[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7623112B2 - 非水電解液二次電池用積層体 - Google Patents

非水電解液二次電池用積層体 Download PDF

Info

Publication number
JP7623112B2
JP7623112B2 JP2020123263A JP2020123263A JP7623112B2 JP 7623112 B2 JP7623112 B2 JP 7623112B2 JP 2020123263 A JP2020123263 A JP 2020123263A JP 2020123263 A JP2020123263 A JP 2020123263A JP 7623112 B2 JP7623112 B2 JP 7623112B2
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
electrode plate
aqueous electrolyte
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020123263A
Other languages
English (en)
Other versions
JP2022019433A (ja
Inventor
秀人 中島
陸 松峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2020123263A priority Critical patent/JP7623112B2/ja
Priority to KR1020210092004A priority patent/KR20220010441A/ko
Priority to DE102021003633.6A priority patent/DE102021003633A1/de
Priority to CN202110802700.2A priority patent/CN113948819A/zh
Priority to US17/376,971 priority patent/US20220021032A1/en
Publication of JP2022019433A publication Critical patent/JP2022019433A/ja
Application granted granted Critical
Publication of JP7623112B2 publication Critical patent/JP7623112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解液二次電池用積層体に関する。本発明はまた、非水電解液二次電池用部材、非水電解液二次電池および非水電解液二次電池用積層セパレータにも関する。
非水電解液二次電池、特にリチウムイオン二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では車載用の電池として開発が進められている。
非水電解液二次電池に含まれる発電素子は、電極板とセパレータとが交互に積層された構造を取っている。安定性および安全性の観点から、外力が加わってもこの積層構造を維持できるように、電極板-セパレータ間を強固に接着させる技術が開発されている(例えば特許文献1を参照)。
特開2014-149936号公報
非水電解液二次電池用セパレータとしては、ポリオレフィン多孔質フィルム上に多孔質層が形成されている積層セパレータが広く用いられている。本発明者らが検討したところによると、非水電解液二次電池用セパレータとして非水電解液二次電池用積層セパレータを採用する場合には、電極板-セパレータ間の接着性が高ければ高いほど好ましいとは限らない。これは、電極板-セパレータ間の接着性が高過ぎると、電極板-セパレータ積層体に外力が加わった際に、多孔質層が電極板に接着されたままポリオレフィン多孔質フィルムから剥離してしまうおそれがあるためである。この剥離が電池内部で発生すると、耐熱性および強度の低下した箇所が発生することになり、電池の安全性上問題となりうる。
以上の考察から、本発明者らは、電池内部における電極板-セパレータ間の接着性を適度な強さにとどめ、外力が加わっても多孔質層が破壊され難い非水電解液二次電池用積層体に対する技術的な要求が存在することを初めて見出した。本発明の一態様は、電池内部にある状態で外力が加わっても、多孔質層が破壊され難い非水電解液二次電池用積層体を提供することを目的とする。
本発明は、以下の構成を包含している。
<1>
第1電極板および非水電解液二次電池用積層セパレータが積層されている非水電解液二次電池用積層体であって、
上記非水電解液二次電池用積層セパレータは、ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えており、
上記非水電解液二次電池用積層セパレータの上記第1電極板と接している最表面層は、上記第1電極板に対する接着性を有しており、
下記条件の剥離試験Aを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層体:
ステップ1A.上記非水電解液二次電池用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
ステップ2A.上記第1電極板を、基板上に固定する;
ステップ3A.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる。
<2>
上記ステップ3Aにおける剥離強度は、8N/m以下である、<1>に記載の非水電解液二次電池用積層体。
<3>
下記条件の剥離試験Bを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、<1>または<2>に記載の非水電解液二次電池用積層体:
ステップ1B.上記非水電解液二次電池用積層体を、溶媒の含有量が2%以下になるように乾燥させる;
ステップ2B.上記第1電極板を、基板上に固定する;
ステップ3B.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる。
<4>
上記第1電極板は、正極板であり、
上記ステップ3Bにおける剥離強度は、8N/m以下である、
<3>に記載の非水電解液二次電池用積層体。
<5>
上記多孔質層は、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上の樹脂を含んでいる、<1>~<4>のいずれかに記載の非水電解液二次電池用積層体。
<6>
上記多孔質層は、アラミド樹脂を含んでいる、<1>~<5>のいずれかに記載の非水電解液二次電池用積層体。
<7>
<1>~<6>のいずれかに記載の非水電解液二次電池用積層体と、第2電極板と、を備えている非水電解液二次電池用部材であって、
非水電解液二次電池用部材においては、上記第1電極板、上記非水電解液二次電池用積層セパレータおよび上記第2電極板の順に配置されている、
非水電解液二次電池用部材。
<8>
上記第1電極板および上記第2電極板は、一方が正極板であり他方が負極板であり、
上記正極板と上記非水電解液二次電池用積層セパレータとの剥離強度は、上記負極板と上記非水電解液二次電池用積層セパレータとの剥離強度よりも小さい、
<7>に記載の非水電解液二次電池用部材。
<9>
<1>~<6>のいずれかに記載の非水電解液二次電池用積層体、または、<7>もしくは<8>に記載の非水電解液二次電池用部材を備えている、非水電解液二次電池。
<10>
ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えている非水電解液二次電池用積層セパレータであって、
上記非水電解液二次電池用積層セパレータの少なくとも一方の最表面層は、上記多孔質層側に位置しているとともに、試験用電極板に対する接着性を有しており、
上記試験用電極板とは、リチウムニッケルコバルトマンガン酸化物(NCM523):カーボンブラック:黒鉛:PVDF=92:2.5:2.5:3からなる電極活物質を、アルミニウム箔上に積層した、厚さ1mmの積層体であり、
下記条件の剥離試験Cを課したときに、上記試験用電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層セパレータ:
ステップ1C.試験用電極板に対する接着性を有している上記最表面層を介して上記多孔質層と上記試験用電極板とが対向するように上記非水電解液二次電池用積層セパレータと上記試験用電極板とを積層し、70℃、6MPa、10秒間の条件でプレスして、試験用積層体を作製する;
ステップ2C.上記試験用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
ステップ3C.上記試験用電極板を、基板上に固定する;
ステップ4C.上記試験用電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる。
本発明の一態様によれば、電池内部にある状態で外力が加わっても、多孔質層が破壊され難い非水電解液二次電池用積層体を提供することができる。
本発明の一態様に係る非水電解液二次電池用積層体を表す模式図である。 本発明の他の態様に係る非水電解液二次電池用積層体を表す模式図である。 本発明における剥離試験の方法を説明する模式図である。 本発明の一態様に係る非水電解液二次電池用部材を表す模式図である。
本発明の一実施形態に関して以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
〔1.非水電解液二次電池用積層体〕
上述したように、非水電解液二次電池に含まれる発電素子においては、積層されている電極板とセパレータとの間にズレが生じないように、電極板-セパレータ間を接着することが通常である。従来、この接着は強固なほど好ましいと考えられていた。
ところが本発明者らが検討したところ、セパレータとして非水電解液二次電池用積層セパレータを用いる場合には、電極板-セパレータ間の接着が高すぎると問題が生じることが判明した。すなわち、非水電解液二次電池内部において電極板-セパレータ積層体に外力が加わった際に、多孔質層が電極板に接着したままポリオレフィン多孔質フィルムから剥離してしまうおそれがある。したがって、電解液に浸漬された状態においては、「電極板と非水電解液二次電池用積層セパレータとの間の剥離強度」は、「ポリオレフィン多孔質フィルムと多孔質層との間の剥離強度」よりも小さい方が好ましいのである。このような剥離強度の大小関係が成立するならば、非水電解液二次電池内部において電極板-セパレータ積層体に外力が加わった際に、電極板と多孔質層との間に優先的に剥離が生じ、ポリオレフィン多孔質フィルムから多孔質層が剥離することを防止できる。
好ましい態様においては、電解液をほとんど含まない乾燥状態においても、「電極板と非水電解液二次電池用積層セパレータとの間の剥離強度」は、「ポリオレフィン多孔質フィルムと多孔質層との間の剥離強度」よりも小さい。このような剥離強度の大小関係が成立するならば、乾燥状態(例えば、電極板-セパレータ積層体の製造時、輸送時)において電極板-セパレータ積層体に外力が加わった際に、電極板と多孔質層との間に優先的に剥離が生じ、ポリオレフィン多孔質フィルムから多孔質層が剥離することを防止できる。
以上に説明した剥離強度の関係を有している非水電解液二次電池用積層体を、本発明の一態様では、剥離試験Aおよび剥離試験Bの結果として特定している。剥離試験Aは、電解液に浸漬された状態において、非水電解液二次電池用積層体内の各層間の剥離強度の大小関係を決定するための試験である。剥離試験Bは、乾燥した状態において、非水電解液二次電池用積層体内の各層間の剥離強度の大小関係を決定するための試験である。
また、本発明の一態様では、剥離試験Cの結果により特定される非水電解液二次電池用積層セパレータも提供される。剥離試験Cは、剥離試験Aを非水電解二次電池用積層セパレータに適用できるように改変した試験である。
電極板と非水電解液二次電池用積層セパレータとの接着性は、例えば、多孔質層または接着層における接着性樹脂の含有量、当該多孔質層または接着層の目付、電極-セパレータ積層体を作製する際のプレス条件などによって調節できる。一般的には、接着性樹脂の含有量が多いほど、強化の接着が形成される傾向にある。また、多孔質層または接着層の目付が多いほど、強固な接着が形成される傾向にある。さらに、プレス時間が長いほど、プレス温度が高いほど、プレス圧力が大きいほど、強固な接着が形成される傾向にある。
[非水電解液二次電池用積層体の構造]
図1および2を参照する。本発明の一態様に係る非水電解液二次電池用積層体200a(または200b)は、第1電極板10と、非水電解液二次電池用積層セパレータ100a(または100b)とが積層されている。
第1電極板10は、正極板であってもよいし、負極板であってもよい。第1電極板10は、集電体12と電極活物質層15(正極活物質層または負極活物質層)とが積層されている。図1および2に描かれている第1電極板10は、後述する剥離試験に供するために、集電体12の片面に電極活物質層15が積層されている。しかし、第1電極板10は、集電体12の両面に電極活物質層15が積層されている構造であってもよい。
非水電解液二次電池用積層セパレータ100a(または100b)は、ポリオレフィン多孔質フィルム40の片面または両面に、多孔質層30が形成されている。図1および2では、ポリオレフィン多孔質フィルム40の片面に多孔質層30が形成されている例が描かれている。
非水電解液二次電池用積層体200a(または200b)においては、電極活物質層15と多孔質層30とが対向するように、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)とが積層されている。このとき、非水電解液二次電池用積層セパレータ100a(または100b)が、第1電極板10と接している最表面層は、第1電極板10に対する接着性を有する層である。第1電極板10に対する接着性を有する層は、多孔質層30とは別に設けられた接着層20であってもよい(図1を参照)。あるいは、第1電極板10に対する接着性を有する層は、多孔質層30自体であってもよい(図2を参照)。
[剥離試験A]
剥離試験Aは、電解液に浸漬された状態において、非水電解液二次電池用積層体200a(または200b)の各層間の剥離強度の大小関係を決定するための試験である。剥離試験Aは、以下の手順に沿って実施される。
(ステップ1A)非水電解液二次電池用積層体200a(または200b)を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる。
(ステップ2A)第1電極板10を基板1000上に固定する。
(ステップ3A)第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)との角度が180°になるように、100mm/分の剥離速度にて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させる。
ステップ1Aにおいては、非水電解液二次電池用積層体200a(または200b)を、所定の組成を有している溶媒中に浸漬する。これによって、電解液に浸漬された状態の非水電解液二次電池用積層体200a(または200b)を再現する。非水電解液二次電池用積層体200a(または200b)が異なる種類の電解液に浸漬されていた場合(電池製品から取り出した場合など)でも、剥離試験Aに課す非水電解液二次電池用積層体200a(または200b)の条件を揃えることができる。
ステップ2Aにおいては、集電体12が基板1000と対向するように、第1電極板10を基板1000上に固定する(図3を参照)。第1電極板10を剥離試験に耐える程度に固定できるならば、基板1000の材質および第1電極板10を固定する方法は、特に限定されない。一例として、基板1000は、ガラスエポキシ板である。一例として、第1電極板10は、両面テープによって基板1000に固定される。
ステップ3Aにおいて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させる装置としては、剥離試験装置が挙げられる。当業者ならば、上述した剥離試験の条件を達成できる適当な剥離試験装置を選択できる。
非水電解液二次電池用積層体200a(または200b)は、剥離試験Aを課したときに、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)の最表面層との間の剥離強度が、多孔質層30とポリオレフィン多孔質フィルム40との間の剥離強度よりも小さい。そのため、ステップ3Aの後において、電極活物質層15上に付着している多孔質層30は、存在したとしても僅かな量に止まっている。一実施形態において、電極活物質層15上に付着している多孔質層30の面積は、剥離試験Aの前に電極活物質層15と接着していた多孔質層30の面積を100%とすると、5%以下が好ましく、1%以下がより好ましく、0%がさらに好ましい。一実施形態において、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)は、電極活物質層15と多孔質層30との界面で剥離する。
電極活物質層15上に付着している多孔質層30の面積は、例えば、画像分析によって測定できる。通常、電極活物質層15は黒色を帯びており、多孔質層30は白色に近いので、適当な画像処理ソフトウェア(ImageJなど)を利用すれば、色調の違いによって両者を区別し、面積を測定できる。
ステップ3Aの後において、接着層20は、電極活物質層15上に付着していてもよいし、多孔質層30上に付着していてもよい。接着層20は、通常かなり薄い層であるので、電極活物質層15または多孔質層30のどちらに付着しているかを判定するのが困難であるためである。図3では、非水電解液二次電池用積層セパレータ100aの剥離させた部分にまで接着層20が描かれているが、これは便宜的な描写に過ぎない。
ステップ3Aの後において、多孔質層30上に付着している電極活物質層15の量は、0%であることが好ましいが、少量ならば許容される。一実施形態において、多孔質層30上に付着している電極活物質層15の面積は、剥離試験Aの前に多孔質層30と接着していた電極活物質層15の面積を100%とすると、5%以下である。
ステップ3Aにおいて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させたときの剥離強度は、特に限定されない。本発明においては、ステップ3Aの後において電極活物質層15に付着している多孔質層30の面積が少ない(ポリオレフィン多孔質フィルム40から剥離する多孔質層30の面積が少ない)ことが重要であるためである。一実施形態において、剥離強度は、8N/m以下が好ましく、7N/m以下がより好ましく、6N/m以下がさらに好ましい。剥離強度の下限値は、0.8N/m以上が好ましく、1N/m以上がより好ましい。剥離強度が上述の範囲内であれば、電解液に浸漬された状態において、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)との接着性が適度であり、かつ、非水電解二次電池用積層体の構造を維持できる傾向にある。
ステップ3Aにおいて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させたときの剥離強度は、適切な装置によって測定できる。剥離強度を測定する装置は、剥離試験を課す装置と一体化していてもよい。
[剥離試験B]
剥離試験Bは、乾燥した状態において、非水電解液二次電池用積層体200a(または200b)の剥離強度の各層間の大小関係を決定するための試験である。剥離試験Bは、以下の手順に沿って実施される。
(ステップ1B)非水電解液二次電池用積層体200a(または200b)を、溶媒の含有量が2%以下になるように乾燥させる。
(ステップ2B)第1電極板10を基板1000上に固定する。
(ステップ3B)第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)との角度が180°になるように、100mm/分の剥離速度にて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させる。
ステップ1Bにおいて、非水電解液二次電池用積層体200a(または200b)から溶媒を除去する方法は、特に限定されない。例えば、電池製品から取り出した非水電解液二次電池用積層体200a(または200b)を揮発性溶媒で洗浄し、減圧乾燥させることによって、溶媒を除去することができる。また、電池に組み立てる前の非水電解液二次電池用積層体200a(または200b)を使用してもよい。
非水電解液二次電池用積層体200a(または200b)は、剥離試験Bを課したときに、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)の最表面層との間の剥離強度が、多孔質層30とポリオレフィン多孔質フィルム40との間の剥離強度よりも小さい。そのため、ステップ3Bの後において電極活物質層15上に付着している多孔質層30は、存在したとしても僅かな量に止まっている。一実施形態において、電極活物質層15上に付着している多孔質層30の面積は、剥離試験Bの前に電極活物質層15と接着していた多孔質層30の面積を100%とすると、5%以下が好ましく、1%以下がより好ましく、0%がさらに好ましい。一実施形態において、第1電極板10と非水電解液二次電池用積層セパレータ100a(または100b)は、電極活物質層15と多孔質層30との界面で剥離する。
ステップ3Bにおいて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させたときの剥離強度は、特に限定されない。本発明においては、ステップ3Bの後に電極活物質層15に付着している多孔質層30の面積が少ない(ポリオレフィン多孔質フィルム40から剥離する多孔質層30の面積が少ない)ことが重要であるためである。一実施形態においては、(i)第1電極板10は正極板であり、かつ、(ii)ステップ3Bにおける上記剥離強度は、8N/m以下が好ましく、7.5N/m以下がより好ましい。上記の剥離強度の下限値は、0.8N/m以上が好ましく、1N/m以上がより好ましく、1.2N/m以上がさらに好ましく、1.5N/m以上がより一層好ましい。剥離強度が上述の範囲内であれば、乾燥した状態において、正極板と非水電解液二次電池用積層セパレータ100a(または100b)との接着性が適度であり、かつ、非水電解二次電池用積層体の構造を維持できる傾向にある。
その他の剥離試験Bに関する条件は、剥離試験Aに関する記載が援用される。そのため、再度の記載は省略する。
なお、図3においては、非水電解液二次電池用積層セパレータ100aおよび第1電極板10を備えている非水電解液二次電池用積層体200aに対して、剥離試験Aまたは剥離試験Bを課す様子が描かれている。しかし、非水電解液二次電池用積層セパレータ100bおよび第1電極板10を備えている非水電解液二次電池用積層体200bに対しても、剥離試験Aまたは剥離試験Bを課すことができる。また、ポリオレフィン多孔質フィルム40の上に第2電極板を備えている積層体(すなわち、非水電解液二次電池用部材500)に対しても、剥離試験Aまたは剥離試験Bを課すことができる。
〔2.非水電解液二次電池用部材〕
図4を参照する。本発明の一態様に係る非水電解液二次電池用部材500は、非水電解液二次電池用積層体200a(または200b)と、第2電極板50と、を備えている。非水電解液二次電池用部材500は、第1電極板10、非水電解液二次電池用積層セパレータ100a(または100b)および第2電極板50の順に配置されている。
第1電極板10が正極板である場合、第2電極板50は負極板である。第1電極板10が負極板である場合、第2電極板50は正極板である。
多孔質層30がポリオレフィン多孔質フィルム40の片面に形成されている場合には、多孔質層30は、第1電極板10とポリオレフィン多孔質フィルム40との間に配置されている。多孔質層30がポリオレフィン多孔質フィルムの両面に形成されている場合には、多孔質層30は、第2電極板50とポリオレフィン多孔質フィルム40との間にもさらに配置されている。
接着層20は任意構成であり、(i)第1電極板10と第1電極板10側に設けられた多孔質層30との間、(ii)ポリオレフィン多孔質フィルム40と第2電極板50との間、および、(iii)第2電極板50側に設けられた多孔質層30と第2電極板50との間、から選択される1箇所以上に配置されうる。図4では、上述した場所のうち、(i)および(ii)に接着層20を配置している。
一実施形態において、正極板と非水電解液二次電池用積層セパレータ100a(または100b)との剥離強度は、負極板と非水電解液二次電池用積層セパレータ100a(または100b)との剥離強度よりも小さい。すなわち、負極板の方が正極板よりも強固に、非水電解液二次電池用積層セパレータ100a(または100b)と接着されている。
このような構成とすれば、電池内部にある非水電解液二次電池用部材500に対して外力が加わった際に、正極板と非水電解液二次電池用積層セパレータ100a(または100b)との間が優先的に剥離し、負極板と非水電解液二次電池用積層セパレータ100a(または100b)との密着性は保たれる。負極板と非水電解液二次電池用積層セパレータ100a(または100b)との間の空隙は、デンドライト生成の原因となりうる。そのため、上記の構成とすれば、電池に外力が加わってもデンドライト生成の原因が発生しにくく、電池の安全性が向上する。
〔3.非水電解液二次電池用積層セパレータ〕
本発明の一態様によれば、後述する剥離試験Cを課したときに、各層間の剥離強度の大小が所定の関係にある非水電解液二次電池用積層セパレータ100a(または100b)が提供される。剥離試験Cには、所定の電極板を使用して、所定のプレス条件により非水電解液二次電池用積層体200a(または200b)を作製するステップが含まれている。つまり、剥離試験Cは、試験条件を揃えることによって、剥離試験Aを非水電解二次電池用積層セパレータに適用できるように改変した試験である。
[剥離試験C]
剥離試験Cは、電解液に浸漬された状態において、非水電解液二次電池用積層セパレータ100a(または100b)および試験用電極板を備えている試験用積層体の剥離強度の大小関係を決定するための試験である。剥離試験Cは、以下の手順に沿って実施される。
(ステップ1C)試験用電極板に対する接着性を有している最表面層を介して、非水電解液二次電池用積層セパレータ100a(または100b)と試験用電極板とを積層する。次に、70℃、6MPa、10秒間の条件でプレスして、試験用積層体を作製する。
(ステップ2C)試験用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる。
(ステップ3C)試験用電極板を、基板1000上に固定する。
(ステップ4C)試験用電極板と非水電解液二次電池用積層セパレータ100a(または100b)との角度が180°になるように、100mm/分の剥離速度にて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させる。
非水電解液二次電池用積層セパレータ100a(または100b)の少なくとも一方の最表面層は、多孔質層30側に位置しているとともに、試験用電極板に対する接着性を有している。ステップ1Cにおいては、この最表面層を介して、非水電解液二次電池用積層セパレータ100a(または100b)と試験用電極板とが接着される。試験用電極板に対する接着性を有している最表面層は、非水電解液二次電池用積層セパレータ100aのように、多孔質層30の上に設けられた接着層20であってもよい。あるいは、試験用電極板に対する接着性を有している最表面層は、非水電解液二次電池用積層セパレータ100bのように、多孔質層30自体であってもよい。
剥離試験Cで用いられる試験用電極板は、リチウムニッケルコバルトマンガン酸化物(NCM523):カーボンブラック:黒鉛:PVDF=92:2.5:2.5:3からなる電極活物質を、アルミニウム箔上に積層した、厚さ1mmの積層体である。
試験用積層体は、剥離試験Cを課したときに、試験用電極板と非水電解液二次電池用積層セパレータ100a(または100b)の最表面層との間の剥離強度が、多孔質層30とポリオレフィン多孔質フィルム40との間の剥離強度よりも小さい。そのため、ステップ4Cの後において、試験用電極板上に付着している多孔質層30は、存在したとしても僅かな量に止まっている。一実施形態において、試験用電極板上に付着している多孔質層30の面積は、剥離試験Cの前に試験用電極板と接着していた多孔質層30の面積を100%とすると、5%以下が好ましく、1%以下がより好ましく、0%がさらに好ましい。一実施形態において、試験用電極板と非水電解液二次電池用積層セパレータ100a(または100b)は、試験用電極板と多孔質層30との界面で剥離する。
ステップ4Cにおいて、非水電解液二次電池用積層セパレータ100a(または100b)を剥離させたときの剥離強度は、特に限定されない。本発明においては、ステップ4Cの後で試験用電極板に付着している多孔質層30の面積が少ない(ポリオレフィン多孔質フィルム40から剥離する多孔質層30の面積が少ない)ことが重要であるためである。一実施形態において、剥離強度は、8N/m以下が好ましく、7N/m以下がより好ましく、6N/m以下がさらに好ましい。剥離強度の下限値は、0.8N/m以上が好ましく、1N/m以上がより好ましい。剥離強度が上述の範囲内であれば、電解液に浸漬された状態において、電極板と非水電解液二次電池用積層セパレータ100a(または100b)との接着性が適度であり、かつ、非水電解二次電池用積層体の構造を維持できる傾向にあると言える。
その他の剥離試験Cに関する条件は、剥離試験Aに関する記載が援用される。そのため、再度の記載は省略する。
〔4.各部材を構成する材料〕
本節では、上述の各節に登場する部材のそれぞれが、どのような材料で作製されるかについて説明する。
[非水電解液二次電池用積層セパレータ]
非水電解液二次電池用積層セパレータ100a(または100b)は、ポリオレフィン多孔質フィルム40の片面または両面に、多孔質層30が形成されている。図1~に描かれているのは、ポリオレフィン多孔質フィルム40の片面に多孔質層30が形成されている非水電解液二次電池用積層セパレータ100a(または100b)である。
非水電解液二次電池用積層セパレータ100a(または100b)は、電極との接着性を有する最表面層を有していてもよい。非水電解液二次電池用積層セパレータ100aのように、多孔質層30とは異なる接着層20を設けて、電極との接着性を有する最表面層としてもよい。非水電解液二次電池用積層セパレータ100bのように、多孔質層30そのものを電極との接着性を有する最表面層としてもよい。また、ポリオレフィン多孔質フィルム40の両面に電極との接着性を有する最表面層を設けてもよい。いずれの場合も、電極との接着性を有する最表面層は、非水電解液二次電池用積層セパレータ100a(または100b)の、電極板(正極板または負極板)と接する面の少なくとも一方に設けられている。
(ポリオレフィン多孔質フィルム)
ポリオレフィン多孔質フィルムは、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体および液体を通過させることが可能となっている。ポリオレフィン多孔質フィルムは、非水電解液二次電池用積層セパレータの基材となりうる。ポリオレフィン多孔質フィルムは、電池が発熱したときに溶融して非水電解液二次電池用積層セパレータを無孔化することにより、当該非水電解液二次電池用積層セパレータにシャットダウン機能を付与するものであり得る。
ここで、「ポリオレフィン多孔質フィルム」とは、ポリオレフィン系樹脂を主成分とする多孔質フィルムである。また、「ポリオレフィン系樹脂を主成分とする」とは、多孔質フィルムに占めるポリオレフィン系樹脂の割合が、当該多孔質フィルムを構成する材料全体の50体積%以上、好ましくは90体積%以上であり、より好ましくは95体積%以上であることを意味する。
ポリオレフィン多孔質フィルムの主成分であるポリオレフィン系樹脂は、特に限定されないが、例えば、熱可塑性樹脂である、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンおよび/または1-ヘキセンなどの単量体が重合されてなる単独重合体および共重合体が挙げられる。すなわち、単独重合体としては、ポリエチレン、ポリプロピレンおよびポリブテンなどが、共重合体としてはエチレン-プロピレン共重合体などが挙げられる。ポリオレフィン多孔質フィルムは、これらのポリオレフィン系樹脂を単独にて含む層、または、これらのポリオレフィン系樹脂の2種以上を含む層でありうる。このうち、過大電流が流れることをより低温で阻止(シャットダウン)することができるため、ポリエチレンがより好ましく、特に、エチレンを主体とする高分子量のポリエチレンが好ましい。なお、ポリオレフィン多孔質フィルムは、その機能を損なわない範囲で、ポリオレフィン以外の成分を含むことを妨げない。
ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)および超高分子量ポリエチレンなどが挙げられる。このうち、超高分子量ポリエチレンがさらに好ましく、重量平均分子量が5×10~15×10の高分子量成分が含まれていることがさらに好ましい。特に、ポリオレフィン系樹脂に重量平均分子量が100万以上の高分子量成分が含まれていると、ポリオレフィン多孔質フィルムおよび非水電解液二次電池用積層セパレータの強度が向上するのでより好ましい。
ポリオレフィン多孔質フィルムの膜厚は、3~20μmが好ましく、5~17μmがより好ましく、5~15μmがさらに好ましい。膜厚が3μm以上ならば、ポリオレフィン多孔質フィルムに要求される機能(シャットダウン機能など)が、充分に得られる。膜厚が20μm以下ならば、薄型化された非水電解液二次電池用積層セパレータが得られる。
ポリオレフィン多孔質フィルムが有する細孔の孔径は、0.1μm以下であることが好ましく、0.06μm以下であることがより好ましい。これにより、十分なイオン透過性を得ることができ、かつ、電極を構成する粒子の入り込みを、より防止することができる。
ポリオレフィン多孔質フィルムの単位面積当たりの重量目付は、電池の重量エネルギー密度および体積エネルギー密度を高くすることができるように、通常、4~20g/mであることが好ましく、5~12g/mであることがより好ましい。
ポリオレフィン多孔質フィルムの透気度は、ガーレ値で30~500s/100mLであることが好ましく、50~300s/100mLであることがより好ましい。これにより、非水電解液二次電池用積層セパレータが十分なイオン透過性を得ることができる。
ポリオレフィン多孔質フィルムの空隙率は、20~80体積%であることが好ましく、30~75体積%であることがより好ましい。これにより、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)することができる。
ポリオレフィン多孔質フィルムの製造方法は、公知の手法を用いることができ、特に限定されない。例えば、日本国特許第5476844号公報に記載されたように、熱可塑性樹脂にフィラーを加えてフィルム成形した後、当該フィラーを除去する方法が挙げられる。
具体的には、例えば、ポリオレフィン多孔質フィルムが、超高分子量ポリエチレンおよび重量平均分子量1万以下の低分子量ポリオレフィンを含むポリオレフィン系樹脂から形成されてなる場合には、製造コストの観点から、以下に示す工程(1)~(4)を含む方法により製造することが好ましい。
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5重量部~200重量部と、炭酸カルシウムなどの無機充填剤100重量部~400重量部とを混練してポリオレフィン系樹脂組成物を得る工程、
(2)ポリオレフィン系樹脂組成物を用いてシートを成形する工程、
(3)工程(2)で得られたシート中から無機充填剤を除去する工程、
(4)工程(3)で得られたシートを延伸する工程。
その他、上述した各特許文献に記載の方法を利用してもよい。
また、ポリオレフィン多孔質フィルムとして、上述の特徴を有する市販品を使用してもよい。
(多孔質層)
多孔質層は、通常、フィラーおよびバインダー樹脂を含んでいる。
フィラーの種類としては、有機フィラーおよび無機フィラーが挙げられる。
有機フィラーの例としては、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチルなどの単独あるいは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン-6フッ化プロピレン共重合体、4フッ化エチレン-エチレン共重合体、ポリビニリデンフルオライドなどのフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィン;ポリメタクリレートなどが挙げられる。有機フィラーは、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの有機フィラーの中でも、化学的安定性の点で、ポリテトラフルオロエチレン粉末が好ましい。
無機フィラーの例としては、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩などの無機物からなる材料が挙げられる。具体的に例示すると、アルミナ、ベーマイト、シリカ、二酸化チタン、水酸化アルミニウム、または炭酸カルシウムなどの粉末が挙げられる。無機フィラーは、単独で用いてもよいし、2種以上を混合して用いることもできる。これらの無機フィラーの中でも、化学的安定性の点で、アルミナ粉末が好ましい。
フィラーの形状については、略球状、板状、柱状、針状、ウィスカー状、繊維状などが挙げられ、何れの粒子も用いることができる。均一な孔を形成しやすいことから、略球状粒子であることが好ましい。
多孔質層におけるフィラーの含有率は、20~95重量%が好ましく、より好ましくは30~90重量%であり、さらに好ましくは40~90重量%である。なお、多孔質層におけるフィラーの含有率は、当該多孔質層の総重量を100重量%として算出する。フィラーの含有率を上述の範囲にすることで、イオン透過性が良好なセパレータを得ることができる。
多孔質層に含まれているフィラーの平均粒径は、0.01~2.0μmが好ましく、0.05~1.0μmがより好ましい。フィラーの平均粒径を上記の範囲内とすれば、本明細書においては、「フィラーの平均粒径」とはフィラーの体積基準の平均粒径(D50)を意味する。D50とは、体積基準による積算分布が50%になる値の粒子径のことを意味する。D50は、例えば、レーザー回折式粒度分布計(島津製作所製、商品名:SALD2200など)を利用して測定することができる。
バインダー樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。
バインダー樹脂としては、例えば、ポリオレフィン;(メタ)アクリレート系樹脂;含フッ素樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリアミドイミド系樹脂;ポリエステル系樹脂;ゴム類;融点またはガラス転移温度が180℃以上の樹脂;水溶性ポリマー;ポリカーボネート、ポリアセタール、ポリエーテルエーテルケトン等が挙げられる。
上述の樹脂のうち、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂および水溶性ポリマーが好ましい。
ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、及びエチレン-プロピレン共重合体等が好ましい。
含フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体、フッ化ビニリデン-フッ化ビニル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、及びエチレン-テトラフルオロエチレン共重合体等、並びに、前記含フッ素樹脂の中でもガラス転移温度が23℃以下である含フッ素ゴムを挙げることができる。
ポリアミド系樹脂としては、芳香族ポリアミドおよび全芳香族ポリアミドなどのアラミド樹脂が好ましい。
アラミド樹脂としては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。
ポリエステル系樹脂としては、ポリアリレートなどの芳香族ポリエステルおよび液晶ポリエステルが好ましい。
ゴム類としては、スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニル等を挙げることができる。
融点又はガラス転移温度が180℃以上の樹脂としては、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド等を挙げることができる。
水溶性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等を挙げることができる。
なお、バインダー樹脂としては、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
(接着層)
接着層は、非水電解液二次電池用積層セパレータと電極板(正極板または負極板)とを接着する。接着層は、接着性樹脂を主成分としている。接着性樹脂の例としては、α-オレフィン共重合体およびその他の接着性樹脂が挙げられる。
本明細書において、「α-オレフィン共重合体」とは、α-オレフィンに由来する構造単位と、その他のモノマーに由来する構造単位とを有している共重合体を表す。
α-オレフィンは、炭素数2~8のα-オレフィンであることが好ましい。このようなα-オレフィンの例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテンなどが挙げられる。上述したα-オレフィンの中では、エチレンが好ましい。α-オレフィン共重合体が有しているα-オレフィン由来の構造単位は、1種類のみであってもよいし、2種類以上であってもよい。
その他のモノマーとしては、α-オレフィンと共重合可能なモノマーであれば、特に限定されない。このようなモノマーの例としては、脂肪酸ビニル(酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ラウリン酸ビニル、カプロン酸ビニル、ステアリン酸ビニル、パルミチン酸ビニル、バーサチック酸ビニルなど);炭素数1~16のアルキル基を有するアクリル酸エステル(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸ラウリルなど);炭素数1~16のアルキル基を有するメタクリル酸エステル(メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸ラウリルなど);酸性基含有ビニルモノマー(アクリル酸、メタクリル酸、2-アクリロイルオキシエチルサクシネート、2-メタクリロイルオキシエチルサクシネート、カルボキシエチルアクリレート、カルボキシエチルメタクリレートなど);芳香族ビニルモノマー(スチレン、アクリル酸ベンジル、メタクリル酸ベンジルなど);ジエン(1,3-ブタジエン、イソプレン);アクリロニトリルが挙げられる。上述したモノマーの中でも、脂肪酸ビニル、アクリル酸エステルおよびメタクリル酸エステルが好ましく、酢酸ビニルおよびアクリル酸エチルがより好ましい。α-エチレン共重合体が有しているその他のモノマー由来の構造単位は、1種類のみであってもよいし、2種類以上であってもよい。
好ましいα-オレフィン共重合体は、(i)α-オレフィンに由来する構造単位と、(ii)脂肪酸ビニル、アクリル酸エステルおよびメタクリル酸エステルからなる群より選択される1種類以上に由来する構造単位を有している。より好ましいα-オレフィン共重合体は、(i)α-オレフィンに由来する構造単位と、(ii)酢酸ビニルおよびアクリル酸エチルからなる群より選択される1種類以上に由来する構造単位を有している。
α-オレフィン共重合体以外の接着性樹脂の例としては、フッ素系ポリマー(ポリフッ化ビニリデンなど);エステル系ポリマー(ポリエチレンテレフタレート、ポリブチレンテレフタレートなど);セルロース系ポリマー(カルボキシメチルセルロース、カルボキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース、カルボキシエチルメチルセルロースなど)が挙げられる。
接着層の厚さは、好ましくは0.005~100μmであり、より好ましくは0.005~20μmであり、さらに好ましくは0.005~10μmである。接着層の厚さが上記の範囲内ならば、非水電解液二次電池の部材として使用した際に、内部抵抗を大幅に上昇させない。
接着層の目付は、好ましくは0.0005~10g/mであり、より好ましくは0.0005~2.0g/mであり、さらに好ましくは0.0005~0.25g/mである。
接着層において接着性樹脂が占める割合は、接着層全体の重量を100重量%として、50重量%以上が好ましく、70重量%以上がより好ましく、90重量%以上がさらに好ましい。一実施形態において、接着層は、実質的に接着性樹脂のみからなる。接着層における接着性樹脂の含有率が上記の範囲ならば、充分な接着力が得られる。
接着層における接着性樹脂の目付は、好ましくは0.001~1g/mであり、より好ましくは0.01~1g/mであり、さらに好ましくは0.05~0.5g/mである。接着性樹脂の目付が0.001g/m以上であれば、充分な接着力が得られる。接着性樹脂の目付が1g/m以下であれば、非水電解液二次電池の部材として使用した際に、内部抵抗を大幅に上昇させない。
(接着性を有する多孔質層)
非水電解液二次電池用積層セパレータに含まれる多孔質層自体に、接着性を備えさせる構成とすることもできる。例えば、多孔質層に接着性樹脂を含ませることによって、接着性を有する多孔質層を形成することができる。
多孔質層に含ませることができる接着性樹脂の例としては、(接着層)の項目で挙げた接着性樹脂が挙げられる。多孔質層に含まれるその他の樹脂およびフィラーに関する記載は、(多孔質層)の記載が援用される。
[正極]
正極としては、例えば、正極活物質および結着剤を含む活物質層が集電体上に成形された構造を備える正極シートを使用することができる。なお、上記活物質層は、さらに導電剤を含んでもよい。
上記正極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、例えば、V、Mn、Fe、Co、Niなどの遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。
上記導電剤としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料などが挙げられる。
上記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルの共重合体、エチレン-テトラフルオロエチレンの共重合体、フッ化ビニリデン-テトラフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデン-トリクロロエチレンの共重合体、フッ化ビニリデン-フッ化ビニルの共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、およびポリプロピレンなどの熱可塑性樹脂、アクリル樹脂、ならびに、スチレンブタジエンゴムが挙げられる。なお、結着剤は、増粘剤としての機能も有している。
正極集電体としては、例えば、Al、Ni、ステンレスなどの導電体が挙げられる。中でも、薄膜に加工し易く、安価であることから、Alがより好ましい。
シート状の正極の製造方法としては、例えば、正極合剤となる正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、これを乾燥して得られたシート状の正極合剤を加圧することにより、正極集電体に固着する方法などが挙げられる。
[負極]
負極としては、例えば、負極活物質および結着剤を含む活物質層が集電体上に成形された構造を備える負極シートを使用することができる。なお、上記活物質層は、さらに導電剤を含んでもよい。
上記負極活物質としては、例えば、リチウムイオンをドープ・脱ドープ可能な材料、リチウム金属またはリチウム合金などが挙げられる。当該材料としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体などの炭素質材料;正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物および硫化物などのカルコゲン化合物;アルカリ金属と合金化するアルミニウム(Al)、鉛(Pb)、錫(Sn)、ビスマス(Bi)およびシリコン(Si)などの金属、アルカリ金属を格子間に挿入可能な立方晶系の金属間化合物(AlSb、MgSi、NiSi)、リチウム窒素化合物(Li3-xN(M:遷移金属))などが挙げられる。
負極集電体としては、例えば、Cu、Ni、ステンレスなどが挙げられる。中でも、特にリチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。
シート状の負極の製造方法としては、例えば、負極合剤となる負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、これを乾燥して得られたシート状の負極合剤を加圧することにより、負極集電体に固着する方法などが挙げられる。上記ペーストには、好ましくは上記導電剤および上記結着剤が含まれる。
〔5.非水電解液二次電池〕
本発明の一実施形態に係る非水電解液二次電池は、本発明の一実施形態に係る非水電解液二次電池用部材を備えている。非水電解液二次電池は、例えば、以下の手順によって作製できる。
1.適当な容器内に非水電解液二次電池用部材を格納する。
2.容器内を非水電解液で満たす。
3.容器内を減圧しながら、容器を密閉する。
[非水電解液]
非水電解液としては、例えば、リチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩、LiAlClなどが挙げられる。上記リチウム塩のうち、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSOおよびLiC(CFSOからなる群から選択される少なくとも1種のフッ素含有リチウム塩がより好ましい。
有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物;並びに、上記有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒などが挙げられる。上記有機溶媒のうち、カーボネート類がより好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、または、環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒がさらに好ましい。当該混合溶媒は、作動温度範囲が広く、かつ、負極活物質として天然黒鉛または人造黒鉛などの黒鉛材料を用いた場合においても難分解性を示す。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
〔使用した材料〕
本実施例では、以下の材料を使用して剥離試験Aおよび剥離試験Bを実施した。
・正極板:リチウムニッケルコバルトマンガン酸化物(NCM523):カーボンブラック:黒鉛:PVDF=92:2.5:2.5:3からなる電極活物質を、アルミニウム箔上に積層した正極板(縦:5cm×横:2cm×厚さ:1mm)。
・負極板:黒鉛:SBR:CMC=98:1:1からなる電極活物質を、銅箔上に積層した負極板(縦:5cm×横:2cm×厚さ:1mm)。
・積層セパレータ:ポリエチレン多孔質フィルムの片面に多孔質層を積層した積層セパレータ(縦:10cm×横:2.5cm)。多孔質層の組成はアラミド樹脂:アルミナ=33:67。
・接着性樹脂:エチレン-酢酸ビニル共重合体(EVA)またはポリフッ化ビニリデン(PVDF)。
・電解液:エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=30:35:35(体積比)。
上記に示すように、本実施例では、積層セパレータの方が、正極板および負極板よりも寸法が大きい。剥離試験を課す際には、積層セパレータの電極板と接着していない部分を掴んで当該積層セパレータを剥離させた。
〔測定方法および試験方法〕
[剥離試験A:電解液浸漬状態における剥離試験]
下記の手順により、剥離試験Aを課した。
1.作製した非水電解液二次電池用積層体を、電解液中に60℃にて24時間浸漬させた。
2.非水電解液二次電池用積層体の第1電極板を、基板(縦:10cm×横:3cm×厚さ:1mmのガラスエポキシ板)に固定した。固定には、両面テープを使用した。
3.第1電極板と非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、非水電解液二次電池用積層セパレータを23℃雰囲気下にて剥離させた。剥離には、RTG-1310(オリエンテック社製)を使用した。このとき、剥離強度も併せて測定した。
[剥離試験B:乾燥状態における剥離試験]
下記の手順により、剥離試験Bを課した。
1.電解液に浸漬させていない非水電解液二次電池用積層体を用意した。
2.非水電解液二次電池用積層体の第1電極板を、基板(縦:10cm×横:3cm×厚さ:1mmのガラスエポキシ板)に固定した。固定には、両面テープを使用した。
3.第1電極板と非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、非水電解液二次電池用積層セパレータを23℃雰囲気下にて剥離させた。剥離には、RTG-1310(オリエンテック社製)を使用した。このとき、剥離強度も併せて測定した。
[剥離の有無の確認]
剥離試験後の第1電極板を目視確認して、多孔質層の剥離の有無を判定した。
[接着層(EVA)の目付]
接着性樹脂としてEVAを用いた非水電解液二次電池用積層体については、赤外吸収強度比(IR強度比)を算出して、接着層の目付とした。具体的には、EVAに特有なIR強度(1740cm-1)を、ポリエチレンに特有なIR強度(1470cm-1)で除することにより算出した。
〔実施例1~5、比較例1~3〕
実施例1~5および比較例1~3に係る非水電解液二次電池用積層体の剥離試験Aおよび剥離試験Bの結果を、表1に示す。非水電解液二次電池用積層体を作製した際の接着性樹脂の種類、接着層の目付およびプレス条件は、同表に示す通りである。
Figure 0007623112000001
〔参考例1〕
実施例および比較例において使用した非水電解液二次電池用積層セパレータを、剥離試験Aと同様に、電解液中に60℃にて24時間浸漬させた。次に、JIS-K-6854-2(接着剤-はく離接着強さ試験方法-第2部:180度はく離)に規定された方法に則って、ポリエチレン多孔質フィルムと多孔質層との剥離強度を測定したところ、8.1N/mであった。
〔参考例2〕
実施例および比較例において使用した非水電解液二次電池用積層セパレータを、乾燥状態で用意した。次に、JIS-K-6854-2(接着剤-はく離接着強さ試験方法-第2部:180度はく離)に規定された方法に則って、ポリエチレン多孔質フィルムと多孔質層との剥離強度を測定したところ、8.0N/mであった。
〔結果〕
実施例1~5のように、接着樹脂の種類、接着層の目付およびプレス条件を調節することにより、電極板-セパレータ間の接着性が適度である非水電解液二次電池用積層体を作製できた。実施例1、3、4および比較例1、3を比較すると、接着層の目付が大きいほど、電極板-セパレータ間の接着性が高くなる傾向があることが判る。実施例5および比較例2、3を比較すると、プレス圧力が高いほど、電極板-セパレータ間の接着性が高くなる傾向があることが判る。
実施例1、2に係る非水電解液二次電池用積層体は、第1電極板が正極板である場合には、電解液に浸漬された状態でも、乾燥した状態でも、多孔質層の剥離がなく最適な接着性であった。これらの非水電解液二次電池用積層体は、第1電極板が負極板である場合にも、電解液に浸漬された状態では多孔質層の剥離がなく、好ましかった。
実施例1~5および参考例1の結果を参照すると、剥離試験Aにおける剥離強度は、8N/m以下程度が好ましいことが示唆される。実施例1、2および参考例2の結果を参照すると、剥離試験Bにおける剥離強度は、8N/m以下程度が好ましいことが示唆される。
本発明は、例えば非水電解液二次電池に利用することができる。
10 :第1電極板
20 :接着層
30 :多孔質層
40 :ポリオレフィン多孔質フィルム
50 :第2電極板
100a、b:非水電解液二次電池用積層セパレータ
200a、b:非水電解液二次電池用積層体
500 :非水電解液二次電池用部材

Claims (13)

  1. 第1電極板および非水電解液二次電池用積層セパレータが積層されている非水電解液二次電池用積層体であって、
    上記非水電解液二次電池用積層セパレータは、ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えており、
    上記非水電解液二次電池用積層セパレータの上記第1電極板と接している最表面層は、上記第1電極板に対する接着性を有しており、
    下記条件の剥離試験Aを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層体:
    ステップ1A.上記非水電解液二次電池用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
    ステップ2A.上記第1電極板を、基板上に固定する;
    ステップ3A.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ3Aにおける剥離強度は、0.8N/m以上であり、
    上記ステップ1Aの前に上記第1電極板の電極活物質層と接着していた上記多孔質層の面積を100%とすると、上記ステップ3Aの後に上記電極活物質層に付着している上記多孔質層の面積は、5%以下である。
  2. 第1電極板および非水電解液二次電池用積層セパレータが積層されている非水電解液二次電池用積層体であって、
    上記非水電解液二次電池用積層セパレータは、ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えており、
    上記非水電解液二次電池用積層セパレータの上記第1電極板と接している最表面層は、上記第1電極板に対する接着性を有しており、
    下記条件の剥離試験Aを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層体:
    ステップ1A.上記非水電解液二次電池用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
    ステップ2A.上記第1電極板を、基板上に固定する;
    ステップ3A.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ3Aにおける剥離強度は、0.8~8N/mである。
  3. 上記ステップ3Aにおける剥離強度は、8N/m以下である、請求項1に記載の非水電解液二次電池用積層体。
  4. 下記条件の剥離試験Bを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、請求項1~3のいずれか1項に記載の非水電解液二次電池用積層体:
    ステップ1B.上記非水電解液二次電池用積層体を、溶媒の含有量が2%以下になるように乾燥させる;
    ステップ2B.上記第1電極板を、基板上に固定する;
    ステップ3B.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ3Bにおける剥離強度は、0.8N/m以上であり、
    上記ステップ1Bの前に上記第1電極板の電極活物質層と接着していた上記多孔質層の面積を100%とすると、上記ステップ3Bの後に上記電極活物質層に付着している上記多孔質層の面積は、5%以下である。
  5. 下記条件の剥離試験Bを課したときに、上記第1電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、請求項1~3のいずれか1項に記載の非水電解液二次電池用積層体:
    ステップ1B.上記非水電解液二次電池用積層体を、溶媒の含有量が2%以下になるように乾燥させる;
    ステップ2B.上記第1電極板を、基板上に固定する;
    ステップ3B.上記第1電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ3Bにおける剥離強度は、0.8~8N/mである。
  6. 上記第1電極板は、正極板であり、
    上記ステップ3Bにおける剥離強度は、8N/m以下である、
    請求項4または5に記載の非水電解液二次電池用積層体。
  7. 上記多孔質層は、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より選択される1種類以上の樹脂を含んでいる、請求項1~6のいずれか1項に記載の非水電解液二次電池用積層体。
  8. 上記多孔質層は、アラミド樹脂を含んでいる、請求項1~7のいずれか1項に記載の非水電解液二次電池用積層体。
  9. 請求項1~8のいずれか1項に記載の非水電解液二次電池用積層体と、第2電極板と、を備えている非水電解液二次電池用部材であって、
    非水電解液二次電池用部材においては、上記第1電極板、上記非水電解液二次電池用積層セパレータおよび上記第2電極板の順に配置されている、
    非水電解液二次電池用部材。
  10. 上記第1電極板および上記第2電極板は、一方が正極板であり他方が負極板であり、
    上記正極板と上記非水電解液二次電池用積層セパレータとの剥離強度は、上記負極板と上記非水電解液二次電池用積層セパレータとの剥離強度よりも小さい、
    請求項9に記載の非水電解液二次電池用部材。
  11. 請求項1~8のいずれか1項に記載の非水電解液二次電池用積層体、または、請求項9もしくは10に記載の非水電解液二次電池用部材を備えている、非水電解液二次電池。
  12. ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えている非水電解液二次電池用積層セパレータであって、
    上記非水電解液二次電池用積層セパレータの少なくとも一方の最表面層は、上記多孔質層側に位置しているとともに、試験用電極板に対する接着性を有しており、
    上記試験用電極板とは、リチウムニッケルコバルトマンガン酸化物(NCM523):カーボンブラック:黒鉛:PVDF=92:2.5:2.5:3からなる電極活物質を、アルミニウム箔上に積層した、厚さ1mmの積層体であり、
    下記条件の剥離試験Cを課したときに、上記試験用電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層セパレータ:
    ステップ1C.試験用電極板に対する接着性を有している上記最表面層を介して上記多孔質層と上記試験用電極板とが対向するように上記非水電解液二次電池用積層セパレータと上記試験用電極板とを積層し、70℃、6MPa、10秒間の条件でプレスして、試験用積層体を作製する;
    ステップ2C.上記試験用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
    ステップ3C.上記試験用電極板を、基板上に固定する;
    ステップ4C.上記試験用電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ4Cにおける剥離強度は、0.8N/m以上であり、
    上記ステップ1Cの前に上記試験用電極板の電極活物質層と接着していた上記多孔質層の面積を100%とすると、上記ステップ4Cの後に上記電極活物質層に付着している上記多孔質層の面積は、5%以下である。
  13. ポリオレフィン多孔質フィルムと、当該ポリオレフィン多孔質フィルムの片面または両面に形成されている多孔質層と、を備えている非水電解液二次電池用積層セパレータであって、
    上記非水電解液二次電池用積層セパレータの少なくとも一方の最表面層は、上記多孔質層側に位置しているとともに、試験用電極板に対する接着性を有しており、
    上記試験用電極板とは、リチウムニッケルコバルトマンガン酸化物(NCM523):カーボンブラック:黒鉛:PVDF=92:2.5:2.5:3からなる電極活物質を、アルミニウム箔上に積層した、厚さ1mmの積層体であり、
    下記条件の剥離試験Cを課したときに、上記試験用電極板と上記非水電解液二次電池用積層セパレータの最表面層との間の剥離強度は、上記多孔質層と上記ポリオレフィン多孔質フィルムとの間の剥離強度よりも小さい、非水電解液二次電池用積層セパレータ:
    ステップ1C.試験用電極板に対する接着性を有している上記最表面層を介して上記多孔質層と上記試験用電極板とが対向するように上記非水電解液二次電池用積層セパレータと上記試験用電極板とを積層し、70℃、6MPa、10秒間の条件でプレスして、試験用積層体を作製する;
    ステップ2C.上記試験用積層体を、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートの体積比が30:35:35である溶媒に、60℃にて24時間浸漬させる;
    ステップ3C.上記試験用電極板を、基板上に固定する;
    ステップ4C.上記試験用電極板と上記非水電解液二次電池用積層セパレータとの角度が180°になるように、100mm/分の剥離速度にて、上記非水電解液二次電池用積層セパレータを剥離させる;
    ここで、
    上記ステップ4Cにおける剥離強度は、0.8~8N/mである。
JP2020123263A 2020-07-17 2020-07-17 非水電解液二次電池用積層体 Active JP7623112B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020123263A JP7623112B2 (ja) 2020-07-17 2020-07-17 非水電解液二次電池用積層体
KR1020210092004A KR20220010441A (ko) 2020-07-17 2021-07-14 비수전해액 이차 전지용 적층체
DE102021003633.6A DE102021003633A1 (de) 2020-07-17 2021-07-14 Laminierter körper für sekundärbatterie mit wasserfreiem elektrolyt
CN202110802700.2A CN113948819A (zh) 2020-07-17 2021-07-15 非水电解液二次电池用层叠体
US17/376,971 US20220021032A1 (en) 2020-07-17 2021-07-15 Nonaqueous electrolyte secondary battery laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123263A JP7623112B2 (ja) 2020-07-17 2020-07-17 非水電解液二次電池用積層体

Publications (2)

Publication Number Publication Date
JP2022019433A JP2022019433A (ja) 2022-01-27
JP7623112B2 true JP7623112B2 (ja) 2025-01-28

Family

ID=79021295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123263A Active JP7623112B2 (ja) 2020-07-17 2020-07-17 非水電解液二次電池用積層体

Country Status (5)

Country Link
US (1) US20220021032A1 (ja)
JP (1) JP7623112B2 (ja)
KR (1) KR20220010441A (ja)
CN (1) CN113948819A (ja)
DE (1) DE102021003633A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224568A1 (ja) * 2021-04-23 2022-10-27 株式会社村田製作所 二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137374A1 (ja) 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP2020537290A (ja) 2018-06-20 2020-12-17 エルジー・ケム・リミテッド 電気化学素子用セパレータ、その製造方法、及びそれを含む電気化学素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476844B2 (ja) 2009-08-06 2014-04-23 住友化学株式会社 多孔質フィルム、電池用セパレータ及び電池
JP2014149936A (ja) 2013-01-31 2014-08-21 Nippon Zeon Co Ltd 二次電池用セパレータ、二次電池用セパレータの製造方法及び二次電池
KR101762087B1 (ko) * 2014-08-29 2017-07-26 스미또모 가가꾸 가부시키가이샤 비수 이차 전지용 세퍼레이터, 적층체, 적층체의 제조 방법, 및 비수 이차 전지
CN105917491B (zh) * 2014-12-25 2019-01-15 住友化学株式会社 锂离子二次电池用分离器制造方法及锂离子二次电池用分离器切开方法
JP6403278B2 (ja) * 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137374A1 (ja) 2011-04-08 2012-10-11 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP2020537290A (ja) 2018-06-20 2020-12-17 エルジー・ケム・リミテッド 電気化学素子用セパレータ、その製造方法、及びそれを含む電気化学素子

Also Published As

Publication number Publication date
DE102021003633A1 (de) 2022-01-20
JP2022019433A (ja) 2022-01-27
CN113948819A (zh) 2022-01-18
KR20220010441A (ko) 2022-01-25
US20220021032A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN108352484B (zh) 非水系二次电池用隔膜及非水系二次电池
KR102437371B1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
EP2696393A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR102626679B1 (ko) 비수 전해액 이차 전지
KR20180077190A (ko) 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
WO2013058368A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2013058369A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR20180094778A (ko) 비수계 이차전지용 세퍼레이터, 및, 비수계 이차전지
CN106410099B (zh) 非水电解液二次电池用间隔件及其应用
KR102067145B1 (ko) 무기 코팅층을 포함하는 전기화학소자용 분리막 및 이를 제조하는 방법
WO2018047468A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7623112B2 (ja) 非水電解液二次電池用積層体
KR102404749B1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
JP7218104B2 (ja) 多孔質層および非水電解液二次電池用積層セパレータ
KR102693316B1 (ko) 비수전해액 이차 전지
JP6626177B2 (ja) 組成物
KR102054807B1 (ko) 비수 전해액 이차 전지용 다공질층
JP2024107500A (ja) ポリオレフィン多孔質フィルム
JP2019110064A (ja) 非水電解液二次電池
JP6663469B2 (ja) 非水電解液二次電池用多孔質層
JP2017103211A (ja) 非水電解液二次電池用セパレータおよびその利用
CN111834586A (zh) 多孔层和非水电解液二次电池用层叠间隔件
US20190123381A1 (en) Nonaqueous electrolyte secondary battery porous layer
JP2019079805A (ja) 非水電解液二次電池用多孔質層
JP2019077785A (ja) 水系塗料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250116

R150 Certificate of patent or registration of utility model

Ref document number: 7623112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150