductor device |
JP2002069653A (en) * | 2000-09-04 | 2002-03-08 | Anelva Corp | Thin film forming method, thin film forming apparatus and solar cell |
US6503816B2 (en) | 2000-04-13 | 2003-01-07 | National Institute Of Advanced Industrial Science And Technology | Thin film formation by inductively-coupled plasma CVD process |
US6719876B1 (en) | 1999-09-09 | 2004-04-13 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Internal electrode type plasma processing apparatus and plasma processing method |
US7047903B2 (en) | 2001-01-22 | 2006-05-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method and device for plasma CVD |
US7319295B2 (en) | 2002-03-14 | 2008-01-15 | Mitsubishi Heavy Industries, Ltd. | High-frequency power supply structure and plasma CVD device using the same |
JP2009231294A (en) * | 1997-07-25 | 2009-10-08 | Morgan Chemical Products Inc | Hall-current ion source apparatus and material processing method |
US7626135B2 (en) | 2006-05-10 | 2009-12-01 | Sub-One Technology, Inc. | Electrode systems and methods of using electrodes |
US9165748B2 (en) | 2000-05-17 | 2015-10-20 | Ihi Corporation | Plasma CVD method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002344594B2 (en) | 2002-10-29 | 2005-06-09 | Mitsubishi Heavy Industries, Ltd. | Method and device for generating uniform high-frequency plasma over large surface area used for plasma chemical vapor deposition apparatus |
-
1991
- 1991-01-21 JP JP3005329A patent/JP2989279B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08330235A (en) * | 1995-05-30 | 1996-12-13 | Mitsubishi Heavy Ind Ltd | Plasma cvd apparatus |
JP2009231294A (en) * | 1997-07-25 | 2009-10-08 | Morgan Chemical Products Inc | Hall-current ion source apparatus and material processing method |
AU715335B2 (en) * | 1998-04-28 | 2000-01-20 | Mitsubishi Heavy Industries, Ltd. | Plasma chemical vapor deposition apparatus |
US6189485B1 (en) | 1998-06-25 | 2001-02-20 | Anelva Corporation | Plasma CVD apparatus suitable for manufacturing solar cell and the like |
EP1107653A4 (en) * | 1999-06-17 | 2008-01-23 | Mitsubishi Heavy Ind Ltd | Discharge electrode, high-frequency plasma generator, method of power feeding, and method of manufacturing semiconductor device |
EP1107653A1 (en) * | 1999-06-17 | 2001-06-13 | Mitsubishi Heavy Industries, Ltd. | Discharge electrode, high-frequency plasma generator, method of power feeding, and method of manufacturing semiconductor device |
US6417079B1 (en) | 1999-06-17 | 2002-07-09 | Mitsubishi Heavy Industries, Ltd. | Discharge electrode, high-frequency plasma generator, method of power feeding, and method of manufacturing semiconductor device |
US6719876B1 (en) | 1999-09-09 | 2004-04-13 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Internal electrode type plasma processing apparatus and plasma processing method |
US6503816B2 (en) | 2000-04-13 | 2003-01-07 | National Institute Of Advanced Industrial Science And Technology | Thin film formation by inductively-coupled plasma CVD process |
US9165748B2 (en) | 2000-05-17 | 2015-10-20 | Ihi Corporation | Plasma CVD method |
JP2002069653A (en) * | 2000-09-04 | 2002-03-08 | Anelva Corp | Thin film forming method, thin film forming apparatus and solar cell |
US7047903B2 (en) | 2001-01-22 | 2006-05-23 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method and device for plasma CVD |
US7319295B2 (en) | 2002-03-14 | 2008-01-15 | Mitsubishi Heavy Industries, Ltd. | High-frequency power supply structure and plasma CVD device using the same |
US7626135B2 (en) | 2006-05-10 | 2009-12-01 | Sub-One Technology, Inc. | Electrode systems and methods of using electrodes |
Also Published As
Publication number | Publication date |
---|---|
JP2989279B2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849857B2 (en) | Beam processing apparatus | |
EP0280315A2 (en) | Method of forming a diamond film | |
EP0574100B1 (en) | Plasma CVD method and apparatus therefor | |
US5039376A (en) | Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge | |
JPH0635323B2 (en) | Surface treatment method | |
JPH04236781A (en) | Plasma cvd device | |
JPS5915982B2 (en) | Electric discharge chemical reaction device | |
JP2785442B2 (en) | Plasma CVD equipment | |
US6909086B2 (en) | Neutral particle beam processing apparatus | |
JPS62103372A (en) | Apparatus for forming membrane by chemical vapor deposition using plasma and its use | |
JPH04279044A (en) | Sample-retention device | |
JPS6136589B2 (en) | ||
KR19990087056A (en) | Chemical vapor deposition method and deposition apparatus | |
JPH04120277A (en) | Plasma cvd device | |
JP3095565B2 (en) | Plasma chemical vapor deposition equipment | |
JPH01181513A (en) | Plasma cvd apparatus | |
JP2661906B2 (en) | Plasma processing equipment | |
JPH10172793A (en) | Plasma generator | |
JPS62263236A (en) | Formation of amorphous thin film and its system | |
JPH0665734A (en) | Thin film forming device | |
JPH0745540A (en) | Chemical plasma evaporating device | |
JPH11185993A (en) | Plasma processing method and device | |
JPS60218826A (en) | Formation of thin film | |
JPH0576549B2 (en) | ||
JPH05299680A (en) | Plasma cvd method and its device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 12 |