[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002069653A - Thin film forming method, thin film forming apparatus and solar cell - Google Patents

Thin film forming method, thin film forming apparatus and solar cell

Info

Publication number
JP2002069653A
JP2002069653A JP2000267554A JP2000267554A JP2002069653A JP 2002069653 A JP2002069653 A JP 2002069653A JP 2000267554 A JP2000267554 A JP 2000267554A JP 2000267554 A JP2000267554 A JP 2000267554A JP 2002069653 A JP2002069653 A JP 2002069653A
Authority
JP
Japan
Prior art keywords
thin film
frequency power
film forming
modulation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000267554A
Other languages
Japanese (ja)
Other versions
JP4509337B2 (en
Inventor
Norikazu Ito
憲和 伊藤
Yoshi Watabe
嘉 渡部
Akihisa Matsuda
彰久 松田
Michio Kondo
道雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Anelva Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000267554A priority Critical patent/JP4509337B2/en
Priority to KR1020010019290A priority patent/KR100757717B1/en
Priority to EP01108979A priority patent/EP1146569B1/en
Priority to DE60134081T priority patent/DE60134081D1/en
Priority to US09/832,860 priority patent/US6503816B2/en
Priority to TW90108871A priority patent/TW574413B/en
Publication of JP2002069653A publication Critical patent/JP2002069653A/en
Application granted granted Critical
Publication of JP4509337B2 publication Critical patent/JP4509337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for forming a thin film, which form a thin film of superior film thickness uniformity on a large substrate and furthermore makes throughput high, and to provide a solar cell with a superior characteristic, and moreover, at a low cost. SOLUTION: The apparatus comprising a film forming chamber, inside of which several inductive coupling type electrode with shape of being folded over at the center and having a feeding part of high-frequency power and a grounding part at the each end of themselves, are arranged in parallel in the same plane, a high-frequency power source for supplying high-frequency power to the above feeding part, a means for controlling phase of the high-frequency power supplied to the above feeding part, and a waveform generator for modulating amplitude of the high-frequency power, is characterized by the configuration in which the high-frequency power has opposite phases opposite to each other at the adjacent feeding parts of the above several inductive coupling type electrodes, and in which the amplitude-modulated high-frequency power is supplied to the inductive coupling type electrodes and generates plasma, to form thin film on a substrate arranged so as to face the inductive coupling type electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜形成方法、薄
膜形成装置及び太陽電池に係り、特に、大面積基板に膜
厚均一性に優れたa−Si等の薄膜を形成する薄膜形成
方法及び装置に関する。
The present invention relates to a method for forming a thin film, a thin film forming apparatus, and a solar cell. More particularly, the present invention relates to a thin film forming method for forming a thin film such as a-Si having excellent film thickness uniformity on a large-area substrate. Related to the device.

【0002】[0002]

【従来の技術】太陽電池はクリーンなエネルギー源とし
て注目され期待されているが、その普及を図るためには
コストダウンが不可欠であり、そのために大型基板に均
一膜厚のa−Si膜を高いスループットで形成できる薄
膜形成装置が強く望まれている。a−Siのような薄膜
の形成には、平行平板型(容量結合型)のプラズマCV
D装置が実用化されているが、通常1枚の基板しか処理
できないためスループットが低く、その一方、複数基板
を同時処理しようとすると装置が極めて大型化してしま
うという問題がある。また、基板の大型化とともに形成
される薄膜の膜厚均一性が著しく低下してしまい、所望
の特性の太陽電池が得られなくなるという問題がある。
2. Description of the Related Art Solar cells are attracting attention and being expected as a clean energy source. However, cost reduction is indispensable for widespread use of the solar cells. There is a strong demand for a thin film forming apparatus capable of forming at a high throughput. In order to form a thin film such as a-Si, a parallel plate type (capacitive coupling type) plasma CV is used.
Although the D apparatus has been put to practical use, the throughput is low because usually only one substrate can be processed. On the other hand, there is a problem that the apparatus becomes extremely large when processing a plurality of substrates simultaneously. Further, as the size of the substrate is increased, the uniformity of the thickness of the formed thin film is significantly reduced, so that a solar cell having desired characteristics cannot be obtained.

【0003】膜厚均一性の高い薄膜作製を行うには、基
板全体で均一密度のプラズマを形成する必要があり、こ
のために様々な検討がなされてきた。しかし、平行平板
型電極方式では、基板が大型化すると均一密度のプラズ
マを形成するのは容易でなく、その理由として、次のよ
うな原理上の問題が挙げられている。すなわち、平行平
板型電極では、均一密度のプラズマを形成するには、基
板全体にわたり2つの電極間距離を精度良く維持して配
置する必要があるが、これは容易でなく、基板が大型化
すると一層困難となる。また、容量結合型では、高周波
を投入する電極と接地電位にある対向電極及び成膜室壁
との間の放電により、電極に自己バイアス電位が発生
し、このためプラズマ密度に分布が生じるという問題が
ある(特開平7−94421号公報)。さらには、電極
が大きくなると、その表面に定在波が発生してしまい、
このためプラズマが分布してしまう場合がある。これ
は、VHF帯等の周波数のより高い高周波になると一層
顕著になる。そこで、プラズマ維持メカニズムが容量結
合型とは全く異なり、上記容量結合型固有の電極間距離
精度や電極の自己バイアス等の問題が起こることがな
く、しかも高速成膜に有利なVHF帯の高周波を用いて
高いプラズマ密度を発生できる誘導結合型電極を用いた
プラズマCVD法が提案されている。具体的には、例え
ば、梯子形状の電極(特開平4−236781号公報)
や導電性線材をジグザグに多数回折り曲げた電極(特許
第2785442号公報)等の電極を用いた誘導結合型
電極方式のプラズマCVD装置が提案されている。
In order to produce a thin film having a high uniformity of film thickness, it is necessary to form a plasma having a uniform density over the entire substrate, and various studies have been made for this purpose. However, in the parallel plate type electrode system, it is not easy to form a plasma having a uniform density when the size of the substrate is increased, and the reason is as follows. That is, in the case of a parallel plate type electrode, in order to form a plasma having a uniform density, it is necessary to dispose the electrode with maintaining the distance between the two electrodes with high accuracy over the entire substrate. It becomes even more difficult. In addition, in the capacitive coupling type, a self-bias potential is generated in the electrode due to discharge between the electrode to which a high frequency is applied and the counter electrode at the ground potential and the wall of the film forming chamber, so that the plasma density is distributed. (Japanese Patent Laid-Open No. 7-94421). Furthermore, when the electrode becomes large, a standing wave is generated on its surface,
For this reason, plasma may be distributed. This becomes more pronounced at higher frequencies such as the VHF band. Therefore, the plasma maintenance mechanism is completely different from that of the capacitive coupling type, and the VHF band high frequency which is advantageous for high-speed film formation does not cause problems such as the electrode-to-electrode distance accuracy and electrode self-biasing inherent in the capacitive coupling type. There has been proposed a plasma CVD method using an inductively-coupled electrode that can generate a high plasma density. Specifically, for example, a ladder-shaped electrode (Japanese Patent Application Laid-Open No. Hei 4-236781)
And an inductively coupled electrode type plasma CVD apparatus using an electrode such as an electrode obtained by bending a conductive wire in a zigzag shape (Japanese Patent No. 2785442).

【0004】[0004]

【発明が解決しようとする課題】しかし、本発明者ら
が、上記構造の電極を含め、種々の誘電結合型電極を検
討したところ、例えば、梯子形状やジグザグに折り曲げ
た誘導結合型電極は、基板の大型化に対応して大きくな
ると、電流経路が均一となりにくく、また、予期できな
い場所に部分的に定在波が発生してしまうことが分か
り、このため、プラズマ密度を均一にするのは難しく、
従来の電極構造で大面積基板に対応するのは困難である
ことが分かった。また、容量結合型電極の場合は、膜厚
均一性を高めるための種々の検討がなされており、例え
ば、上記自己バイアスに起因するプラズマ密度の分布を
解決する方策として、高周波電力を変調し間欠放電させ
る成膜方法(特開平7−94421号公報)等がある。
しかし、誘導結合型と容量結合型とでは、プラズマの維
持メカニズムは全く異なるものである。すなわち、容量
結合型は、電極からの二次電子放出及びシースの振動に
よりプラズマが維持されるが、誘導結合型電極の場合、
電極から供給される電磁界の振動によるものだからであ
る。従って、容量結合型には効果的な方策であってもそ
のまま誘導結合型に応用することは無意味であり、従来
の検討結果を参考にすることはできない。
However, the present inventors have studied various inductively coupled electrodes including the electrode having the above structure, and found that, for example, an inductively coupled electrode bent in a ladder shape or zigzag is It has been found that when the size of the substrate increases, the current path becomes difficult to be uniform, and a standing wave is partially generated in an unexpected place. Therefore, it is difficult to make the plasma density uniform. Difficult,
It has been found that it is difficult to use a conventional electrode structure for a large-area substrate. In the case of capacitively coupled electrodes, various studies have been made to improve the film thickness uniformity. For example, as a measure to solve the plasma density distribution caused by the self-bias, intermittent modulation of high-frequency power is performed. There is a film forming method of discharging (JP-A-7-94421) and the like.
However, the plasma maintenance mechanism is completely different between the inductive coupling type and the capacitive coupling type. That is, in the capacitive coupling type, plasma is maintained by secondary electron emission from the electrode and vibration of the sheath, but in the case of the inductive coupling type electrode,
This is because of the vibration of the electromagnetic field supplied from the electrode. Therefore, even if it is an effective measure for the capacitive coupling type, it is meaningless to apply it to the inductive coupling type as it is, and it is impossible to refer to the result of the conventional study.

【0005】そこで、本発明者らは、誘導結合型電極に
ついて、プラズマ均一化の基本的検討を行い、上記従来
の誘電結合型電極では、問題となった定在波を逆に利用
した電極構造の検討を行った。この電極は、例えば、棒
状又はU字型電極の一端に給電部を設け、他端を接地す
る構造とし、接地部と給電部との距離を高周波の1/2
の自然数倍とすることにより、電極上の所定位置に定在
波を発生させ、発生するプラズマ密度分布を利用して基
板上に均一膜厚の薄膜を形成しようとするものである。
Therefore, the present inventors conducted a basic study of plasma uniformization for an inductively coupled electrode, and in the above-described conventional inductively coupled electrode, an electrode structure using a standing wave, which was a problem, was used. Was considered. This electrode has, for example, a structure in which a power supply section is provided at one end of a rod-shaped or U-shaped electrode and the other end is grounded, and the distance between the grounding section and the power supply section is の of the high frequency.
In this case, a standing wave is generated at a predetermined position on the electrode by using a natural number multiple of the above, and a thin film having a uniform thickness is formed on the substrate by utilizing the generated plasma density distribution.

【0006】このような電極構成とすることにより、従
来に比べ膜厚均一性を改善することが可能となったが、
この新規な電極構成でも、基板が大型化し電極長さが増
加すると、電極の給電部側と接地部側とでプラズマ密度
が異なり、接地部側に近づくにつれプラズマ密度は低下
し、その結果、膜厚が薄くなってしまうという新たな問
題が起こることが分かった。これは、高周波が電極先端
部に伝搬するまでに減衰して、プラズマ密度が給電側と
接地部側とで分布してしまうためと考えられるが、本発
明者らは、このような高周波の減衰に起因すると考えら
れるプラズマ密度分布、さらには膜厚分布を解消し、よ
り大型基板に均一薄膜を形成できる装置構成及び成膜条
件を検討した。この中で、上記容量結合型の場合とは、
プラズマ維持メカニズムが全く異なるにもかかわらず、
高周波電力をAM変調することにより、プラズマの状態
が変化し、しかも変調方法によりプラズマ形状が変化
し、かつこれらの変化に再現性があることを見出した。
さらに、幅広の基板に薄膜を形成するには、上記電極を
複数個平行に配置する必要があるが、各電極に供給する
高周波電力の位相によって、電極長手方向の膜厚分布も
変化することが分かった。本発明者は、これらの発見を
基にさらに研究を進展させ、給電方法、変調方法と薄膜
分布の関係を明らかにして本発明を完成したのである。
By adopting such an electrode configuration, it is possible to improve the film thickness uniformity as compared with the prior art.
Even with this new electrode configuration, as the substrate becomes larger and the electrode length increases, the plasma density differs between the power supply side and the ground side of the electrode, and the plasma density decreases toward the ground side, and as a result, the film density increases. It has been found that a new problem that the thickness becomes thinner occurs. This is considered to be because the high frequency is attenuated before propagating to the electrode tip, and the plasma density is distributed between the power supply side and the grounding part side. The apparatus configuration and film forming conditions that can eliminate the plasma density distribution and the film thickness distribution, which are considered to be caused by the above, and form a uniform thin film on a larger substrate were studied. Among them, the case of the capacitive coupling type is
Despite the completely different plasma maintenance mechanism,
It has been found that by AM modulating the high-frequency power, the state of the plasma changes, and furthermore, the plasma shape changes by the modulation method, and that these changes have reproducibility.
Further, in order to form a thin film on a wide substrate, it is necessary to arrange a plurality of the electrodes in parallel, but the film thickness distribution in the longitudinal direction of the electrodes may change depending on the phase of the high-frequency power supplied to each electrode. Do you get it. Based on these findings, the present inventor has further advanced the research, clarified the relationship between the power supply method, the modulation method, and the thin film distribution, and completed the present invention.

【0007】すなわち、本発明の目的は、大型基板に、
膜厚均一性に優れた薄膜を形成可能な薄膜形成方法及び
装置を提供することにある。さらには、特性及び膜厚均
一性に優れた薄膜を高いスループットで形成可能な薄膜
形成方法及び装置を提供することにある。また、本発明
は、太陽電池を以上の薄膜形成方法及び装置を用いて形
成し、特性に優れしかも低コストの太陽電池を提供する
ことを目的とする。
That is, an object of the present invention is to provide a large substrate with:
An object of the present invention is to provide a method and an apparatus for forming a thin film capable of forming a thin film having excellent film thickness uniformity. Another object of the present invention is to provide a method and an apparatus for forming a thin film capable of forming a thin film having excellent characteristics and uniformity of the film thickness at a high throughput. Another object of the present invention is to provide a solar cell having excellent characteristics and low cost by forming a solar cell using the above thin film forming method and apparatus.

【0008】[0008]

【課題を解決するための手段】本発明の薄膜形成方法
は、中央で折り返した形状を有しその両端部に高周波電
力の給電部と接地部とを設けた誘導結合型電極を同一平
面内に複数個平行に設置し、前記複数の誘導結合型電極
に高周波電力を供給してプラズマを発生させ、前記誘導
結合型電極に面して配置された基板上に薄膜を形成する
薄膜形成方法において、前記給電部に供給する高周波電
力の位相を隣り合う給電部で互いに逆位相とし、かつA
M変調することを特徴とする。このように誘導結合型電
極を複数配置し、隣り合う電極の給電部に供給する高周
波の位相を180度ずらすことにより、基板の幅方向の
みならず電極長手方向の膜厚分布が向上し、より大型の
基板に均一膜厚の薄膜を形成することが可能となる。さ
らに、AM変調の条件により、プラズマ密度の分布が所
定の変化を示すことから、隣り合う電極を互いに逆位相
とし、適切な変調条件を選択することにより、種々の成
膜条件においても、プラズマ密度を均一化することがで
き、膜厚均一性の高い薄膜を形成することが可能とな
る。なお、本発明において、AM変調とは、パルス変調
を含む意味である。また、給電部と折り返し部との間
で、定在波が立つように高周波電力の周波数を調節する
ことにより、プラズマを安定して発生・維持することが
でき、より再現性のある薄膜形成が可能となる。
According to the thin film forming method of the present invention, an inductively-coupled electrode having a shape folded at the center and provided with a high-frequency power supply portion and a ground portion at both ends is provided on the same plane. A plurality of thin-film forming method for installing in parallel, generating a plasma by supplying high-frequency power to the plurality of inductively coupled electrodes, and forming a thin film on a substrate disposed facing the inductively coupled electrodes, A phase of the high-frequency power supplied to the power supply unit is set to be opposite to that of the adjacent power supply unit, and A
It is characterized by performing M modulation. By arranging a plurality of inductively coupled electrodes in this way and shifting the phase of the high frequency supplied to the power supply portion of the adjacent electrode by 180 degrees, the film thickness distribution in the electrode longitudinal direction as well as the substrate width direction is improved, A thin film having a uniform thickness can be formed on a large substrate. Furthermore, since the distribution of the plasma density shows a predetermined change depending on the condition of the AM modulation, the adjacent electrodes are set to the opposite phases to each other, and by selecting an appropriate modulation condition, the plasma density can be changed even under various film forming conditions. Can be made uniform, and a thin film with high film thickness uniformity can be formed. In the present invention, the AM modulation includes pulse modulation. In addition, by adjusting the frequency of the high-frequency power so that a standing wave is generated between the feeding part and the folded part, the plasma can be generated and maintained stably, and a thin film with higher reproducibility can be formed. It becomes possible.

【0009】前記AM変調は、高周波電力を投入する期
間と高周波電力を遮断する期間とを交互に設け、また、
薄膜形成中に、前記高周波電力を投入する期間の割合若
しくは、前記AM変調の変調周波数を変化させることを
特徴とする。高周波の変調をこのように行うことによ
り、膜厚均一性をより効果的に向上させることができ
る。
In the AM modulation, a period for supplying high-frequency power and a period for cutting off high-frequency power are provided alternately.
During the formation of the thin film, the ratio of the period during which the high-frequency power is supplied or the modulation frequency of the AM modulation is changed. By performing high-frequency modulation in this manner, the film thickness uniformity can be more effectively improved.

【0010】本発明の薄膜形成装置は、内部に、中央で
折り返した形状を有しその両端部に高周波電力の給電部
と接地部とを設けた誘導結合型電極を同一平面内に複数
個平行に配置した成膜室と、前記給電部に高周波電力を
供給する高周波電源と、前記給電部に供給される高周波
電力の位相を制御する手段と、高周波電力のAM変調を
行う波形発生器と、からなり、前記複数の誘導結合型電
極の隣り合う給電部での高周波の位相を互いに逆位相と
しかつAM変調した高周波電力を前記誘導結合型電極に
供給してプラズマを発生させ、前記誘導結合型電極に面
して配置された基板上に薄膜を形成する構成としたこと
を特徴とする。また、給電部と折り返し部との距離は、
前記高周波の励振波長の1/2の自然数倍とするのが好
ましく、プラズマの発生及び維持をより安定させること
ができ、より再現性のある均一膜厚の薄膜形成が可能と
なる。
The thin film forming apparatus according to the present invention comprises a plurality of inductively coupled electrodes having a shape folded in the center and having a power supply portion for high frequency power and a ground portion provided at both ends thereof. A film forming chamber, a high-frequency power supply for supplying high-frequency power to the power supply unit, means for controlling the phase of the high-frequency power supplied to the power supply unit, and a waveform generator for performing AM modulation of the high-frequency power, Comprising: a plurality of inductively coupled electrodes in which adjacent high-frequency power supply sections have mutually opposite high-frequency phases and supply AM-modulated high-frequency power to the inductively coupled electrodes to generate plasma; It is characterized in that a thin film is formed on a substrate arranged facing an electrode. In addition, the distance between the feeding part and the folded part is
It is preferable that the thickness is set to a natural number multiple of 1/2 of the high frequency excitation wavelength, so that generation and maintenance of plasma can be further stabilized, and a thin film having a uniform thickness with higher reproducibility can be formed.

【0011】さらに、前記複数の誘導結合型電極を複数
層に配置し、各々の電極層の両側に基板を配置し、同時
に複数の基板上に薄膜を形成する構成とするのが好まし
い。上記誘導結合型電極を用いることにより、容量結合
型の場合とは異なり装置の巨大化を招くことなく、いわ
ゆる多領域成膜方式を採用することができるため、多数
の基板上に同時成膜することが可能な装置を構築するこ
とができる。その結果、スループットが大幅に向上し、
例えば太陽電池の低コスト化に大きく貢献する。
Further, it is preferable that the plurality of inductively coupled electrodes are arranged in a plurality of layers, substrates are arranged on both sides of each electrode layer, and a thin film is formed on the plurality of substrates at the same time. By using the inductively coupled electrode, unlike the capacitively coupled electrode, a so-called multi-region film formation method can be employed without increasing the size of the device, so that simultaneous film formation is performed on many substrates. Can be constructed. The result is a significant increase in throughput,
For example, it greatly contributes to cost reduction of solar cells.

【0012】本発明の太陽電池は、その構成薄膜の少な
くとも1つを上記本発明の薄膜形成方法又は薄膜形成装
置により形成した薄膜を含むことを特徴とする。上述し
たように、本発明の薄膜形成装置及び方法により、種々
の膜質の薄膜を均一な膜厚で形成することができ、しか
も高速、高品質膜条件を選択できるため、高品質を維持
しつつ、太陽電池の製造コストを削減することが可能と
なる。さらに、多領域成膜方式を用いることにより高ス
ループット化が図れ、太陽電池コストの一層の削減を達
成することが可能となる。
A solar cell according to the present invention is characterized in that at least one of the constituent thin films includes a thin film formed by the above-described thin film forming method or thin film forming apparatus of the present invention. As described above, the thin film forming apparatus and method of the present invention can form thin films of various film qualities with a uniform film thickness, and can select high-speed, high-quality film conditions, thereby maintaining high quality. Therefore, it is possible to reduce the manufacturing cost of the solar cell. Further, by using a multi-region film formation method, high throughput can be achieved, and it is possible to achieve further reduction in solar cell cost.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。本発明の薄膜形成装置及び方法について、図1に
示した薄膜形成装置の一構成例を参照して説明する。図
に示すように、薄膜形成装置は、ガス導入口6と排気口
7を有する成膜室1に、誘導結合型電極2を複数配置
し、各電極の一端の接地部4を成膜室1の壁に連結して
接地し、他端の給電部3を同軸ケーブル11を介して高
周波電源9に接続する。ここで、隣り合う電極の給電部
に逆位相の高周波を供給するために、給電部3と高周波
電源9の間にはフェーズシフタ10が配置されている。
さらに、高周波電源9には波形発生器8が連結され、電
源9から出力される高周波電力に所望のAM変調を加え
ることができる。
Embodiments of the present invention will be described below. The thin film forming apparatus and method of the present invention will be described with reference to one configuration example of the thin film forming apparatus shown in FIG. As shown in the drawing, the thin film forming apparatus includes a plurality of inductively coupled electrodes 2 arranged in a film forming chamber 1 having a gas inlet 6 and an exhaust port 7 and a grounding portion 4 at one end of each electrode. And the power supply unit 3 at the other end is connected to the high-frequency power supply 9 via the coaxial cable 11. Here, a phase shifter 10 is arranged between the power supply unit 3 and the high-frequency power supply 9 in order to supply a high-frequency power of an opposite phase to the power supply unit of the adjacent electrode.
Further, a waveform generator 8 is connected to the high-frequency power supply 9 so that a desired AM modulation can be applied to the high-frequency power output from the power supply 9.

【0014】誘導結合型電極2には、中央で折り返した
形状を有する電極が用いられ、その両端部に高周波電力
を供給する給電部3とアース電位とする接地部4とが設
けられる。中央で折り曲げた形状とは、例えば、U字型
やコの字型の形状が例示されるが、これは、1本の棒材
折り曲げて一体に形成したものに限定するものではな
く、例えば2本の直線状電極を金属板等で接続・固定し
た構造のものでも良い。給電部3及び接地部4と折り返
し部5との距離Lは、高周波電力の励振波長λのn/2
倍(nは自然数)とするのが好ましい。すなわち、給電
部3、接地部4、折り返し部5及び励振波長を、L=n
・λ/2の関係を満たすように設定することにより、安
定して放電を発生・維持することができる。ここで、給
電部及び接地部は必ずしも成膜室内に設ける必要はな
く、成膜室を貫通して誘導結合型電極を配置し、成膜室
外のL=n・λ/2となる位置に給電部及び接地部を設
けても良い。また、逆に、高周波電源の発振周波数を可
変とし、所定のLの値に対して、上記式を満たすように
周波数を変化させても良い。なお、折り返し部とは、例
えばU字型の場合、曲率を有する半円状の部分をいい、
コの字型の場合は、2本の長手方向直線部の間の短手方
向直線部をいう。
As the inductive coupling type electrode 2, an electrode having a shape folded at the center is used, and a power supply portion 3 for supplying high-frequency power and a ground portion 4 as a ground potential are provided at both ends. The shape bent at the center is exemplified by, for example, a U-shape or a U-shape, but this is not limited to a shape formed by bending a single bar and integrally forming the shape. A structure in which the linear electrodes are connected and fixed by a metal plate or the like may be used. The distance L between the feeding unit 3 and the grounding unit 4 and the folded unit 5 is n / 2 of the excitation wavelength λ of the high-frequency power.
It is preferable to make it twice (n is a natural number). That is, the feeding unit 3, the grounding unit 4, the folding unit 5, and the excitation wavelength are represented by L = n
By setting so as to satisfy the relationship of λ / 2, discharge can be generated and maintained stably. Here, the power supply unit and the grounding unit do not necessarily need to be provided in the film formation chamber, and an inductively coupled electrode is disposed through the film formation chamber, and power is supplied to a position outside the film formation chamber where L = n · λ / 2. Section and a ground section may be provided. Conversely, the oscillation frequency of the high-frequency power supply may be made variable, and the frequency may be changed so as to satisfy the above equation for a predetermined value of L. In the case of a U-shape, for example, the folded portion refers to a semicircular portion having a curvature,
In the case of a U-shape, it refers to a short-side linear portion between two longitudinal straight portions.

【0015】本発明において、複数の誘導結合型電極の
隣り合う電極の給電部に互いに逆位相の高周波を供給す
るための手段として、高周波の位相を制御するフェーズ
シフタが配設される。フェーズシフタは図1に示す配置
の他、後述する図5の場合のように電極本数が多くなる
場合には図2の配置が好適に用いられる。図1の配置で
は、電極本数が多くなるにつれてフェーズシフタの数が
増え、また隣り合う電極の位相を制御するために各々の
フェーズシフタ全て調整する必要があるが、図2の配置
では電極の本数にかかわらず、フェーズシフタは1つで
よいため、システムの簡略化を図ることができる。ま
た、位相の調整もフェーズシフタ1つについて行えばよ
い。また、フェーズシフタを用いずに、隣り合う電極の
給電部の位相を互いに逆位相とすることも可能である。
この場合、例えば、複数の電極の一つおきに、給電部と
折り返し部の長さを高周波の半波長分長くして給電部を
成膜室外に設けるか、又は半波長分の長さに等価な同軸
ケーブルを給電部に継ぎ足すようにすればよい。
In the present invention, a phase shifter for controlling the phase of the high frequency wave is provided as a means for supplying high frequency waves having opposite phases to the power supply portions of the adjacent electrodes of the plurality of inductively coupled electrodes. In addition to the arrangement shown in FIG. 1, the arrangement shown in FIG. 2 is preferably used when the number of electrodes is large as in the case of FIG. In the arrangement of FIG. 1, the number of phase shifters increases as the number of electrodes increases, and it is necessary to adjust all the phase shifters in order to control the phases of adjacent electrodes. In the arrangement of FIG. Irrespective of this, since only one phase shifter is required, the system can be simplified. Also, the phase adjustment may be performed for one phase shifter. Further, the phases of the power supply units of the adjacent electrodes can be set to be opposite to each other without using the phase shifter.
In this case, for example, every other electrode, the length of the power supply unit and the folded portion is increased by a half wavelength of the high frequency, and the power supply unit is provided outside the film forming chamber, or is equivalent to the length of the half wavelength. A simple coaxial cable may be added to the power supply unit.

【0016】なお、本発明の高周波電源としては、20
〜600MHzのVHF帯の高周波電源が好適に用いら
れるが、これに限らず、例えば、マイクロ波を用いるこ
ともできる。マイクロ波の場合、導波管に同軸ケーブル
との変換コネクタを接続し、同軸ケーブルを給電部に接
続すればよい。
The high-frequency power supply according to the present invention includes:
A high-frequency power supply in a VHF band of up to 600 MHz is preferably used, but not limited to this, and for example, a microwave may be used. In the case of microwaves, a conversion connector for coaxial cable may be connected to the waveguide, and the coaxial cable may be connected to the power supply unit.

【0017】さらに、本発明において、高周波をAM変
調するために、波形発生器8が設けられる。即ち、高周
波電源9から出力される高周波電力は、波形発生器8に
よりAM変調され、例えば、図3のような波形の高周波
が給電部から誘導結合型電極に供給される。ここで、変
調する信号波としては、例えば、sin波(図3
(a))、矩形波、三角波の他、パルスのように出力を
所定期間完全に遮断する波形のもの(図3(b))、及
びこれらを重畳させた波形のもの(図3(c))等、ど
のような波形のものであっても良い。
Further, in the present invention, a waveform generator 8 is provided for AM-modulating a high frequency. That is, the high frequency power output from the high frequency power supply 9 is AM-modulated by the waveform generator 8, and for example, a high frequency having a waveform as shown in FIG. 3 is supplied to the inductive coupling type electrode from the power supply unit. Here, as a signal wave to be modulated, for example, a sine wave (FIG. 3)
(A)) In addition to the rectangular wave and the triangular wave, a waveform such as a pulse that completely shuts off the output for a predetermined period (FIG. 3B) and a waveform in which these are superimposed (FIG. 3C) ), Etc., may be used.

【0018】次に、本発明の薄膜形成方法を図1を参照
して説明する。まず、成膜室1を高真空に排気した後、
基板12をヒータ(不図示)で所定温度に加熱する。次
いで、堆積用の反応ガスを所定の流量で成膜室に導入し
て、排気口7部に設けられたメインバルブにより所定の
圧力に設定する。高周波電源9、波形発生器8のスイッ
チを入れ、所定の信号波で高周波をAM変調するととも
に、給電部等に設置された波形モニタ(不図示)を見な
がら隣り合う電極の給電部の位相を180度ずらすよう
にフェーズシフタで調整して、高周波電力を各誘導結合
型電極2に投入すると、電極周辺に均一密度のプラズマ
が発生し、反応性ガスは分解、活性化等され、基板12
上に膜厚均一性に優れた薄膜を形成することができる。
Next, a method for forming a thin film according to the present invention will be described with reference to FIG. First, after evacuation of the film forming chamber 1 to a high vacuum,
The substrate 12 is heated to a predetermined temperature by a heater (not shown). Next, a reaction gas for deposition is introduced into the film formation chamber at a predetermined flow rate, and is set to a predetermined pressure by a main valve provided at the exhaust port 7. The high-frequency power supply 9 and the waveform generator 8 are turned on, the high frequency is AM-modulated by a predetermined signal wave, and the phase of the power supply portion of the adjacent electrode is adjusted while looking at a waveform monitor (not shown) installed at the power supply portion or the like. When high-frequency power is applied to each inductively-coupled electrode 2 by adjusting the phase shifter so as to be shifted by 180 degrees, plasma of uniform density is generated around the electrodes, and the reactive gas is decomposed and activated.
A thin film having excellent film thickness uniformity can be formed thereon.

【0019】ここで、高周波のAM変調条件及び位相に
より膜厚分布が変化する様子を具体例を挙げて説明す
る。図4は、以下に示す成膜条件でa−Si膜を形成
し、電極長手方向に測定した膜厚分布を示すグラフであ
る。図4(a)〜(c)は、異なる周波数でパルス変調
し、かつ、隣り合う電極に互いに逆位相の高周波電力を
供給したとき得られた膜厚分布である。一方、図4
(d),(e)は各電極に同位相の電力を供給し、30
0Hzのパルス変調(図4(d))及び変調なしの連続
放電(図4(e))の場合に得られた膜厚分布である。 (成膜条件) 電極:U字型電極(10mm径)8本 給電部(接地部)− 折り返し部距離 1.35m 基板:1.0mx0.5m 高周波:81MHz 25W(1本あたり) AM変調:パルス周波数100,300,500Hz
デューティ比50% ガス:SiH 300sccm、 5Pa
Here, the manner in which the film thickness distribution changes according to the high frequency AM modulation condition and phase will be described with reference to a specific example. FIG. 4 is a graph showing a film thickness distribution measured in a longitudinal direction of an electrode when an a-Si film is formed under the following film forming conditions. FIGS. 4A to 4C show film thickness distributions obtained when pulse modulation is performed at different frequencies and high-frequency powers having opposite phases are supplied to adjacent electrodes. On the other hand, FIG.
(D) and (e) show that the same phase power is supplied to each electrode,
It is a film thickness distribution obtained in the case of 0 Hz pulse modulation (FIG. 4D) and continuous discharge without modulation (FIG. 4E). (Deposition conditions) Electrodes: 8 U-shaped electrodes (10 mm diameter) Power supply unit (grounding unit)-Folding unit distance 1.35 m Substrate: 1.0 mx 0.5 m High frequency: 81 MHz 25 W (per unit) AM modulation: pulse Frequency 100, 300, 500Hz
Duty ratio of 50% Gas: SiH 4 300sccm, 5Pa

【0020】各電極に同位相の高周波を投入した場合
は、図4に示すように、給電部側で膜厚が大きく、折り
返し部に向かって減少した後、増加して極大をとって再
び減少する膜厚分布となった。このような膜厚分布は、
電極の長さ(1.35m)に近い大型基板(1m)を用
いて同位相の高周波を供給する場合に観測される。これ
に対し、隣り合う電極間で互いに逆位相の高周波を供給
した場合は、同位相の場合に比べて、全体として平坦化
した分布が得られることが分かる。また、パルス変調を
行いその周波数を変化させることにより、電極の給電部
側と先端側とで相対的な膜厚比が変化する傾向が見られ
ることが分かる。以上から明らかなように、複数のU字
型電極を配置し、隣り合う電極の給電部に互いに逆位相
の高周波を給電し、さらにAM変調条件を適正に選択す
ることにより、種々の成膜条件でプラズマ密度を均一化
することができ、1m級さらにはそれ以上の大型基板で
あっても、膜厚均一性に優れた薄膜を形成することが可
能となる。
When a high frequency wave having the same phase is applied to each electrode, as shown in FIG. 4, the film thickness is large on the power supply portion side, decreases toward the folded portion, then increases, reaches a local maximum, and decreases again. Film thickness distribution. Such a film thickness distribution is
It is observed when a large-sized substrate (1 m) close to the electrode length (1.35 m) is used to supply in-phase high-frequency waves. On the other hand, when high-frequency waves having opposite phases are supplied between the adjacent electrodes, a flattened distribution can be obtained as a whole as compared with the case of in-phase. In addition, it can be seen that by performing pulse modulation and changing the frequency, the relative film thickness ratio tends to change between the power supply portion side and the tip side of the electrode. As is clear from the above, by disposing a plurality of U-shaped electrodes, supplying high-frequency waves having opposite phases to the power supply portions of adjacent electrodes, and appropriately selecting the AM modulation conditions, various film forming conditions can be obtained. Thus, the plasma density can be made uniform, and a thin film having excellent film thickness uniformity can be formed even with a large substrate of 1 m or more.

【0021】図4の具体例では、AM変調としてパルス
変調を用い、その周波数を変化させたときの効果を示し
たが、変調周波数以外に変調度、デュ−ティ比等の他の
変調パラメータを用いても同様の効果を得ることができ
る。従って、圧力、高周波電力等の成膜条件に応じて変
調パラメータを適宜選択することにより、どのような成
膜条件においても、大型基板での膜厚均一化を達成する
ことが可能となる。なお、参考のため、種々の変調パラ
メータによって膜厚分布が変化する様子を、直線状電極
を用いて行った実験により説明する。この実験では、図
6の模式図に示す薄膜形成装置を用いた。ここで、電極
には、外径10mm、長さ1.6mの棒状電極を用い、
これを8本各電極中心軸間距離が32.5mmとなるよ
うに配置した。また、電極・基板間距離は50mmとし
た。成膜室1に基板(長さ500mm)12を配置し、
200℃に加熱し、SiH ガスを300sccm導入
して、圧力を5Paに設定した。種々の条件で変調した
高周波電力を電極に供給してプラズマを発生させ、基板
上にa−Si薄膜を形成した。なお、高周波の周波数は
80MHz、投入電力は31W(電極1本あたり)と
し、各電極の給電部の位相は同位相とした。変調条件に
よるプラズマ明暗形状の変化を目視観察するとともに、
形成したa−Si膜の膜厚分布を測定した。その結果の
一例を図7,8に示す。
In the specific example shown in FIG.
This shows the effect of changing the frequency using modulation.
However, other than the modulation frequency, other factors such as the modulation factor and the duty ratio may be used.
Similar effects can be obtained using modulation parameters.
You. Therefore, it changes according to the film forming conditions such as pressure and high frequency power.
By selecting the tuning parameters as appropriate,
Achieve film thickness uniformity on large substrates even under film conditions
It becomes possible. For reference, various modulation parameters
The film thickness distribution changes depending on the meter.
This will be described by an experiment performed using. In this experiment, the figure
6 was used. Where the electrodes
Is a rod-shaped electrode with an outer diameter of 10 mm and a length of 1.6 m.
The distance between the center axes of the eight electrodes is 32.5 mm.
Arranged. The distance between the electrode and the substrate is 50 mm.
Was. A substrate (length 500 mm) 12 is placed in the film forming chamber 1,
Heated to 200 ° C, 4Introduce 300 sccm of gas
Then, the pressure was set to 5 Pa. Modulated under various conditions
High-frequency power is supplied to the electrodes to generate plasma and the substrate
An a-Si thin film was formed thereon. The high frequency is
80MHz, input power is 31W (per electrode)
The phases of the power supply sections of the respective electrodes were the same. Modulation conditions
Visual observation of the change in the plasma light and dark shape due to
The thickness distribution of the formed a-Si film was measured. The resulting
An example is shown in FIGS.

【0022】図7(a)は、なんら変調をかけずに高周
波を給電して(連続放電)、薄膜を形成したときの電極
方向の膜厚分布を示すグラフである。なお、電極中心点
は、グラフの250mmの位置に対応する。図7
(b)、(c)及び図8(a)、(b)は、AM変調の
変調度、周波数、デューティ−比(パルス変調)を変化
させてa−Si薄膜を形成したときの膜厚分布である。
AM変調をかけずに高周波電力を電極に給電した場合
は、電極の給電部側で明るく、接地部で暗くなるプラズ
マ形状が観測され、膜厚分布も、図7(a)に示すよう
に、給電側で厚くなり先端ほど薄くなった。これに対
し、AM変調した高周波を給電した場合は、そのプラズ
マ形状は変化し、膜厚分布も図7(b)、(c)及び図
8(a)、(b)に示すように、変化した。例えば、変
調度30%、変調周波数1kHzの高周波を給電した場
合(図7(b))は、給電部側のプラズマが連続放電の
場合に比べて暗くなり、膜厚分布もこのプラズマの状態
に対応して変化することが分かった。
FIG. 7A is a graph showing the film thickness distribution in the electrode direction when a thin film is formed by supplying a high frequency without any modulation (continuous discharge). Note that the electrode center point corresponds to a position of 250 mm in the graph. FIG.
8 (b) and 8 (c) and FIGS. 8 (a) and 8 (b) show the film thickness distribution when an a-Si thin film is formed by changing the modulation degree, frequency and duty ratio (pulse modulation) of AM modulation. It is.
When high-frequency power is supplied to the electrode without applying AM modulation, a plasma shape that is bright on the power supply portion side of the electrode and darkens at the ground portion is observed, and the film thickness distribution is, as shown in FIG. It became thicker on the power supply side and thinner at the tip. On the other hand, when an AM-modulated high frequency is supplied, the plasma shape changes, and the film thickness distribution changes as shown in FIGS. 7 (b) and 7 (c) and FIGS. 8 (a) and 8 (b). did. For example, when high-frequency power with a modulation factor of 30% and a modulation frequency of 1 kHz is supplied (FIG. 7B), the plasma on the power supply unit side is darker than in the case of continuous discharge, and the film thickness distribution is in this plasma state. It was found to change correspondingly.

【0023】図に示すような実験結果から、AM変調の
変調度を増加させると、給電側でプラズマ密度は低下
し、変調周波数を増加させると、給電側でプラズマ密度
が低下し同時に接地部側でプラズマ密度が増加すること
が分かった。さらにデューティ比(パルス変調)を増加
させると給電側でプラズマ密度が増加する等、変調条件
を適宜調節することにより、電極に沿ってプラズマ密度
分布、そして形成される膜厚分布が変化することが明ら
かになった。逆に、これらのパラメータを調節すること
により、所望の分布のプラズマを発生させ、所望の膜厚
均一性を有する薄膜を形成できることができる。
From the experimental results shown in the figure, it can be seen that when the modulation degree of the AM modulation is increased, the plasma density is reduced on the power supply side, and when the modulation frequency is increased, the plasma density is reduced on the power supply side, and at the same time the ground side is reduced. It was found that the plasma density increased. If the duty ratio (pulse modulation) is further increased, the plasma density increases along the electrodes, and the plasma density distribution and the formed film thickness distribution can be changed by appropriately adjusting the modulation conditions, such as increasing the plasma density on the power supply side. It was revealed. Conversely, by adjusting these parameters, a plasma having a desired distribution can be generated, and a thin film having a desired film thickness uniformity can be formed.

【0024】図8(c)は、プラズマ密度を電極に沿っ
て均一にすべく、変調条件を調節して、図3(c)に示
すように、高周波電力を投入する期間と遮断する期間と
を設けた波形の高周波電力を給電して、a−Si膜を形
成したときの膜厚分布である。すなわち、図6の装置構
成では、1kHzのAM変調にさらにパルス変調を重畳
させることにより、極めて膜厚均一性に優れたa−Si
膜を得ることができることが分かる。
FIG. 8 (c) shows a period during which high-frequency power is supplied and a period during which high-frequency power is turned off as shown in FIG. 3 (c) by adjusting modulation conditions so as to make the plasma density uniform along the electrodes. Is a film thickness distribution when an a-Si film is formed by supplying high-frequency power having a waveform provided with. That is, in the device configuration of FIG. 6, by superimposing pulse modulation on 1 kHz AM modulation, a-Si having extremely excellent film thickness uniformity is obtained.
It can be seen that a film can be obtained.

【0025】一方、プラズマ密度の分布は、高周波電
力、圧力等の成膜条件により変動することが分かってい
る。従って、従来の薄膜形成装置では、ある条件では膜
厚均一性の高い膜は得られるが、例えば、高品質膜が得
られる成膜条件では、均一な膜厚が得られないという問
題がある。しかし、上記したように、AM変調を適正化
することによりどのような成膜条件であっても、それに
起因するプラズマ密度分布変化を修正し、膜厚均一性に
優れた薄膜を形成することができる。例えば、高速成膜
するために高周波電力を増加させると、給電部側のプラ
ズマ密度が接地部側に比べ相対的に高くなるが、この場
合、例えば、AM変調度の増加、変調周波数の増加、パ
ルス変調の場合デューティ比の低下のいずれかあるいは
これらの組み合わせにより、プラズマ密度を電極に沿っ
て均一化することができる。また、膜質、成膜速度の観
点から、圧力を高くすると、給電側のプラズマ密度が相
対的に低くなるため、逆の操作を行えばよいことにな
る。以上述べたように、AM変調の変調度、変調周波
数、デューティ比のいずれか、若しくはこれらの組み合
わせることにより、どのような成膜条件であっても、均
一膜厚の薄膜を形成することが可能となる。
On the other hand, it is known that the distribution of the plasma density fluctuates depending on film forming conditions such as high frequency power and pressure. Therefore, in a conventional thin film forming apparatus, a film having a high film thickness uniformity can be obtained under certain conditions. However, there is a problem that a uniform film thickness cannot be obtained, for example, under a film forming condition capable of obtaining a high quality film. However, as described above, by optimizing the AM modulation, it is possible to correct a change in the plasma density distribution due to the film formation under any film forming conditions and form a thin film having excellent film thickness uniformity. it can. For example, when the high-frequency power is increased for high-speed film formation, the plasma density on the power supply unit side is relatively higher than that on the ground unit side. In this case, for example, the AM modulation degree increases, the modulation frequency increases, In the case of pulse modulation, the plasma density can be made uniform along the electrodes by any one of the reductions in the duty ratio or a combination thereof. Further, from the viewpoint of film quality and film formation rate, when the pressure is increased, the plasma density on the power supply side becomes relatively low, so that the reverse operation may be performed. As described above, it is possible to form a thin film having a uniform thickness under any film forming conditions by using any one of the modulation degree, the modulation frequency, and the duty ratio of the AM modulation, or a combination thereof. Becomes

【0026】なお、以上の薄膜形成方法においては、成
膜条件に対し予め最適化された変調条件でAM変調され
た高周波電力を電極に供給して、薄膜を形成しても良い
が、プラズマの状態を観察しながら変調条件を変更して
も良い。また、プラズマ密度が分布した状態であって
も、最終的に基板全体で均一な膜厚が得られるように、
薄膜形成中に変調条件を変更しても良い。この場合、A
M変調の変調周波数若しくはパルスのデューティ比を変
化させるのが好ましい。このような成膜方法により、例
えば、膜厚方向に膜質等の異なる膜を形成することも可
能である。
In the above-described thin film forming method, a high-frequency power AM-modulated under a modulation condition optimized in advance with respect to the film forming condition may be supplied to the electrode to form the thin film. The modulation condition may be changed while observing the state. Also, even in a state where the plasma density is distributed, in order to finally obtain a uniform film thickness over the entire substrate,
The modulation condition may be changed during the formation of the thin film. In this case, A
It is preferable to change the modulation frequency of M modulation or the duty ratio of the pulse. By such a film forming method, for example, films having different film quality and the like in the film thickness direction can be formed.

【0027】図1に示す薄膜形成方法及び装置は、1枚
の基板に薄膜を形成する方法及び装置であるが、本発明
の薄膜形成装置は、図5に示すように、基板幅に配列し
た電極列を、さらに所定の間隔を開けて複数列配置した
構造とし、各電極の両側に基板を配置する多領域成膜方
式とするのが好ましい。このような構成とすることによ
り、多数の基板(図の例では、6枚)上に同時に薄膜を
形成することが可能となり、スループットを大幅に上げ
ることができる。しかも、電極と基板間距離は、30〜
60mm程度とできるため、小さな空間で多数の基板の
同時成膜ができることから、装置設置面積に対するスル
ープット比の優れた薄膜形成装置を実現することができ
る。
The thin film forming method and apparatus shown in FIG. 1 is a method and apparatus for forming a thin film on one substrate. The thin film forming apparatus of the present invention is arranged in a substrate width as shown in FIG. It is preferable to adopt a structure in which a plurality of electrode rows are further arranged at predetermined intervals, and a multi-region film formation method in which substrates are arranged on both sides of each electrode. With such a configuration, a thin film can be formed simultaneously on a large number of substrates (six in the example in the figure), and the throughput can be greatly increased. Moreover, the distance between the electrode and the substrate is 30 to
Since the thickness can be set to about 60 mm, a large number of substrates can be simultaneously formed in a small space, so that a thin film forming apparatus having an excellent throughput ratio to the installation area of the apparatus can be realized.

【0028】以上、本発明の薄膜形成装置及び方法を、
主にa−Si膜に適用する場合について述べてきたが、
本発明は、a−Si膜に限らず、反応性ガスを適宜選択
することにより、種々の薄膜形成に適用できることはい
うまでもない。また、以上述べてきた薄膜形成方法及び
薄膜形成装置を用い、各電極に供給する高周波電力を隣
り合う電極で互いに逆位相とし、さらにAM変調するこ
とにより、高品質半導体薄膜の高速成膜が可能となり、
しかも膜厚均一性に優れているため、大型基板の太陽電
池の製造に好適に用いられる。また、前述した多領域成
膜方式を採用することにより、装置の大型化を招くこと
なく、多数の基板に同時成膜することが可能となるた
め、スループットの高い成膜が可能となり、太陽電池を
普及させるために最大の課題であるコストダウンを図る
ことができる。本発明において、太陽電池構成はpin
構造、pn構造、または、これらを積層したタンデム構
造のいずれでもでも良く、これらp層、i層、n層の形
成に本発明の薄膜形成方法及び形成装置が用いられる。
As described above, the thin film forming apparatus and method of the present invention
Although the description has mainly been given of the case where the present invention is applied to an a-Si film,
It is needless to say that the present invention is not limited to the a-Si film and can be applied to various thin film formations by appropriately selecting a reactive gas. In addition, by using the thin film forming method and the thin film forming apparatus described above, the high frequency power supplied to each electrode is made to be in opposite phase with the adjacent electrode, and further AM-modulated, so that a high quality semiconductor thin film can be formed at a high speed. Becomes
Moreover, since it has excellent film thickness uniformity, it is suitably used for the production of a large-sized substrate solar cell. In addition, by employing the above-described multi-region film formation method, it is possible to form a film on many substrates at the same time without increasing the size of the apparatus. In order to spread the technology, cost reduction, which is the biggest issue, can be achieved. In the present invention, the solar cell configuration is pin
Any of a structure, a pn structure, and a tandem structure in which these are laminated may be used, and the thin film forming method and the forming apparatus of the present invention are used for forming the p layer, the i layer, and the n layer.

【0029】[0029]

【発明の効果】以上説明してきたように、本発明の薄膜
形成方法及び薄膜形成装置により、大型基板に、膜厚均
一性に優れた薄膜を形成することが可能となる。しか
も、装置設置面積に対するスループット比の高い薄膜形
成装置を提供することが可能となる。
As described above, the thin film forming method and the thin film forming apparatus of the present invention make it possible to form a thin film having excellent film thickness uniformity on a large substrate. Moreover, it is possible to provide a thin film forming apparatus having a high throughput ratio to the apparatus installation area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜形成装置の一例を示す模式図であ
る。
FIG. 1 is a schematic view showing one example of a thin film forming apparatus of the present invention.

【図2】本発明の高周波電力の供給系の他の例を示す模
式図である。
FIG. 2 is a schematic diagram showing another example of a high-frequency power supply system according to the present invention.

【図3】AM変調した高周波の波形を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing an AM-modulated high-frequency waveform.

【図4】変調条件、高周波電力の位相と膜厚分布との関
係を示すグラフである。
FIG. 4 is a graph showing a relationship between a modulation condition, a phase of high-frequency power, and a film thickness distribution.

【図5】本発明の高スループット薄膜形成装置の一例を
示す模式図である。
FIG. 5 is a schematic view showing one example of a high-throughput thin film forming apparatus of the present invention.

【図6】AM変調の実験で用いた装置の構造を示すで模
式図ある。
FIG. 6 is a schematic diagram showing a structure of a device used in an experiment of AM modulation.

【図7】変調条件と膜厚分布の関係を示すグラフであ
る。
FIG. 7 is a graph showing a relationship between a modulation condition and a film thickness distribution.

【図8】変調条件と膜厚分布の関係を示すグラフであ
る。
FIG. 8 is a graph showing a relationship between a modulation condition and a film thickness distribution.

【符号の説明】[Explanation of symbols]

1 成膜室、 2 誘導結合型電極、 3 給電部。 4 接地部、 5 折り返し部、 6 ガス導入口、 7 排気口、 8 波形発生器、 9 高周波電源、 10 フェーズシフタ、 11 同軸ケーブル、 12 基板、 13 基板ホルダー。 1 film forming chamber, 2 inductive coupling type electrode, 3 power supply section. 4 Grounding part, 5 Folding part, 6 Gas inlet, 7 Exhaust port, 8 Waveform generator, 9 High frequency power supply, 10 Phase shifter, 11 Coaxial cable, 12 Substrate, 13 Substrate holder.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500132638 松田 彰久 茨城県つくば市梅園1丁目1番1中央第2 独立行政法人産業技術総合研究所内 (71)出願人 500132649 近藤 道雄 茨城県つくば市梅園1丁目1番1中央第2 独立行政法人産業技術総合研究所内 (74)上記2名の代理人 100111051 弁理士 中西 次郎 (72)発明者 伊藤 憲和 東京都府中市四谷5丁目8番1号 アネル バ株式会社内 (72)発明者 渡部 嘉 東京都府中市四谷5丁目8番1号 アネル バ株式会社内 (72)発明者 松田 彰久 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 近藤 道雄 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 Fターム(参考) 4K030 AA06 BA40 FA04 KA15 KA30 LA11 5F045 AA08 AB04 AC01 AD06 AE17 BB02 BB08 CA13 DA52 EH04 EH11 EH20 5F051 AA05 BA12 BA14 CA16 CA23 CA34 DA03 DA04 DA15  ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 500132638 Akihisa Matsuda 1-1-1 Umezono, Tsukuba-shi, Ibaraki 2nd Central Institute of Advanced Industrial Science and Technology (71) Applicant 500132649 Michio Kondo 1 Umezono, Tsukuba-shi, Ibaraki Chome 1-1 Central 2 National Institute of Advanced Industrial Science and Technology (74) The above two agents 100111051 Patent Attorney Jiro Nakanishi (72) Inventor Norikazu Ito 5-8-1, Yotsuya, Fuchu-shi, Tokyo Anelva Shares In-company (72) Inventor Kaoru Watanabe 5-8-1, Yotsuya, Fuchu-shi, Tokyo Inside Anelva Co., Ltd. (72) Inventor Akihisa Matsuda 1-4-1 Umezono, Tsukuba, Ibaraki Pref. In-house (72) Inventor Michio Kondo 1-1-4 Umezono, Tsukuba, Ibaraki Pref. (Reference) 4K030 AA06 BA40 FA04 KA15 KA30 LA11 5F045 AA08 AB04 AC01 AD06 AE17 BB02 BB08 CA13 DA52 EH04 EH11 EH20 5F051 AA05 BA12 BA14 CA16 CA23 CA34 DA03 DA04 DA15

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 中央で折り返した形状を有しその両端部
に高周波電力の給電部と接地部とを設けた誘導結合型電
極を同一平面内に複数個平行に設置し、前記複数の誘導
結合型電極に高周波電力を供給してプラズマを発生さ
せ、前記誘導結合型電極に面して配置された基板上に薄
膜を形成する薄膜形成方法において、 前記給電部に供給する高周波電力の位相を隣り合う給電
部で互いに逆位相とし、かつAM変調することを特徴と
する薄膜形成方法。
1. A plurality of inductively coupled electrodes having a folded shape at the center and provided with a high-frequency power supply portion and a ground portion at both ends thereof are installed in parallel on the same plane, and the plurality of inductively coupled electrodes are provided. A high-frequency power is supplied to the mold electrode to generate a plasma, and a thin film is formed on a substrate disposed facing the inductive coupling-type electrode. A method for forming a thin film, characterized in that opposite feeding phases and AM modulation are performed at matching feeding parts.
【請求項2】 前記誘導結合型電極の給電部と折り返し
部との間で、定在波が立つように、高周波の周波数を変
化させることを特徴とする請求項1に記載の薄膜形成方
法。
2. The method of forming a thin film according to claim 1, wherein the frequency of the high frequency is changed so that a standing wave is generated between a feeding portion and a folded portion of the inductive coupling type electrode.
【請求項3】 前記AM変調は、高周波電力を投入する
期間と高周波電力を遮断する期間とを交互に設けること
を特徴とする請求項1又は2に記載の薄膜形成方法。
3. The thin film forming method according to claim 1, wherein in the AM modulation, a period in which high-frequency power is supplied and a period in which high-frequency power is shut off are alternately provided.
【請求項4】 薄膜形成中に、前記AM変調の変調周波
数を変化させることを特徴とする請求項1〜3のいずれ
か1項に記載の薄膜形成方法。
4. The thin film forming method according to claim 1, wherein a modulation frequency of the AM modulation is changed during the formation of the thin film.
【請求項5】 薄膜形成中に、前記高周波電力を投入す
る期間の割合を変化させることを特徴とする請求項3に
記載の薄膜形成方法。
5. The method according to claim 3, wherein a ratio of a period during which the high-frequency power is supplied is changed during the formation of the thin film.
【請求項6】 内部に、中央で折り返した形状を有しそ
の両端部に高周波電力の給電部と接地部とを設けた誘導
結合型電極を同一平面内に複数個平行に配置した成膜室
と、前記給電部に高周波電力を供給する高周波電源と、
前記給電部に供給される高周波の位相を制御する手段
と、高周波電力のAM変調を行う波形発生器と、からな
り、前記複数の誘導結合型電極の隣り合う給電部での高
周波の位相を互いに逆位相としかつAM変調した高周波
電力を前記誘導結合型電極に供給してプラズマを発生さ
せ、前記誘導結合型電極に面して配置された基板上に薄
膜を形成する構成としたことを特徴とする薄膜形成装
置。
6. A film forming chamber in which a plurality of inductively-coupled electrodes having a folded shape at the center and having a high-frequency power supply portion and a ground portion provided at both ends thereof are arranged in parallel on the same plane. A high-frequency power supply that supplies high-frequency power to the power supply unit;
Means for controlling the phase of the high-frequency power supplied to the power supply unit, and a waveform generator for performing AM modulation of the high-frequency power, wherein the high-frequency phases in adjacent power supply units of the plurality of inductively coupled electrodes are mutually It is characterized in that a high-frequency power having an opposite phase and AM modulation is supplied to the inductive coupling type electrode to generate plasma, and a thin film is formed on a substrate arranged facing the inductive coupling type electrode. Thin film forming equipment.
【請求項7】 前記誘導結合型電極の給電部と折り返し
部との距離は、前記高周波の励振波長の1/2の自然数
倍であることを特徴とする請求項6に記載の薄膜形成装
置。
7. The thin film forming apparatus according to claim 6, wherein a distance between a feeding part and a folded part of the inductive coupling type electrode is a natural number times a half of the high frequency excitation wavelength. .
【請求項8】 前記誘導結合型電極を複数の層に配置
し、各層の両側に基板を配置し、同時に複数の基板上に
薄膜を形成する構成としたことを特徴とする請求項6又
は7に記載の薄膜形成装置。
8. The structure according to claim 6, wherein said inductively coupled electrodes are arranged in a plurality of layers, substrates are arranged on both sides of each layer, and a thin film is formed on the plurality of substrates at the same time. 2. The thin film forming apparatus according to 1.
【請求項9】 請求項1〜5のいずれか1項に記載の薄
膜形成方法により形成した薄膜を構成膜とする太陽電
池。
9. A solar cell comprising a thin film formed by the thin film forming method according to claim 1 as a constituent film.
【請求項10】 請求項6〜8のいずれか1項に記載の
薄膜形成装置に、反応性ガスを導入し、プラズマを発生
させて、前記反応性ガスの構成元素を少なくとも1つを
含む薄膜を形成し、該薄膜を構成膜とすることを特徴と
する太陽電池。
10. A thin film containing at least one constituent element of the reactive gas by introducing a reactive gas into the thin film forming apparatus according to any one of claims 6 to 8, generating plasma. And a solar cell comprising the thin film as a constituent film.
JP2000267554A 2000-04-13 2000-09-04 Thin film forming method and thin film forming apparatus Expired - Lifetime JP4509337B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000267554A JP4509337B2 (en) 2000-09-04 2000-09-04 Thin film forming method and thin film forming apparatus
KR1020010019290A KR100757717B1 (en) 2000-04-13 2001-04-11 Thin film forming method, thin film forming apparatus and solar cell
EP01108979A EP1146569B1 (en) 2000-04-13 2001-04-11 Thin film forming method, thin film forming apparatus and solar cell
DE60134081T DE60134081D1 (en) 2000-04-13 2001-04-11 Production method of thin films, device for the production of thin films and solar cell
US09/832,860 US6503816B2 (en) 2000-04-13 2001-04-12 Thin film formation by inductively-coupled plasma CVD process
TW90108871A TW574413B (en) 2000-04-13 2001-04-13 Thin film forming method and forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267554A JP4509337B2 (en) 2000-09-04 2000-09-04 Thin film forming method and thin film forming apparatus

Publications (2)

Publication Number Publication Date
JP2002069653A true JP2002069653A (en) 2002-03-08
JP4509337B2 JP4509337B2 (en) 2010-07-21

Family

ID=18754461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267554A Expired - Lifetime JP4509337B2 (en) 2000-04-13 2000-09-04 Thin film forming method and thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP4509337B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031443A1 (en) * 2002-10-04 2004-04-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for forming thin film and apparatus therefor
JP2004158247A (en) * 2002-11-05 2004-06-03 Sharp Corp Plasma treatment device and plasma treatment method
WO2004097912A1 (en) * 2003-05-02 2004-11-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Substrate transfer device of thin-film forming apparatus
WO2005009090A1 (en) * 2003-07-23 2005-01-27 Sekisui Chemical Co., Ltd. Plasma treating apparatus and its electrode structure
JP2005050905A (en) * 2003-07-30 2005-02-24 Sharp Corp Method for manufacturing silicon thin film solar cell
JP2006216679A (en) * 2005-02-02 2006-08-17 Ulvac Japan Ltd Plasma processing method/device by pulse division supply and plasma cvd method
JP2006524422A (en) * 2003-04-17 2006-10-26 プラズマ コントロール システムズ,エルエルシー Plasma generating apparatus, method, and RF drive circuit with adjustable duty cycle
WO2007111028A1 (en) * 2006-03-29 2007-10-04 Ishikawajima-Harima Heavy Industries Co., Ltd Method for microcrystalline silicon film formation and solar cell
JP2008124028A (en) * 2006-11-14 2008-05-29 Lg Electronics Inc Plasma generating device and method, and manufacturing method of plasma display device using it
US7833587B2 (en) 2002-10-31 2010-11-16 Mitsubishi Heavy Industries, Ltd. Method for plasma-enhanced chemical vapor deposition and apparatus for plasma-enhanced chemical vapor deposition
JP2012152732A (en) * 2011-01-26 2012-08-16 秉豊 ▲頼▼ Plasma reaction method and plasma reaction device
JP2012174499A (en) * 2011-02-22 2012-09-10 Panasonic Corp Plasma processing device and method
JP2013175780A (en) * 2013-05-13 2013-09-05 Ihi Corp Method for manufacturing solar cell
JP2013214646A (en) * 2012-04-03 2013-10-17 Ihi Corp Plasma processing apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236781A (en) * 1991-01-21 1992-08-25 Mitsubishi Heavy Ind Ltd Plasma cvd device
JPH0794421A (en) * 1993-09-21 1995-04-07 Anelva Corp Manufacture of amorphous silicon thin film
JPH08299785A (en) * 1995-05-10 1996-11-19 Mitsubishi Heavy Ind Ltd Discharge reactor
JPH097960A (en) * 1995-06-23 1997-01-10 Kokusai Electric Co Ltd Method and apparatus for plasma cvd processing
JPH09129555A (en) * 1995-10-26 1997-05-16 Mitsubishi Heavy Ind Ltd Plasma chemical deposition device
JPH1079372A (en) * 1996-09-03 1998-03-24 Matsushita Electric Ind Co Ltd Plasma treating method and plasma treating equipment
JPH11243062A (en) * 1997-12-10 1999-09-07 Canon Inc Method and device for plasma cvd
JP2000091236A (en) * 1998-09-08 2000-03-31 Mitsubishi Heavy Ind Ltd Plasma cvd apparatus
WO2001019144A1 (en) * 1999-09-09 2001-03-15 Anelva Corporation Inner-electrode plasma processing apparatus and method of plasma processing
WO2001088221A1 (en) * 2000-05-17 2001-11-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Plasma cvd apparatus and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236781A (en) * 1991-01-21 1992-08-25 Mitsubishi Heavy Ind Ltd Plasma cvd device
JPH0794421A (en) * 1993-09-21 1995-04-07 Anelva Corp Manufacture of amorphous silicon thin film
JPH08299785A (en) * 1995-05-10 1996-11-19 Mitsubishi Heavy Ind Ltd Discharge reactor
JPH097960A (en) * 1995-06-23 1997-01-10 Kokusai Electric Co Ltd Method and apparatus for plasma cvd processing
JPH09129555A (en) * 1995-10-26 1997-05-16 Mitsubishi Heavy Ind Ltd Plasma chemical deposition device
JPH1079372A (en) * 1996-09-03 1998-03-24 Matsushita Electric Ind Co Ltd Plasma treating method and plasma treating equipment
JPH11243062A (en) * 1997-12-10 1999-09-07 Canon Inc Method and device for plasma cvd
JP2000091236A (en) * 1998-09-08 2000-03-31 Mitsubishi Heavy Ind Ltd Plasma cvd apparatus
WO2001019144A1 (en) * 1999-09-09 2001-03-15 Anelva Corporation Inner-electrode plasma processing apparatus and method of plasma processing
WO2001088221A1 (en) * 2000-05-17 2001-11-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Plasma cvd apparatus and method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106362A (en) * 2002-10-04 2008-05-08 Ihi Corp Method and apparatus for depositing thin film, method and device for manufacturing solar battery, and solar battery
KR101096554B1 (en) 2002-10-04 2011-12-20 가부시키가이샤 아이에이치아이 Apparatus for forming thin film and apparatus for manufacturing solar cell
US8034418B2 (en) 2002-10-04 2011-10-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for forming thin film and apparatus therefor
WO2004031443A1 (en) * 2002-10-04 2004-04-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for forming thin film and apparatus therefor
US7833587B2 (en) 2002-10-31 2010-11-16 Mitsubishi Heavy Industries, Ltd. Method for plasma-enhanced chemical vapor deposition and apparatus for plasma-enhanced chemical vapor deposition
JP2004158247A (en) * 2002-11-05 2004-06-03 Sharp Corp Plasma treatment device and plasma treatment method
JP2006524422A (en) * 2003-04-17 2006-10-26 プラズマ コントロール システムズ,エルエルシー Plasma generating apparatus, method, and RF drive circuit with adjustable duty cycle
AU2004234806B8 (en) * 2003-05-02 2009-11-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Substrate transfer device for thin-film deposition apparatus
WO2004097912A1 (en) * 2003-05-02 2004-11-11 Ishikawajima-Harima Heavy Industries Co., Ltd. Substrate transfer device of thin-film forming apparatus
CN100372064C (en) * 2003-05-02 2008-02-27 石川岛播磨重工业株式会社 Substrate transfer device for thin-film deposition apparatus
KR100935812B1 (en) 2003-05-02 2010-01-08 가부시키가이샤 아이에이치아이 Substrate transfer device of thin-film forming apparatus
AU2004234806B2 (en) * 2003-05-02 2009-10-22 Ishikawajima-Harima Heavy Industries Co., Ltd. Substrate transfer device for thin-film deposition apparatus
WO2005009090A1 (en) * 2003-07-23 2005-01-27 Sekisui Chemical Co., Ltd. Plasma treating apparatus and its electrode structure
JP2005050905A (en) * 2003-07-30 2005-02-24 Sharp Corp Method for manufacturing silicon thin film solar cell
JP2006216679A (en) * 2005-02-02 2006-08-17 Ulvac Japan Ltd Plasma processing method/device by pulse division supply and plasma cvd method
JP4707403B2 (en) * 2005-02-02 2011-06-22 株式会社アルバック Plasma processing method and apparatus by pulse division supply and plasma CVD method
JP2007262541A (en) * 2006-03-29 2007-10-11 Ihi Corp Method for forming microcrystalline silicon film and solar cell
WO2007111028A1 (en) * 2006-03-29 2007-10-04 Ishikawajima-Harima Heavy Industries Co., Ltd Method for microcrystalline silicon film formation and solar cell
JP2008124028A (en) * 2006-11-14 2008-05-29 Lg Electronics Inc Plasma generating device and method, and manufacturing method of plasma display device using it
JP2012152732A (en) * 2011-01-26 2012-08-16 秉豊 ▲頼▼ Plasma reaction method and plasma reaction device
JP2012174499A (en) * 2011-02-22 2012-09-10 Panasonic Corp Plasma processing device and method
JP2013214646A (en) * 2012-04-03 2013-10-17 Ihi Corp Plasma processing apparatus
JP2013175780A (en) * 2013-05-13 2013-09-05 Ihi Corp Method for manufacturing solar cell

Also Published As

Publication number Publication date
JP4509337B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR100757717B1 (en) Thin film forming method, thin film forming apparatus and solar cell
US9165748B2 (en) Plasma CVD method
JP4029615B2 (en) Internal electrode type plasma processing apparatus and plasma processing method
JP2002069653A (en) Thin film forming method, thin film forming apparatus and solar cell
WO2004040629A1 (en) Method and system for making uniform high frequency plasma over larger area in plasma-activated cvd system
JP5017762B2 (en) Discharge device, plasma processing method
CN107432076A (en) Microwave plasma processing apparatus
KR101353684B1 (en) Apparatus and method for generation a plasma
KR100898165B1 (en) Apparatus and method for generation a plasma
JP2003031504A (en) Plasma processing apparatus and method and semiconductor device manufactured by using them
WO2013159433A1 (en) Method for improving uniformity of high-frequency discharge plasma in frequency modulation manner
JP3575011B1 (en) Plasma surface treatment apparatus and plasma surface treatment method
JP2002313744A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP2007103970A (en) Method of supplying power to electrode, plasma surface treatment method using the same, and plasma surface treatment system
JP2001295052A (en) Method and apparatus for depositing thin film, and solar cell
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP2006332709A (en) Method of supplying power to electrode, plasma surface treatment method using this power supplying method and plasma surface treatment apparatus
JP3611309B2 (en) Structure of discharge electrode in plasma chemical vapor deposition equipment.
Kawamura et al. Development of large-area a-Si: H films deposition using controlled VHF plasma
JP2006286705A (en) Plasma deposition method and deposition structure
JP2002327276A (en) Method and device for uniformizing high frequency plasma over large area in plasma cvd apparatus
JP3575013B1 (en) High frequency power supply coaxial cable, plasma surface treatment apparatus and plasma surface treatment method constituted by the coaxial cable
Hwang et al. Dual comb-type electrodes as a plasma source for very high frequency plasma enhanced chemical vapor deposition
JP2005113178A (en) Plasma chemical vacuum deposition apparatus, plasma-generating method, and plasma chemical vacuum deposition method
JP3810748B2 (en) Surface treatment apparatus and surface treatment method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4509337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term