JPH04167956A - Low pressure casting method using copper alloy metallic mold - Google Patents
Low pressure casting method using copper alloy metallic moldInfo
- Publication number
- JPH04167956A JPH04167956A JP29667590A JP29667590A JPH04167956A JP H04167956 A JPH04167956 A JP H04167956A JP 29667590 A JP29667590 A JP 29667590A JP 29667590 A JP29667590 A JP 29667590A JP H04167956 A JPH04167956 A JP H04167956A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cooling
- metallic mold
- heating
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 12
- 238000005266 casting Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 6
- 238000001816 cooling Methods 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 abstract description 26
- 229910052751 metal Inorganic materials 0.000 abstract description 19
- 239000002184 metal Substances 0.000 abstract description 19
- 239000002344 surface layer Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、銅合金金型を使用した低圧鋳造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a low pressure casting method using a copper alloy mold.
(従来の技術及び発明が解決しようとする問題点)
従来、低圧鋳造法で使用する金型は、FcD材など鉄系
金属で作られるのが一般的である。しかし鉄系金属は熱
伝導率が小さく、溶湯加圧充填後の冷却時間が長くかか
るため、生産性が悪いと共に、製品組織の粗大化を招き
、製品の強度低下、靭性劣化等の悪影響を生ずる問題が
あった。(Prior Art and Problems to be Solved by the Invention) Conventionally, molds used in low-pressure casting methods are generally made of iron-based metals such as FcD materials. However, iron-based metals have low thermal conductivity and take a long time to cool down after being pressurized and filled with molten metal, resulting in poor productivity and coarsening of the product structure, resulting in negative effects such as reduced product strength and toughness. There was a problem.
本発明は上記のような事情に鑑みてなされたものであり
、溶湯加圧充填後の冷却時間を短縮して生産性を向上す
ると共に、製品組織の粗大化による品質の低下を防止す
ることを目的としている。The present invention was made in view of the above circumstances, and aims to improve productivity by shortening the cooling time after pressurized filling of molten metal, and to prevent quality deterioration due to coarsening of the product structure. The purpose is
(問題点を解決するための手段)
本発明は、上記の目的を達成するため、低圧鋳造用金型
の素材として銅合金材を使用することを要旨としている
。すなわち本発明は、熱伝導率が0.2〜0.9 cd
/ c■・武拳℃である銅合金金型を使用した低圧鋳
造法であって、給湯に先立って金型を310〜350
’Cに加熱し、給湯後、上記金型の温度が3EiO〜4
00 ℃まで上昇した時、該金型の冷却を開始し、上記
金型の温度が310〜350℃まで下降した時、該金型
の冷却を停止し、しかる後、型開き及び製品の離型を行
うことを特徴としている。(Means for Solving the Problems) In order to achieve the above object, the gist of the present invention is to use a copper alloy material as a material for a low-pressure casting mold. That is, the present invention has a thermal conductivity of 0.2 to 0.9 cd.
It is a low-pressure casting method using a copper alloy mold with a temperature of 310 to 350℃ before hot water supply.
After heating to 'C and supplying hot water, the temperature of the above mold is 3EiO~4
When the temperature rises to 00°C, cooling of the mold is started, and when the temperature of the mold falls to 310 to 350°C, cooling of the mold is stopped, and then the mold is opened and the product is released from the mold. It is characterized by doing the following.
(構成)
以下、本発明の実施装置の構成を一実施例に基いて詳細
に説明する。(Structure) Hereinafter, the structure of the implementation apparatus of the present invention will be explained in detail based on one embodiment.
第1図は低圧鋳造装置の要部切欠き正面図、第2図は銅
合金金型の加熱冷却構造を示す型合せ面図である。FIG. 1 is a cutaway front view of essential parts of the low-pressure casting apparatus, and FIG. 2 is a die-fitting surface view showing the heating and cooling structure of a copper alloy mold.
図において、(1)は加熱室、(2)はるつぼ、(3)
は金型で、加熱室(1)及びるつぼ(2)の上には湯道
部材(6)が配設され、金型(3)はこの湯道部材(6
)上に配設されている。In the figure, (1) is a heating chamber, (2) a crucible, and (3)
is a mold, a runner member (6) is arranged above the heating chamber (1) and the crucible (2), and the mold (3) is attached to the runner member (6).
) is placed on top.
金型(3)は第1型(7)と第2型(8)とによ向に延
出して画成され、第1キヤビテイ(3)の上部にはシリ
ンダ形状の第2キヤビテイ(11)が上方に開放する形
で画成されている。The mold (3) is defined by a first mold (7) and a second mold (8) extending in the direction, and a cylinder-shaped second cavity (11) is provided above the first cavity (3). It is defined in such a way that it opens upward.
金型(3)は図示しない手段により型締め、型開きが行
われる。湯道部材(6)の中央には、ストーク(5)か
ら第1キヤビテイ(3)へ溶湯を供給する截頭円錐状の
溶湯供給孔(12)が貫通穿設されている。The mold (3) is clamped and opened by means not shown. A truncated conical molten metal supply hole (12) for supplying molten metal from the stalk (5) to the first cavity (3) is drilled through the center of the runner member (6).
(13)は金型(3)の上方に下向きに配設された中子
昇降シリンダ(図示せず)のピストンロッドであり、該
ピストンロッド(13)の下端には、上半部が大径で下
半部が小径に成した段付の丸棒状の金属中子(14)が
設けられ、金属中子(14)の小径部は前記第1キヤビ
テイ(9)内へ遊嵌可能にされ、大径部は前記第2キヤ
ビテイ(11)内へ挿嵌可能にされている。(13) is a piston rod of a core lifting/lowering cylinder (not shown) arranged downward above the mold (3), and the lower end of the piston rod (13) has an upper half with a large diameter. A metal core (14) in the shape of a stepped round bar whose lower half has a small diameter is provided, and the small diameter portion of the metal core (14) can be loosely fitted into the first cavity (9), The large diameter portion can be inserted into the second cavity (11).
なお金属中子(I4)の内空部には図示しない循環パイ
プが配設されており、冷却エヤーが供給されるようにな
っている。Note that a circulation pipe (not shown) is disposed in the inner space of the metal core (I4) to supply cooling air.
金型(3)及び金型(3)の下方に位置する湯道部材(
6)は高熱伝導材である 銅合金より構成され、その熱
伝導率は0,2〜0 、9 csl / cm・戴・℃
である。The mold (3) and the runner member located below the mold (3)
6) is made of copper alloy, which is a highly thermally conductive material, and its thermal conductivity is 0.2 to 0.9 csl/cm・dai・℃
It is.
上記金型(3)における第1及び第2型(7)(8)に
は加熱回路(15)、冷却回路(+6)、温度センサ(
17)及び、ノックアウト手段(18)が設けられてお
り、それらは両型(7)(8)についてほぼ同一である
から、第1型(7)について説明する。The first and second molds (7) and (8) in the mold (3) include a heating circuit (15), a cooling circuit (+6), and a temperature sensor (
17) and knockout means (18), which are substantially the same for both types (7) and (8), so the first type (7) will be described.
加熱回路(15)は、第1型(7)の中間部において水
平に穿設さ・れた挿入孔(+9)、該挿入孔(+9)に
挿入保持された棒吠ヒータ(21)とにより構成される
。The heating circuit (15) includes an insertion hole (+9) horizontally bored in the middle part of the first mold (7), and a rod heater (21) inserted and held in the insertion hole (+9). configured.
冷却回路(16)は、第1型(7)の上部において第1
キヤビテイ(9)を対称軸として水平に穿設された一対
の排出路(22)(22)、その下部において同じく第
1キヤビテイ(9)を対称軸として水平に穿設された一
対の導入路(23)(23)及び それらを各々接続す
べく垂直に延びるように第1型(7)に穿設された一対
の連通路(24)(24)を備え、各導入路(23)に
導入された冷却エヤーを各連通路(24)を経て、各排
出路(22)より排出するようになっている。The cooling circuit (16) has a first
A pair of discharge passages (22) (22) are bored horizontally with the cavity (9) as the axis of symmetry, and a pair of inlet passages (22) are also bored horizontally with the first cavity (9) as the axis of symmetry at the bottom thereof. 23) (23) and a pair of communication passages (24) (24) bored in the first mold (7) so as to extend vertically to connect them to each other; The cooled air is discharged from each discharge passage (22) through each communication passage (24).
加熱回路(15)のヒータ(21)は図示しない加熱制
御器に接続される。加熱制御器は第1キヤビテイ(9)
内への給湯に先立って加熱回路(15)を作動、従って
ヒータ(21)に通電して第1型(7)を加熱し、また
給湯開始後加熱回路(15)を不作動、従ってヒータ(
21)△、の通電を停止する機能を備えている。当然に
、第2型(8)のヒータ(21)も加熱制御器に接続さ
れる。The heater (21) of the heating circuit (15) is connected to a heating controller (not shown). The heating controller is in the first cavity (9)
Prior to supplying hot water into the interior, the heating circuit (15) is activated, so the heater (21) is energized to heat the first mold (7), and after the start of hot water supply, the heating circuit (15) is deactivated, so the heater (21) is turned on and heated.
21) Equipped with a function to stop the energization of △. Naturally, the second type (8) heater (21) is also connected to the heating controller.
冷却回路(16)の各導入路(23)及び各排出路(2
2)は図示しない冷却制御器に接続される。Each inlet passage (23) and each discharge passage (2) of the cooling circuit (16)
2) is connected to a cooling controller (not shown).
冷却制御器は注湯開始後冷却回路(+6)を作動、従っ
て冷却回路(16)に冷却エヤーを流通して第1型(7
)を冷却し、第1キヤビテイ(9)壁面に接する製品の
表層を急冷して、その表層を殻状の凝固層に変える機能
を備えている。The cooling controller operates the cooling circuit (+6) after the start of pouring, and therefore circulates cooling air to the cooling circuit (16) to cool the first mold (7).
) and rapidly cools the surface layer of the product in contact with the wall surface of the first cavity (9), turning the surface layer into a shell-like solidified layer.
当然に、第2型(8)の冷却回路(16)も冷却制御器
に接続される。Naturally, the cooling circuit (16) of the second type (8) is also connected to the cooling controller.
温度センサ(17)は、第1型(7)の下端邪における
第1キヤビテイ(9)壁面より数11内部位置に設けら
れており、前記加熱制御器及び冷却制御器に接続されて
、第1型(7)の加熱及び冷却を自動制御する機能を備
えている。The temperature sensor (17) is provided at a position several eleven times inside the first cavity (9) wall surface at the lower end of the first type (7), is connected to the heating controller and the cooling controller, and is connected to the first cavity (9). It has a function to automatically control heating and cooling of the mold (7).
当然に、第2型(8)の温度センサ(17)も前記加熱
制御器及び冷却制御器に接続される。Naturally, a temperature sensor (17) of the second type (8) is also connected to said heating and cooling controllers.
ノックアウト手段(18)は、複数のピン(25)、そ
れらピン(25)の一端を支持する支持板(26)及び
その支持板(2B)に連結された作動部材(27)を備
え、各ピン(25)は第1キヤビテイ(9)に開口する
各挿入孔(28)に摺合される。The knockout means (18) includes a plurality of pins (25), a support plate (26) supporting one end of the pins (25), and an actuation member (27) connected to the support plate (2B), and each pin (25) are slidably fitted into each insertion hole (28) opening in the first cavity (9).
(作用)
次に、上記のように構成された低圧鋳造装置によるアル
ミニウム合金鋳物の鋳造作業について、第1図ないし第
3図を参照して説明する。なお第3図は、鋳造サイクル
タイムと金型温度との関係を示すグラフである。(Function) Next, the casting operation of an aluminum alloy casting using the low-pressure casting apparatus configured as described above will be explained with reference to FIGS. 1 to 3. Note that FIG. 3 is a graph showing the relationship between casting cycle time and mold temperature.
第1図に示す状態で、まず、金型(3)を給湯に先立っ
て加熱回路(15)により加熱し、330℃前後に維持
する。この金型(3)に アルミニウム合金の溶湯を給
湯して製品を鋳造する。前記のように金型(3)を加熱
しておくと、給湯時湯流れ性を良好にすることができる
。In the state shown in FIG. 1, first, the mold (3) is heated by the heating circuit (15) prior to supplying hot water and maintained at around 330°C. The product is cast by feeding molten aluminum alloy into this mold (3). By heating the mold (3) as described above, it is possible to improve the flowability of hot water during hot water supply.
第1キヤビテイ(9)内への給湯はるつぼ(2)内に圧
縮空気を供給して行い、溶湯はストーク(5)、溶湯供
給孔(12)を経て第1キヤビテイ(9)内へ供給され
る。Hot water is supplied into the first cavity (9) by supplying compressed air into the crucible (2), and the molten metal is supplied into the first cavity (9) through the stalk (5) and the molten metal supply hole (12). Ru.
給湯の開始後、加熱回路(15)による金型(3)の加
熱を停止し、給湯後約15秒後、金型(3)の温度が3
80℃になったら、冷却回路(I6)による金型(3)
の冷却及び金属中子(14)の冷却を開始する。After the start of hot water supply, the heating of the mold (3) by the heating circuit (15) is stopped, and about 15 seconds after the hot water supply, the temperature of the mold (3) reaches 3.
When the temperature reaches 80℃, the mold (3) is removed by the cooling circuit (I6).
and cooling of the metal core (14) is started.
冷却回路(16)の冷却作用を受けて第1キヤビテイ(
9)内の溶湯は凝固状態となり、その表層が殻状の凝固
層に変化する。冷却開始後約50秒後 金型(3)の温
度が330℃前後に達したとき、冷却回路(16)を不
作動、従って導入路(23)への通気を停止して型開き
を行い、ノックアウト手段(18)を作動して製品を離
型する。The first cavity (
9) The molten metal inside becomes solidified, and its surface layer changes into a shell-like solidified layer. Approximately 50 seconds after the start of cooling, when the temperature of the mold (3) reaches around 330°C, the cooling circuit (16) is deactivated, therefore the ventilation to the introduction channel (23) is stopped, and the mold is opened. The knockout means (18) is actuated to release the product.
そして冷却停止後約20秒後、型締めを完了して次の給
湯を待つ。なお離型作業中に加熱回路(15)による金
型(3)の加熱を開始し、次の給湯開始時までに型温か
330℃前後に達するようにする。Approximately 20 seconds after cooling is stopped, mold clamping is completed and the next supply of hot water is awaited. During the mold release operation, the heating circuit (15) starts heating the mold (3) so that the mold temperature reaches around 330° C. by the time the next hot water supply starts.
以上の諸工程を1サイクルとして、以後同じサイクルを
(り返すことにより、アルミニウム合金鋳物を連続的に
鋳造するものである。The above steps are regarded as one cycle, and aluminum alloy castings are continuously cast by repeating the same cycle thereafter.
(発明の効果)
上記のような本発明によれば、高熱伝導性を有する銅合
金から成る金型を使用し、かつ 4給湯後該金型を冷却
するようにしたため、従来の鉄系金型の場合と比較して
溶湯の凝固時間が大巾に短縮され、生産性が飛躍的に向
上する。(Effects of the Invention) According to the present invention as described above, a mold made of a copper alloy having high thermal conductivity is used, and the mold is cooled after 4 hot water supply, so that it is different from conventional iron-based molds. Compared to the previous case, the solidification time of the molten metal is greatly shortened, and productivity is dramatically improved.
ちなみに、銅系金型を使用した場合のサイクルタイムは
、第3図及び第4図のグラフで示す如く約90秒である
が、鉄系金型を使用した場合のサイクルタイムは約 1
40秒である。By the way, the cycle time when using a copper mold is about 90 seconds as shown in the graphs in Figures 3 and 4, but the cycle time when using an iron mold is about 1.
It is 40 seconds.
また、製品組織が緻密化して品質が向上する。In addition, the product organization becomes more elaborate and quality improves.
更に、金型を給湯に先立って加熱するため、鉄系金型よ
りも熱吸収が大きい銅系金型でも、給湯時の場流れ性が
保証される。なお実施例では金型の冷却にエヤーを使用
しているが、水を使用してもよい。また金型の予熱温度
、金型の給湯後における冷却開始温度ならびに冷却停止
温度は鋳造製品の材質、形状、重量等により異なること
は勿論である。Furthermore, since the mold is heated before hot water is supplied, even copper molds, which absorb more heat than iron molds, can be guaranteed to flow properly during hot water supply. Although air is used to cool the mold in the embodiment, water may also be used. Furthermore, it goes without saying that the preheating temperature of the mold, the cooling start temperature and the cooling stop temperature after the mold is heated with hot water vary depending on the material, shape, weight, etc. of the cast product.
図面は本発明の一実施例を示し、第1図は低圧鋳造装置
の要部切欠き正面図、第2図は銅合金金型の加熱、冷却
構造を示す型合せ面図、第3図は銅合金金型使用時の鋳
造サイクルタイムと金型温度との関係を示すグラフ、第
4図は銅系金型使用時の鋳造サイクルタイムとるつぼ内
圧力との関係を示すグラフである。
なお図中(2)はるつぼ、(3)は金型、(5)はスト
ーク、(9)は第1キヤビテイ、(14)は金属中子、
(is)は加熱回路、(+e)は冷却回路、(17)は
温度センサである。
賽 1 因
勢2 臼The drawings show one embodiment of the present invention, and FIG. 1 is a cutaway front view of essential parts of a low-pressure casting device, FIG. 2 is a mold-fitting side view showing the heating and cooling structure of a copper alloy mold, and FIG. FIG. 4 is a graph showing the relationship between casting cycle time and mold temperature when a copper alloy mold is used, and FIG. 4 is a graph showing the relationship between casting cycle time and crucible pressure when using a copper-based mold. In the figure, (2) is the crucible, (3) is the mold, (5) is the stalk, (9) is the first cavity, (14) is the metal core,
(is) is a heating circuit, (+e) is a cooling circuit, and (17) is a temperature sensor. Dice 1 Cause 2 Mortar
Claims (1)
である銅合金金型を使用した低圧鋳造法であって給湯に
先立って金型を310〜350℃に加熱し、給湯後、上
記金型の温度が360〜400℃まで上昇した時、該金
型の冷却を開始し、上記金型の温度が310〜350℃
まで下降した時、該金型の冷却を停止し、しかる後、型
開き及び製品の離型を行うことを特徴とする銅合金金型
を使用した低圧鋳造法。Thermal conductivity is 0.2 to 0.9 cal/cm・sec・℃
This is a low-pressure casting method using a copper alloy mold, in which the mold is heated to 310 to 350°C before hot water is supplied, and when the temperature of the mold rises to 360 to 400°C after hot water is supplied, the mold is heated to 310 to 350°C. Start cooling the mold, and the temperature of the mold above is 310-350℃
A low-pressure casting method using a copper alloy mold, which is characterized in that cooling of the mold is stopped when the mold has descended to a certain point, and then the mold is opened and the product is released from the mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29667590A JP2867298B2 (en) | 1990-11-01 | 1990-11-01 | Low pressure casting using copper alloy mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29667590A JP2867298B2 (en) | 1990-11-01 | 1990-11-01 | Low pressure casting using copper alloy mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04167956A true JPH04167956A (en) | 1992-06-16 |
JP2867298B2 JP2867298B2 (en) | 1999-03-08 |
Family
ID=17836621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29667590A Expired - Fee Related JP2867298B2 (en) | 1990-11-01 | 1990-11-01 | Low pressure casting using copper alloy mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2867298B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0755739A1 (en) * | 1995-07-28 | 1997-01-29 | Sintokogio, Ltd. | A method of manufacturing low melting-point metal cores |
-
1990
- 1990-11-01 JP JP29667590A patent/JP2867298B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0755739A1 (en) * | 1995-07-28 | 1997-01-29 | Sintokogio, Ltd. | A method of manufacturing low melting-point metal cores |
Also Published As
Publication number | Publication date |
---|---|
JP2867298B2 (en) | 1999-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5335711A (en) | Process and apparatus for metal casting | |
US4875518A (en) | Method of and apparatus for low-pressure casting of light metal alloy | |
US3318370A (en) | Apparatus for casting thin-walled cast iron parts | |
JP5442903B1 (en) | Molding apparatus, semi-solid metal production apparatus, molding method, and semi-solid metal production method | |
GB2208817A (en) | Low-pressure casting of light metal alloy | |
JP2977303B2 (en) | Low pressure casting method and apparatus | |
US10773299B2 (en) | Method and device for casting a metal alloy | |
US3771588A (en) | Direct melt injection casting centre | |
JPH04167956A (en) | Low pressure casting method using copper alloy metallic mold | |
JP2011235337A (en) | Method for low-pressure die casting of cylinder head | |
JPH11285805A (en) | Production of in-line semi-solidified aluminum alloy casting and producing apparatus thereof | |
EP0293960B1 (en) | Process and apparatus for metal casting | |
GB1216776A (en) | Metal casting and solidification | |
JPS61189860A (en) | Gravity die casting device | |
JPS63180360A (en) | Casting method | |
JPS63278636A (en) | Die in die casting apparatus | |
JPH0569105A (en) | Method and apparatus for low pressure casting | |
JP4139868B2 (en) | High pressure casting method and die casting apparatus for refractory metal | |
JP5965890B2 (en) | Molding apparatus, semi-solid metal production apparatus, molding method, and semi-solid metal production method | |
JPS61119331A (en) | Method and device for annealing of casting made of aluminum alloy | |
CN113319267B (en) | Extrusion casting device equipped for suspension smelting equipment and suspension smelting-extrusion casting method | |
JPH01228660A (en) | Temperature adjusting device for casting die | |
JP3002012B2 (en) | Casting apparatus and casting method | |
JP2018030140A (en) | Casting method | |
JPH06190528A (en) | Die casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |