JPH03285520A - Optimum control method for cogeneration system - Google Patents
Optimum control method for cogeneration systemInfo
- Publication number
- JPH03285520A JPH03285520A JP2083599A JP8359990A JPH03285520A JP H03285520 A JPH03285520 A JP H03285520A JP 2083599 A JP2083599 A JP 2083599A JP 8359990 A JP8359990 A JP 8359990A JP H03285520 A JPH03285520 A JP H03285520A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- power
- demand
- cgs
- cost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000011084 recovery Methods 0.000 claims abstract description 18
- 238000005265 energy consumption Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 20
- 238000001816 cooling Methods 0.000 abstract description 7
- 239000000498 cooling water Substances 0.000 abstract description 2
- 238000010792 warming Methods 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 26
- 230000005855 radiation Effects 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、自家発電機と熱回収装置をもつ建物や施設に
おいて、電気と熱の2種類の2次エネルギを同時に使用
するさいの消費エネルギのコストを最小にすることを目
的としたコージェネレーション・システムの最適制御法
に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention aims to reduce energy consumption when two types of secondary energy, electricity and heat, are used simultaneously in buildings and facilities equipped with private generators and heat recovery devices. This paper relates to an optimal control method for cogeneration systems aimed at minimizing costs.
商用電力のほかに自家発電によって建物または施設内の
電力需要と熱需要をまかなうことが普及しているが、こ
のような建物または施設(以下。In addition to commercial electricity, it has become common to meet the electricity and heat needs within a building or facility by generating private power.
建物等という)において電気と熱を同時に使用する場合
に、1次エネルギ(自家発電に要するエネルギおよび系
外から供給される商用電力の合計)の利用効率が最も高
くなるように電力需要と熱需要がバランスしていること
が望ましい、しかし実際には2時間的にも、また量的に
もバランスしていることはむしろ稀である。コージエネ
レーシジン・システム(CGS)は、かような電気と熱
の2次エネルギを同時に使用する場合の1次エネルギの
利用効率を高めることを目的としたものであるが、この
ために最も投資効率のよい機器構成を採用したとしても
、その運転態様が適切でなければCGSの真価が発揮さ
れ得ない。When electricity and heat are used simultaneously in a building (such as a building), power demand and heat demand are It is desirable for the two to be balanced, but in reality, it is rather rare that they are balanced both in terms of time and quantity. Cozy Energy Residency System (CGS) aims to improve the efficiency of primary energy use when secondary energy such as electricity and heat is used simultaneously, but for this purpose it requires the most investment. Even if an efficient equipment configuration is adopted, the true value of CGS cannot be demonstrated unless its operation mode is appropriate.
しかし、1次エネルギが最小になる省エネルギ制御をし
た場合、そのエネルギコストは必ずしも最小になるとは
限らない、第1図は、熱電比(同時刻の熱需要/電力需
要の比が平均すると0.3程度の一般事務所ビルに導入
されたCGSについて。However, when energy-saving control is performed to minimize primary energy, the energy cost is not necessarily minimized. .About CGS introduced in about 3 general office buildings.
その運転方法を検討したものである。ここで、省コスト
率とはエネルギコストが少なくなる割合であり該(1)
式で示される。また電力主体運転とは電力需要に追従し
て発電を行い、余った熱は放熱させる運転方法を意味し
、熱主体運転とは熱需要にあわせて発電を行なう方法で
あり、ここでは1発電量が電力需要を越えないところま
で熱主体で発電を行なう場合を意味している。第1図に
見られるように、1次エネルギが最小になる省エネルギ
制御は、ガス/電力料金比が約0.35の時の省コスト
率と同じであり、その時には、最適運転は熱主体運転と
なる。しかしガス/iit力料金比が約0.29以下で
は、最適運転は電力主体運転であり、その場合は、1次
エネルギが最小になる運転はコスト的には不利である。This is a study on how to operate it. Here, the cost saving rate is the rate at which the energy cost decreases, and it corresponds to (1).
It is shown by the formula. Furthermore, power-based operation refers to an operation method in which power is generated in accordance with electricity demand, and excess heat is radiated. Heat-based operation is a method in which power is generated in accordance with heat demand. This means that electricity is generated mainly from heat until the amount of electricity does not exceed the electricity demand. As seen in Figure 1, the energy saving control that minimizes primary energy is the same as the cost saving rate when the gas/electricity rate ratio is approximately 0.35, and at that time, the optimal operation is based on heat. It becomes driving. However, when the gas/IIT power rate ratio is about 0.29 or less, the optimum operation is electricity-based operation, and in that case, the operation that minimizes the primary energy is disadvantageous in terms of cost.
現状のガス/電力料金比は。What is the current gas/electricity rate ratio?
0.1〜0.4程度の間であるので、経済性を考慮する
場合は、1次エネルギが最小になる省エネルギ制御では
その制御方法には限界がある(ガス/電力料金比が約0
.29以上の場合に限られる。)本発明は、 CGSを
構成している機器類の運転条件を適正に制御して最小の
消費エネルギコストで電力と熱を同時にまかなうことを
目的としたものである。Since it is between about 0.1 and 0.4, when considering economic efficiency, there is a limit to the energy saving control method that minimizes the primary energy (gas/electricity rate ratio is about 0).
.. Limited to cases of 29 or more. ) The object of the present invention is to appropriately control the operating conditions of the equipment constituting the CGS and to simultaneously supply electricity and heat with the minimum energy consumption cost.
本発明は、自家発電機と熱回収装置をもつ建物等におい
て、該建物等の電力需要と熱需要を予測学習すると同時
に刻々の電力需要と熱需要をリアルタイムで計測し1式
(1)で示す省コスト率(SC)が最大となるように、
該発viaと熱回収装置の運転条件を制御することを特
徴とする。The present invention predicts and learns the electricity demand and heat demand of a building, etc. that has a private power generator and heat recovery device, and at the same time measures the momentary electricity demand and heat demand in real time, which is expressed by equation (1). In order to maximize the cost saving rate (SC),
It is characterized by controlling the operating conditions of the heat generating via and the heat recovery device.
5C=(CI−C1)/CI X100 ・
・・(1)ただし、 CIはCGS (コージェネレー
ション・システム)によらずに熱および電力需要量を供
給する時の消費エネルギのコスト+ CIはCGSによ
って同一の熱および電力需要量を供給する時の消費エネ
ルギのコストを表す。5C=(CI-C1)/CIX100・
...(1) However, CI is the cost of energy consumed when the heat and power demand is supplied without using CGS (cogeneration system) + CI is the cost of energy consumption when the same heat and power demand is supplied by CGS represents the cost of energy consumption.
第2図に本発明を適用したCGS系の機器配置例を示す
、建物(某大学)には一般電力負荷WLと冷暖房のため
の熱負荷Q L+および給湯熱負荷QL。FIG. 2 shows an example of the equipment arrangement of a CGS system to which the present invention is applied. A building (a certain university) has a general power load WL, a heat load for air conditioning and heating QL+, and a heat load for hot water supply QL.
が存在する。建物の電力負荷WLは商用電力W。exists. The building's power load WL is commercial power W.
と自家発電機1で製造された電力によってまかなわれる
。一方、熱負荷Q L IとQtxは9発電811の駆
動源であるエンジン2の排熱を回収する熱回収装置3お
よび放熱用熱交換器4を用いることによってまかなわれ
る。すなわち、エンジン2の排ガスは排ガス熱交換器5
に導入され、ここで高温水が製造され、この高温水を熱
回収装置3である冷温水発生機に1次側熱源回路Pを経
て導き、この冷温水発生機で冷房シーズンでは冷房負荷
Q L +の冷水を作り、暖房シーズンでは直接的に温
水を作る。これらの冷水または温水は空調用機器群6に
対し2次側の往路7および還路8によって循環供給され
、空調用熱源として利用される。また第2の熱回収装置
4である放熱用熱交換器にも高温水を導き、ここて受熱
した液媒を貯湯槽9に2次側の往路10および還路11
によって循環供給し、給湯用熱源として利用される。This will be covered by the electricity produced by the private generator 1. On the other hand, the heat loads Q L I and Qtx are covered by using the heat recovery device 3 that recovers the exhaust heat of the engine 2 that is the driving source of the 9 power generation 811 and the heat exchanger 4 for heat radiation. That is, the exhaust gas from the engine 2 is transferred to the exhaust gas heat exchanger 5.
The high-temperature water is produced here, and this high-temperature water is guided to the cold/hot water generator, which is the heat recovery device 3, via the primary heat source circuit P, and this cold/hot water generator handles the cooling load Q L during the cooling season. + produces cold water, and directly produces hot water during the heating season. This cold water or hot water is circulated and supplied to the air conditioning equipment group 6 through an outgoing path 7 and a return path 8 on the secondary side, and is used as a heat source for air conditioning. The high-temperature water is also guided to the heat exchanger for heat radiation, which is the second heat recovery device 4, and the liquid medium that has received heat is transferred to the hot water storage tank 9 through the outgoing path 10 and the return path 11 on the secondary side.
It is used as a heat source for hot water supply.
なお、エンジン2の冷却水循環路12には冷却用熱交換
器13が介装され、この冷却用熱交換器13で放熱する
熱も排ガス熱交換器5に入る前の循環水に供給するよう
にしである。また、第1の熱回収装置3と第2の熱回収
装置4とでも放熱しきれなかった熱を適宜放熱するため
の放熱用熱交換器14が1次側熱源回路Pに設けである
。A cooling heat exchanger 13 is interposed in the cooling water circulation path 12 of the engine 2, and the heat radiated by the cooling heat exchanger 13 is also supplied to the circulating water before entering the exhaust gas heat exchanger 5. It is. Further, the primary heat source circuit P is provided with a radiation heat exchanger 14 for appropriately radiating heat that cannot be completely radiated by the first heat recovery device 3 and the second heat recovery device 4.
以上のような構成になるCGS系において、自家発電機
の容量並びに熱回収装置の熱回収量を自在にコントロー
ルできる装置構成とする。これは。In the CGS system configured as described above, the device configuration is such that the capacity of the private generator and the amount of heat recovered by the heat recovery device can be freely controlled. this is.
例えば発電機の容量制御は、エンジンの台数制御および
/または回転数制御によって行うことができ、また熱回
収装置の熱回収量制御は、熱回収装置の台数制御および
/または1次側または2次側熱源回路の流量制御によっ
て行うことができる。For example, the capacity of a generator can be controlled by controlling the number of engines and/or the number of revolutions, and the amount of heat recovered by a heat recovery device can be controlled by controlling the number of heat recovery devices and/or by controlling the number of engines on the primary or secondary side. This can be done by controlling the flow rate of the side heat source circuit.
この制御操作はコンピューター15からの制御信号Xお
よびYにより操作される制御盤16および17によって
行われる。This control operation is performed by control panels 16 and 17 operated by control signals X and Y from computer 15.
他方、コンピューター15には、外気条件の計測値並び
に電力需要と熱需要の計測値がリアルタイムで入力され
、予め作成されたプログラムに従って外気条件から電力
需要と熱需要の両方を予測し学習する。ここで、電力需
要と熱需要を予測するのは1需要の傾向から予め発電機
を運転しておくか、または停止しておくかを判断するた
めである。On the other hand, the computer 15 receives measured values of outside air conditions and measured values of power demand and heat demand in real time, and predicts and learns both power demand and heat demand from outside air conditions according to a program created in advance. Here, the reason for predicting the power demand and the heat demand is to judge in advance whether to operate or stop the generator based on the trend of demand.
一方、リアルタイムで計測された電力需要と熱需要に応
じて前記(1)式のSCが最大となるように制御信号X
、Yを出力する。外気条件の計測値としては、外気温度
T(検出信号イ)、湿度H(同口)。On the other hand, the control signal
, Y is output. Measured values of outside air conditions include outside air temperature T (detection signal A) and humidity H (same port).
気圧P(同ハ)1日射R(同二)が採用され、電力需要
の計測値は商用電力計18の検出値(ホ)および自家発
taによる供給電力の電力計19の検出値(へ)が採用
される。そして熱需要の計測値としては、冷暖房負荷と
給湯負荷の合計がリアルタイムで計測されるが5冷暖房
負荷については空調用機器群6への2次側の往路7およ
び還路8に介装された熱量検出値()) (f)の差か
ら求められ、給湯負荷については貯湯槽9への2次側の
往路10と還路11に介装された熱量検出値(1) C
M>の差から求められる。Atmospheric pressure P (same as C), 1 solar radiation R (same as 2) are adopted, and the measured values of electricity demand are the detected value of the commercial wattmeter 18 (e) and the detected value of the wattmeter 19 of the power supplied by the private generator (f). will be adopted. As for the measured value of heat demand, the total of the cooling/heating load and the hot water supply load is measured in real time. It is determined from the difference between the detected heat value ()) (f), and the hot water supply load is determined from the detected heat value (1) C
It is determined from the difference between M>.
このようにして検出値(イ)−(ヌ)は刻々コンビエー
タ−15に入力され、前記(1)式の(SC)が最大と
なるようにエンジン2および熱回収装置3の運転条件を
コントロールする。そのさい、前記(1)式のうち、
CCSによらずに熱および電力需要量を供給する時の消
費エネルギのコストCIについては、電力負荷は商用電
力だけで供給する時の消費電力を使用し、そして熱負荷
はCGSと同一の燃料を使用する冷凍機とボイラを使用
して熱を供給する時の燃料のコストを予め計算によって
求めておいた解析プログラムを使用し、また、 CGS
によって同一の熱および電力需要量を供給する時の消費
エネルギのコストC!は、毎時の熱負荷および電力負荷
に適合する発電機および熱回収装置の運転台数と運転容
量を予め解析し、 CGSの消費電力と燃料消費量を積
電するCGS解析用プログラムを使用すればよい、計算
できる発電機の運転方法としては定率。In this way, the detected values (a) - (nu) are inputted into the combinator 15 every moment, and the operating conditions of the engine 2 and the heat recovery device 3 are controlled so that (SC) in the above equation (1) is maximized. . At that time, among the above formula (1),
Regarding the cost CI of energy consumption when heat and power demand is supplied without using CCS, the power consumption when supplying only commercial electricity is used for the power load, and the heat load uses the same fuel as CGS. Using an analysis program that calculates in advance the cost of fuel when supplying heat using the refrigerator and boiler used, CGS
The cost of energy consumed when supplying the same heat and power demand by C! It is sufficient to use a CGS analysis program that analyzes in advance the number and operating capacity of generators and heat recovery equipment that match the hourly heat load and power load, and calculates the power consumption and fuel consumption of CGS. , the method of operating a generator that can be calculated is constant rate.
定置ベース、定量ピーク運転のいずれでもよい。Either stationary base or quantitative peak operation may be used.
−例として、熱電比(同時刻の熱需要/1!力需要の比
)が平均すると0.3程度の一般事務所ビルに導入され
たCGSを本発明の最適制御システムで制御した時の状
態を第3図〜第5図に従って説明する。- As an example, the state when a CGS installed in a general office building where the thermoelectric ratio (ratio of heat demand/1!power demand at the same time) is about 0.3 on average is controlled by the optimal control system of the present invention. will be explained according to FIGS. 3 to 5.
第3図は、各時刻における熱負荷、 CCSで回収され
た熱量から熱負荷を差し引いた放熱量(利用できなかっ
た熱量)および熱電比を示した。最適制御システムを導
入しない場合には、放熱量が増大して一次エネルギの利
用効率が低下している状況がわかる。Figure 3 shows the heat load at each time, the amount of heat released by subtracting the heat load from the amount of heat recovered by CCS (the amount of heat that could not be used), and the thermoelectric ratio. It can be seen that if an optimal control system is not introduced, the amount of heat dissipated increases and the efficiency of primary energy use decreases.
第4図は、熱電比が平均0.3程度の場合に5本発明に
従う最適制御システムでCGSを制御したときの発電量
、買電量と、IIt力負荷との関係を示したものである
。 CCSで発電した電気が商用側に逆流しないための
(逆1111に防止のための)買電量を確保しながら、
消費エネルギのコストが最小となる発電依存率で運転さ
れている。最適制御システムを導入しない場合には、逆
潮流防止のための買電量を確保するだけを商用として買
い、残り全部をCGSで発電してしまうことになる。FIG. 4 shows the relationship between the amount of generated electricity, the amount of purchased electricity, and the IIt power load when the CGS is controlled by the optimal control system according to the present invention when the thermoelectric ratio is about 0.3 on average. While securing the amount of power purchased to prevent electricity generated by CCS from flowing back to the commercial side (to prevent reverse 1111),
It is operated at a power generation dependency ratio that minimizes the cost of consumed energy. If an optimal control system is not introduced, only the amount of electricity required to prevent reverse power flow will be purchased commercially, and the rest will be generated entirely by CGS.
第5図は、最適制御システムを導入したCGSの運転に
よる消費エネルギコストの省コスト率と。Figure 5 shows the cost saving rate of energy consumption costs due to the operation of CGS with the optimal control system installed.
最適制御システムを導入しないでCGsを運転した時の
消費エネルギコストの省コスト率を比較したものである
。起動時では両者の省コスト率に大差はないが、午前7
時以鋒1両者の差は最大で9%程度になり、熱電比が低
下した夜間はCGSで発電する時のムダを防止して買電
で電力負荷をまかなっていることが分る。This is a comparison of the cost savings rate in energy consumption costs when CGs are operated without introducing an optimal control system. There is not much difference in cost saving rate between the two at startup, but at 7 am
The difference between the two models is about 9% at most, which shows that at night when the thermoelectric ratio is low, CGS prevents wasted power generation and covers the power load with purchased electricity.
以上のようにして1本発明によると、 CCS系におい
て消費エネルギのコストが最も少ない状態でシステムが
稼働されることになり、真の省コストが達成される。As described above, according to the present invention, the system is operated in a state where the cost of energy consumption is the lowest in the CCS system, and true cost saving is achieved.
第1図はガス/電力料金比の変化に伴う省コスト率の変
化を示した図、第2図は本発明を適用するCGS系の例
を示した機器配置系統図、第3図は成る建物の各時刻の
熱負荷、放熱量、および熱電比の変化を示した図、第4
図は同建物について最適制御システムでCGSを制御し
たときの発電量。
買電量、tカ負荷の関係を示した図、第5図は最適制御
システムを導入したCGSの運転による消費エネルギコ
ストの省コスト率と、最適制御システムを導入しないで
CGSを運転した時の消費エネルギコストの省コスト率
を比較した図である。
1・−自家発電機、 2・・エンジン。
3・・熱回収装置(冷温水発生Iり。
4・・放熱用熱交換器、 5・・排ガス熱交換器。
6・・空ms群、 9・・貯湯槽。
13・・冷却用熱交換器、14・・放熱用熱交換器。
15・・コンピューター
ベL研3
第4図
時
刻
第5図Figure 1 is a diagram showing changes in the cost saving rate due to changes in the gas/electricity rate ratio, Figure 2 is an equipment layout diagram showing an example of a CGS system to which the present invention is applied, and Figure 3 is a building consisting of Figure 4 shows changes in heat load, heat radiation amount, and thermoelectric ratio at each time of
The figure shows the amount of power generated when CGS is controlled using the optimal control system for the same building. Figure 5 shows the relationship between the amount of electricity purchased and the t-load. Figure 5 shows the cost saving rate of energy consumption when operating a CGS with an optimal control system installed, and the energy consumption when operating a CGS without an optimal control system installed. It is a diagram comparing cost saving rates of energy costs. 1.-Private generator, 2..Engine. 3. Heat recovery device (cold/hot water generation) 4. Heat exchanger for heat radiation, 5. Exhaust gas heat exchanger. 6. Empty MS group, 9. Hot water storage tank. 13. Heat exchanger for cooling. 14... Heat exchanger for heat radiation. 15... Computer computer lab 3 Figure 4 Time Figure 5
Claims (1)
、該建物または施設の電力需要と熱需要を予測し、さら
に刻々の電力需要と熱需要をリアルタイムで計測し、式
(1)で示す省コスト率(SC)が最大となるように、
該発電機と熱回収装置の運転条件を制御することを特徴
とするコージェネレーション・システムの最適制御法、 SC=(C_1−C_2)/C_1×100・・・(1
)ただし、C_1はCGS(コージェネレーション・シ
ステム)によらずに熱および電力需要量を供給する時の
消費エネルギのコスト、C_2はCGSによって同一の
熱および電力需要量を供給する時の消費エネルギのコス
トを表す。[Claims] In a building or facility that has a private power generator and a heat recovery device, the power demand and heat demand of the building or facility are predicted, and the momentary power demand and heat demand are measured in real time, and the formula ( In order to maximize the cost saving rate (SC) shown in 1),
An optimal control method for a cogeneration system characterized by controlling the operating conditions of the generator and the heat recovery device, SC=(C_1-C_2)/C_1×100...(1
) However, C_1 is the cost of energy consumed when heat and power demand is supplied without using CGS (cogeneration system), and C_2 is the cost of energy consumption when the same heat and power demand is supplied by CGS. Represents cost.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083599A JP2628218B2 (en) | 1990-03-30 | 1990-03-30 | Optimal control method for cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083599A JP2628218B2 (en) | 1990-03-30 | 1990-03-30 | Optimal control method for cogeneration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03285520A true JPH03285520A (en) | 1991-12-16 |
JP2628218B2 JP2628218B2 (en) | 1997-07-09 |
Family
ID=13806956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2083599A Expired - Fee Related JP2628218B2 (en) | 1990-03-30 | 1990-03-30 | Optimal control method for cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2628218B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002252926A (en) * | 2001-02-26 | 2002-09-06 | Toshiba Corp | Cogeneration apparatus operating system and energy supply method for the same |
JP2003061245A (en) * | 2001-08-09 | 2003-02-28 | Osaka Gas Co Ltd | Operation planning method for cogeneration apparatus |
JP2005011644A (en) * | 2003-06-18 | 2005-01-13 | Sekisui Chem Co Ltd | Cogeneration system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928843A (en) * | 1982-08-06 | 1984-02-15 | 東京瓦斯株式会社 | Shockless switching method for electrical loads in combined heat and power generation systems |
JPS61244229A (en) * | 1985-04-23 | 1986-10-30 | 西芝電機株式会社 | Dual-purpose internal combustion electricity/heat generator |
JPS648832A (en) * | 1987-04-10 | 1989-01-12 | Internatl Koojienereishiyon Co | Co-generation system |
-
1990
- 1990-03-30 JP JP2083599A patent/JP2628218B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928843A (en) * | 1982-08-06 | 1984-02-15 | 東京瓦斯株式会社 | Shockless switching method for electrical loads in combined heat and power generation systems |
JPS61244229A (en) * | 1985-04-23 | 1986-10-30 | 西芝電機株式会社 | Dual-purpose internal combustion electricity/heat generator |
JPS648832A (en) * | 1987-04-10 | 1989-01-12 | Internatl Koojienereishiyon Co | Co-generation system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002252926A (en) * | 2001-02-26 | 2002-09-06 | Toshiba Corp | Cogeneration apparatus operating system and energy supply method for the same |
JP2003061245A (en) * | 2001-08-09 | 2003-02-28 | Osaka Gas Co Ltd | Operation planning method for cogeneration apparatus |
JP2005011644A (en) * | 2003-06-18 | 2005-01-13 | Sekisui Chem Co Ltd | Cogeneration system |
JP4504635B2 (en) * | 2003-06-18 | 2010-07-14 | 積水化学工業株式会社 | Cogeneration system |
Also Published As
Publication number | Publication date |
---|---|
JP2628218B2 (en) | 1997-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3620701B2 (en) | Cogeneration equipment | |
KR0149466B1 (en) | Cogeneration system | |
JPH02245453A (en) | Optimum control method for co-generation system | |
JP2005061711A (en) | Exhaust heat recovering water heater | |
JP2009074744A (en) | Gas heat pump cogeneration apparatus | |
JP3653256B2 (en) | Hybrid energy system | |
JP2000297963A (en) | Co-generation device | |
JPH06176792A (en) | Power storage type heat-electricity combined supply system | |
JPH03285520A (en) | Optimum control method for cogeneration system | |
JP2939486B2 (en) | Cogeneration system | |
JP3624275B2 (en) | Cold and hot water generation method that does not require external power supply | |
JPH11351056A (en) | Small-sized energy plant device | |
JPH07217915A (en) | Heat/electricity jointly feeding system | |
JP2010112247A (en) | Control system of distributed type energy generating device | |
JPH0117010Y2 (en) | ||
JP2000073862A (en) | Energy supply device and energy supply system | |
JPH10148160A (en) | Cogeneration system | |
JP2871989B2 (en) | Air conditioning hot water supply system using solar cells | |
JPH10141137A (en) | System for supplying both heat and electricity | |
JPH01131859A (en) | Cold and hot water controller | |
JPH026424B2 (en) | ||
JP2004316974A (en) | Water supply equipment | |
JP2005147658A (en) | Hybrid energy system | |
JP2008286162A (en) | Energy system, cogeneration system, and solar battery module | |
JP3301784B2 (en) | Control method of heat storage tank in combined heat and power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |