[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7539746B1 - An internal combustion engine that runs on hydrogen, oxygen, and water vapor - Google Patents

An internal combustion engine that runs on hydrogen, oxygen, and water vapor Download PDF

Info

Publication number
JP7539746B1
JP7539746B1 JP2024027510A JP2024027510A JP7539746B1 JP 7539746 B1 JP7539746 B1 JP 7539746B1 JP 2024027510 A JP2024027510 A JP 2024027510A JP 2024027510 A JP2024027510 A JP 2024027510A JP 7539746 B1 JP7539746 B1 JP 7539746B1
Authority
JP
Japan
Prior art keywords
hydrogen
oxygen
injection
liquefied
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024027510A
Other languages
Japanese (ja)
Inventor
勲生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2024027510A priority Critical patent/JP7539746B1/en
Application granted granted Critical
Publication of JP7539746B1 publication Critical patent/JP7539746B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Figure 0007539746000001

【課題】大気を使用しない水素と酸素のみで稼働し公害ゼロで吸気機構と排気機構の無い単純構造且つ低コスト構造、燃費の良い内燃機関を提供する。
【解決手段】大気を利用しない無公害の吸気機構と排気機構の無い、エアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造且つ低コスト構造の内燃機関を提供する。
【選択図】図1

Figure 0007539746000001

To provide an internal combustion engine that operates using only hydrogen and oxygen without using the atmosphere, is zero-pollution, has a simple and low-cost structure without an intake mechanism or exhaust mechanism, and has good fuel economy.
[Solution] An internal combustion engine is provided that has a simple and low-cost structure that does not use the atmosphere and has no pollution-free intake mechanism or exhaust mechanism, and that omits all intake and exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.
[Selected Figure] Figure 1

Description

本発明は、水素と酸素と水蒸気とが有する全ての機能を活用した内燃機関の稼働中において、
水素と酸素とが燃焼室6pb内又は前処理燃焼室3tp内或いは気密作動室7ri内で燃焼爆発膨張加圧水蒸気化した高温高圧の水蒸気が化合比率混合気噴射手段1epff 又は水素供給噴射手段1epf 或いは液化水素供給噴射手段11epfの噴射口と、
酸素供給噴射手段2epf又は液化酸素供給噴射手段12epfの噴射口と、
水蒸気冷却水噴射凝縮手段4pの冷却水噴射口との各手段の噴射口に噴射噴出方向より逆方向に加圧水蒸気の圧入が起こる、
残溜水の排水手段7pdの排水口より加圧水蒸気漏れが起こる、
又、燃焼室6pb内、前処理燃焼室3tp内、気密作動室7ri内が、真空負圧になった時に、各噴射口より、水素、酸素、冷却水を燃焼室6pb内又は前処理燃焼室3tp内、或いは気密作動室7ri内に吸い込む現象が起こるので、
残溜水の排水手段7pdの排水口より廃水を吸い込むので、
次回サイクルの燃焼室6pb内又は前処理燃焼室3tp内或いは気密作動室7ri内で点火燃焼爆発する水素と酸素との化合比率混合気の水素の混合容積濃度比66.66%と酸素の混合容積濃度比33.33%の混合比である筈の混合比が崩れて、
燃焼室6pb内又は前処理燃焼室3tp内或いは気密作動室7ri内は水素過多の混合気、又は、酸素過多の混合気、或いは、冷却水や廃水混じりの混合気となる為、
燃焼爆発も最大爆発膨張加圧水蒸気力が得られない、
又、
水蒸気の100%水液化凝縮も得られない為、水蒸気冷却凝縮時も強力な真空負圧力を得られない、
水素過多、水素不足、酸素過多、酸素不足、冷却水や廃水混じりの混合気の発生となる為、
内燃機関が不調となる原因を阻止する各噴射手段の噴射流通孔路に双方向流通遮断弁13を備えて不調原因を阻止する内燃機関に関する。
The present invention relates to a method for producing a fuel cell using hydrogen, oxygen, and water vapor during operation of an internal combustion engine that utilizes all of the functions of hydrogen, oxygen, and water vapor.
The high-temperature, high-pressure steam generated by the combustion, explosion, expansion, and pressurization of hydrogen and oxygen in the combustion chamber 6pb, the pretreatment combustion chamber 3tp, or the airtight operating chamber 7ri is fed to the injection port of the combination ratio mixture injection means 1epff, the hydrogen supply injection means 1epf, or the liquefied hydrogen supply injection means 11epf,
An injection port of the oxygen supply injection means 2epf or the liquefied oxygen supply injection means 12epf;
Pressurized steam is injected into the cooling water jet port of the steam cooling water jet condensation means 4p in the opposite direction to the jet port of each means.
Pressurized steam leaks from the drain outlet of the residual water drainage means 7pd.
In addition, when the combustion chamber 6pb, the pre-treatment combustion chamber 3tp, and the airtight operation chamber 7ri are in a vacuum negative pressure state, hydrogen, oxygen, and cooling water are sucked into the combustion chamber 6pb, the pre-treatment combustion chamber 3tp, or the airtight operation chamber 7ri from each injection port.
Wastewater is sucked in from the drain outlet of the residual water drainage means 7pd,
The hydrogen and oxygen mixture that will ignite, burn, and explode in the combustion chamber 6pb, pre-treatment combustion chamber 3tp, or airtight operating chamber 7ri of the next cycle will have a hydrogen volume concentration ratio of 66.66% and an oxygen volume concentration ratio of 33.33%. This mixture ratio is not consistent,
The combustion chamber 6pb, the pre-treatment combustion chamber 3tp, or the airtight operating chamber 7ri contains a mixture of excess hydrogen, excess oxygen, or a mixture containing cooling water or wastewater.
Combustion explosion also does not achieve maximum explosive expansion pressurized steam power,
also,
Since 100% water liquefaction of steam cannot be achieved, strong vacuum pressure cannot be obtained when cooling and condensing steam.
This can result in the generation of mixtures of excess hydrogen, shortage of hydrogen, excess oxygen, shortage of oxygen, and mixtures of cooling water and wastewater.
The present invention relates to an internal combustion engine in which a two-way flow cutoff valve 13 is provided in the injection flow passage of each injection means for preventing causes of malfunction of the internal combustion engine.

現在の水素を利用する内燃機関は酸化剤に大気を利用しているために大気中の窒素酸化物が発生する為窒素酸化物発生の抑制が困難である、
大気を酸化剤として利用する方法なので水蒸気冷却凝縮により発生する真空負圧力を利用できない方法なので燃費が悪い、
本発明では、先ず水素と酸素との混合気の燃焼爆発で発生する爆発膨張加圧水蒸気エネルギーと、
水素と酸素との混合気の燃焼爆発で発生する爆発膨張加圧水蒸気の熱エネルギーを活用して、内燃機関内に前回サイクルで発生する残溜水の水蒸気爆発を図り水蒸気爆発で発生する水蒸気爆発膨張加圧水蒸気エネルギーと、の二つの水蒸気がシリンダー内、又は、気密作動室内で自己熱による熱分解還元機能によって還元発生する新しいエネルギーの水素と酸素とが自己着火燃焼爆発で発生する加圧水蒸気エネルギーが再び、熱分解還元機能によって還元変換発生する新しいエネルギーの水素と酸素とが自己着火燃焼爆発で発生する加圧水蒸気エネルギー発生を、三度、四度と繰り返しながら、
前記ピストン7pの下降行程に活用を図り前記ピストン7pは下死点直前で、
活用し終えて通常なら不要で排気すべきシリンダー6p内の水蒸気を冷却水噴射凝縮水液化を図って発生する真空負圧エネルギーに変換を図って前記ピストン7pを真空負圧エネルギーによる吸引上昇工程の上死点直前で水素と酸素との噴射と排水手段7pdで排水を図る繰り返し稼働を図る水素と酸素と水蒸気とを活用して回転稼働を図る内燃機関である、
又は、
Current internal combustion engines that use hydrogen use air as an oxidant, which generates nitrogen oxides in the air, making it difficult to suppress the generation of nitrogen oxides.
This method uses air as an oxidant, so it is not fuel efficient because it cannot utilize the vacuum negative pressure generated by steam cooling and condensation.
In the present invention, first, the explosive expansion pressurized steam energy generated by the combustion explosion of a mixture of hydrogen and oxygen,
The thermal energy of the explosion and expansion of pressurized steam generated by the combustion and explosion of a mixture of hydrogen and oxygen is utilized to cause a steam explosion of the residual water generated in the previous cycle inside the internal combustion engine, and the steam explosion and expansion of pressurized steam energy generated by the steam explosion is then generated. The two steams are then reduced and converted by the pyrolysis and reduction function due to their own heat inside the cylinder or airtight operating chamber, and the new energy of hydrogen and oxygen is reduced and converted by the pyrolysis and reduction function, and the pressurized steam energy generated by the self-ignition and combustion explosion is then generated. This process is repeated three or four times.
The piston 7p is in the downward stroke and the piston 7p is just before the bottom dead center.
After the end of use, the water vapor in the cylinder 6p, which is normally unnecessary and should be exhausted, is converted into vacuum negative pressure energy generated by injecting cooling water and liquefying the condensed water, and the piston 7p is sucked up by the vacuum negative pressure energy, and just before the top dead center of the upward stroke, hydrogen and oxygen are injected and the water is drained by the drainage means 7pd. This is an internal combustion engine that uses hydrogen, oxygen and water vapor to perform repeated operations.
Or,

前記ローター7rの加圧公転に活用を図り前記ローター7rは気密作動室容積最大点直前で活用し終えて通常なら不要で排気すべき気密作動室7ri内の水蒸気を冷却水噴射凝縮水液化を図って発生する真空負圧エネルギーに変換を図って前記ローター7rを真空負圧エネルギーによって吸引負圧公転工程の気密作動室容積最小点直前で水素と酸素との噴射と排水手段7pdで圧力押し出し排水を図る水素と酸素と水蒸気との活用を図り回転稼働を図る内燃機関である、
エネルギーの市場で、水素の持つエネルギーの活用が非常に少ない、
水素には爆発膨張で発生する加圧水蒸気エネルギーと、
発生した水蒸気を冷却凝縮で得られる真空負圧力エネルギーと、
まだ他に水蒸気を元の水素と酸素に熱分解還元変換する機能と、
酸化燃焼爆発時の発熱量が多いので、
多い発熱量を活用して残溜水を水蒸気爆発を図って水蒸気爆発膨張加圧水蒸気化する能力を有している、
本発明では前記水素の有する全ての機能の活用を図ろうとするレシプロ構造とロータリー構造の内燃機関である、
今現在は加圧力エネルギーと冷却凝縮で得られる真空負圧力エネルギーの両エネルギーをフルに活用した内燃機関は無いと思う、
本発明では、水素と酸素との爆発膨張加圧水蒸気エネルギーの活用と、
水素と酸素との爆発時の発熱量が多いのでその熱で、
残溜水の水蒸気爆発を図り発生する水蒸気爆発膨張加圧水蒸気エネルギーの活用と、
(多い発熱を水蒸気爆発に活用する事で内燃機関の高熱からの保護にもなる)
二つの加圧水蒸気は内燃機関内で自己熱によって熱分解還元変換機能によって加圧水蒸気を新しいエネルギーの元の水素と酸素に還元変換を図る、
変換発生した水素と酸素は自己熱によって自己着火燃焼爆発を図り爆発膨張加圧水蒸気エネルギーを発生する、
こうして加圧水蒸気→熱分解還元変換→水素と酸素エネルギー→自己着火燃焼爆発膨張加圧水蒸気エネルギー化を繰り返してピストンの下降行程で加圧エネルギーの活用を図り図り終えたピストンの下死点直前で加圧水蒸気を水蒸気冷却水で冷却凝縮で発生する真空負圧エネルギーでピストンは真空負圧吸引上昇行程で上死点直前の、
上下動運動でクランクシャフトの回転エネルギーの発生活用を図る内燃機関である、
The rotor 7r is utilized for pressurizing the revolution, and the rotor 7r finishes utilizing the steam in the airtight working chamber 7ri just before the maximum volume point of the airtight working chamber, and the steam in the airtight working chamber 7ri, which is normally unnecessary and should be discharged, is converted into vacuum negative pressure energy generated by injecting cooling water and liquefying the condensed water, and the rotor 7r is sucked in by the vacuum negative pressure energy, and just before the minimum volume point of the airtight working chamber in the negative pressure revolution process, hydrogen and oxygen are injected and the water is extruded and discharged by the drainage means 7pd. This is an internal combustion engine that utilizes hydrogen, oxygen and steam to operate and rotate.
In the energy market, the energy potential of hydrogen is being utilized very little.
Hydrogen contains pressurized steam energy generated by explosive expansion and
The vacuum negative pressure energy is obtained by cooling and condensing the generated water vapor,
In addition, it has the function of thermally decomposing and reducing water vapor back into hydrogen and oxygen.
The amount of heat generated during the oxidation combustion explosion is large,
It has the ability to utilize the large amount of heat generated to cause a steam explosion in the residual water, turning it into steam by expansion and pressurization.
The present invention is an internal combustion engine of reciprocating structure and rotary structure that aims to utilize all the functions of hydrogen.
I don't think there is an internal combustion engine currently that fully utilizes both the pressure energy and the vacuum negative pressure energy obtained by cooling and condensation.
In this invention, we utilize the explosive expansion pressurized steam energy of hydrogen and oxygen,
The amount of heat generated when hydrogen and oxygen explode is large,
Utilizing steam energy generated by steam explosion of residual water, and
(Using the large amount of heat generated for steam explosions also serves to protect against the high heat of internal combustion engines.)
The two pressurized steam are converted into new energy sources, hydrogen and oxygen, through the self-heating thermal decomposition and reduction function in the internal combustion engine.
The hydrogen and oxygen produced by the conversion will self-ignite, burn, and explode due to their own heat, generating explosive, expanded, pressurized steam energy.
In this way, the compressed water vapor → thermal decomposition reduction conversion → hydrogen and oxygen energy → self-ignition combustion explosion expansion compressed water vapor energy is repeated, and the compressed energy is utilized on the downward stroke of the piston. Just before the bottom dead center of the piston, the compressed water vapor is cooled and condensed with the steam cooling water, and the piston is sucked in by the vacuum negative pressure energy generated by the vacuum negative pressure energy. Just before the top dead center of the piston,
It is an internal combustion engine that generates and utilizes the rotational energy of the crankshaft through up and down motion.

又、他で研究実験を行っている水素と大気を利用している機関では大気を使用しているので窒素酸化物(NOx)公害が発生し、地球環境や他の生物にも大きな打撃である、
そこで本発明では、大気を使用しない水素と酸素のみで稼働し公害ゼロで吸気機構と排気機構の無い単純構造且つ低コスト構造、燃費の良い内燃機関の完成である、
この機関が普及して大気から酸素を分離する分離工場でこの内燃機関を活用すれば酸素価格が暴落する事間違い無しである、
と共に酸素を分離する工程でほぼ同じ工程で窒素肥料も取れて農産物も安くなる、
ロータリー式内燃機関もレシプロ式内燃機関も同じ内部容積の拡張と縮小の繰り返しで回転エネルギーを発生する物なので本発明では同一の内燃機関としている、
ロータリー式内燃機関とレシプロ式内燃機関とを分割して考えるのは可笑しいので一出願としている。
In addition, other research and experiments using hydrogen and atmospheric air generate nitrogen oxide (NOx) pollution, which is a major blow to the global environment and other living things.
Therefore, in this invention, we have developed an internal combustion engine that runs on only hydrogen and oxygen without using the atmosphere, is zero pollution, has a simple and low-cost structure without an intake mechanism or exhaust mechanism, and is fuel-efficient.
If this engine becomes widespread and is used in plants that separate oxygen from the atmosphere, there is no doubt that the price of oxygen will plummet.
At the same time, oxygen is separated in a similar process, and nitrogen fertilizer can be obtained, making agricultural products cheaper.
Both rotary and reciprocating internal combustion engines generate rotational energy by repeatedly expanding and contracting their internal volumes, so in this invention they are considered to be the same internal combustion engine.
It would be ridiculous to think of rotary internal combustion engines and reciprocating internal combustion engines as separate entities, so they are filed as a single application.

特開2008-63980号広報JP2008-63980Publication 特表2012-528270号広報Special Public Relations No. 2012-528270 特開2018―189024号広報JP2018-189024 Public Relations

特開2008-63980号広報の発明には排気孔6が設けて有り
排気を行っ
て環境を汚染する構造である、
特表2012-528270号広報の発明には大気の利用をする吸
気弁19と排気弁20を設けている、排気弁20を設けて環境を汚する構造である、
特開2018―189024号広報の発明のレシプロエンジンには
吸気弁67と
排気弁70とロータリーエンジンにも吸気孔と排気孔を設けて環
境を汚染する構造ある、
The invention disclosed in JP 2008-63980 A has an exhaust hole 6, which exhausts air and pollutes the environment.
The invention disclosed in JP2012-528270A is provided with an intake valve 19 and an exhaust valve 20 that utilize the atmosphere. The exhaust valve 20 is provided in a structure that pollutes the environment.
The reciprocating engine of the invention disclosed in JP 2018-189024 A has an intake valve 67 and an exhaust valve 70, and the rotary engine also has intake and exhaust holes, which pollute the environment.

背景技術の
1、窒素酸化物(NOx)公害の発生については、
本発明は大気を利用しないので100%解決である、活用する酸素の価格は本発明の内燃機関を大気から酸素を分離する工場で利用して大気から酸素を分離すれば、現在の酸素の価格の破格値になる事ははっきりしている、
2、現在実験中の水素エンジンの燃費が悪いのも本発明品とする事で解決出来る事がはっきりしている、
3、構造が複雑で故障率も多い、生産コストも高い、生産ラインでの温暖化ガスの発生も非常に多い事も、
本発明では、内燃機関の複雑で高コスト部分の、吸気機構と排気機構を省いているので故障率の低い単純構造の生産コストの低下が図られている、
4、本発明ではエアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造且つ低コスト構造のシリンダー、作動室は密閉状態の環境汚染とは無縁の構造である次世代の内燃機関はこの構造で環境汚染を回復して行く大きな進歩の内燃機関である、
本発明の内燃機関の普及で動物や植物、地球環境がゼロカーボン環境を待ち望んでいる。
Regarding Background Art 1, the occurrence of nitrogen oxide (NOx) pollution,
This invention does not use the atmosphere, so it is a 100% solution. If the internal combustion engine of this invention is used in a factory that separates oxygen from the atmosphere, the price of the oxygen will clearly be a bargain compared to the current price of oxygen.
2. It is clear that the poor fuel economy of hydrogen engines currently being tested can be solved by using this invention.
3. The structure is complex, the failure rate is high, the production costs are high, and the production line generates a lot of greenhouse gases.
In the present invention, the intake mechanism and exhaust mechanism, which are complex and expensive parts of the internal combustion engine, are omitted, so that the production cost is reduced by using a simple structure with a low failure rate.
4. In the present invention, the intake and exhaust mechanisms, such as the air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst, are all omitted. The cylinder and working chamber are sealed and free from environmental pollution. This next-generation internal combustion engine is a major breakthrough in terms of its structure, which will help to recover from environmental pollution.
With the widespread use of the internal combustion engine of this invention, animals, plants, and the global environment look forward to a zero-carbon environment.

(1)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
シリンダーヘッドに、
シリンダー内の水蒸気に冷却水噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
圧力による残溜水の圧力押し出し排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段とを設け、
水素と酸素との化合比率混合気をピストンに向けて噴射激突点火燃焼爆発を図る化合比率混合気供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水素と酸素との化合比率混合気供給噴射手段と、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
前記化合比率混合気供給噴射手段の化合比率混合気を前記ピストンに向けて噴射を図って燃焼室内の上昇した圧力で、
前記残溜水排水手段の排水弁を一瞬の間の開弁による燃焼室内の圧力で残溜水の圧力押し出し排水を図る前記残溜水排水手段とを設けて、
前記化合比率混合気供給噴射手段より化合比率混合気を前記ピストンに向けて噴射点火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在に前記ピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内と燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
水素と酸素との前記化合比率混合気供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする。
(1) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection flow passage being provided with a two-way flow cutoff valve for injecting cooling water into the steam in the cylinder;
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine equipped with the two-way flow cutoff valve in a residual water drainage flow passage for pushing out and draining the residual water by pressure;
a hydrogen and oxygen mixed gas supply injection means having a function of linking the injection timing to the rotation speed of an internal combustion engine having the two-way flow cutoff valve in a mixed gas supply injection flow passage for injecting a mixed gas mixture of hydrogen and oxygen toward a piston to cause a collision, ignition, combustion, and explosion;
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
A hydrogen sensor for sensing hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
An oxygen sensor is provided to sense the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam,
The compound ratio mixture from the compound ratio mixture supply injection means is injected toward the piston, and the pressure in the combustion chamber is increased,
The residual water drainage means is provided to drain the residual water by pressing out the residual water with the pressure in the combustion chamber by momentarily opening the drainage valve of the residual water drainage means,
The compound ratio mixture is injected toward the piston from the compound ratio mixture supply injection means, and ignited, combusted, exploded, expanded, and pressurized into steam.
The piston and the connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and combustion chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
The vacuum pressure generated by cooling the water vapor and liquefying the condensed water is
Utilizing both pressure and negative pressure,
A hydrogen and oxygen mixture supply/injection means having the above-mentioned ratio;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve and are characterized in that they operate in normal rotation.

エアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造の低コスト構造の高効率燃費の内燃機関である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

水素と酸素との比は水素が66.66%と、酸素が33.33%との連動噴射を図る、

もし水素と酸素との点火燃焼爆発後の加圧水蒸気内に前記水素センサーと前記酸素センサーとで水素、酸素、がセンシングされたら次回サイクルで連動補正噴射が図られる、

水素と酸素との噴射時期は前記ピストンの上死点直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなる、

前記点火手段の点火時期は内燃機関の回転速度が高くなると同時に点火時期も連動して早くなる、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期も連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

化合比率混合気を点火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで水素又は酸素の補正噴射が図られる、
It is a highly fuel-efficient internal combustion engine with a simple, low-cost structure that omits all intake and exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of hydrogen to oxygen is 66.66% hydrogen and 33.33% oxygen, and the two will be injected in tandem.

If the hydrogen sensor and oxygen sensor detect hydrogen and oxygen in the pressurized steam after the ignition, combustion, and explosion of hydrogen and oxygen, a linked correction injection is performed in the next cycle.

The injection timing of hydrogen and oxygen is just before the top dead center of the piston, but as the rotation speed of the internal combustion engine increases, the injection timing also becomes earlier.

The ignition timing of the ignition means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

After the air-fuel mixture is ignited, burned and exploded, it should be 100% pure water vapor. If hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, the corrective injection of hydrogen or oxygen is performed in the next cycle.

(2)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
シリンダーヘッドに、
シリンダー内の水蒸気に冷却水噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
圧力による残溜水の圧力押し出し排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段とを設け、
且つ、
前記シリンダーヘッドに、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する前記点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との水素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との酸素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーと、
水素と酸素との化合比率連動混合機能を有する水素の噴射を図る水素供給噴射手段の水素供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水素供給噴射手段と、
酸素と水素との化合比率連動混合機能を有する酸素の噴射を図る酸素供給噴射手段の酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記酸素供給噴射手段とを設けた前処理燃焼室を設け、
前記水素供給噴射手段を前記前処理燃焼室の前記点火手段の点火電極に向けて前記水素の噴射激突を図り、
前記水素供給噴射手段の噴射位置より異なる位置から前記酸素供給噴射手段を前記点火手段の点火電極に向けて前記酸素の噴射激突を図る、
水素と酸素との噴射により圧力が上昇した前記前処理燃焼室内と前記燃焼室内との前記残溜水排水手段の排水弁を一瞬の間の開弁により圧力押し出し排水を図り点火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダーに内設の上下動自在のピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内と燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
加圧水蒸気の熱分解還元機能により発生する水素と酸素との繰り返し活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
前記水素供給噴射手段と、
前記酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする。
(2) The internal combustion engine of the present invention utilizing hydrogen, oxygen, and water vapor is
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection flow passage being provided with a two-way flow cutoff valve for injecting cooling water into the steam in the cylinder;
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine equipped with the two-way flow cutoff valve in a residual water drainage flow passage for pushing out and draining the residual water by pressure;
and,
The cylinder head,
The ignition means has a function of linking ignition timing to the rotation speed of an internal combustion engine that ignites a hydrogen-oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
Sensing the volume concentration ratio of hydrogen to oxygen,
A hydrogen sensor that senses hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
Sensing the volume concentration ratio of hydrogen and oxygen,
An oxygen sensor that senses the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
a hydrogen supply injection means for injecting hydrogen having a function of mixing hydrogen and oxygen in a compound ratio linked manner and having a function of linking injection timing to the rotation speed of an internal combustion engine having the two-way flow cutoff valve in a hydrogen supply injection flow passage of the hydrogen supply injection means;
a pre-treatment combustion chamber is provided with an oxygen supply injection means having a function of interlocking injection timing with the rotation speed of an internal combustion engine equipped with the two-way flow cutoff valve in an oxygen supply injection flow hole of the oxygen supply injection means for injecting oxygen having a function of interlocking mixing of oxygen and hydrogen compound ratios;
The hydrogen supply injection means is directed toward the ignition electrode of the ignition means in the pre-treatment combustion chamber to inject and impact the hydrogen;
the oxygen supply/injection means is directed toward the ignition electrode of the ignition means from a position different from the injection position of the hydrogen supply/injection means, and the oxygen is injected and impacted on the ignition electrode of the ignition means.
The drain valve of the residual water drainage means between the pretreatment combustion chamber and the combustion chamber, where the pressure has increased due to the injection of hydrogen and oxygen, is momentarily opened to push out the pressure and drain the water, thereby igniting, combusting, exploding, and pressurizing the water into steam.
A piston and a connecting rod that are movable up and down within the cylinder;
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and combustion chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Repeated use of hydrogen and oxygen generated by the thermal decomposition and reduction function of pressurized steam,
The vacuum pressure generated by cooling the water vapor and liquefying the condensed water is
Utilizing both pressure and negative pressure,
The hydrogen supply injection means;
The oxygen supply injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve and are characterized in that they operate in normal rotation.

エアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気弁カムシャフト、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造の低コスト構造の高効率燃費の内燃機関である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

水素と酸素との比は水素が66.66%と、酸素が33.33%との連動噴射を図る、

もし水素と酸素との点火燃焼爆発後の加圧水蒸気内に前記水素センサーと前記酸素センサーとで水素、酸素、がセンシングされたら次回サイクルで連動補正噴射が図られる、

水素と酸素との噴射時期は前記ピストンの上死点直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなる、

前記点火手段の点火時期は内燃機関の回転速度が高くなると同時に点火時期も連動して早くなる、

前処理燃焼室を設ける事で燃焼室の容積が大きくなるので前記ピストンの上部の燃焼室部の増大を図り燃焼室の容積の同一性を図っている、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

化合比率混合気を点火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで水素又は酸素の補正噴射が図られる、
It is a highly fuel-efficient internal combustion engine with a simple, low-cost structure that omits all intake and exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust valve camshaft, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of hydrogen to oxygen is 66.66% hydrogen and 33.33% oxygen, and the two will be injected in tandem.

If the hydrogen sensor and oxygen sensor detect hydrogen and oxygen in the pressurized steam after the ignition, combustion, and explosion of hydrogen and oxygen, a linked correction injection is performed in the next cycle.

The injection timing of hydrogen and oxygen is just before the top dead center of the piston, but as the rotation speed of the internal combustion engine increases, the injection timing also becomes earlier.

The ignition timing of the ignition means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

By providing a pre-treatment combustion chamber, the volume of the combustion chamber is increased, so the combustion chamber portion above the piston is enlarged to keep the volume of the combustion chamber constant.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

After the air-fuel mixture is ignited, burned and exploded, it should be 100% pure water vapor. If hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, the corrective injection of hydrogen or oxygen is performed in the next cycle.

(3)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
ローターセンターハウジングの気密作動室容積最大部の気密作動室に水蒸気冷却水の噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部の気密作動室に、
残溜水の排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段と、
水素と酸素との化合比率混合気の供給と噴射を図る水素と酸素との化合比率混合気の供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する化合比率混合気供給噴射手段と、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
水素と酸素との前記化合比率混合気供給噴射手段よりローターに向けて噴射を図って気密作動室内の上昇した圧力で前記残溜水排水手段の排水弁を一瞬の間の開弁による気密作動室内の圧力で残溜水の圧力押し出し排水を図る前記残溜水排水手段とを設けて、
前記化合比率混合気供給噴射手段より化合比率混合気を前記ローターに向けて噴射激突点火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルとを設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成する気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設する前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力の活用の、
加圧力と負圧力との両圧力の活用と、
水素と酸素との前記化合比率混合気供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする。
(3) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage for injecting steam cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber;
The rotor center housing has an airtight working chamber with a minimum volume,
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine, the residual water drainage flow passage being provided with the two-way flow cutoff valve for draining the residual water;
a combination ratio mixture supply injection means for supplying and injecting a combination ratio mixture of hydrogen and oxygen, the combination ratio mixture being provided in a supply injection flow passage of the combination ratio mixture of hydrogen and oxygen, the supply injection flow passage having a function of linking an injection timing to a rotation speed of the internal combustion engine, the supply injection flow passage being provided with the two-way flow cutoff valve;
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
A hydrogen sensor for sensing hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
An oxygen sensor is provided to sense the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam,
a residual water drainage means for draining the residual water by pressure pushing out the residual water with the pressure in the airtight operating chamber by momentarily opening the drain valve of the residual water drainage means with the pressure in the airtight operating chamber by injecting the hydrogen and oxygen mixed gas toward the rotor from the mixed gas supply injection means,
The compound ratio mixture is injected toward the rotor from the compound ratio mixture supply injection means, whereby the mixture is ignited, combusted, exploded, expanded and pressurized into steam.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal is provided.
an airtight operating chamber in which the eccentric shaft is rotatably installed and the rotor having a concave combustion chamber on its outer periphery is installed in the rotor center housing so as to be revolvable;
the eccentric shaft to which the flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be freely revolvable;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Utilizing the vacuum negative pressure generated by steam cooling water injection and condensation liquefaction,
Utilizing both pressure and negative pressure,
A hydrogen and oxygen mixture supply/injection means having the above-mentioned ratio;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve and are characterized in that they operate in normal rotation.

エアークリーナー、吸気管、吸気マニホールド、吸気ポート、排気ポート、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造低コスト構造の内燃機関である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

水素と酸素との比は水素が66.66%と、酸素が33.33%との連動噴射を図る、

もし水素と酸素との点火燃焼爆発後の加圧水蒸気内に前記水素センサー、前記酸素センサーとで水素、酸素、がセンシングされたら次回サイクルで連動補正噴射が図られる、

水素と酸素との噴射時期は気密作動室容積最小点の直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなる、

前記点火手段の点火時期は内燃機関の回転速度が高くなると同時に点火時期も連動して早くなる、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

化合比率混合気を点火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで水素又は酸素の補正噴射が図られる、
It is an internal combustion engine with a simple and low-cost structure that completely omits intake and exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake port, exhaust port, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of hydrogen to oxygen is 66.66% hydrogen and 33.33% oxygen, and the two will be injected in tandem.

If the hydrogen and oxygen sensors detect hydrogen and oxygen in the pressurized steam after the ignition, combustion, and explosion of hydrogen and oxygen, a linked correction injection is performed in the next cycle.

The injection timing of hydrogen and oxygen is just before the minimum volume of the airtight working chamber, but as the rotation speed of the internal combustion engine increases, the injection timing also advances accordingly.

The ignition timing of the ignition means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

After the air-fuel mixture is ignited, burned and exploded, it should be 100% pure water vapor. If hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, the corrective injection of hydrogen or oxygen is performed in the next cycle.

(4)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部の気密作動室に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段を設け、
且つ、
前記ローターセンターハウジングに、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との水素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気を点火燃焼爆発により加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なかった水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との酸素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気を点火燃焼爆発により加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なかった酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーと、
水素の供給と噴射を図る水素供給噴射流通孔路に前記双方向流通遮断弁を備えた酸素と化合比率連動混合噴射機能と内燃機関の回転速度に噴射時期の連動機能を有する水素供給噴射手段と、
酸素の供給と噴射を図る酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた水素と化合比率連動混合噴射機能と内燃機関の回転速度に噴射時期の連動機能を有する酸素供給噴射手段とを設けた前処理燃焼室の、
前記水素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射を図る、
前記水素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射を図る位置より異なる位置から、
前記酸素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射激突と酸素の噴射激突とを図り、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルとを設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成する気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターとを公転自在に内設する前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
前記水素供給噴射手段と、
前記酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする。
(4) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
a steam cooling water injection and condensation means for liquefying the steam cooling condensed water by injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and having a function of interlocking injection timing with the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the airtight working chamber of the smallest volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The rotor center housing,
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
Sensing the volume concentration ratio of hydrogen to oxygen,
A hydrogen sensor for sensing hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in a process of converting a hydrogen-oxygen gas mixture into pressurized steam by ignition, combustion, and explosion;
Sensing the volume concentration ratio of hydrogen and oxygen,
An oxygen sensor for sensing oxygen remaining in the pressurized steam when oxygen is not able to combine with hydrogen due to a hydrogen shortage or an oxygen excess during a process of converting a hydrogen-oxygen air-fuel mixture into pressurized steam by ignition, combustion, and explosion;
a hydrogen supply/injection means having a hydrogen mixing ratio-linked mixed injection function with oxygen, the mixed injection function being provided with the two-way flow cutoff valve in a hydrogen supply/injection flow passage for supplying and injecting hydrogen, and a function of linking the injection timing with the rotation speed of the internal combustion engine;
A pre-treatment combustion chamber is provided with an oxygen supply injection means having a hydrogen/compound ratio interlocking mixed injection function and an injection timing interlocking function with the rotation speed of an internal combustion engine, the oxygen supply injection means being provided with the two-way flow cutoff valve in an oxygen supply injection flow passage for supplying and injecting oxygen,
The hydrogen supply/injection means injects hydrogen toward an ignition electrode of the ignition means.
The hydrogen supply injection means is arranged to inject hydrogen toward the ignition electrode of the ignition means from a position different from the position where the hydrogen supply injection means is arranged to inject hydrogen toward the ignition electrode of the ignition means.
The oxygen supply/injection means is directed toward the ignition electrode of the ignition means to cause hydrogen injection and oxygen injection to collide with each other,
The aim is to convert the mixture of hydrogen and oxygen into steam by combustion, explosion, expansion and pressure.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal is provided.
an airtight operating chamber in which the eccentric shaft is rotatably installed and the rotor having a concave combustion chamber on its outer periphery is installed in the rotor center housing so as to be revolvable;
the rotor center housing in which the eccentric shaft to which the flywheel is fixed, the internal gear, the external gear, and the rotor are disposed so as to be freely revolvable;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction
Utilizing both pressure and negative pressure,
The hydrogen supply injection means;
The oxygen supply injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve and are characterized in that they operate in normal rotation.


エアークリーナー、吸気管、吸気マニホールド、吸気ポート、排気ポート、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造低コスト構造の内燃機関である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

水素と酸素との比は水素が66.66%と、酸素が33.33%との連動噴射を図る、

もし水素と酸素との点火燃焼爆発後の加圧水蒸気内に前記水素センサーと前記酸素センサーとで水素、酸素、がセンシングされたら次回サイクルで連動補正噴射が図られる、

水素と酸素との噴射時期は気密作動室容積最小点の直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなる、

前記点火手段の点火時期は内燃機関の回転速度が高くなると同時に点火時期も連動して早くなる、

前処理燃焼室を設けた事で内燃機関の気密作動室の容積が大きくなるのでローターの凹面燃焼室部の増大を図り気密作動室の容積の同一性を図っている、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなると、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

化合比率混合気を点火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで水素又は酸素の補正噴射が図られる、

It is an internal combustion engine with a simple and low-cost structure that completely omits intake and exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake port, exhaust port, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of hydrogen to oxygen is 66.66% hydrogen and 33.33% oxygen, and the two will be injected in tandem.

If the hydrogen sensor and oxygen sensor detect hydrogen and oxygen in the pressurized steam after the ignition, combustion, and explosion of hydrogen and oxygen, a linked correction injection is performed in the next cycle.

The injection timing of hydrogen and oxygen is just before the minimum volume of the airtight working chamber, but as the rotation speed of the internal combustion engine increases, the injection timing also advances accordingly.

The ignition timing of the ignition means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

By providing a pre-treatment combustion chamber, the volume of the airtight working chamber of the internal combustion engine becomes larger, so the concave combustion chamber of the rotor is enlarged to keep the volume of the airtight working chamber the same.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine,

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

After the air-fuel mixture is ignited, burned and exploded, it should be 100% pure water vapor. If hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, the corrective injection of hydrogen or oxygen is performed in the next cycle.

(5)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
シリンダーヘッドに、
シリンダー内に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素との化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素との化合比率連動噴射機能を有する液化酸素供給噴射手段とを設け、
ピストンに向けて液化水素と液化酸素とを噴射激突による液化水素と液化酸素との接触着火機能を活用する、
液化水素と液化酸素との接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に、
酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に、
水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
前記ピストンに向けて液化水素の噴射を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で液化水素噴射により気密作動室内部の上昇した圧力で残溜水の圧力押し出し排水を図る、
液化酸素も前記ピストンに向けて噴射激突を図って液化水素噴射と液化酸素噴射による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在に前記ピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内、燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常に回転稼働する事を特徴とする。
(5) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
On the cylinder head
a steam cooling water injection and condensation means for liquefying the cooling condensed water of the steam by injecting cooling water into a cylinder, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage of the steam cooling water injection and condensation means and having a function of linking injection timing to the rotation speed of the internal combustion engine;
A residual water drainage means for draining residual water, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage, and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied hydrogen supply injection means having a function of interlocking the injection timing with the rotation speed of an internal combustion engine, the liquefied hydrogen supply injection flow passage being provided with the two-way flow cutoff valve and having a function of interlocking the injection ratio with the liquefied oxygen;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of injection linked to a combination ratio with liquefied hydrogen, the liquefied oxygen supply injection means being provided with the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of interlocking injection timing with the rotation speed of the internal combustion engine;
Liquid hydrogen and liquid oxygen are injected toward the piston, causing contact ignition between the two.
In the process of contacting liquefied hydrogen and liquefied oxygen, igniting, combusting, and exploding, pressurized steam is generated.
A hydrogen sensor for sensing hydrogen that cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen and remains in the pressurized water vapor in the hydrogen state;
In the process of contacting liquefied hydrogen and liquefied oxygen, igniting, combusting, and exploding, pressurized steam is generated.
an oxygen sensor for sensing oxygen remaining in the pressurized water vapor in a state where oxygen cannot be combined with hydrogen due to a shortage of hydrogen or an excess of oxygen;
Injecting liquefied hydrogen toward the piston;
The drain valve of the residual water drainage means is opened for a moment to expel and drain the residual water by the increased pressure in the airtight operating chamber caused by the injection of liquefied hydrogen.
Liquid oxygen is also injected toward the piston to cause a collision, resulting in contact ignition, combustion, explosion, expansion, and pressurization of the liquid hydrogen and liquid oxygen.
The piston and the connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and combustion chamber in the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by cooling water vapor and liquefying condensed water.
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve, so that they can rotate and operate normally.

エアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気弁カムシャフト、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造で低コスト構造である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

液化水素と液化酸素との比は液化水素が66.66%と、液化酸素が33.33%との連動噴射を図る、

もし液化水素と液化酸素との接触着火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで液化水素又は液化酸素の補正噴射が図られる、

液化水素と液化酸素との噴射時期は前記ピストンの上死点直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなり接触着火時期も連動している、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期とが連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

液化水素の噴射開始は排水前に図り液化酸素の噴射は着火時期に噴射する為にタイムラグがあり、噴射終了は双方とも同一である、
It has a simple and low-cost structure that omits all intake and exhaust mechanisms, such as an air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust valve camshaft, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of liquefied hydrogen to liquefied oxygen will be 66.66% liquefied hydrogen and 33.33% liquefied oxygen, and the plan is to jet them in tandem.

If liquid hydrogen and liquid oxygen come into contact with each other, ignite, burn, and explode, the resulting mixture should be 100% pure water vapor. However, if hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, a corrective injection of liquid hydrogen or liquid oxygen is performed in the next cycle.

The injection timing of liquefied hydrogen and liquefied oxygen is immediately before the top dead center of the piston. As the rotation speed of the internal combustion engine increases, the injection timing also advances accordingly, and the contact ignition timing is also linked.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

The injection of liquefied hydrogen is started before the water is discharged, and the injection of liquefied oxygen is started at the ignition timing, so there is a time lag, but the end of injection is the same for both.

(6)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
シリンダーヘッドに、
シリンダー内に水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段とを設け、
且つ、
前記シリンダーヘッドに、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との噴射激突を図る噴射激突棒と、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする前記水素センサーと、
前記液化水素と前記液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に、残溜する酸素をセンシングする前記酸素センサーとを備えた前処理燃焼室を設け、
液化酸素と化合比率連動噴射機能を有する前記液化水素供給噴射手段を前記噴射激突棒に向けて液化水素の噴射激突を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で、
液化水素噴射により内部の上昇した圧力で燃焼室内の残溜水の圧力押し出し排水を図って、
前記液化水素供給噴射手段の噴射位置より異なる位置から前記液化酸素供給噴射手段を前記噴射激突棒に向けて噴射を図る液化水素と液化酸素との噴射激突による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在にピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルでシリンダー内、燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常に回転稼働する事を特徴とする。
(6) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to a rotation speed of an internal combustion engine, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage of the steam cooling water injection and condensation means in a cylinder;
a residual water drainage means for draining residual water, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage thereof, the residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The cylinder head,
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of interlocking the injection timing with the rotation speed of the internal combustion engine and having a combination ratio-linked injection function with the liquefied oxygen supply injection flow passage provided with the two-way flow cutoff valve;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in accordance with a compound ratio and having the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in accordance with a rotation speed of an internal combustion engine;
A jet impact rod for impacting liquefied hydrogen and liquefied oxygen;
The hydrogen sensor senses hydrogen that cannot be combined with oxygen due to a lack of oxygen or an excess of hydrogen in the pressurized steam generated during conversion in a process of attempting contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen, and remains in the pressurized steam in the form of hydrogen;
A pre-treatment combustion chamber is provided which is provided with the oxygen sensor for sensing oxygen remaining in the pressurized steam generated in the process of contact ignition combustion explosion utilizing the contact ignition function by injecting the liquefied hydrogen and the liquefied oxygen, in a state where oxygen cannot be combined with hydrogen due to a shortage of hydrogen or an excess of oxygen in the pressurized steam generated in the process,
The liquefied hydrogen supply/jet means having a function of injecting liquefied hydrogen in conjunction with the liquefied oxygen at a compound ratio is directed toward the jet/jet bar to jet/jet the liquefied hydrogen;
By momentarily opening the drain valve of the residual water drainage means,
The increased internal pressure caused by the injection of liquefied hydrogen is used to push out and drain the residual water in the combustion chamber.
The liquefied oxygen supply/injection means is injected toward the injection/collision rod from a position different from the injection position of the liquefied hydrogen supply/injection means, and contact ignition, combustion, explosion, expansion, and pressurization are achieved by the injection/collision of the liquefied hydrogen and liquefied oxygen.
A piston and a connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion and expansion of the residual water remaining in the cylinder and combustion chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
The vacuum pressure generated by cooling the water vapor and liquefying the condensed water is
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve, so that they can rotate and operate normally.


エアークリーナー、吸気管、吸気マニホールド、吸気弁ロッカーアーム、吸気弁カムシャフト、吸気弁、吸気弁タイミングギヤ、タイミングチエン、タイミングベルト、排気弁タイミングギヤ、排気弁カムシャフト、排気弁ロッカーアーム、排気弁、排気弁カムシャフト、排気マニホールド、排気管、排気サイレンサー、排気ガスの清浄触媒等の吸気機構と排気機構を一切省いた単純構造で低コスト構造である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

液化水素と液化酸素との比は液化水素が66.66%と、液化酸素が33.33%との連動噴射を図る、

もし液化水素と液化酸素との接触着火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで液化水素又は液化酸素の補正噴射が図られる、

液化水素と液化酸素との噴射時期は前記ピストンの上死点直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなり接触着火も連動している、

前処理燃焼室を設けた事で内燃機関の燃焼室の容積が大きくなるので前記ピストンの上部の燃焼室部の増大を図り燃焼室の容積の同一性を図っている、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

液化水素の噴射開始は排水前に図り液化酸素の噴射は着火時期に噴射する為にタイムラグがあり、噴射終了は双方とも同一である、

It has a simple and low-cost structure that omits all intake and exhaust mechanisms, such as an air cleaner, intake pipe, intake manifold, intake valve rocker arm, intake valve camshaft, intake valve, intake valve timing gear, timing chain, timing belt, exhaust valve timing gear, exhaust valve camshaft, exhaust valve rocker arm, exhaust valve, exhaust valve camshaft, exhaust manifold, exhaust pipe, exhaust silencer, and exhaust gas purification catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of liquefied hydrogen to liquefied oxygen will be 66.66% liquefied hydrogen and 33.33% liquefied oxygen, and the plan is to jet them in tandem.

If liquid hydrogen and liquid oxygen come into contact with each other, ignite, burn, and explode, the resulting mixture should be 100% pure water vapor. However, if hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, a corrective injection of liquid hydrogen or liquid oxygen is performed in the next cycle.

The injection timing of liquefied hydrogen and liquefied oxygen is just before the top dead center of the piston. As the rotation speed of the internal combustion engine increases, the injection timing also advances, and contact ignition also occurs.

Since the volume of the combustion chamber of the internal combustion engine is increased by providing a pre-treatment combustion chamber, the combustion chamber portion above the piston is enlarged to keep the volume of the combustion chamber constant.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

The injection of liquefied hydrogen is started before the water is discharged, and the injection of liquefied oxygen is started at the ignition timing, so there is a time lag, but the end of injection is the same for both.

(7)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との接触着火機能を活用する液化水素と液化酸素との接触着火燃焼爆発の工程で変換発生する加圧水蒸気内に、
酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との接触着火燃焼爆発の工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
ローターに向けて液化水素の噴射を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で液化水素噴射により気密作動室内部の上昇した圧力で残溜水の圧力押し出し排水を図る、
続いて液化酸素噴射を図って液化水素噴射と液化酸素噴射による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルと、を設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成した気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設した前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段と、を設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段とのそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働を図る事を特徴とする。
(7) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
a steam cooling water injection and condensation means for injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume portion of the airtight working chamber to liquefy the steam as cooling condensed water; the steam cooling water injection and condensation means is provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and has a function of linking injection timing to the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the minimum volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injection in conjunction with a compound ratio and having the two-way flow cutoff valve in a liquefied hydrogen supply injection flow passage having a function of injection timing in conjunction with the rotation speed of an internal combustion engine;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in accordance with a compound ratio and having the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in accordance with a rotation speed of an internal combustion engine;
Utilizing the contact ignition function of liquefied hydrogen and liquefied oxygen. In the pressurized steam generated during the process of contact ignition, combustion and explosion of liquefied hydrogen and liquefied oxygen,
A hydrogen sensor for sensing hydrogen that cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen and remains in the pressurized water vapor in the hydrogen state;
an oxygen sensor for sensing oxygen remaining in the pressurized steam generated in the process of contact, ignition, combustion and explosion of the liquefied hydrogen and the liquefied oxygen because of a lack of hydrogen or an excess of oxygen in the pressurized steam that cannot combine with hydrogen,
Liquid hydrogen is sprayed toward the rotor,
The drain valve of the residual water drainage means is opened for a moment to expel and drain the residual water by the increased pressure in the airtight operating chamber caused by the injection of liquefied hydrogen.
Next, liquid oxygen is injected to cause contact ignition, combustion, explosion, expansion, and pressurization to vaporize the liquid hydrogen and liquid oxygen.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal and,
an airtight operating chamber configured by rotatably installing the eccentric shaft therein and revolving the rotor having a concave combustion chamber on its outer periphery within the rotor center housing;
the eccentric shaft to which a flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be capable of revolving;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
A cooling means for the internal combustion engine is provided,
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction,
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve to ensure normal rotation operation.

エアークリーナー、吸気管、吸気マニホールド、吸気ポート、排気ポート、排気マニホールド、排気管、排気サイレンサー、排気ガスの正常触媒等の吸気機構と排気機構を一切省いた単純構造である、

排水量は残溜水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

液化水素と液化酸素との比は液化水素が66.66%と、液化酸素が33.33%との連動噴射を図る、

もし液化水素と液化酸素との接触着火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで液化水素又は液化酸素の補正噴射が図られる、

液化水素と液化酸素との噴射時期は気密作動室容積最小点の直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなり接触着火も連動している、

前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

液化水素の噴射開始は排水前に図り液化酸素の噴射は着火時期に噴射する為にタイムラグがあり、噴射終了は双方とも同一である、
It has a simple structure that does not include any intake or exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake port, exhaust port, exhaust manifold, exhaust pipe, exhaust silencer, or normal exhaust gas catalyst.

The amount of water discharged is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of liquefied hydrogen to liquefied oxygen will be 66.66% liquefied hydrogen and 33.33% liquefied oxygen, and the plan is to jet them in tandem.

If liquid hydrogen and liquid oxygen come into contact with each other, ignite, burn, and explode, the resulting mixture should be 100% pure water vapor. However, if hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, a corrective injection of liquid hydrogen or liquid oxygen is performed in the next cycle.

The injection timing of liquefied hydrogen and liquefied oxygen is just before the minimum volume of the airtight working chamber, but as the rotation speed of the internal combustion engine increases, the injection timing also advances, and contact ignition also occurs.

The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

The injection of liquefied hydrogen is started before the water is discharged, and the injection of liquefied oxygen is started at the ignition timing, so there is a time lag, but the end of injection is the same for both.

(8)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
且つ、
前記ローターセンターハウジングに、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期が連動する機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期が連動する機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との噴射激突棒と、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを備えた前処理燃焼室を設け、
前記液化水素供給噴射手段を前記前処理燃焼室の前記噴射激突棒に向けて液化水素の噴射激突を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で、
液化水素噴射により上昇した気密作動室内の圧力で残溜水の圧力押し出し排水を図って、
前記液化水素供給噴射手段の噴射位置より異なる位置から前記液化酸素供給噴射手段を前記噴射激突棒に向けて液化水素と液化酸素との噴射激突による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルと、を設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成した気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設した前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段と、を設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働を図る事を特徴とする。
(8) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
a steam cooling water injection and condensation means for liquefying the steam cooling condensed water by injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and having a function of interlocking injection timing with the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the minimum volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The rotor center housing,
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injection in conjunction with a compound ratio and having the two-way flow cutoff valve in a liquefied hydrogen supply injection flow passage having a function of interlocking injection timing with the rotation speed of an internal combustion engine;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in accordance with a compound ratio and having the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in accordance with a rotation speed of an internal combustion engine;
A jet of liquid hydrogen and liquid oxygen,
A hydrogen sensor for sensing hydrogen that remains in the pressurized steam in the form of hydrogen because it cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen in the pressurized steam generated during conversion in a process for contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen;
A pre-treatment combustion chamber is provided with an oxygen sensor for sensing oxygen that remains in the pressurized steam in the form of oxygen because it cannot combine with hydrogen due to a lack of hydrogen or an excess of oxygen in the pressurized steam generated during the process of contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen,
The liquefied hydrogen supply injection means is directed toward the injection and impact rod of the pretreatment combustion chamber to inject and impact the liquefied hydrogen;
By momentarily opening the drain valve of the residual water drainage means,
The pressure inside the airtight operating chamber is increased by the injection of liquefied hydrogen, and the residual water is forced out and drained.
The liquefied oxygen supply/injection means is directed toward the injection/collision rod from a position different from the injection position of the liquefied hydrogen supply/injection means, and the liquefied hydrogen and the liquefied oxygen are injected and collided with each other to cause contact ignition, combustion, explosion, expansion, and pressurization to vaporize.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal and,
an airtight operating chamber configured by rotatably installing the eccentric shaft therein and revolving the rotor having a concave combustion chamber on an outer periphery of the rotor in the rotor center housing;
the eccentric shaft to which a flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be capable of revolving;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
A cooling means for the internal combustion engine is provided,
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction,
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
The residual water drainage means and each of the means are provided with the two-way flow cutoff valve to ensure normal rotation operation.

エアークリーナー、吸気管、吸気マニホールド、吸気ポート、排気ポート、排気マニホールド、排気管、排気サイレンサー、排気ガスの正常触媒等の吸気機構と排気機構を一切省いた単純構造である、

排水量は残溜流水の全量ではない残溜した残溜水は水蒸気爆発に活用を図るものである、

液化水素と液化酸素との比は液化水素が66.66%と、液化酸素が33.33%との連動噴射を図る、

もし液化水素と液化酸素との接触着火燃焼爆発後は100%純粋の水蒸気でなければならないが、もし前記水素センサー、前記酸素センサーで水素又は酸素がセンシングされれば次回のサイクルで液化水素又は液化酸素の補正噴射が図られる、

液化水素と液化酸素との噴射時期は気密作動室容積最小点の直前であるが内燃機関の回転速度が高くなると同時に噴射時期も連動して早くなり接触着火も連動している、

前処理燃焼室を設けた事で内燃機関の気密作動室の容積が大きくなるのでローターの凹面燃焼室部の増大を図り気密作動室の容積の同一性を図っている、
前記水蒸気冷却水噴射凝縮手段の噴射時期は内燃機関の回転速度が高くなると同時に噴射時期が連動して早くなる、

前記残溜水排水手段の排水時期は内燃機関の回転速度が高くなると同時に排水噴射時期が連動して早くなる、

排水液室7pcを前記残溜水排水手段7pdの前部に設けて排水効率向上を図ると良い、

液化水素の噴射開始は排水前に図り液化酸素の噴射は着火時期に噴射する為にタイムラグがあり、噴射終了は双方とも同一である、
It has a simple structure that does not include any intake or exhaust mechanisms such as an air cleaner, intake pipe, intake manifold, intake port, exhaust port, exhaust manifold, exhaust pipe, exhaust silencer, or normal exhaust gas catalyst.

The amount of discharged water is not the total amount of residual water. The residual water is intended to be used for steam explosions.

The ratio of liquefied hydrogen to liquefied oxygen will be 66.66% liquefied hydrogen and 33.33% liquefied oxygen, and the plan is to jet them in tandem.

If liquid hydrogen and liquid oxygen come into contact with each other, ignite, burn, and explode, the resulting mixture should be 100% pure water vapor. However, if hydrogen or oxygen is detected by the hydrogen sensor or oxygen sensor, a corrective injection of liquid hydrogen or liquid oxygen is performed in the next cycle.

The injection timing of liquefied hydrogen and liquefied oxygen is just before the minimum volume of the airtight working chamber, but as the rotation speed of the internal combustion engine increases, the injection timing also advances, and contact ignition also occurs.

By providing a pre-treatment combustion chamber, the volume of the airtight working chamber of the internal combustion engine becomes larger, so the concave combustion chamber of the rotor is enlarged to keep the volume of the airtight working chamber the same.
The injection timing of the steam cooling water injection condensation means is advanced in conjunction with the increase in the rotation speed of the internal combustion engine.

The drainage timing of the residual water drainage means is advanced in conjunction with the drainage injection timing as the rotation speed of the internal combustion engine increases.

It is advisable to provide the drainage liquid chamber 7pc in front of the residual water drainage means 7pd to improve drainage efficiency.

The injection of liquefied hydrogen is started before the water is discharged, and the injection of liquefied oxygen is started at the ignition timing, so there is a time lag, but the end of injection is the same for both.

(9)本発明に係る水素と酸素と水蒸気とを活用の内燃機関は、
冷媒兼潤滑油の冷却手段を設けていても良い。
(9) The internal combustion engine according to the present invention utilizing hydrogen, oxygen, and water vapor is
A cooling means for the refrigerant/lubricant oil may be provided.

内燃機関の冷却手段は内燃機関の上部の燃焼室周辺から中部を主とする冷却手段であるが
冷媒兼潤滑油の冷却手段は内燃機関の内部と下部の摺動部分の冷却を図るものである
The cooling means for the internal combustion engine mainly cools the upper combustion chamber area to the middle part of the engine, while the cooling means for the refrigerant and lubricant oil is intended to cool the inside of the engine and the lower sliding parts.

水素供給噴射手段と、
酸素供給噴射手段と、
化合比率混合気の供給噴射手段と、
液化水素供給噴射手段と、
液化酸素供給噴射手段と、
水蒸気冷却水噴射凝縮手段と、
残溜水排水手段の各手段に内燃機関の不調原因の発生を阻止する双方向流通遮断弁を設けた水素と酸素と水蒸気とを活用した本発明において、
水素と酸素とに点火、着火を図り点火、着火燃焼爆発で発生する高温高圧の燃焼爆発膨張加圧水蒸気エネルギーの活用と、
水素と酸素とに点火、着火を図り点火、着火燃焼爆発で発生する高温高圧の加圧水蒸気エネルギーの活用を図る前回サイクルで内燃機関内(シリンダー内、燃焼室内、気密作動室内)に残溜する残溜水の水蒸気爆発を図り発生する水蒸気爆発膨張加圧水蒸気エネルギーの活用との、
二つの爆発膨張加圧水蒸気を自己熱による熱分解還元変換機能によって、
加圧水蒸気を新しいエネルギーの元の水素と酸素に変換を図り、
変換発生する水素と酸素とは自己着火燃焼爆発で加圧水蒸気化をし、
加圧水蒸気は再び水素と酸素とに熱分解還元変換と自己着火燃焼爆発を、
内燃機関の内部で三度、四度と繰り返す加圧水蒸気エネルギーで内燃機関の加圧稼働を図り、
加圧稼働を図り終えた加圧水蒸気は、
従来の内燃機関では排気すべき加圧水蒸気を本発明では前記前記水蒸気冷却水噴射凝縮手段の冷却水噴射で加圧水蒸気を冷却凝縮により発生する真空負圧エネルギーを内燃機関の真空負圧稼働に活用を図る、
こうして水素と酸素と水蒸気とが有する全てのエネルギーのフル活用を図る、
吸気機構と排気機構が無い単純構造、低コスト構造で高効率燃費の内燃機関である、
A hydrogen supply injection means;
Oxygen supply injection means;
A means for supplying and injecting a compound ratio mixture;
A liquefied hydrogen supply injection means;
A liquefied oxygen supply injection means;
A steam cooling water injection condensation means;
In the present invention, hydrogen, oxygen and water vapor are utilized, and a two-way flow cutoff valve is provided in each of the residual water drainage means to prevent the occurrence of causes of malfunction in the internal combustion engine.
Ignition of hydrogen and oxygen, ignition, ignition combustion explosion, high temperature and high pressure combustion explosion expansion pressurized steam energy utilization,
Ignition and combustion of hydrogen and oxygen is attempted, and high-temperature, high-pressure pressurized steam energy is generated by the ignition and combustion explosion. A steam explosion of the residual water remaining in the internal combustion engine (in the cylinder, the combustion chamber, and the airtight working chamber) in the previous cycle is attempted, and the steam explosion expansion pressurized steam energy is generated.
The two explosive expansion pressurized steam is converted into heat by thermal decomposition and reduction.
The aim is to convert pressurized steam into new energy sources, hydrogen and oxygen,
The hydrogen and oxygen produced by the conversion are pressurized into steam through self-ignition, combustion, and explosion.
The pressurized steam undergoes thermal decomposition, reduction, and conversion to hydrogen and oxygen again, followed by self-ignition, combustion, and explosion.
The internal combustion engine is operated under pressure by using pressurized steam energy, which is repeated three or four times inside the engine.
After the pressurized operation is completed,
In the conventional internal combustion engine, pressurized steam is exhausted, but in the present invention, the pressurized steam is cooled and condensed by injecting cooling water from the steam cooling water injection and condensation means, and the vacuum negative pressure energy is utilized for the vacuum negative pressure operation of the internal combustion engine.
In this way, we aim to fully utilize all the energy contained in hydrogen, oxygen, and water vapor.
It is a simple, low-cost internal combustion engine with no intake or exhaust system, and is highly fuel-efficient.

図1は、レシプロ構造の内燃機関の断面説明図であるFIG. 1 is a cross-sectional view of an internal combustion engine having a reciprocating structure. 図2は、レシプロ構造の内燃機関の断面説明図であるFIG. 2 is a cross-sectional view of an internal combustion engine having a reciprocating structure. 図3は、ロータリー構造の内燃機関の断面説明図であるFIG. 3 is a cross-sectional view of an internal combustion engine having a rotary structure. 図4は、ロータリー構造の内燃機関の断面説明図であるFIG. 4 is a cross-sectional view of an internal combustion engine having a rotary structure. 図5は、レシプロ構造の内燃機関の断面説明図であるFIG. 5 is a cross-sectional view of an internal combustion engine having a reciprocating structure. 図6は、レシプロ構造の内燃機関の断面説明図であるFIG. 6 is a cross-sectional view of an internal combustion engine having a reciprocating structure. 図7は、ロータリー構造の内燃機関の断面説明図であるFIG. 7 is a cross-sectional view of an internal combustion engine having a rotary structure. 図8は、ロータリー構造の内燃機関の断面説明図であるFIG. 8 is a cross-sectional view of an internal combustion engine having a rotary structure. 図9は、回転型の双方向流通遮断弁の断面説明図であるFIG. 9 is a cross-sectional view of a rotary type two-way flow cutoff valve. 図10は、回転型の双方向流通遮断弁の断面説明図であるFIG. 10 is a cross-sectional view of a rotary type two-way flow cutoff valve. 図11は、上下動型の双方向流通遮断弁の断面説明図であるFIG. 11 is a cross-sectional view of a vertical movement type two-way flow cutoff valve. 図12は、上下動型の双方向流通遮断弁の断面説明図であるFIG. 12 is a cross-sectional view of a vertical movement type two-way flow cutoff valve. 図13は、回転型の双方向流通遮断弁の理論説明図であるFIG. 13 is a theoretical explanatory diagram of a rotary type two-way flow cutoff valve. 図14は、回転型の双方向流通遮断弁の理論説明図であるFIG. 14 is a theoretical explanatory diagram of a rotary type two-way flow cutoff valve. 図15は、上下動型の双方向流通遮断弁の理論説明図であるFIG. 15 is a theoretical explanatory diagram of a vertical movement type two-way flow cutoff valve. 図16は、上下動型の双方向流通遮断弁の理論説明図であるFIG. 16 is a theoretical explanatory diagram of a vertical movement type two-way flow cutoff valve.

基本構造は現存のレシプロ内燃機関、ロータリー内燃機関の吸気機構と排気機構を省いた物なので生産活用にはそんなに問題は無い、
普及活用によって地球温暖化も逆流改善する事を願っている、
The basic structure is that of an existing reciprocating internal combustion engine and rotary internal combustion engine, with the intake and exhaust mechanisms removed, so there are no major problems with production use.
We hope that widespread use of this technology will help to reduce the effects of global warming.

無公害で自動車、フォークリフト、農業機械、飛行機、産業機械、汽車、船舶、コジェネレーション、発電所、屋内植物生産業、酸素や窒素の分離工場、ハウス植物生産業、(各家庭、商店、工場の(自家発電、照明、給湯、冷房、暖房、冷凍、冷蔵))大気を使用しない排気が無い構造なので水中や狭い倉庫等でも利用できる、 It is non-polluting and can be used in automobiles, forklifts, agricultural machinery, airplanes, industrial machinery, trains, ships, cogeneration, power plants, indoor plant production industries, oxygen and nitrogen separation plants, greenhouse plant production industries, (homes, shops, factories (self-power generation, lighting, hot water supply, air conditioning, heating, freezing, refrigeration)), and because it does not use the atmosphere and has no exhaust, it can also be used underwater or in small warehouses,

1 液化水素容器(図省略)
1a 圧縮水素容器(図省略)
1as 圧力センサー
1epf 水素供給噴射手段
1epff 化合比率混合気供給噴射手段
1sg 酸素と水素との水素の容積濃度水素センサー、
又は、加圧水蒸気内の水素の含有水素センサ-
2 液化酸素容器(図省略)
2a 圧縮酸素容器(図省略)
2epf 酸素供給噴射手段
2sg 水素と酸素との酸素の容積濃度酸素センサ-、又
は、加圧水蒸気内の 酸素の含有酸素センサ-
3p 点火手段
3tp 前処理燃焼室
4p 水蒸気冷却水噴射凝縮手段
4pa 水蒸気冷却水供給噴射流通孔路
4pb 水蒸気冷却水噴射供給孔
6p シリンダー
6pa シリンダーヘッド
6pb 燃焼室
6pd シリンダー6pの外壁部と、シリンダーヘッド6paの外壁部と、燃焼室6pbの外壁部と、繭型のローターセンターハウジ ング6raの外壁部と、ローターフロントハウジング6rbの外壁部と、ローターリヤーハウジング6rcの外壁部と、前処理燃焼室3tpの外壁部に設ける冷却冷媒槽、(図省略)
6r 繭型のローターセンターハウジングの内周弧面
6ra 繭型のローターセンターハウジング
6rb ローターフロントハウジング(図省略)
6rc ローターリヤーハウジング(図省略)
7a コンロッド
7p ピストン
7pc 排水液室
7pd 残溜水の排水手段
7r ローター
7ra アペックスシール
7rb サイドシール(図省略)
7rc コーナーシール(図省略)
7re オイルシール(図省略)
7rf 外歯歯車 (図省略)
7rg 内歯歯車 (図省略)
7ri 気密作動室
7rn 凹面燃焼室
8p フライホイール(図省略)
8r フライホイール(図省略)
1 Liquefied hydrogen container (not shown)
1a Compressed hydrogen container (not shown)
1as pressure sensor 1epf hydrogen supply injection means 1epff compound ratio mixture supply injection means 1sg oxygen and hydrogen volume concentration hydrogen sensor,
Or, a hydrogen sensor for detecting hydrogen in pressurized water vapor.
2. Liquid oxygen container (not shown)
2a Compressed oxygen container (not shown)
2epf Oxygen supply injection means 2sg Volume concentration oxygen sensor of hydrogen and oxygen, or oxygen content oxygen sensor in pressurized water vapor
3p ignition means 3tp pretreatment combustion chamber
4p Steam cooling water injection condensation means
4p a Steam cooling water supply injection flow hole 4pb Steam cooling water injection supply hole 6p Cylinder 6p a Cylinder head 6pb Combustion chamber 6pd An outer wall of the cylinder 6p, an outer wall of the cylinder head 6p a, an outer wall of the combustion chamber 6pb, an outer wall of the cocoon-shaped rotor center housing 6ra, an outer wall of the rotor front housing 6rb, an outer wall of the rotor rear housing 6rc, and a cooling refrigerant tank provided on the outer wall of the pre-treatment combustion chamber 3tp (not shown)
6r: Inner circumferential arc surface of cocoon-shaped rotor center housing 6ra: Cocoon-shaped rotor center housing 6rb: Rotor front housing (not shown)
6rc rotor rear housing (not shown)
7a Connecting rod 7p Piston 7pc Drainage liquid chamber 7pd Residual water drainage means 7r Rotor 7ra Apex seal 7rb Side seal (not shown)
7rc corner seal (not shown)
7re Oil seal (not shown)
7rf External gear (omitted from illustration)
7rg Internal gear (not shown)
7ri Airtight working chamber 7rn Concave combustion chamber 8p Flywheel (not shown)
8r Flywheel (not shown)

9p クランクシャフト
9r エキセントリックシャフト(図省略)
10 ローターの公転方向
11epf 液化水素供給噴射手段と、
12epf 液化酸素供給噴射手段と、
13 双方向流通遮断弁
13p 水素と酸素の噴射激突棒
14 回転型流通遮断弁(円柱状のバルブを回転により
流通孔路を開閉する)
14a 上下動型流通遮断弁(円柱状のバルブを上下動に
より流通孔路を開閉する)
15 流通孔路
15a 噴射流通弁孔
15b 流通噴射孔
<定義>
最細分散化とは、
最も細かく分散する事である、
<定義>
水素と酸素との化合比率混合気、酸水素爆鳴気とは、
水素と酸素との水素混合容積濃度66.66%と酸素混合容積濃度33.33%との99.99%の水素と酸素との最も化合に適した比率の混合気である、
<定義>
水素の容器内に収容されている物は、水素分子の塊である、
酸素の容器内に収容されている物は、酸素分子の塊である、
<定義>
最細分散化手段とは、
水素分子の塊又は酸素分子の塊を噴射激突による、激突衝撃波によって最も細かく分散化する手段である、
<定義>
連動、連稼働、連動稼働とは、
複数のセンサーや複数の手段や複数のセンサーと複数の手段が連動して稼働する事である、
一つの手段を動かすことによって他の部分も統一的に動く事である、
<定義>
連動噴射とは、
液化水素噴射と液化酸素噴射や水素噴射と酸素噴射の一つの噴射を図る事によって他の噴射も連動して稼動する事、
<定義>
水液化とは、
気体の水蒸気が冷却水の冷却による冷却凝縮によって液体の水に変化する事である、
<定義>
双方向とは、
各噴射手段の噴射口 ⇔ 前記シリンダー6p内又は前記燃焼室6pb内又は前記前処理燃焼室3tp内或いは気密作動室7ri内である、
廃水タンク ⇔ 前記シリンダー6p内又は燃焼室6pb内又は前記前処理燃焼室3tp内或いは気密作動室7ri内である、
<定義>
事前に設定して置く設定圧力とは、
本発明では、ピストン7pの上昇行程又はローター7rの気密作動室7riの容積縮小行程での圧縮行程は無いが、前記水素と、前記酸素の噴射を進めてゆくと、前記前処理燃焼室3tp内と前記燃焼室6pb内と気密作動室7riに従来のエンジンの圧縮比(圧縮圧力)に相当する圧力になる時が有り、それは水素と、酸素とを前記前処理燃焼室3tp内と前記燃焼室6pb内と前記気密作動室7ri内に、水素と酸素との化合比率をセンシングしながら水素と、前記酸素を噴射によって、前記前処理燃焼室3tp内と前記燃焼室6pb内と前記気密作動室7ri内の圧力が上昇し、従来のエンジンの圧縮比(圧縮圧力)に相当する事前設定圧力に達した(圧力センサー1asで圧力のセンシング)時が設定圧力である、
設定圧力は高い方が効率が良いので、従来のエンジンのようにプレイグニッションも起こりにくいので設定圧力を高くしても良い

<定義>
ピストン上死点と、ピストン下死点と、ピストン上死点直前と、ピストン下死点直前とは、
ピストン上死点とは、ピストンが最上部で前記フライホイールの回転角度で0度 又は 360度である、
ピストン下死点とは、ピストンが最下部で前記フライホイールの回転角度で180度である、
ピストン上死点直前とは、前記フライホイールの回転角度で300度~359.99度である、
ピストン下死点直前とは、前記フライホイールの回転角度で120度~179.99度である、
<定義>
ロータリー構造の内燃機関で気密作動室容積最小点直前と気密作動室容積最大点直前とは、
前記ローターセンターハウジング6raの内周弧面部と、前記ローター7rの外周弧面部と、前記ローターフロントハウジング6rbの内面部と、前記ローターリヤーハウジング6rcの内面部で構成する気密作動室容積最小点の前記ローター7rの逆公転角度で60度~気密作動室容積最小点が気密作動室容積最小点直前である、
前記ローターセンターハウジング6raの内周弧面部と、前記ローター7rの外周弧面部と、前記ローターフロントハウジング6rbの内面部と、前記ローターリヤーハウジング6rcの内面部で構成する気密作動室容積最大点の前記ローター7rの逆公転角度で60度~気密作動室容積最大点である、
<定義>
前記水素分子の塊と、前記酸素分子の塊との激突で発生する衝撃波で掻き混ぜ最細分散化とセンシング混合を図る前処理燃焼室3tpは、
水素分子の塊と酸素分子の塊とを噴射激突で発生する衝撃波によって最細分散化と最細分散化した分散化後の水素分子と最細分散化した分散化後の酸素分子を水素センサー1sgと、酸素センサー2sgと、圧力センサー1asとでセンシングしながらセンシング掻き混ぜ混合を図るものである、
水素分子66.66%対と酸素分子33.33%との比率で混合を図り99.99%の化合比率の化合比率混合気又は酸水素爆鳴気のセンシング混合生成と点火を図る前記前処理燃焼室である
<定義>
掻き混ぜとは
無造作に水素分子の塊と酸素分子の塊の噴射で発生する激突衝撃波によって掻き混ぜる
<定義>
過加熱とは、
通常工業的に利用されている加熱手段のアセチレン、コークス、プロパンガス、灯油バーナー、重油バーナー、ガソリンエンジン内部、ディーゼルエンジン内部等の加熱温度に比べ物にならない高熱の3.000℃~4.000℃である、

<定義>
水素と酸素の混合気は700℃以上で自己着火機能を有している、
液化水素と液化酸素との接触着火とは全く別の着火機能である、
液化水素と液化酸素は温度に関係なく液化水素と液化酸素を噴射によって接触すれば着火する、
<定義>
化合比率とは、
水素と酸素とが化学反応を起こして水素と酸素とが結合するのに理想の混合比率である、
<定義>
水蒸気の熱分解還元機能
フランスの科学者ラボアジェ氏の1783年、灼熱中の鉄管に水蒸気を通して水素を発見した実験結果である、(日本大百科全書ニッポニカ)
その時は解らなかったようだが同時に酸素も発生していたと考えられる、水蒸気(水)は水素と酸素との化合物であるから、
本発明の内燃機関の燃焼室、シリンダー、気密作動室の壁面が灼熱状態と言う訳ではない、
燃焼室内、シリンダー内、気密作動室内の空間が3.000℃~4.000℃の高温である、
燃焼室、シリンダー内、気密作動室内の壁は、壁内部の冷却冷媒槽が循環冷却冷媒液(クーラント)で冷却されている、

9p Crankshaft 9r Eccentric shaft (omitted)
10 Rotor revolution direction 11epf Liquid hydrogen supply injection means;
12 epf liquefied oxygen supply and injection means;
13 Two-way flow cutoff valve 13p Hydrogen and oxygen jet ramming rod 14 Rotary flow cutoff valve (a cylindrical valve that opens and closes the flow passage by rotating)
14a Vertical movement type flow cutoff valve (a cylindrical valve that opens and closes the flow passage by moving up and down)
15 Distribution hole passage 15a Injection distribution valve hole 15b Distribution injection hole <Definition>
What is the finest decentralization?
The finest dispersion is
<Definition>
The hydrogen and oxygen mixture, oxyhydrogen detonation gas, is
This is a mixture of hydrogen and oxygen with a hydrogen volume concentration of 66.66% and an oxygen volume concentration of 33.33%, which is the most suitable ratio for the combination of 99.99% hydrogen and oxygen.
<Definition>
The object contained in the hydrogen container is a mass of hydrogen molecules.
The object contained in the oxygen container is a mass of oxygen molecules.
<Definition>
The finest decentralization means are:
This is a method for dispersing a mass of hydrogen molecules or a mass of oxygen molecules as finely as possible by jet collision and impact shock waves.
<Definition>
What are interlocking, linked operation, and linked operation?
It is the operation of multiple sensors, multiple means, or multiple sensors and multiple means in conjunction with each other.
By moving one part, the other parts move in unison.
<Definition>
What is linked injection?
By injecting liquefied hydrogen and liquefied oxygen, or by injecting hydrogen and oxygen, the other injections can be operated in conjunction with each other.
<Definition>
What is water liquefaction?
It is the process in which gaseous water vapor is condensed into liquid water by cooling the cooling water.
<Definition>
Bidirectional means:
The injection port of each injection means is in the cylinder 6p, the combustion chamber 6pb, the pre-treatment combustion chamber 3tp, or the airtight operation chamber 7ri.
Wastewater tank ⇔ in the cylinder 6p or in the combustion chamber 6pb or in the pretreatment combustion chamber 3tp or in the airtight operating chamber 7ri,
<Definition>
The preset pressure is:
In the present invention, there is no compression stroke during the upward stroke of the piston 7p or the volume reduction stroke of the airtight operating chamber 7ri of the rotor 7r, but as the injection of the hydrogen and oxygen proceeds, there is a time when the pressure in the pre-treatment combustion chamber 3tp, the combustion chamber 6pb, and the airtight operating chamber 7ri reaches a pressure equivalent to the compression ratio (compression pressure) of a conventional engine. This is because the pressure in the pre-treatment combustion chamber 3tp, the combustion chamber 6pb, and the airtight operating chamber 7ri increases as hydrogen and oxygen are injected into the pre-treatment combustion chamber 3tp, the combustion chamber 6pb, and the airtight operating chamber 7ri while sensing the combination ratio of hydrogen and oxygen, and the time when a preset pressure equivalent to the compression ratio (compression pressure) of a conventional engine is reached (pressure sensing by the pressure sensor 1as) is the set pressure.
The higher the set pressure, the more efficient it is, and pre-ignition is less likely to occur as in conventional engines, so the set pressure can be increased.

<Definition>
The top dead center of the piston, the bottom dead center of the piston, just before the top dead center of the piston, and just before the bottom dead center of the piston are
The top dead center of the piston is when the piston is at the top and the flywheel has a rotation angle of 0 degrees or 360 degrees.
The bottom dead center of the piston is the lowest point of the piston and corresponds to 180 degrees in terms of the rotation angle of the flywheel.
Just before the top dead center of the piston is a rotation angle of the flywheel of 300 degrees to 359.99 degrees.
Just before the piston bottom dead center is a rotation angle of the flywheel of 120 degrees to 179.99 degrees.
<Definition>
In a rotary internal combustion engine, the points just before the minimum volume point of the airtight working chamber and just before the maximum volume point of the airtight working chamber are as follows:
The airtight working chamber is configured with an inner arc surface portion of the rotor center housing 6ra, an outer arc surface portion of the rotor 7r, an inner surface portion of the rotor front housing 6rb, and an inner surface portion of the rotor rear housing 6rc. .... The airtight working chamber is configured with an inner arc surface portion of the rotor center housing 6ra, an outer arc surface portion of the rotor 7r. The airtight working chamber is configured with an inner arc surface portion of the rotor center housing 6ra, an outer arc surface portion of the rotor
The reverse revolution angle of the rotor 7r at the maximum volume point of the airtight working chamber composed of the inner circumferential arc surface portion of the rotor center housing 6ra, the outer circumferential arc surface portion of the rotor 7r, the inner surface portion of the rotor front housing 6rb, and the inner surface portion of the rotor rear housing 6rc is 60 degrees to the maximum volume point of the airtight working chamber.
<Definition>
The pre-treatment combustion chamber 3tp stirs the mass of hydrogen molecules and the mass of oxygen molecules with shock waves generated by their collision, achieving the finest dispersion and sensing mixing.
The hydrogen molecules and oxygen molecules are dispersed into the finest possible size by shock waves generated by the collision of the lumps of hydrogen molecules and oxygen molecules, and the hydrogen molecules and oxygen molecules are sensed and stirred by the hydrogen sensor 1sg, the oxygen sensor 2sg, and the pressure sensor 1as.
The pre-treatment combustion chamber is a chamber for sensing and mixing hydrogen molecules at a ratio of 66.66% to oxygen molecules at a ratio of 33.33% to generate a 99.99% mixture ratio mixture or an oxyhydrogen detonation mixture and ignition.
Mixing is done by randomly ejecting a mass of hydrogen molecules and a mass of oxygen molecules, creating a shock wave caused by the collision. <Definition>
What is superheating?
The heating temperature is 3,000°C to 4,000°C, which is incomparable to the heating temperatures of commonly used industrial heating means such as acetylene, coke, propane gas, kerosene burners, heavy oil burners, the inside of gasoline engines, and the inside of diesel engines.

<Definition>
A mixture of hydrogen and oxygen has the ability to self-ignite at temperatures above 700°C.
This is a completely different ignition function from the contact ignition of liquefied hydrogen and liquefied oxygen.
Liquid hydrogen and liquid oxygen will ignite when they come into contact with each other through injection, regardless of temperature.
<Definition>
The compound ratio is
This is the ideal mixture ratio for hydrogen and oxygen to react chemically and combine.
<Definition>
Thermal decomposition and reduction function of steam This is the result of an experiment conducted by French scientist Lavoisier in 1783, in which he discovered hydrogen by passing steam through a heated iron tube (Encyclopedia Nipponica).
Although it was not clear at the time, it is believed that oxygen was also being generated at the same time. Since water vapor (water) is a compound of hydrogen and oxygen,
The walls of the combustion chamber, cylinder, and airtight working chamber of the internal combustion engine of the present invention are not in a scorching state.
The space inside the combustion chamber, cylinder, and airtight working chamber is at a high temperature of 3,000°C to 4,000°C.
The walls of the combustion chamber, cylinder, and airtight working chamber are cooled by a circulating coolant tank inside the walls.

Claims (9)

シリンダーヘッドに、
シリンダー内の水蒸気に冷却水噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
圧力による残溜水の圧力押し出し排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段とを設け、
水素と酸素との化合比率混合気をピストンに向けて噴射激突点火燃焼爆発を図る化合比率混合気供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水素と酸素との化合比率混合気供給噴射手段と、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
前記化合比率混合気供給噴射手段の化合比率混合気を前記ピストンに向けて噴射を図って燃焼室内の上昇した圧力で、
前記残溜水排水手段の排水弁を一瞬の間の開弁による前記燃焼室内の圧力で残溜水の圧力押し出し排水を図る前記残溜水排水手段とを設けて、
前記化合比率混合気供給噴射手段より化合比率混合気を前記ピストンに向けて噴射点火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在に前記ピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内と前記燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
水素と酸素との前記化合比率混合気供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする水素と酸素と水蒸気との活用を図って回転稼働する内燃機関。
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection flow passage being provided with a two-way flow cutoff valve for injecting cooling water into the steam in the cylinder;
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine, the residual water drainage flow passage being provided with the two-way flow cutoff valve, for pressure-pushing out and draining the residual water by pressure;
a hydrogen and oxygen mixed gas supply injection means having a function of linking the injection timing to the rotation speed of an internal combustion engine having the two-way flow cutoff valve in a mixed gas supply injection flow passage for injecting a mixed gas mixture of hydrogen and oxygen toward a piston to cause a collision, ignition, combustion, and explosion;
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
A hydrogen sensor that senses hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
An oxygen sensor is provided to sense the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam,
The compound ratio mixture from the compound ratio mixture supply injection means is injected toward the piston, and the pressure in the combustion chamber is increased,
a residual water drainage means for draining the residual water by pressing out the residual water with the pressure in the combustion chamber by momentarily opening a drainage valve of the residual water drainage means;
The compound ratio mixture is injected toward the piston from the compound ratio mixture supply injection means, and ignited, combusted, exploded, expanded, and pressurized into steam.
The piston and the connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and the combustion chamber in the previous cycle;
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by cooling water vapor and liquefying condensed water.
Utilizing both pressure and negative pressure,
A hydrogen and oxygen mixture supply/injection means having the above-mentioned ratio;
The water vapor cooling water injection condensation means;
a residual water drainage means for draining the residual water from the exhaust port and the exhaust port; a two-way flow cutoff valve for cutting the residual water from the exhaust port and the exhaust port;
シリンダーヘッドに、
シリンダー内の水蒸気に冷却水噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
燃焼室内の圧力による残溜水の圧力押し出し排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段とを設け、
且つ、
前記シリンダーヘッドに、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との水素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との酸素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーと、
水素と酸素との化合比率連動混合機能を有する水素の噴射を図る水素供給噴射手段の水素供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水素供給噴射手段と、
酸素と水素との化合比率連動混合機能を有する酸素の噴射を図る酸素供給噴射手段の酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記酸素供給噴射手段とを設けた前処理燃焼室を設け、
前記水素供給噴射手段を前記前処理燃焼室の前記点火手段の点火電極に向けて前記水素の噴射激突を図り、
前記水素供給噴射手段の噴射位置より異なる位置から前記酸素供給噴射手段を前記点火手段の点火電極に向けて前記酸素の噴射激突を図る、
水素と酸素との噴射により圧力が上昇した前記前処理燃焼室内と前記燃焼室内との前記残溜水排水手段の排水弁を一瞬の間の開弁により圧力押し出し排水を図り点火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダーに内設の上下動自在のピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内と前記燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記水素供給噴射手段と、
前記酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする水素と酸素と水蒸気との活用を図って回転稼働する内燃機関。
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection flow passage being provided with a two-way flow cutoff valve for injecting cooling water into the steam in the cylinder;
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine, the residual water drainage flow passage being provided with the two-way flow cutoff valve, for pressure-pushing and draining the residual water by the pressure in the combustion chamber;
and,
The cylinder head,
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
Sensing the volume concentration ratio of hydrogen to oxygen,
A hydrogen sensor for sensing hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
Sensing the volume concentration ratio of hydrogen and oxygen,
An oxygen sensor that senses the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
a hydrogen supply injection means for injecting hydrogen having a function of mixing hydrogen and oxygen in a compound ratio linked manner and having a function of linking injection timing to the rotation speed of an internal combustion engine having the two-way flow cutoff valve in a hydrogen supply injection flow passage of the hydrogen supply injection means;
a pre-treatment combustion chamber is provided with an oxygen supply injection means having a function of interlocking injection timing with the rotation speed of an internal combustion engine equipped with the two-way flow cutoff valve in an oxygen supply injection flow hole of the oxygen supply injection means for injecting oxygen having a function of interlocking mixing of oxygen and hydrogen compound ratios;
The hydrogen supply injection means is directed toward the ignition electrode of the ignition means in the pre-treatment combustion chamber to inject and impact the hydrogen;
the oxygen supply/injection means is directed toward the ignition electrode of the ignition means from a position different from the injection position of the hydrogen supply/injection means, and the oxygen is injected and impacted on the ignition electrode of the ignition means.
The drain valve of the residual water drainage means between the pretreatment combustion chamber and the combustion chamber, where the pressure has increased due to the injection of hydrogen and oxygen, is momentarily opened to push out the pressure and drain the water, thereby igniting, burning, exploding, and pressurizing the water into steam.
A piston and a connecting rod that are movable up and down within the cylinder;
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and the combustion chamber in the previous cycle;
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by cooling water vapor and liquefying condensed water.
Utilizing both pressure and negative pressure,
The hydrogen supply injection means;
The oxygen supply injection means;
The water vapor cooling water injection condensation means;
a residual water drainage means for draining the residual water from the exhaust port and ...
ローターセンターハウジングの気密作動室容積最大部の気密作動室に水蒸気冷却水の噴射を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部の気密作動室に、
残溜水の排水を図る残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する残溜水排水手段と、
水素と酸素との化合比率混合気の供給と噴射を図る水素と酸素との化合比率混合気の供給噴射流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する化合比率混合気供給噴射手段と、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なくて加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との化合比率混合気の点火燃焼爆発の加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なくて加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
水素と酸素との前記化合比率混合気供給噴射手段よりローターに向けて噴射を図って気密作動室内の上昇した圧力で前記残溜水排水手段の排水弁を一瞬の間の開弁による気密作動室内の圧力で残溜水の圧力押し出し排水を図る前記残溜水排水手段とを設けて、
前記化合比率混合気供給噴射手段より化合比率混合気を前記ローターに向けて噴射激突点火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルとを設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成する気密作動室と
ライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設する前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力の活用の、
加圧力と負圧力との両圧力の活用と、
水素と酸素との前記化合比率混合気供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする水素と酸素と水蒸気との活用を図って回転稼働する内燃機関。
a steam cooling water injection and condensation means having a function of linking injection timing to the rotation speed of the internal combustion engine, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage for injecting steam cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber;
The rotor center housing has an airtight working chamber with a minimum volume,
a residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine, the residual water drainage flow passage being provided with the two-way flow cutoff valve for draining the residual water;
a combination ratio mixture supply injection means for supplying and injecting a combination ratio mixture of hydrogen and oxygen, the combination ratio mixture being provided in a supply injection flow passage of the combination ratio mixture of hydrogen and oxygen, the supply injection flow passage having a function of linking an injection timing to a rotation speed of the internal combustion engine, the supply injection flow passage being provided with the two-way flow cutoff valve;
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
A hydrogen sensor that senses hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam;
An oxygen sensor is provided to sense the oxygen remaining in the pressurized steam due to a lack of hydrogen or an excess of oxygen in the process of igniting, burning and exploding a hydrogen-oxygen mixture into pressurized steam,
a residual water drainage means for draining the residual water by pressure pushing out the residual water with the pressure in the airtight operating chamber by momentarily opening the drain valve of the residual water drainage means with the pressure in the airtight operating chamber by injecting the hydrogen and oxygen mixed gas toward the rotor from the mixed gas supply injection means,
The compound ratio mixture is injected toward the rotor from the compound ratio mixture supply injection means, whereby the mixture is ignited, combusted, exploded, expanded and pressurized into steam.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal is provided.
an airtight operating chamber in which the eccentric shaft is rotatably installed and the rotor having a concave combustion chamber on its outer periphery is installed in the rotor center housing so as to be revolvable ;
the eccentric shaft to which the flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be freely revolvable;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Utilizing the vacuum negative pressure generated by steam cooling water injection and condensation liquefaction,
Utilizing both pressure and negative pressure,
A hydrogen and oxygen mixture supply/injection means having the above-mentioned ratio;
The water vapor cooling water injection condensation means;
a residual water drainage means for draining the residual water from the exhaust port and ...
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部の気密作動室に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段を設け、
且つ、
前記ローターセンターハウジングに、
水素と酸素との化合比率混合気に点火を図る内燃機関の回転速度に点火時期の連動機能を有する点火手段と、
水素と酸素との化合比率混合気の圧力をセンシングする圧力センサーと、
水素と酸素との水素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気を点火燃焼爆発により加圧水蒸気化を図る工程で酸素不足又は水素過多で酸素と化合が出来なかった水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
水素と酸素との酸素の容積濃度割合をセンシングと、
水素と酸素との化合比率混合気を点火燃焼爆発により加圧水蒸気化を図る工程で水素不足又は酸素過多で水素と化合が出来なかった酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーと、
水素の供給と噴射を図る水素供給噴射流通孔路に前記双方向流通遮断弁を備えた酸素と化合比率連動混合噴射機能と内燃機関の回転速度に噴射時期の連動機能を有する水素供給噴射手段と、
酸素の供給と噴射を図る酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた水素と化合比率連動混合噴射機能と内燃機関の回転速度に噴射時期の連動機能を有する酸素供給噴射手段とを設けた前処理燃焼室の、
前記水素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射を図る、
前記水素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射を図る位置より異なる位置から、
前記酸素供給噴射手段を前記点火手段の点火電極に向けて水素の噴射激突と酸素の噴射激突とを図り、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルとを設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けたローターを公転自在に前記ローターセンターハウジングに内設して構成する気密作動室と
ライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターとを公転自在に内設する前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
水素と酸素との化合比率混合気の燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記水素供給噴射手段と、
前記酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働する事を特徴とする水素と酸素と水蒸気との活用を図って回転稼働する内燃機関。
a steam cooling water injection and condensation means for liquefying the steam cooling condensed water by injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and having a function of interlocking injection timing with the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the airtight working chamber of the smallest volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The rotor center housing,
An ignition means having a function of linking ignition timing to the rotation speed of an internal combustion engine which ignites a hydrogen/oxygen mixture;
A pressure sensor for sensing the pressure of a hydrogen/oxygen mixture;
Sensing the volume concentration ratio of hydrogen to oxygen,
A hydrogen sensor for sensing hydrogen remaining in the pressurized steam due to a lack of oxygen or an excess of hydrogen in a process of converting a hydrogen-oxygen gas mixture into pressurized steam by ignition, combustion, and explosion;
Sensing the volume concentration ratio of hydrogen and oxygen,
An oxygen sensor for sensing oxygen remaining in the pressurized steam when oxygen is not able to combine with hydrogen due to a hydrogen shortage or an oxygen excess during a process of converting a hydrogen-oxygen air-fuel mixture into pressurized steam by ignition, combustion, and explosion;
a hydrogen supply injection means having a hydrogen mixing ratio-linked mixed injection function with oxygen, the mixed injection function being provided with the two-way flow cutoff valve in a hydrogen supply injection flow passage for supplying and injecting hydrogen, and a function of linking the injection timing with the rotation speed of the internal combustion engine;
A pre-treatment combustion chamber is provided with an oxygen supply injection means having a hydrogen/compound ratio interlocking mixed injection function and an injection timing interlocking function with the rotation speed of an internal combustion engine, the oxygen supply injection means being provided with the two-way flow cutoff valve in an oxygen supply injection flow passage for supplying and injecting oxygen,
The hydrogen supply/injection means injects hydrogen toward an ignition electrode of the ignition means.
The hydrogen supply injection means is arranged to inject hydrogen toward the ignition electrode of the ignition means from a position different from the position where the hydrogen supply injection means is arranged to inject hydrogen toward the ignition electrode of the ignition means.
The oxygen supply/injection means is directed toward the ignition electrode of the ignition means to cause hydrogen injection and oxygen injection to collide with each other,
The aim is to convert the mixture of hydrogen and oxygen into steam by combustion, explosion, expansion and pressure.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal is provided.
an airtight operating chamber in which the eccentric shaft is rotatably installed and a rotor having a concave combustion chamber on its outer periphery is installed in the rotor center housing so as to be revolvable ;
the rotor center housing in which the eccentric shaft to which the flywheel is fixed, the internal gear, the external gear, and the rotor are disposed so as to be freely revolvable;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Combustion, explosion, expansion, and pressurization of hydrogen and oxygen mixtures.
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction,
Utilizing both pressure and negative pressure,
The hydrogen supply injection means;
The oxygen supply injection means;
The water vapor cooling water injection condensation means;
a residual water drainage means for draining the residual water from the exhaust port and ...
シリンダーヘッドに、
シリンダー内に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素との化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素との化合比率連動噴射機能を有する液化酸素供給噴射手段とを設け
ストンに向けて液化水素と液化酸素とを噴射激突による液化水素と液化酸素との接触着火機能を活用する、
液化水素と液化酸素との接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に、
酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に、
水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
前記ピストンに向けて液化水素の噴射を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で液化水素噴射により作動室内部の上昇した圧力で残溜水の圧力押し出し排水を図る、
液化酸素も前記ピストンに向けて噴射激突を図って液化水素噴射と液化酸素噴射による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在に前記ピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内、燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常に回転稼働する事を特徴とする液化水素と液化酸素と水蒸気との活用を図って回転稼働する内燃機関。
On the cylinder head
a steam cooling water injection and condensation means for liquefying the cooling condensed water of the steam by injecting cooling water into a cylinder, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage of the steam cooling water injection and condensation means and having a function of linking injection timing to the rotation speed of the internal combustion engine;
A residual water drainage means for draining residual water, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage, and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied hydrogen supply injection means having a function of interlocking the injection timing with the rotation speed of an internal combustion engine, the liquefied hydrogen supply injection flow passage being provided with the two-way flow cutoff valve and having a function of interlocking the injection ratio with the liquefied oxygen;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of injection linked to a combination ratio with liquefied hydrogen, the liquefied oxygen supply injection means being provided with the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of interlocking injection timing with the rotation speed of the internal combustion engine ;
Liquid hydrogen and liquid oxygen are injected toward the piston , causing contact ignition between the two.
In the process of contacting liquefied hydrogen and liquefied oxygen, igniting, combusting, and exploding, pressurized steam is generated.
A hydrogen sensor for sensing hydrogen that cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen and remains in the pressurized water vapor in the hydrogen state;
In the process of contacting liquefied hydrogen and liquefied oxygen, igniting, combusting, and exploding, pressurized steam is generated.
an oxygen sensor for sensing oxygen remaining in the pressurized water vapor in a state where oxygen cannot be combined with hydrogen due to a shortage of hydrogen or an excess of oxygen;
Injecting liquefied hydrogen toward the piston;
The drain valve of the residual water drainage means is opened for a moment to push out and drain the residual water by using the increased pressure in the working chamber caused by the injection of liquefied hydrogen.
Liquid oxygen is also injected toward the piston to cause a collision, resulting in contact ignition, combustion, explosion, expansion, and pressurization of the liquid hydrogen and liquid oxygen.
The piston and the connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and combustion chamber in the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by cooling water vapor and liquefying condensed water.
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
a residual water drainage means and a two-way flow shutoff valve provided in each of the two-way flow shutoff means and a residual water drainage means, the internal combustion engine being capable of rotating and operating normally by utilizing liquefied hydrogen, liquefied oxygen, and water vapor.
シリンダーヘッドに、
シリンダー内に水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段とを設け、
且つ、
前記シリンダーヘッドに、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素噴射と液化酸素噴射との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との噴射激突を図る噴射激突棒と、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
前記液化水素と前記液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に、残溜する酸素をセンシングする酸素センサーとを備えた前処理燃焼室を設け、
液化酸素と化合比率連動噴射機能を有する前記液化水素供給噴射手段を前記噴射激突棒に向けて液化水素の噴射激突を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で、
液化水素噴射により内部の上昇した圧力で燃焼室内の残溜水の圧力押し出し排水を図って、
前記液化水素供給噴射手段の噴射位置より異なる位置から前記液化酸素供給噴射手段を前記噴射激突棒に向けて噴射を図る液化水素と液化酸素との噴射激突による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記シリンダー内に上下動自在にピストンとコンロッドと、
フライホイールを固設したクランクシャフトとを回転自在に連結し、
前記ピストンの往復運動を前記クランクシャフトの回転エネルギーに変換する回転エネルギー変換手段と、
内燃機関の冷却手段とを設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで前記シリンダー内、前記燃焼室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気を冷却凝縮水液化により発生する真空負圧力の、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常に回転稼働する事を特徴とする液化水素と液化酸素と水蒸気との活用を図って回転稼働する内燃機関。
On the cylinder head
a steam cooling water injection and condensation means having a function of linking injection timing to a rotation speed of an internal combustion engine, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage of the steam cooling water injection and condensation means in a cylinder;
a residual water drainage means for draining residual water, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage thereof, the residual water drainage means having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The cylinder head,
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of injection in conjunction with a compound ratio and having the two-way flow cutoff valve in a liquefied hydrogen supply injection flow passage having a function of injection timing in conjunction with the rotation speed of an internal combustion engine;
A function for interlocking the mixing ratio of liquefied hydrogen and liquefied oxygen;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in accordance with a compound ratio and having the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in accordance with a rotation speed of an internal combustion engine;
A jet impact rod for impacting liquefied hydrogen and liquefied oxygen;
A hydrogen sensor for sensing hydrogen that remains in the pressurized steam in the form of hydrogen because it cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen in the pressurized steam generated during conversion in a process for contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen;
A pre-treatment combustion chamber is provided with an oxygen sensor for sensing oxygen remaining in the pressurized steam in a state where oxygen cannot be combined with hydrogen due to a shortage of hydrogen or an excess of oxygen in the pressurized steam generated in a process of attempting contact ignition combustion explosion utilizing a contact ignition function by injecting the liquefied hydrogen and the liquefied oxygen,
The liquefied hydrogen supply/jet means having a function of injecting liquefied hydrogen in conjunction with the liquefied oxygen at a compound ratio is directed toward the jet/jet bar to jet/jet the liquefied hydrogen;
By momentarily opening the drain valve of the residual water drainage means,
The increased internal pressure caused by the injection of liquefied hydrogen is used to push out and drain the residual water in the combustion chamber.
The liquefied oxygen supply/injection means is injected toward the injection/collision rod from a position different from the injection position of the liquefied hydrogen supply/injection means, and contact ignition, combustion, explosion, expansion, and pressurization are achieved by the injection/collision of the liquefied hydrogen and liquefied oxygen.
A piston and a connecting rod are arranged in the cylinder so as to be movable up and down.
The flywheel is rotatably connected to the crankshaft,
a rotational energy conversion means for converting the reciprocating motion of the piston into rotational energy of the crankshaft;
a cooling means for the internal combustion engine;
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the cylinder and the combustion chamber in the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by cooling water vapor and liquefying condensed water.
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
a residual water drainage means for draining the residual water from the exhaust port and the exhaust port, and a two-way flow shutoff valve for shutting off the residual water from the exhaust port and the exhaust port.
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期の連動機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との接触着火機能を活用する液化水素と液化酸素との接触着火燃焼爆発の工程で変換発生する加圧水蒸気内に、
酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との接触着火燃焼爆発の工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを設け、
ローターに向けて液化水素の噴射を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で液化水素噴射により気密作動室内部の上昇した圧力で残溜水の圧力押し出し排水を図る、
続いて液化酸素噴射を図って液化水素噴射と液化酸素噴射による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルと、を設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成した気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設した前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段と、を設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段とのそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働を図る事を特徴とする液化水素と液化酸素と水蒸気との活用を図って回転稼働する内燃機関。
a steam cooling water injection and condensation means for injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume portion of the airtight working chamber to liquefy the steam as cooling condensed water; the steam cooling water injection and condensation means is provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and has a function of linking injection timing to the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the minimum volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of interlocking the injection timing with the rotation speed of the internal combustion engine and having a combination ratio-linked injection function with the liquefied oxygen supply injection flow passage provided with the two-way flow cutoff valve;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in accordance with a compound ratio and having the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in accordance with a rotation speed of an internal combustion engine;
Utilizing the contact ignition function of liquefied hydrogen and liquefied oxygen. In the pressurized steam generated during the process of contact ignition, combustion and explosion of liquefied hydrogen and liquefied oxygen,
A hydrogen sensor for sensing hydrogen that cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen and remains in the pressurized water vapor in the hydrogen state;
an oxygen sensor for sensing oxygen remaining in the pressurized steam generated in the process of contact, ignition, combustion and explosion of the liquefied hydrogen and the liquefied oxygen because of a lack of hydrogen or an excess of oxygen in the pressurized steam which cannot combine with hydrogen,
Liquid hydrogen is sprayed toward the rotor,
The drain valve of the residual water drainage means is opened for a moment to expel and drain the residual water by the increased pressure in the airtight operating chamber caused by the injection of liquefied hydrogen.
Next, liquid oxygen is injected to cause contact ignition, combustion, explosion, expansion, and pressurization to vaporize the liquid hydrogen and liquid oxygen.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal and,
an airtight operating chamber configured by rotatably installing the eccentric shaft therein and revolving the rotor having a concave combustion chamber on its outer periphery within the rotor center housing;
the eccentric shaft to which a flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be capable of revolving;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
A cooling means for the internal combustion engine is provided,
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
an internal combustion engine which operates by utilizing liquefied hydrogen, liquefied oxygen and water vapor, characterized in that the residual water drainage means and each of the two-way flow cutoff valves are provided to ensure normal operation.
ローターセンターハウジングの気密作動室容積最大部の気密作動室に冷却水を噴射により水蒸気の冷却凝縮水液化を図る水蒸気冷却水噴射凝縮手段の水蒸気冷却水噴射流通孔路に双方向流通遮断弁を備えた内燃機関の回転速度に噴射時期の連動機能を有する前記水蒸気冷却水噴射凝縮手段と、
前記ローターセンターハウジングの気密作動室容積最小部に残溜水の排水を図る残溜水排水手段の残溜水排水流通孔路に前記双方向流通遮断弁を備えた内燃機関の回転速度に排水時期の連動機能を有する前記残溜水排水手段と、
且つ、
前記ローターセンターハウジングに、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期が連動する機能を有する液化水素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化酸素と化合比率連動噴射機能を有する液化水素供給噴射手段と、
液化水素と液化酸素との化合比率連動噴射機能と、
内燃機関の回転速度に噴射時期が連動する機能を有する液化酸素供給噴射流通孔路に前記双方向流通遮断弁を備えた液化水素と化合比率連動噴射機能を有する液化酸素供給噴射手段と、
液化水素と液化酸素との噴射激突棒と、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に酸素不足又は水素過多で酸素と化合が出来なくて水素の状態で加圧水蒸気内に残溜する水素をセンシングする水素センサーと、
液化水素と液化酸素との噴射による接触着火機能を活用する接触着火燃焼爆発を図る工程で変換発生する加圧水蒸気内に水素不足又は酸素過多で水素と化合が出来なくて酸素の状態で加圧水蒸気内に残溜する酸素をセンシングする酸素センサーとを備えた前処理燃焼室を設け、
前記液化水素供給噴射手段を前記前処理燃焼室の前記噴射激突棒に向けて液化水素の噴射激突を図り、
前記残溜水排水手段の排水弁を一瞬の間の開弁で、
液化水素噴射により上昇した気密作動室内の圧力で残溜水の圧力押し出し排水を図って、
前記液化水素供給噴射手段の噴射位置より異なる位置から前記液化酸素供給噴射手段を前記噴射激突棒に向けて液化水素と液化酸素との噴射激突による接触着火燃焼爆発膨張加圧水蒸気化を図る、
前記ローターセンターハウジングの前後に、
エキセントリックシャフトの軸受けを設けたローターフロントハウジングと、
前記エキセントリックシャフトの軸受けを設けたローターリヤーハウジングと、
アペックスシールと、
サイドシールと、
内歯歯車と、
外歯歯車と、
コーナーシールと、
オイルシ-ルと、を設け、
前記エキセントリックシャフトを回転自在に内設して外周部に凹面燃焼室を設けた前記ローターを公転自在に前記ローターセンターハウジングに内設して構成した気密作動室と、
フライホイールを固設した前記エキセントリックシャフトと前記内歯歯車と前記外歯歯車と前記ローターを公転自在に内設した前記ローターセンターハウジングと、
前記ローターセンターハウジング内を前記ローターと前記内歯歯車と前記外歯歯車と前記エキセントリックシャフトとの連動稼働による前記ローターの公転運動を前記エキセントリックシャフトの回転エネルギーに変換を図る回転エネルギー変換手段と、
内燃機関の冷却手段と、を設け、
吸気機構及び排気機構が無い単純構造、低コスト構造を特徴とする、
液化水素と液化酸素との接触着火燃焼爆発膨張加圧水蒸気の活用と、
前回サイクルで気密作動室内に残溜する残溜水の水蒸気爆発膨張加圧水蒸気の活用と、
加圧水蒸気を熱分解還元機能により水素と酸素とに変化し、水素と酸素とは自己着火燃焼爆発で再び加圧水蒸気化の繰り返しの活用と、
水蒸気冷却水噴射凝縮水液化により発生する真空負圧力との、
加圧力と負圧力との両圧力の活用と、
前記液化水素供給噴射手段と、
前記液化酸素供給噴射手段と、
前記水蒸気冷却水噴射凝縮手段と、
前記残溜水排水手段と、のそれぞれの手段に前記双方向流通遮断弁を備えて正常回転稼働を図る事を特徴とする液化水素と液化酸素と水蒸気との活用を図って回転稼働する内燃機関。
a steam cooling water injection and condensation means for liquefying the steam cooling condensed water by injecting cooling water into the airtight working chamber of the rotor center housing at the maximum volume part of the airtight working chamber, the steam cooling water injection and condensation means being provided with a two-way flow cutoff valve in a steam cooling water injection flow passage and having a function of interlocking injection timing with the rotation speed of the internal combustion engine;
a residual water drainage means for draining residual water in the minimum volume part of the airtight working chamber of the rotor center housing, the residual water drainage means being provided with the bidirectional flow cutoff valve in a residual water drainage flow passage and having a function of linking the drainage timing to the rotation speed of the internal combustion engine;
and,
The rotor center housing,
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injection in conjunction with a compound ratio and having the two-way flow cutoff valve in a liquefied hydrogen supply injection flow passage having a function of interlocking injection timing with the rotation speed of an internal combustion engine;
A function for injecting liquid hydrogen and liquid oxygen at a compound ratio that is linked to each other;
a liquefied oxygen supply injection means having a function of injecting liquefied hydrogen in conjunction with a compound ratio, the liquefied oxygen supply injection means being provided with the two-way flow cutoff valve in a liquefied oxygen supply injection flow passage having a function of injecting the liquefied oxygen in conjunction with a rotation speed of an internal combustion engine;
A jet of liquid hydrogen and liquid oxygen,
A hydrogen sensor for sensing hydrogen that remains in the pressurized steam in the form of hydrogen because it cannot combine with oxygen due to a lack of oxygen or an excess of hydrogen in the pressurized steam generated during conversion in a process for contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen;
A pre-treatment combustion chamber is provided with an oxygen sensor for sensing oxygen that remains in the pressurized steam in the form of oxygen because it cannot combine with hydrogen due to a lack of hydrogen or an excess of oxygen in the pressurized steam generated during the process of contact ignition combustion explosion utilizing the contact ignition function by injecting liquefied hydrogen and liquefied oxygen,
The liquefied hydrogen supply injection means is directed toward the injection and impact rod of the pretreatment combustion chamber to inject and impact the liquefied hydrogen;
By momentarily opening the drain valve of the residual water drainage means,
The pressure inside the airtight operating chamber is increased by the injection of liquefied hydrogen, and the residual water is forced out and drained.
The liquefied oxygen supply/injection means is directed toward the injection/collision rod from a position different from the injection position of the liquefied hydrogen supply/injection means, and the liquefied hydrogen and the liquefied oxygen are injected and collided with each other to cause contact ignition, combustion, explosion, expansion, and pressurization to vaporize.
In front of and behind the rotor center housing,
A rotor front housing with a bearing for the eccentric shaft;
a rotor rear housing provided with a bearing for the eccentric shaft;
Apex Seal and
Side seals and
An internal gear;
An external gear;
Corner seals and
Oil seal and,
an airtight operating chamber configured by rotatably installing the eccentric shaft therein and revolving the rotor having a concave combustion chamber on an outer periphery of the rotor in the rotor center housing;
the eccentric shaft to which a flywheel is fixed, the internal gear, the external gear, and the rotor are disposed inside the rotor center housing so as to be capable of revolving;
a rotational energy conversion means for converting the revolution of the rotor caused by the interlocking operation of the rotor, the internal gear, the external gear, and the eccentric shaft within the rotor center housing into rotational energy of the eccentric shaft;
A cooling means for the internal combustion engine is provided,
It is characterized by a simple structure without an intake mechanism or an exhaust mechanism, and a low-cost structure.
Utilizing the contact ignition, combustion, explosion, expansion and pressurized steam between liquefied hydrogen and liquefied oxygen,
Utilizing the steam explosion expansion pressurized steam of the residual water remaining in the airtight operating chamber from the previous cycle,
Pressurized steam is converted into hydrogen and oxygen through thermal decomposition and reduction, and the hydrogen and oxygen are then converted back into pressurized steam through self-ignition, combustion, and explosion.
Vacuum negative pressure generated by steam cooling water injection condensation liquefaction
Utilizing both pressure and negative pressure,
The liquefied hydrogen supply and injection means;
The liquefied oxygen supply and injection means;
The water vapor cooling water injection condensation means;
a residual water drainage means and a two-way flow shutoff valve provided in each of the two-way flow shutoff means and the residual water drainage means, thereby ensuring normal rotation and operation of the internal combustion engine.
冷媒兼潤滑油の冷却手段を設けた事を特徴とする請求項1~8のいずれか一項に記載の水素と酸素と水蒸気との活用を図って回転稼働する内燃機関。
9. An internal combustion engine that rotates and operates by utilizing hydrogen, oxygen and water vapor according to any one of claims 1 to 8, further comprising a cooling means for the refrigerant/lubricant oil.
JP2024027510A 2024-02-27 2024-02-27 An internal combustion engine that runs on hydrogen, oxygen, and water vapor Active JP7539746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024027510A JP7539746B1 (en) 2024-02-27 2024-02-27 An internal combustion engine that runs on hydrogen, oxygen, and water vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024027510A JP7539746B1 (en) 2024-02-27 2024-02-27 An internal combustion engine that runs on hydrogen, oxygen, and water vapor

Publications (1)

Publication Number Publication Date
JP7539746B1 true JP7539746B1 (en) 2024-08-26

Family

ID=92499068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024027510A Active JP7539746B1 (en) 2024-02-27 2024-02-27 An internal combustion engine that runs on hydrogen, oxygen, and water vapor

Country Status (1)

Country Link
JP (1) JP7539746B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063980A (en) 2006-09-06 2008-03-21 Tomoki Yamazaki Oxyhydrogen gas two-stroke engine
JP2010209801A (en) 2009-03-10 2010-09-24 Toyota Motor Corp Oxygen supplying device for working medium circulation type engine
JP2011526342A (en) 2008-06-26 2011-10-06 カンブリアン エナジー ディベロップメント リミテッド ライアビリティー カンパニー Apparatus and method for operating an engine using non-flammable fluid injection
JP2012528270A (en) 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
JP2018189024A (en) 2017-05-03 2018-11-29 東洋治 向山 Implosion type engine
JP2019534979A (en) 2016-10-07 2019-12-05 ディーエムエー テック エス.アー エール.エル.Dma Tech S.A R.L. Internal combustion steam engine
JP6622374B1 (en) 2018-10-25 2019-12-18 清水 勲生 Explosion-implosion engine system that uses Brown Gas's explosion-explosion function equipped with a Brown gas generation system.
JP2021092224A (en) 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
JP2021139320A (en) 2020-03-04 2021-09-16 勲生 清水 Explosion/implosion brown gas rotary engine system comprising brown gas generation system and utilizing explosion implosion function for brown gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063980A (en) 2006-09-06 2008-03-21 Tomoki Yamazaki Oxyhydrogen gas two-stroke engine
JP2011526342A (en) 2008-06-26 2011-10-06 カンブリアン エナジー ディベロップメント リミテッド ライアビリティー カンパニー Apparatus and method for operating an engine using non-flammable fluid injection
JP2010209801A (en) 2009-03-10 2010-09-24 Toyota Motor Corp Oxygen supplying device for working medium circulation type engine
JP2012528270A (en) 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
JP2019534979A (en) 2016-10-07 2019-12-05 ディーエムエー テック エス.アー エール.エル.Dma Tech S.A R.L. Internal combustion steam engine
JP2018189024A (en) 2017-05-03 2018-11-29 東洋治 向山 Implosion type engine
JP6622374B1 (en) 2018-10-25 2019-12-18 清水 勲生 Explosion-implosion engine system that uses Brown Gas's explosion-explosion function equipped with a Brown gas generation system.
JP2021092224A (en) 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen
JP2021139320A (en) 2020-03-04 2021-09-16 勲生 清水 Explosion/implosion brown gas rotary engine system comprising brown gas generation system and utilizing explosion implosion function for brown gas

Similar Documents

Publication Publication Date Title
US10858990B2 (en) Internal combustion steam engine
CN100347422C (en) Continuous combustion constant power engine
CN201246230Y (en) Water hydrogen making multiple-fuel external combustion air engine
KR20030037229A (en) Method of operating reciprocating internal combustion engines, and system therefor
CN203335230U (en) Turbine rotor energy-saving engine
CN103075248B (en) Turbine rotor energy-saving engine
WO2006024209A1 (en) An engine of a gas-steam turbine type
Lu et al. Technical feasibility study of scroll-type rotary gasoline engine: a compact and efficient small-scale Humphrey cycle engine
WO2011125976A1 (en) Heat engine and power generation system using the heat engine
US7392796B2 (en) Method and apparatus for operating an internal combustion engine with an adelshin aggregate phase thermodynamic cycle
CN104088720B (en) A kind of efficient heat energy power engine and work method thereof
JP7539746B1 (en) An internal combustion engine that runs on hydrogen, oxygen, and water vapor
CN100363600C (en) Hydrogen engine
KR20080007029A (en) Reaction engine using brown gas as fuel and its driving method
US2376479A (en) Internal-combustion engine and combustion mixture therefor
CN112065574B (en) Middle combustion hot gas turbine capable of improving heat engine efficiency and reducing tail gas pollution
Mohandas et al. Review of six stroke engine and proposal for alternative fuels
US4367698A (en) Internal combustion engine based on reactant contact ignition
CN1934336B (en) Gas-steam boiler engine
RU2435975C2 (en) Menshov internal combustion engine
CN103557070A (en) Heat-absorption type dry ice engine
CN204082377U (en) A kind of efficient heat energy power equipment
Kannan et al. Experimental study of carbide as an alternate fuel using in internal combustion engine
CN102767428B (en) Heat absorption type dry ice engine
CN110645051B (en) High-low temperature combined cycle engine

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240806

R150 Certificate of patent or registration of utility model

Ref document number: 7539746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250