JPH0417268A - Co-generation system - Google Patents
Co-generation systemInfo
- Publication number
- JPH0417268A JPH0417268A JP2119682A JP11968290A JPH0417268A JP H0417268 A JPH0417268 A JP H0417268A JP 2119682 A JP2119682 A JP 2119682A JP 11968290 A JP11968290 A JP 11968290A JP H0417268 A JPH0417268 A JP H0417268A
- Authority
- JP
- Japan
- Prior art keywords
- power
- heat
- tank
- fuel cell
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001257 hydrogen Substances 0.000 claims abstract description 60
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 60
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000446 fuel Substances 0.000 claims abstract description 49
- 239000000956 alloy Substances 0.000 claims abstract description 32
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 32
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims abstract description 13
- 238000010248 power generation Methods 0.000 claims description 14
- 239000003507 refrigerant Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005338 heat storage Methods 0.000 abstract description 21
- 230000005611 electricity Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は自家発電装置による電力と電力会社から供給さ
れた商用電力とを併合して使用し、かつ、自家発電装置
から発生する熱が暖房および冷房に使用されるコジェネ
レーションシステムに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention uses electric power generated by a private power generation device and commercial power supplied from an electric power company, and the heat generated from the private power generation device is used for heating. and related to cogeneration systems used for air conditioning.
[従来の技#r]
一般にビル関係のエネルギーの需要形体は電気的なもの
と熱的なものに分類され、電気エネルギーは、電力会社
から供給される電力により、また熱エネルギーは、主と
して電力利用による空気調節システムの運転によって供
給されていた。しかし、近年、省エネルギーの観点から
電力会社からの買電のみに依存せず、ビル内に自家発電
装置を設置し、この発電装置によって電力を賄うととも
に発電装置が発生する熱を利用して冷暖房を行なう、い
わゆるコジェネレーションシステム(電気・熱併給シス
テム)の概念が生まれ、次第に流布しつつある。[Conventional Technique #r] In general, building-related energy demands are classified into electrical and thermal. Electrical energy comes from the electricity supplied by the power company, and thermal energy mainly comes from the use of electricity. was supplied by the operation of the air conditioning system. However, in recent years, from the perspective of energy conservation, instead of relying solely on electricity purchased from electric power companies, private power generators have been installed in buildings, which not only provide electricity but also use the heat generated by the generators to provide heating and cooling. The concept of the so-called cogeneration system (combined electricity and heat generation system) was born and is gradually becoming popular.
第4図はコジェネレーションシステムの従来例のシステ
ム構成図である。このコジェネレーションシステムはエ
ンジン32..322と、発電機31、.312と、熱
回収器37と、暖房用室内器36と、吸収式冷凍器38
と、冷房用室内器39と、システムコントローラ33と
、受電盤2とからなる。発電機31..312それぞれ
エンジン32、.322によって運転され、その出力は
電力線41□を紅白し、受電盤2を介して商用電力1と
併合され負荷3に供給される。また、エンジン32、.
322の運転により高熱の排ガスが発生するので、その
排気管42の途中に設けられた熱回収器34の熱媒用配
管35から熱を取り出して直接暖房用室内器36で暖房
をし、また熱媒用配管37から吸収式冷凍器38を介し
て冷房用室内器39で冷房を行なっていた。また、排気
管42には消音器40が設けられている。さらに、熱回
収器34にはエンジン32□、322が発生する熱が熱
媒用配管43を介して供給される。システムコントロー
ラ33は発電機31□、312.吸収式冷凍器38、受
電盤2の運転制御および監視を行なう。FIG. 4 is a system configuration diagram of a conventional example of a cogeneration system. This cogeneration system uses engine 32. .. 322 and generators 31, . 312, a heat recovery device 37, a heating indoor unit 36, and an absorption refrigerator 38
, an indoor cooling unit 39 , a system controller 33 , and a power receiving board 2 . Generator 31. .. 312 engines 32, . 322, its output connects the power line 41□, is combined with the commercial power 1 via the power receiving board 2, and is supplied to the load 3. Also, the engines 32, .
322 generates high-temperature exhaust gas, the heat is extracted from the heat medium pipe 35 of the heat recovery device 34 installed in the middle of the exhaust pipe 42 and directly heated by the heating indoor unit 36. Cooling was performed by an indoor cooling unit 39 via a medium pipe 37 and an absorption refrigerator 38. Further, the exhaust pipe 42 is provided with a muffler 40 . Further, heat generated by the engines 32□, 322 is supplied to the heat recovery device 34 via a heat medium pipe 43. The system controller 33 controls the generators 31□, 312. It controls and monitors the operation of the absorption refrigerator 38 and the power receiving board 2.
第5図(a) 、 (b) 、 (c) 、 (d)は
所要電力量と、自家発電装置による給電比率を示す図で
ある。FIGS. 5(a), (b), (c), and (d) are diagrams showing the required power amount and the power supply ratio by the private power generator.
第5図(b)に示す給電パターンは、第5図(a)に示
す、所要電力量20の中、基準電力値までは商用電力1
の供給に依存し、基準電力値を超える時間帯にのみ自家
発電装置を運転して、基準電力値を超過した分に対して
自家発電電力21を供給するもので、通常同じ時間帯に
空気調節装置の消費電力も多くなるので、発電による排
熱も利用され、電力消費量の節減に供していた。また、
第5図(C)に示すパターンは、基準電力値を超える時
間帯に自家発電装置を運転して一定の自家発電電力21
を供給し、所要電力量20の中自家発電装置の出力以上
の電力量を商用電力1が分担する方法である。さらに第
5図(d)のパターンは自家発電装置を常時運転して一
定の自家発電電力21を供給し、所要電力量20に対す
る不足分を商用電力1に分担させる方法である。The power supply pattern shown in FIG. 5(b) is as shown in FIG.
The system relies on the supply of electricity and operates the private power generator only during the time period exceeding the standard power value, and supplies the privately generated power 21 for the amount exceeding the standard power value. Since the equipment consumes a lot of power, waste heat from power generation is also used to reduce power consumption. Also,
The pattern shown in FIG. 5(C) is such that the private power generating device is operated during the time period exceeding the reference power value to maintain a constant privately generated power 21.
This is a method in which the commercial power 1 shares the required amount of power 20, which is greater than the output of the private power generation device. Further, the pattern shown in FIG. 5(d) is a method in which a private power generator is constantly operated to supply a constant amount of privately generated power 21, and the shortfall in the required amount of power 20 is shared with the commercial power 1.
[発明が解決しようとする課題]
上述したように従来のコジェネレーションシステムは、
所要電力量が基準電力値を超過する時間帯だけ自家発電
装置を運転するピークカット運転のパターンでは運転時
間が限られているためコジェネレーションシステムとし
ての経済効果が悪く、また、自家発電装置を連続的に運
転するベースカット運転の場合は、自家発電装置が常時
発生する熱の利用効果の点で、深夜等に有効利用が図れ
なく、さらに昼間の空気調節装置の本格運転時には排熱
の利用だけでは不足となり、ピークカット運転でもベー
スカット運転でも自家発電装置の能力を充分生かし切れ
ないという欠点がある。[Problem to be solved by the invention] As mentioned above, the conventional cogeneration system
The peak cut operation pattern, in which the private power generator is operated only during the hours when the required amount of electricity exceeds the standard power value, has a limited operating time and has poor economic effects as a cogeneration system. In the case of base-cut operation, in which the in-house power generator constantly generates heat, it cannot be used effectively late at night, and when the air conditioner is in full operation during the day, only exhaust heat can be used. However, there is a drawback that the capacity of the private power generator cannot be fully utilized in either peak cut operation or base cut operation.
本発明の目的はエンジンより効率が高い燃料電池を自家
発電装置とし、水素吸蔵合金を利用した蓄熱装置を使用
し、燃料電池の出力を最低負荷電力を上回る量とし、最
低負荷の時間帯中その余剰電力と燃料電池の運転によっ
て発生する熱を蓄熱装置に供給して熱エネルギーとして
蓄熱し、ピーク時の熱エネルギーに充当する高効率のコ
ジェネレーションシステムを提供することである。The purpose of the present invention is to use a fuel cell, which has higher efficiency than an engine, as a private power generation device, use a heat storage device using a hydrogen storage alloy, and increase the output of the fuel cell to an amount exceeding the minimum load power, so that the output power exceeds the minimum load power during the minimum load period. The purpose of the present invention is to provide a highly efficient cogeneration system that supplies surplus electricity and heat generated by fuel cell operation to a heat storage device, stores the heat as thermal energy, and uses the heat energy at peak times.
[課題を解決するための手段]
本発明のコジェネレーションシステムは、少なくとも1
組の燃料電池と、
水素平衡圧が低い第1の水素吸蔵合金と、スイッチ付の
電熱器と、前記燃料電池の運転により発生する熱を導入
する熱交換器と、冷却用熱交換器とを含む第1のタンク
と、水素平衡圧が第1の水素吸蔵合金よりも高い第2の
水素吸蔵合金と、冷房用のエアハンドリングユニットに
連結されている熱交換器と、冷却用熱交換器とを含む第
2のタンクと、第1のタンクと第2のタンクとの間を連
結し、その間の水素の流動を制御する開閉弁付のバイブ
とからなる蓄熱装置と、
前記第1のタンクと第2のタンクを個別に、かつ、選択
的に冷却する冷却器と、
前記燃料電池の運転により発生する熱の一部が導入され
、その熱によって冷房用のエアハンドリングユニットの
冷媒を冷却する吸収式冷凍機と、
商用電力と、燃料電池が発電した電力を受電し、負荷お
よび前記電熱器に分電する受電盤と、
負荷を監視し、負荷の状態に対応して前記電熱器のスイ
ッチを開閉し、燃料電池の運転によって発生した熱の前
記第1のタンクへの導入を制御し、前記バイブの弁を開
閉し、さらに前記冷却器の選択的冷却を制御するシステ
ムコントローラとを有している。[Means for solving the problem] The cogeneration system of the present invention includes at least one
a first hydrogen storage alloy with a low hydrogen equilibrium pressure, an electric heater with a switch, a heat exchanger for introducing heat generated by the operation of the fuel cell, and a cooling heat exchanger. a second hydrogen storage alloy having a hydrogen equilibrium pressure higher than that of the first hydrogen storage alloy; a heat exchanger connected to a cooling air handling unit; and a cooling heat exchanger. a second tank containing a heat storage device, and a vibrator with an on-off valve that connects the first tank and the second tank and controls the flow of hydrogen between the first tank and the second tank; a cooler that individually and selectively cools the second tank; and an absorber into which a portion of the heat generated by the operation of the fuel cell is introduced and uses the heat to cool a refrigerant in an air handling unit for cooling. a power receiving panel that receives commercial power and the electric power generated by the fuel cell and distributes the power to the load and the electric heater; and a power receiving panel that monitors the load and turns on a switch of the electric heater according to the state of the load. a system controller that opens and closes the valve, controls the introduction of heat generated by the operation of the fuel cell into the first tank, opens and closes the valve of the vibrator, and further controls selective cooling of the cooler. There is.
[作用コ
自家発電装置として、負荷の最低値を上回る一定の電力
量を出力する燃料電池を使用し、その発生する熱を吸収
式冷凍機を介して冷房に使用するほかに水素平衡圧の低
い水素吸蔵合金と、水素平衡圧の高い水素吸蔵合金を含
む蓄熱装置を使用し、予め設定された、負荷に対応する
システムコントローラの制御により燃料電池が発生した
熱の一部と、最低負荷を上回った燃料電池の余剰電力か
ら変換された熱とを水素平衡圧の低い水素吸蔵合金に加
え、それによって水素吸蔵合金から発生した水素を水素
平衡圧の高い水素吸蔵合金に吸収させ、かつ貯蔵させて
おき、燃料電池の所定の出力以上の電力が必要になった
とき、システムコントローラが両水素吸蔵合金間のバイ
ブの弁を開いて貯蔵されている水素を水素平衡圧が高い
水素吸蔵合金から放出して水素平衡圧の低い水素吸蔵合
金に吸収させると、水素平衡圧の高い水素吸蔵合金が吸
熱するので、熱交換器を介して冷媒から吸熱させること
により、冷却された冷媒をエアハンドリングユニットに
環流して冷房を行なうことができる。[Operations] As a private power generation device, a fuel cell is used that outputs a certain amount of electricity that exceeds the minimum load value, and the generated heat is used for cooling through an absorption refrigerator. Using a heat storage device containing a hydrogen storage alloy and a hydrogen storage alloy with a high hydrogen equilibrium pressure, a portion of the heat generated by the fuel cell and a portion of the heat generated by the fuel cell under the control of a system controller corresponding to a preset load and a hydrogen storage alloy with a high hydrogen equilibrium pressure are used. The heat converted from the surplus electricity of the fuel cell is added to the hydrogen storage alloy with a low hydrogen equilibrium pressure, and the hydrogen generated from the hydrogen storage alloy is thereby absorbed and stored in the hydrogen storage alloy with a high hydrogen equilibrium pressure. When power exceeds the predetermined output of the fuel cell, the system controller opens the valve of the vibrator between both hydrogen storage alloys and releases the stored hydrogen from the hydrogen storage alloy with the higher hydrogen equilibrium pressure. When the hydrogen storage alloy with a low hydrogen equilibrium pressure absorbs heat, the hydrogen storage alloy with a high hydrogen equilibrium pressure absorbs heat, so by absorbing heat from the refrigerant via a heat exchanger, the cooled refrigerant is circulated to the air handling unit. can be used for cooling.
[実施例]
次に、本発明の実施例について図面を参照して説明する
。[Example] Next, an example of the present invention will be described with reference to the drawings.
第1図は本発明のコジェネレーションシステムの一実施
例のシステム構成図、第2図(a) 、 (b) 。FIG. 1 is a system configuration diagram of an embodiment of the cogeneration system of the present invention, and FIGS. 2(a) and (b).
(C)は第1図に示す蓄熱装置5の動作説明図、第3図
は所要電力量と燃料電池の給電比率を示す図である。(C) is an explanatory diagram of the operation of the heat storage device 5 shown in FIG. 1, and FIG. 3 is a diagram showing the required power amount and the power supply ratio of the fuel cell.
このコジェネレーションシステムは、商用電力1と、受
電盤2と、燃料電池4..42と、蓄熱装置5と、シス
テムコントローラ15と、冷房用のエアハンドリングユ
ニット14 I、 142と、吸収式冷凍機16と、冷
却器13と、空気調節機17とからなる。燃料電池4.
.42は、その運転がシステムコントローラ15によっ
て制御され、出力が合計で第3図に示すように最低の所
要電力量を上回る燃料電池電力23であり、その出力は
電力線192により受電盤2へ導かれ、その一部は電力
線191によりスイッチ7を経て蓄熱装置5の電熱器8
に導かわており、また運転により発生する熱は吸収式冷
凍機16と、一部は蓄熱装置5の加熱に使用される。蓄
熱装置5は水素平衡圧が低い水素吸蔵合金と、電熱器8
と、熱交換機12、.9.とを含むタンク61と、水素
平衡圧が高い水素吸蔵合金と、熱交換機92,12.と
を含むタンク62と、タンク6、.62を接続するバイ
ブ11と、バイブ11をシステムコントローラ15の制
御により開閉する弁101からなる。冷却器13はタン
ク61.6□が発生する熱をそれぞわ弁102,103
の開放により冷却する。吸収式冷凍機16は熱吸収によ
りエアハンドリングユニット142へ環流する冷媒を冷
却する。システムコントローラ15は予め設定された制
御指示に従い負荷に対応して燃料電池4 + 、 42
の運転制御と、蓄熱装置5の電熱器8への電力供給の制
御のためのスイッチ7の開閉と、燃料電池の運転にとも
なう熱の熱交換器12、への導入の制御と、水素18の
移動制御のための弁101と、冷却器13を接続する弁
102,103の開閉を行なう。This cogeneration system includes a commercial power supply 1, a power receiving board 2, a fuel cell 4. .. 42, a heat storage device 5, a system controller 15, a cooling air handling unit 14I, 142, an absorption refrigerator 16, a cooler 13, and an air conditioner 17. Fuel cell 4.
.. 42 is a fuel cell power 23 whose operation is controlled by the system controller 15 and whose total output exceeds the minimum required power amount as shown in FIG. , a part of it is connected to the electric heater 8 of the heat storage device 5 via the switch 7 by the power line 191.
The heat generated during operation is used to heat the absorption refrigerator 16 and a portion of the heat is used to heat the heat storage device 5. The heat storage device 5 includes a hydrogen storage alloy with low hydrogen equilibrium pressure and an electric heater 8.
and a heat exchanger 12, . 9. a tank 61 containing a hydrogen storage alloy having a high equilibrium hydrogen pressure, and heat exchangers 92, 12 . a tank 62 including tanks 6, . 62 and a valve 101 that opens and closes the vibrator 11 under control of the system controller 15. The cooler 13 absorbs the heat generated by the tank 61.6□ through valves 102 and 103, respectively.
cooling by opening. The absorption refrigerator 16 cools the refrigerant flowing back to the air handling unit 142 by absorbing heat. The system controller 15 controls the fuel cells 4 + , 42 according to the load according to preset control instructions.
, opening and closing of the switch 7 for controlling the power supply to the electric heater 8 of the heat storage device 5, controlling the introduction of heat into the heat exchanger 12 due to the operation of the fuel cell, and controlling the introduction of the hydrogen 18 to the heat exchanger 12. A valve 101 for movement control and valves 102 and 103 connecting the cooler 13 are opened and closed.
エアハンドリングユニット14..142はそれぞれそ
の冷媒が蓄熱装置5、吸収式冷凍機16によって冷却さ
れる冷房用ユニットである。Air handling unit 14. .. Reference numeral 142 denotes a cooling unit in which the refrigerant is cooled by the heat storage device 5 and the absorption refrigerator 16, respectively.
次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.
夜間、所要電力量20が第3図に示す最低電力になると
、第2図(a)に示すように、システムコントローラ1
5の制御によりスイッチ7が閉じ、電熱器8が発熱し、
その熱と、燃料電池からの発熱の一部とがタンク6、内
の水素平衡圧の低い水素吸蔵合金を加熱する。加熱され
たタンク6、の水素吸蔵合金は水素18を放出し、放出
された水素18は、システムコントローラ15によって
弁101が開放されているバイブ11を通過してタンク
62に流入し、タンク6□内の水素平衡圧力の高い水素
吸蔵合金に吸収される。このときタンク62内に発生す
る熱は冷却器13より弁103を通って流れる冷媒によ
り熱交換機92を介して除去される。その後、所要電力
量20が燃料電池電力23を超過するか、所定時間この
過程が行なわれると、第2図(b)に示すようにシステ
ムコントローラ15によフてスイッチ7が開かれ、弁1
0、.103が閉じられ蓄熱状態になる。さらに所要電
力量20が所定の値に上昇すると、第2図(C)に示す
ように、システムコントローラ15は弁10.,102
を開放する。この開放により、水素平衡圧の高い水素吸
蔵合金を含むタンク62から水素平衡圧の低い水素吸蔵
合金を含むタンク6、に水素18が放出される。このと
きタンク62内の熱が水素吸蔵合金に吸収されるので熱
交換器122を介してエアハンドリングユニット14、
の冷媒が冷却され、冷房が可能となる。また、タンク6
1内の水素平衡圧の低い水素吸蔵合金の水素18吸収に
よる発熱は弁102を通る冷却器13の冷媒により熱交
換機91を介して冷却される。At night, when the required power amount 20 reaches the minimum power shown in FIG. 3, the system controller 1
5 closes the switch 7, the electric heater 8 generates heat,
The heat and a portion of the heat generated from the fuel cell heat the hydrogen storage alloy in the tank 6, which has a low hydrogen equilibrium pressure. The heated hydrogen storage alloy in the tank 6 releases hydrogen 18, and the released hydrogen 18 passes through the vibrator 11 whose valve 101 is opened by the system controller 15 and flows into the tank 62. Hydrogen is absorbed by a hydrogen storage alloy with a high equilibrium pressure. At this time, the heat generated in the tank 62 is removed by the refrigerant flowing from the cooler 13 through the valve 103 via the heat exchanger 92. Thereafter, when the required power amount 20 exceeds the fuel cell power 23 or this process continues for a predetermined period of time, the switch 7 is opened by the system controller 15 and the valve 1 is opened as shown in FIG. 2(b).
0,. 103 is closed and enters a heat storage state. When the required power amount 20 further increases to a predetermined value, the system controller 15 operates the valve 10 as shown in FIG. 2(C). ,102
to open. By this opening, hydrogen 18 is released from tank 62 containing a hydrogen storage alloy with a high hydrogen equilibrium pressure to tank 6 containing a hydrogen storage alloy with a low hydrogen equilibrium pressure. At this time, the heat in the tank 62 is absorbed by the hydrogen storage alloy, so it is passed through the heat exchanger 122 to the air handling unit 14,
refrigerant is cooled, making air conditioning possible. Also, tank 6
The heat generated by the absorption of hydrogen 18 by the hydrogen storage alloy with a low hydrogen equilibrium pressure in the hydrogen storage alloy 1 is cooled down by the refrigerant of the cooler 13 passing through the valve 102 via the heat exchanger 91 .
また、冷房に必要なエネルギーの状況に応じて電力で動
作する他の空気調節器37を使用しても良く、本実施例
はこれを含んでいる。Further, other air conditioners 37 that operate using electric power may be used depending on the energy required for cooling, and this embodiment includes this.
本実施例は負荷への電力供給方法として燃料電池4..
42と商用電力1を併用するシステムの構成について示
したが、これは−日の負荷変動が大きくて昼間の使用電
力量のピーク値が燃料電池の最大発電量を上まわってし
まい、燃料電池4I。This embodiment uses a fuel cell 4 as a method of supplying power to the load. ..
We have shown the configuration of a system that uses both commercial power 1 and commercial power 42, but in this case, the load fluctuation on day -1 is large and the peak value of power consumption during the day exceeds the maximum power generation amount of the fuel cell. .
4□だけでは賄いきれない場合であり、燃料電池の出力
だけで負荷3の所要電力量20の全てが賄いきれるので
あれば、燃料電池を自立した電源として扱い、この発電
出力だけ使用すれば良い。これは負荷の電力使用量の変
動の有無とその大きさに関係するだけのものであり、本
発明ではこれらのいずれにも対応可能であり、第1図に
示す実施例のみに限定するものではない。さらに、本発
明では、燃料電池4..42と商用電力1を併用、ある
いは燃料電池単独で負荷に電力を供給するものとするが
、この時の供給電力としては交流でも直流でも支障はな
く、これらは負荷の要求する条件に従って決定するにす
ぎない。In cases where 4□ cannot be used alone, and the entire required electric power of load 3 (20) can be covered only by the output of the fuel cell, it is sufficient to treat the fuel cell as an independent power source and use only this generated output. . This is only related to the existence and magnitude of fluctuations in the amount of power used by the load, and the present invention is capable of dealing with any of these, and is not limited to the embodiment shown in FIG. do not have. Furthermore, in the present invention, the fuel cell 4. .. 42 and commercial power 1 in combination, or by using the fuel cell alone, there is no problem whether the supplied power is alternating current or direct current, and these are determined according to the conditions required by the load. Only.
なお本発明では燃料電池を2台として説明をおこなって
きたが、特に台数は限定しない。また、同様に水素吸蔵
合金を使用した蓄熱装置や吸収式冷凍機等の台数にも制
限は無い。Although the present invention has been described using two fuel cells, the number is not particularly limited. Similarly, there is no limit to the number of heat storage devices, absorption refrigerators, etc. that use hydrogen storage alloys.
このように、この水素吸蔵合金を使用した蓄熱装置を使
用すると何らかの熱源があれば冷気の保存を行う事がで
きる。そこで本発明では、起動と停止を頻繁に行うより
も一定出力による連続的な運転に適している燃料電池を
発電装置に使用し、負荷変動に合わせてこの電気出力を
変化させるのではなく、また、−日の電力使用量が多い
昼間だけ運転するというのでもなく、負荷が必要とする
最低の電力値を上回る一定出力で常時燃料電池を運転さ
せるようにしている(第3図)。そして、この場合、昼
間の発電量は全て負荷に送り、夜間は所要量を越える電
力を使用して先に述べた蓄熱装置を運転させるようにし
ているので夜間の余剰電力の有効利用によフて冷房を行
なうことができ、これまで昼間に空気調節機の運転に使
用していた電力の削減も図ることができる。また、燃料
電池を連続運転させる際の出力値については、冷房に必
要なエネルギーに応じて決定するだけで良い。In this way, when a heat storage device using this hydrogen storage alloy is used, cold air can be stored as long as there is some kind of heat source. Therefore, in the present invention, a fuel cell, which is suitable for continuous operation with a constant output rather than frequent startup and shutdown, is used in the power generation device, and instead of changing this electrical output in accordance with load fluctuations, The fuel cell is not operated only during the daytime when electricity usage is high on days 1 and 2, but the fuel cell is always operated at a constant output that exceeds the minimum power value required by the load (Figure 3). In this case, all of the generated power during the day is sent to the load, and at night, the power that exceeds the required amount is used to operate the heat storage device mentioned above, so the surplus power at night can be used effectively. This allows air conditioning to be carried out using the air conditioner, and it is also possible to reduce the amount of electricity that was previously used to operate air conditioners during the day. Further, the output value when the fuel cell is operated continuously only needs to be determined according to the energy required for cooling.
[発明の効果]
以上述べたように、本発明てはこれまでに使用されてき
たエンジンに代わって、エンジンよりも発電効率が高い
燃料電池を発電装置として使用し、これと水素吸蔵合金
を使用した蓄熱装置を組合せ、燃料電池の電気出力の一
部をこの水素吸蔵合金を使用した蓄熱装置にも送れるよ
うに構成し、そして、燃料電池の出力を一定でかつ負荷
の要求する最低の値を上回る値に設定し、余剰となる電
力と燃料電池から発生する熱とを使用して冷房用のエネ
ルギーを蓄積しておき、必要な時に出力することにより
、自家発電装置の使用効率が高いコジェネレーションシ
ステムの運用を行なうことができる効果がある。[Effects of the Invention] As described above, the present invention uses a fuel cell, which has higher power generation efficiency than the engine, as a power generation device instead of the engine that has been used so far, and uses this and a hydrogen storage alloy. It is configured so that a part of the electric output of the fuel cell can be sent to the heat storage device using this hydrogen storage alloy, and the output of the fuel cell is kept constant and kept at the lowest value required by the load. By setting the value to a higher value and storing energy for cooling using surplus electricity and heat generated from the fuel cell, and outputting it when needed, cogeneration allows for high usage efficiency of private power generation equipment. This has the effect of making it possible to operate the system.
特に、電話交換局においては、交換機が高密度で建物内
に収納されており、冬期でも冷房を必要とする場合が多
く、このような建物の場合に本発明は極めて大きな効果
を有する。In particular, in telephone exchanges, where exchanges are housed in a building in high density, air conditioning is often required even in winter, and the present invention has an extremely large effect on such buildings.
第1図は本発明のコジェネレーションシステムの一実施
例のシステム構成図、第2図(a) 、 (b) 。
(C)は第1図に示す蓄熱装置5の動作説明図、第3図
は所要電力量と燃料電池の給電比率を示す図、第4図は
コジェネレーションシステムの従来例のシステム構成図
、第5図(a) 、 (b) 、 (c) 、 (d)
は所要電力量と自家発電装置による給電比率を示す図で
ある。
1・・・商用電力、 2・・・受電盤、3・・・
負荷、 4..42−・・燃料電池、5・・・蓄
熱装置、 6..62−・・タンク、7・・・スイッ
チ、 8・・・電熱器、9□、92,12..1
2□・・・熱交換器、10、.102.t O3−・・
弁、
11−・・バイブ、 13・・・冷却器、14、.
142−・・エアハンドリングユニット、15−・・シ
ステムコントローラ、
6・・・吸収式冷凍機、17・・・空気調節機、8・・
・水素、19..192・・・電力線、0・・・所要電
力量、 22・・・商用電力量、3・・・燃料電池電
力量、25・・・信号線、6・・・熱媒用配管。
特許出願人 日本電信電話株式会社FIG. 1 is a system configuration diagram of an embodiment of the cogeneration system of the present invention, and FIGS. 2(a) and (b). (C) is an explanatory diagram of the operation of the heat storage device 5 shown in FIG. 1, FIG. 3 is a diagram showing the required power amount and the power supply ratio of the fuel cell, and FIG. Figure 5 (a), (b), (c), (d)
is a diagram showing the required power amount and the power supply ratio by the private power generation device. 1...Commercial power, 2...Power receiving board, 3...
Load, 4. .. 42-... Fuel cell, 5... Heat storage device, 6. .. 62-...Tank, 7...Switch, 8...Electric heater, 9□, 92,12. .. 1
2□...Heat exchanger, 10,. 102. t O3-...
valve, 11-...vibrator, 13...cooler, 14, .
142-... Air handling unit, 15-... System controller, 6... Absorption refrigerator, 17... Air conditioner, 8...
・Hydrogen, 19. .. 192... Power line, 0... Required electric energy, 22... Commercial electric energy, 3... Fuel cell electric energy, 25... Signal line, 6... Heat medium piping. Patent applicant Nippon Telegraph and Telephone Corporation
Claims (1)
る商用電力とを併合して使用し、かつ、自家発電装置か
ら発生する熱が暖房および冷房に使用されるコジェネレ
ーションシステムであって、 少なくとも1組の燃料電池と、 水素平衡圧が低い第1の水素吸蔵合金と、スイッチ付の
電熱器と、前記燃料電池の運転により発生する熱を導入
する熱交換器と、冷却用熱交換器とを含む第1のタンク
と、水素平衡圧が第1の水素吸蔵合金よりも高い第2の
水素吸蔵合金と、冷房用のエアハンドリングユニットに
連結されている熱交換器と、冷却用熱交換器とを含む第
2のタンクと、第1のタンクと第2のタンクとの間を連
結し、その間の水素の流動を制御する開閉弁付のパイプ
とからなる蓄熱装置と、 前記第1のタンクと第2のタンクを個別に、かつ、選択
的に冷却する冷却器と、 前記燃料電池の運転により発生する熱の一部が導入され
、その熱によって冷房用のエアハンドリングユニットの
冷媒を冷却する吸収式冷凍機と、 商用電力と、燃料電池が発電した電力を受電し、負荷お
よび前記電熱器に分電する受電盤と、 負荷を監視し、負荷の状態に対応して前記電熱器のスイ
ッチを開閉し、燃料電池の運転によって発生した熱の前
記第1のタンクへの導入を制御し、前記パイプの弁を開
閉し、さらに前記冷却器の選択的冷却を制御するシステ
ムコントローラとを有するコジェネレーションシステム
。[Claims] 1. Cogeneration in which electric power from a private power generation device and commercial power supplied by an electric power company are combined and used, and the heat generated from the private power generation device is used for heating and cooling. The system includes at least one set of fuel cells, a first hydrogen storage alloy with a low hydrogen equilibrium pressure, an electric heater with a switch, and a heat exchanger that introduces heat generated by the operation of the fuel cell. a first tank including a cooling heat exchanger; a second hydrogen storage alloy having a hydrogen equilibrium pressure higher than that of the first hydrogen storage alloy; and a heat exchanger connected to a cooling air handling unit; , a second tank including a cooling heat exchanger, and a pipe with an on-off valve that connects the first tank and the second tank and controls the flow of hydrogen between them. , a cooler that separately and selectively cools the first tank and the second tank, and a part of the heat generated by the operation of the fuel cell is introduced, and the heat is used to cool the air handling system. An absorption chiller that cools the refrigerant in the unit, a power receiving panel that receives commercial power and the power generated by the fuel cell and distributes it to the load and the electric heater, and a power receiving panel that monitors the load and responds to the load status. to open and close a switch of the electric heater, control introduction of heat generated by operation of the fuel cell into the first tank, open and close a valve of the pipe, and further control selective cooling of the cooler. A cogeneration system having a system controller.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119682A JP2939486B2 (en) | 1990-05-11 | 1990-05-11 | Cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119682A JP2939486B2 (en) | 1990-05-11 | 1990-05-11 | Cogeneration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0417268A true JPH0417268A (en) | 1992-01-22 |
JP2939486B2 JP2939486B2 (en) | 1999-08-25 |
Family
ID=14767441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2119682A Expired - Fee Related JP2939486B2 (en) | 1990-05-11 | 1990-05-11 | Cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2939486B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0932306A (en) * | 1995-07-18 | 1997-02-04 | Nichiee Yoshida Kk | Repairing method for outer wall tile |
JP2002008704A (en) * | 2000-06-27 | 2002-01-11 | Idemitsu Kosan Co Ltd | Fuel cell facility |
JP2002106911A (en) * | 2000-09-28 | 2002-04-10 | Toshiba Kyaria Kk | Air conditioner and its control system |
JP2003109642A (en) * | 2001-09-27 | 2003-04-11 | Kurita Water Ind Ltd | Water-treatment device |
JP2003524859A (en) * | 1998-08-26 | 2003-08-19 | プラグ パワー インコーポレイテッド | Integrated fuel processor, furnace and fuel cell system for supplying heat and power to buildings |
WO2004093233A1 (en) * | 2003-02-25 | 2004-10-28 | Utc Fuel Cells, Llc | Fixed idc operation of fuel cell power plant |
JP2006528416A (en) * | 2003-04-15 | 2006-12-14 | エイデスヴィク エーエス | Buffer / converter / disposal system between fuel cell and process |
-
1990
- 1990-05-11 JP JP2119682A patent/JP2939486B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0932306A (en) * | 1995-07-18 | 1997-02-04 | Nichiee Yoshida Kk | Repairing method for outer wall tile |
JP2003524859A (en) * | 1998-08-26 | 2003-08-19 | プラグ パワー インコーポレイテッド | Integrated fuel processor, furnace and fuel cell system for supplying heat and power to buildings |
JP2002008704A (en) * | 2000-06-27 | 2002-01-11 | Idemitsu Kosan Co Ltd | Fuel cell facility |
JP2002106911A (en) * | 2000-09-28 | 2002-04-10 | Toshiba Kyaria Kk | Air conditioner and its control system |
JP2003109642A (en) * | 2001-09-27 | 2003-04-11 | Kurita Water Ind Ltd | Water-treatment device |
WO2004093233A1 (en) * | 2003-02-25 | 2004-10-28 | Utc Fuel Cells, Llc | Fixed idc operation of fuel cell power plant |
US7799476B2 (en) | 2003-02-25 | 2010-09-21 | Utc Power Corporation | Fixed IDC operation of fuel cell power plant |
JP2006528416A (en) * | 2003-04-15 | 2006-12-14 | エイデスヴィク エーエス | Buffer / converter / disposal system between fuel cell and process |
Also Published As
Publication number | Publication date |
---|---|
JP2939486B2 (en) | 1999-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fong et al. | Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate | |
JPH03170732A (en) | Electric regeneration type heating or cooling and its apparatus | |
JPH0417268A (en) | Co-generation system | |
JP2009074744A (en) | Gas heat pump cogeneration apparatus | |
JP2007188731A (en) | Electrolytic solution circulation type battery system | |
WO2017129376A1 (en) | Island system for the production of electric and thermal energy | |
JP2004111208A (en) | Fuel cell power generation system | |
JP2004012025A (en) | Hybrid energy system | |
CN107643687A (en) | A kind of emergency control method of industrial park integrated energy system | |
JP2003242993A (en) | Air conditioner utilizing fuel cell heat | |
JP3821574B2 (en) | Self-contained combined heat and power system | |
JPH03285520A (en) | Optimum control method for cogeneration system | |
CN220958974U (en) | Cold-heat exchange system | |
JP2004293881A (en) | Engine driven heat pump device | |
CN112343714A (en) | System and method for comprehensively utilizing natural gas pressure energy of combined cycle power plant in plant | |
JP2003097352A (en) | Cogeneration system utilizing lng cryogenics | |
JPH0117010Y2 (en) | ||
JP2002280006A (en) | Exhaust heat recovery system for solid polymer fuel cell power generating facility | |
JP2000073862A (en) | Energy supply device and energy supply system | |
JPH026424B2 (en) | ||
CN114497800B (en) | Multistage cooling system applied to energy storage power station and control method | |
CN221425064U (en) | Energy storage device with automatic switching function | |
JP2709213B2 (en) | Individual decentralized air conditioning system | |
KR102199280B1 (en) | Water heat storage system switchable between open and closed type and its control method | |
JPH01131859A (en) | Cold and hot water controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |