[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7539013B2 - Method for cultivating blue-green algae - Google Patents

Method for cultivating blue-green algae Download PDF

Info

Publication number
JP7539013B2
JP7539013B2 JP2022576628A JP2022576628A JP7539013B2 JP 7539013 B2 JP7539013 B2 JP 7539013B2 JP 2022576628 A JP2022576628 A JP 2022576628A JP 2022576628 A JP2022576628 A JP 2022576628A JP 7539013 B2 JP7539013 B2 JP 7539013B2
Authority
JP
Japan
Prior art keywords
culture
cyanobacteria
cultivation
medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022576628A
Other languages
Japanese (ja)
Other versions
JPWO2022158362A1 (en
JPWO2022158362A5 (en
Inventor
光輝 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2022158362A1 publication Critical patent/JPWO2022158362A1/ja
Publication of JPWO2022158362A5 publication Critical patent/JPWO2022158362A5/ja
Application granted granted Critical
Publication of JP7539013B2 publication Critical patent/JP7539013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、藍藻類の高速大量連続培養方法に関し、特にスイゼンジノリ、イシクラゲ、アサツキなど、細胞が分泌した寒天質の基質の中に群体を形成する淡水性の藍藻類の高速大量連続培養方法に関する。The present invention relates to a method for rapid, continuous, large-scale cultivation of cyanobacteria, and in particular to a method for rapid, continuous, large-scale cultivation of freshwater cyanobacteria, such as Aphanothece sacrum, Star Jellyfish, and Asatsuki, which form colonies in an agar matrix secreted by cells.

近年、様々な動植物、藻類、菌類等から有効成分を探索する試みが広く行われている。この結果、様々な有用物質が発見され、医薬品、食品、化粧料など幅広い分野で活用されている。今般、藍藻類であるスイゼンジノリから分子量1000万を超える高分子多糖類が発見され、その高い保湿力に起因する美容効果、やけど治療等への活用が期待されている。In recent years, there have been many attempts to search for active ingredients in various plants, animals, algae, fungi, etc. As a result, various useful substances have been discovered and are being used in a wide range of fields, including medicines, foods, and cosmetics. Recently, a polymeric polysaccharide with a molecular weight of over 10 million has been discovered in the cyanobacterium Aphanothece sacrum, and it is expected that its high moisturizing power will be useful for beauty effects and burn treatment, etc.

しかしながらスイゼンジノリを始めとする淡水藍藻類は透明度が高くミネラル豊富な湧水の中でしか繁殖することができず、また気象条件等に影響を受けやすく露面で培養、養殖を行う場合にも安定に供給を行うことが出来ていなかった。そのため、高い有効性が期待されるにも関わらず用途展開が十分に出来ていないという課題が存在した。これに対し、静置培養工程と通気培養工程を組み合わせ藍藻類の大量生産を行う試みが行われている(特許文献1参照)が、工程が煩雑であり、効率良く培養を行うことは出来ていなかった。However, freshwater cyanobacteria such as A. saccharum can only grow in highly transparent, mineral-rich spring water, and are easily affected by weather conditions, making it difficult to ensure a stable supply even when cultivating or cultivating on exposed surfaces. As a result, despite the high expected effectiveness, there has been an issue in that applications have not been fully developed. In response, attempts have been made to mass-produce cyanobacteria by combining a static culture process and an aerobic culture process (see Patent Document 1), but the process is complicated and efficient cultivation has not been possible.

特許6542569号公報Patent No. 6542569

本発明は藍藻類を高効率での培養を可能とすることを課題とする。 The objective of the present invention is to enable highly efficient cultivation of cyanobacteria.

[1]藍藻類の培養方法であって、炭酸塩、重炭酸塩、リン酸塩、クエン酸塩から選ばれる1種以上の塩を含有する液体培地を、pH10以下に維持して培養を行うことを特徴とする培養方法。
[2]前記藍藻類が淡水性藍藻類であることを特徴とする[1]に記載の培養方法。
[3]培養中のpHを7.5以上10以下の範囲に維持することを特徴とする[1]または[2]のいずれかに記載の培養方法。
[4]前記液体培地が炭酸塩、重炭酸塩を含むことを特徴とする[1]~[3]のいずれかに記載の培養方法。
[5]二酸化炭素の添加によりpH調整を行うことを特徴とする[1]~[4]のいずれかに記載の培養方法。
[6]前記[1]~[5]のいずれかに記載の培養方法により培養された藍藻類。
[1] A method for culturing cyanobacteria, comprising culturing the cyanobacteria in a liquid medium containing one or more salts selected from carbonates, bicarbonates, phosphates, and citrates, while maintaining the liquid medium at a pH of 10 or less.
[2] The culture method according to [1], characterized in that the cyanobacteria are freshwater cyanobacteria.
[3] The culture method according to either [1] or [2], characterized in that the pH during culture is maintained in the range of 7.5 to 10.
[4] The culture method according to any one of [1] to [3], wherein the liquid medium contains a carbonate or a bicarbonate.
[5] The culture method according to any one of [1] to [4], wherein the pH is adjusted by adding carbon dioxide.
[6] A cyanobacteria cultured by the culture method according to any one of [1] to [5] above.

スイゼンジノリなどの透明度が高くミネラルが豊富な水でしか生育されていない藍藻類は貧栄養の培地が好ましく、通常の藻類を培養する際に用いられる富栄養化培地を用いた場合には培養不良を起こし、混在するその他藻類との生育競争に負け生育しない。Cyanobacteria such as Amorphophallus saccharum can only grow in water that is highly transparent and rich in minerals, so they prefer a nutrient-poor medium. If they are cultured in a nutrient-rich medium, as is usually the case when cultivating algae, they will not grow well and will lose out in the growth competition with the other algae that are mixed in.

本発明者はスイゼンジノリなどの淡水域の藍藻類が重炭酸イオンなどの特定イオンを効率的に利用して光合成をおこなうことを確認し、また重炭酸イオンなどの特定イオン源を予め培地中に添加し、かつこれらイオンが培地中に存在できるpH領域を維持して培養することにより、他の藻類の生育を抑制可能な塩濃度低減培地を用いて藍藻類を高速連続大量培養できることを見出した。The inventors confirmed that freshwater cyanobacteria such as Aphanothece saccharum efficiently utilize specific ions such as bicarbonate ions to carry out photosynthesis, and discovered that by adding a source of specific ions such as bicarbonate ions to the culture medium in advance and culturing the medium while maintaining a pH range in which these ions can be present in the medium, cyanobacteria can be cultured rapidly and continuously in large quantities using a reduced-salt concentration medium that can suppress the growth of other algae.

本発明によれば藍藻類を高効率で培養することが可能となる。 The present invention makes it possible to cultivate cyanobacteria with high efficiency.

本発明に係る培養方法により培養される藍藻類とは、原核生物に分類される藻類で、シアノバクテリア(藍色細菌)と称される光合成能を有する真性細菌の一群である。前記藍藻類としてはクロオコッカス目のスイゼンジノリ(学名:Aphanothece sacrum)や、ネンジュモ目のイシクラゲ、アシツキなどが含まれる。The cyanobacteria cultivated by the cultivation method of the present invention are algae classified as prokaryotes, a group of photosynthetic eubacteria called cyanobacteria. Examples of the cyanobacteria include Aphanothece sacrum (scientific name: Aphanothece sacrum) of the Chroococcales order, and Nostoc commune and A. arbutifolia of the Nostoc order.

本発明において用いられる藍藻類としては本発明の効果が得られる範囲において特に制限されるものではないが、スイゼンジノリ、イシクラゲ、アシツキなどの淡水域に群体を形成して生息する淡水性藍藻類を用いた場合に培養効率が高くなることから好ましく、スイゼンジノリ、アシツキであることがより好ましく、スイゼンジノリが最も好ましい。 The cyanobacteria used in the present invention are not particularly limited as long as the effects of the present invention can be obtained, but it is preferable to use freshwater cyanobacteria that live in colonies in freshwater areas, such as Amorphophallus spp., Nostoc commune, and Aster gracilis, as these increase the cultivation efficiency, with Amorphophallus spp. and Aster gracilis being more preferable, and Amorphophallus spp. being the most preferable.

前記スイゼンジノリは九州の特定地域に自生し、複数の細胞が平らな形状の群体を形成する淡水性藍藻類である。また、その群体の外面は多糖類などにより形成されるゲル状の分泌物に覆われており、群体の直径は50mm程度の大きさにまで成長する。 The aforementioned A. saccharum is a freshwater cyanobacteria that grows naturally in a specific area of Kyushu and is made up of multiple cells that form flat colonies. The outer surface of the colony is covered with a gel-like secretion made of polysaccharides and other substances, and the colony can grow to a diameter of about 50 mm.

本発明に係る藍藻類の培養方法は、炭酸塩、重炭酸塩、リン酸塩、クエン酸塩から選ばれる1種以上の塩を含有する液体培地を、pH10以下の範囲に維持して培養を行うことを特徴とする。 The method for cultivating cyanobacteria according to the present invention is characterized in that the culture is carried out in a liquid medium containing one or more salts selected from carbonates, bicarbonates, phosphates, and citrates, and maintained at a pH of 10 or less.

本発明の培養方法で用いられる液体培地としては、炭酸塩、重炭酸塩、リン酸塩、クエン酸塩から選ばれる1種以上の塩を含有する液体培地であればよく、本発明の効果が得られる範囲において水、その他ミネラルなどを添加してもよく、特許文献(特許6590144号公報)や非特許文献(J. Gen Appl Microbiol.,65,39-46, 2019 Mar. )に記載されるような公知の培地を用いてもよい。本発明の培養方法においては、液体培地を適宜交換や成分の補充を行ってもよい。The liquid medium used in the culture method of the present invention may be any liquid medium containing one or more salts selected from carbonates, bicarbonates, phosphates, and citrates, and may contain water, other minerals, etc., within the range in which the effects of the present invention can be obtained. Known media such as those described in patent literature (Japanese Patent No. 6590144) and non-patent literature (J. Gen Appl Microbiol., 65, 39-46, Mar. 2019) may be used. In the culture method of the present invention, the liquid medium may be appropriately replaced or components may be replenished.

本発明の液体培地としては前記のように炭酸塩、重炭酸塩、リン酸塩、クエン酸塩から選ばれる1種以上の塩を含有することを特徴とする。これらの塩類は藍藻類の培養効率を向上させることができる、中でも藍藻類の光合成における炭素源として好適に利用されることから炭酸塩、重炭酸塩から選ばれる1種以上の塩を添加することが特に好ましく、具体的には重炭酸ナトリウム、重炭酸カルシウムを用いることが最も好ましい。The liquid medium of the present invention is characterized by containing one or more salts selected from carbonates, bicarbonates, phosphates, and citrates, as described above. These salts can improve the cultivation efficiency of cyanobacteria, and since they are particularly suitable as carbon sources in the photosynthesis of cyanobacteria, it is particularly preferable to add one or more salts selected from carbonates and bicarbonates, and specifically, it is most preferable to use sodium bicarbonate and calcium bicarbonate.

これら炭酸塩、重炭酸塩、リン酸塩、クエン酸塩から選ばれる1種以上の塩の添加量としては、液体培地中1ppm以上、500ppm以下であることが好ましく、藍藻類の生育をより良好に保つためには20ppm以上、200ppm以下であることが特に好ましい。 The amount of one or more salts selected from carbonates, bicarbonates, phosphates, and citrates added in the liquid culture medium is preferably 1 ppm or more and 500 ppm or less, and in order to maintain better growth of cyanobacteria, it is particularly preferable that the amount be 20 ppm or more and 200 ppm or less.

前記重炭酸塩は、藻類が光合成を行う際に炭素源として消費されるが、バブリング等の操作により液体培地中に二酸化炭素を添加すると、重炭酸イオンとして再生し、再度藻類の炭素源として利用することができ、効率的な培養を行うことができる。The bicarbonate is consumed as a carbon source when the algae photosynthesize, but by adding carbon dioxide to the liquid culture medium by operations such as bubbling, it is regenerated as bicarbonate ions and can be used again as a carbon source for the algae, allowing for efficient cultivation.

本発明の培養方法において用いる液体培地は、培養を行う間のpHがpH10以下の範囲で維持調整されることが好ましく、更にpH7.5以上10以下の範囲であることが更に好ましく、pH8以上9以下の範囲であると培養効率が顕著に向上するため最も好ましい。また、pH調整を行うのは培養期間全体であっても良いが、特に培養効率が向上することから光照射時にpH調整を行うことが好ましい。The liquid medium used in the culture method of the present invention is preferably adjusted to maintain a pH of 10 or less during culture, more preferably in the range of 7.5 to 10, and most preferably in the range of 8 to 9, which significantly improves culture efficiency. The pH may be adjusted throughout the culture period, but it is preferable to adjust the pH during light irradiation, as this improves culture efficiency.

液体培地のpH調整方法としては、本発明の効果が得られる範囲において特に制限されるものではないが、藍藻類の培養に伴うpHの上昇を観測し、pHが10前後に上昇した際に液体培地に二酸化炭素を添加し、pHを降下させる工程を繰り返せばよい。二酸化炭素の添加により藍藻類の増殖により消費された重炭酸イオンが補充され、藍藻類の光合成効率が向上することから特に好ましい。また、本発明はpHが上昇しないよう一定のpHに維持する操作を行うものであってもよい。pHの調整を目的として添加する二酸化炭素は、通常の空気に二酸化炭素を添加したものであればよく、空気にさらに二酸化炭素を加えたもの、または二酸化炭素単独を後述の曝気処理により添加してもよい。The method for adjusting the pH of the liquid medium is not particularly limited as long as the effects of the present invention can be obtained, but it is sufficient to observe the increase in pH accompanying the cultivation of cyanobacteria, and when the pH rises to around 10, add carbon dioxide to the liquid medium and repeat the process of lowering the pH. The addition of carbon dioxide is particularly preferable because it replenishes bicarbonate ions consumed by the proliferation of cyanobacteria and improves the photosynthetic efficiency of the cyanobacteria. The present invention may also involve an operation to maintain a constant pH so that the pH does not rise. The carbon dioxide added for the purpose of adjusting the pH may be ordinary air to which carbon dioxide has been added, or air to which carbon dioxide has been further added, or carbon dioxide alone may be added by the aeration process described below.

本発明の培養方法において、液体培地は各種容器に充填して培養を行ってよい。これらの容器としては特に限定されるものではなく、開放系の容器、及び閉鎖系の容器のいずれを用いてもよく、曝気処理を行うための送気装置、培養時に培養液の撹拌を行うための撹拌羽、光の照射を行うための各種光源、培養時の温度を調整するための温度調整装置等を有する容器を用いてもよい。これら容器としては前記のように特に限定されるものではないが藻類が光合成を効率よく行えることから、ガラス、アクリル、ポリカーボネート等の光透過率の高い容器を用いることが好ましい。In the culture method of the present invention, the liquid medium may be filled into various containers for culture. These containers are not particularly limited, and either open containers or closed containers may be used, and containers having an aeration device for aeration treatment, stirring blades for stirring the culture liquid during culture, various light sources for irradiating light, a temperature adjustment device for adjusting the temperature during culture, etc. may be used. As mentioned above, these containers are not particularly limited, but it is preferable to use containers with high light transmittance such as glass, acrylic, polycarbonate, etc., because algae can efficiently carry out photosynthesis.

本発明に係る培養方法により藍藻類を培養する場合、効率的に光合成をさせるため、培養中にバブリングなどにより曝気処理を行うことが好ましい。曝気処理としては空気を曝気させる工程、二酸化炭素を添加して曝気させる工程を含んでもよく、pHの上昇をモニタリング等で確認して適宜設定することができる。前記曝気処理による空気添加量は単位体積流量(VVM、L/min/Volume)として0.3L/min/Volume以上であることが好ましく、0.5L/min/Volume以上であると培養装置内での藍藻類の撹拌が好適に行われ培養効率が向上するため好ましい。また、容器サイズに応じて空気の添加量を調節し、藻類を効率よく撹拌することが好ましい。When culturing cyanobacteria using the culture method of the present invention, it is preferable to perform an aeration process by bubbling or the like during culture in order to efficiently photosynthesize the algae. The aeration process may include a process of aerating with air and a process of adding carbon dioxide and aerating, and the increase in pH can be confirmed by monitoring or the like and set appropriately. The amount of air added by the aeration process is preferably 0.3 L/min/Volume or more in terms of unit volumetric flow rate (VVM, L/min/Volume), and 0.5 L/min/Volume or more is preferable because the agitation of the cyanobacteria in the culture device is performed appropriately and the culture efficiency is improved. It is also preferable to adjust the amount of air added depending on the container size to efficiently agitate the algae.

本発明に係る培養方法は、藍藻類の培養効率を向上させる目的で培養装置に各種光源による光を照射する明期を設けるものである。照射する光の光源としては太陽光、白熱電球、蛍光灯、アーク灯、発光ダイオードなど公知の光源を用いることができる。これらの光は継続的に照射してもよく、断続的な照射を行ってもよい。照射する光の光量については本発明の効果が得られる範囲において特に限定されるものではなく、培養の進捗を確認して適宜調整してよいが、光合成有効光量量子束密度として30μmol/m2/s以上であることが好ましく、培養速度が良好なものとなることから100μmol/m2/s以上であることがより好ましい。 The culture method according to the present invention provides a light period during which light from various light sources is irradiated onto the culture apparatus in order to improve the culture efficiency of cyanobacteria. Known light sources such as sunlight, incandescent bulbs, fluorescent lamps, arc lamps, and light-emitting diodes can be used as the light source for the irradiated light. These lights may be irradiated continuously or intermittently. The amount of light irradiated is not particularly limited as long as the effects of the present invention can be obtained, and may be appropriately adjusted after checking the progress of the culture. However, the photosynthetically active light quantum flux density is preferably 30 μmol/m 2 /s or more, and more preferably 100 μmol/m 2 /s or more in order to achieve a good culture rate.

本発明に係る培養方法は、光の照射を行わない暗期を設けることが好ましいが、常時光を照射する態様で培養を行ってもよい。 In the culture method of the present invention, it is preferable to provide a dark period in which no light is irradiated, but culture may also be carried out in a manner in which light is irradiated constantly.

また、培養時の培地の温度設定は培養対象とする藍藻類に応じて適宜設定することができるが、スイゼンジノリを培養する場合15~30℃の間で行うことが好ましく、20~25℃の範囲で培養することがさらに好ましく、23~25℃の範囲で培養することが最も好ましい。 In addition, the temperature of the culture medium during cultivation can be set appropriately depending on the cyanobacteria to be cultivated, but when culturing Aphanothece sacrum, it is preferable to cultivate between 15 and 30°C, more preferably between 20 and 25°C, and most preferably between 23 and 25°C.

本発明の培養方法は、その培養時間について特に限定されるものではなく、当業者が適宜藍藻類の増加量を確認して設定することができる。 The cultivation method of the present invention is not particularly limited in terms of the cultivation time, which can be set by a person skilled in the art after confirming the amount of increase in cyanobacteria as appropriate.

本発明の培養方法で用いる藍藻類は、本培養処理前に順化処理などを行ってもよい。これら順化処理としては、野生株として得られた藍藻類を本培養前に予備的な環境で培養し本培養の際に培養が好適に行える処理であれば特に制限されるものではなく、公知の方法を用いて行なうことができる。また、野生種をそのまま培養に供してもよい。また、培養により増加した藍藻類を次の培養サイクル時に培養の種として培養を行ってもよい。 The cyanobacteria used in the culture method of the present invention may be subjected to an acclimation treatment before the main culture treatment. These acclimation treatments are not particularly limited as long as they are treatments that allow the cyanobacteria obtained as wild strains to be cultured in a preliminary environment before the main culture so that the culture can be performed favorably during the main culture, and can be performed using known methods. In addition, the wild species may be directly subjected to culture. In addition, the cyanobacteria that have increased through culture may be cultured as seeds for culture in the next culture cycle.

[実施例1]
1Lのガラス容器に表1に記載の重炭酸ナトリウム添加培地を1L入れ、培養スイゼンジノリ(FPU1株:Ohki, KらJ Gen Appl Microbiol . 2019 Mar 8;65(1):39-46.)を湿重量で20g添加し、23℃雰囲気下、通気量0.5/min、光合成有効光量量子束130μmol/m/s、14時間明・10時間暗サイクルで培養を行った。明期ではpH9付近までpHが上昇した時に炭酸ガスを吹込んでpHを8付近まで低下させるpHコントロールを実施した。培地は培養開始1週間後に交換し、培養2週間後にスイゼンジノリを回収し湿重量を測定し、湿重量でスイゼンジノリ214gを回収した。
[Example 1]
One liter of sodium bicarbonate-added medium listed in Table 1 was placed in a 1-liter glass container, and 20 g of cultured A. saccharifolia (FPU1 strain: Ohki, K et al. J Gen Appl Microbiol. 2019 Mar 8;65(1):39-46.) was added in wet weight. Culture was performed at 23°C, with an aeration rate of 0.5/min, photosynthetically active light quantum flux of 130 μmol/ m2 /s, and a 14-hour light/10-hour dark cycle. During the light period, when the pH rose to around pH 9, carbon dioxide gas was blown in to lower the pH to around 8. The medium was replaced one week after the start of culture, and after two weeks of culture, A. saccharifolia was collected and its wet weight was measured, and 214 g of A. saccharifolia was collected in wet weight.

Figure 0007539013000001
Figure 0007539013000001

[比較例1]
1Lのガラス容器に表1に記載の重炭酸ナトリウム添加培地を1L入れ、培養スイゼンジノリ(FPU1株)を湿重量で20g添加し、23℃雰囲気下、通気量0.5L/min、光合成有効光量量子束130μmol/m/s、14時間明・10時間暗サイクルで培養を開始した。明期でのpHコントロールは実施せずに培養を実施した。培地は培養開始1週間後に交換し、培養2週間後にスイゼンジノリを回収し湿重量を測定し、湿重量でスイゼンジノリ114gを回収した。
[Comparative Example 1]
1 L of the sodium bicarbonate-added medium shown in Table 1 was placed in a 1 L glass container, and 20 g of cultured A. sacchariflorus (FPU1 strain) was added in wet weight. Cultivation was started in an atmosphere of 23°C, with an aeration rate of 0.5 L/min, a photosynthetically active light quantum flux of 130 μmol/ m2 /s, and a 14-hour light/10-hour dark cycle. Cultivation was carried out without pH control during the light period. The medium was replaced one week after the start of cultivation, and after two weeks of cultivation, A. sacchariflorus was collected and its wet weight was measured, and 114 g of A. sacchariflorus was collected in wet weight.

[比較例2]
1Lのガラス容器に重炭酸ナトリウムを添加していない以外は表1に記載の培地組成と同じ培地を1L入れ培養スイゼンジノリ(FPU1株)を湿重量で20g添加し、23℃雰囲気下、通気量0.5L/min、光合成有効光量量子束130μmol/m/s、14時間明・10時間暗サイクルで培養を開始した。培地組成はナトリウムを抜いた以外実施例1と同じ組成にした。明期でのpHコントロールは実施せずに培養を実施した。培地は培養開始1週間後に交換し、培養2週間後にスイゼンジノリを回収し湿重量を測定し、湿重量でスイゼンジノリ82gを回収した。
[Comparative Example 2]
A 1L glass container was filled with 1L of medium having the same composition as that described in Table 1 except that sodium bicarbonate was not added, and 20 g of cultured A. saccharifolia (FPU1 strain) was added in wet weight. Cultivation was started in an atmosphere of 23°C, with an aeration rate of 0.5 L/min, a photosynthetically active light quantum flux of 130 μmol/ m2 /s, and a 14-hour light/10-hour dark cycle. The medium composition was the same as that in Example 1 except that sodium was omitted. Cultivation was carried out without pH control during the light period. The medium was replaced one week after the start of cultivation, and after two weeks of cultivation, A. saccharifolia was collected and its wet weight was measured, and 82 g of A. saccharifolia was collected in wet weight.

[比較例3]
1Lのガラス容器に重炭酸ナトリウムを添加していない以外は表1に記載の培地組成と同じ培地を1L入れ培養スイゼンジノリ(FPU1株)を湿重量で20g添加し、23℃雰囲気下、通気量0.5L/min、光合成有効光量量子束130μmol/m/s、14時間明・10時間暗サイクルで培養を開始した。明期でのpHコントロールは実施せずに培養を実施した。培地は培養開始1週間後に交換し、培養2週間後にスイゼンジノリを回収し湿重量を測定し、湿重量でスイゼンジノリ92gを回収した。
[Comparative Example 3]
A 1L glass container was filled with 1L of medium with the same composition as that described in Table 1 except that sodium bicarbonate was not added, and 20g of cultured A. saccharum (FPU1 strain) was added in wet weight. Cultivation was started in an atmosphere of 23°C, with an aeration rate of 0.5L/min, a photosynthetically active light quantum flux of 130μmol/ m2 /s, and a 14-hour light/10-hour dark cycle. The pH control during the light period was not performed. The medium was replaced 1 week after the start of cultivation, and after 2 weeks of cultivation, A. saccharum was collected and its wet weight was measured, and 92g of A. saccharum was collected in wet weight.

[比較例4]
2Lのガラス容器に表1に記載の重炭酸ナトリウム添加培地を1L入れ、培養スイゼンジノリ(FPU1株)を湿重量で20g添加し、23℃雰囲気下、光合成有効光量量子束130μmol/m/s、14時間明・10時間暗サイクルで静置培養を開始した(通気はせず)。培養開始1週間後、目視でスイゼンジノリの色が退色を確認し藻体が死滅したと判断したため実験を中止した
[Comparative Example 4]
One liter of sodium bicarbonate-added medium shown in Table 1 was placed in a 2-liter glass container, and 20 g of cultured Aphanothece sacrum (FPU1 strain) was added in wet weight. Static culture was started in an atmosphere of 23°C, with a photosynthetically active light quantum flux of 130 μmol/ m2 /s and a 14-hour light/10-hour dark cycle (without aeration). One week after the start of culture, the color of Aphanothece sacrum was visually confirmed to have faded, and it was determined that the algae had died, so the experiment was discontinued.

Figure 0007539013000002
Figure 0007539013000002

上記表2のように、重炭酸ナトリウムの添加及びpHコントロールを行った実施例は、これらの処理を行わなかった比較例に比して顕著な培養効率の向上が確認された。As shown in Table 2 above, the examples in which sodium bicarbonate was added and pH control was performed showed a significant improvement in culture efficiency compared to the comparative examples in which these treatments were not performed.

Claims (4)

スイゼンジノリの培養方法であって、重炭酸塩を含有する液体培地を、二酸化炭素の添加によりpH7.5以上10以下の範囲に維持して培養を行う培養方法であって、
前記液体培地における炭酸塩、重炭酸塩、リン酸塩及びクエン酸塩から選ばれる1種以上の塩の添加量が20~200ppmであることを特徴とする培養方法。
A method for culturing Aphanothece sacrum, comprising culturing a liquid medium containing bicarbonate at a pH level of 7.5 to 10 by adding carbon dioxide ,
The culture method is characterized in that the amount of one or more salts selected from carbonates, bicarbonates, phosphates and citrates added to the liquid medium is 20 to 200 ppm .
pH8以上9以下の範囲に維持して培養を行う、請求項1記載の培養方法。2. The method according to claim 1, wherein the culture is carried out while maintaining the pH in the range of 8 to 9. 光照射時に前記二酸化炭素の添加を行う、請求項1または2記載の培養方法。3. The culture method according to claim 1, wherein the carbon dioxide is added during the light irradiation. 請求項1~3のいずれか一項記載の培養方法でスイゼンジノリを培養する工程と、A step of culturing Aphanothece sacrum by the culture method according to any one of claims 1 to 3;
培養後により増加したスイゼンジノリを回収する工程と、を含むことを特徴とするスイゼンジノリの生産方法。and recovering the increased amount of A. cerevisiae after cultivation.
JP2022576628A 2021-01-19 2022-01-13 Method for cultivating blue-green algae Active JP7539013B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021006390 2021-01-19
JP2021006390 2021-01-19
PCT/JP2022/000814 WO2022158362A1 (en) 2021-01-19 2022-01-13 Method for culturing blue-green algae

Publications (3)

Publication Number Publication Date
JPWO2022158362A1 JPWO2022158362A1 (en) 2022-07-28
JPWO2022158362A5 JPWO2022158362A5 (en) 2023-09-21
JP7539013B2 true JP7539013B2 (en) 2024-08-23

Family

ID=82548953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022576628A Active JP7539013B2 (en) 2021-01-19 2022-01-13 Method for cultivating blue-green algae

Country Status (2)

Country Link
JP (1) JP7539013B2 (en)
WO (1) WO2022158362A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122991A (en) 2013-12-26 2015-07-06 学校法人君が淵学園 Method of culturing aphanothece sacrum with high efficiency
JP2016202054A (en) 2015-04-21 2016-12-08 鹿島建設株式会社 Method for mass production of cyanobacteria
JP2017035051A (en) 2015-08-12 2017-02-16 公立大学法人福井県立大学 Indoor closed culture system based on static culture using clone unialgal strain of aphanothece sacrum

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261588A (en) * 1985-09-11 1987-03-18 Onoda Cement Co Ltd Production of gamma-linolenic acid by blue-green alga

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122991A (en) 2013-12-26 2015-07-06 学校法人君が淵学園 Method of culturing aphanothece sacrum with high efficiency
JP2016202054A (en) 2015-04-21 2016-12-08 鹿島建設株式会社 Method for mass production of cyanobacteria
JP2017035051A (en) 2015-08-12 2017-02-16 公立大学法人福井県立大学 Indoor closed culture system based on static culture using clone unialgal strain of aphanothece sacrum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小林和樹 ほか,培養液組成の制御による Spirulina platensis の培養およびその増殖挙動,化学工学論文集,1996年,第22巻, 第1号,p. 56-59,<DOI: https://doi.org/10.1252/kakoronbunshu.22.56>

Also Published As

Publication number Publication date
JPWO2022158362A1 (en) 2022-07-28
WO2022158362A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
Matsudo et al. Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source
Markou et al. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH
CA2888493C (en) Methods of culturing microorganisms in non-axenic mixotrophic conditions
AU2010210982C1 (en) Systems and methods for maintaining the dominance and increasing the biomass production of Nannochloropsis in an algae cultivation system
Rorrer et al. Bioprocess engineering of cell and tissue cultures for marine seaweeds
Carvalho et al. Cultivation of arthrospira (spirulina) platensis (cyanophyceae) by fed‐batch addition of ammonium chloride at exponentially increasing feeding rates 1
Xu et al. Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta)
US8173391B2 (en) Golden yellow algae and method of producing the same
Kim et al. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting
CN102649936A (en) Compound microorganism fungicide for improving water quality of culturing water body and preparation method
Sand-Jensen Minimum light requirements for growth in Ulva lactuca.
Sassano et al. Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source
JP7539013B2 (en) Method for cultivating blue-green algae
CN103039385A (en) Method for effectively preventing bankrupt algae in shrimp culture
KR101168140B1 (en) Manufacturing method of live chlorella eatable with natural condition
JP2010148433A (en) Method for fixing carbon dioxide gas and system thereof
US6265217B1 (en) Method for producing microbulbs of garlic {Allium sativum l.} in vitro
CN103184157A (en) Algal culture process for treating protozoa and realizing stable high yield
Pongpadung et al. Stimulation of Hydrogen Photoproduction in Chlorella sorokiniana Subjected to Simultaneous Nitrogen Limitation and Sulfur-and/or Phosphorus-Deprivation.
WO2022234788A1 (en) Method for culturing algae
Uddin et al. Comparative growth analysis of Spirulina platensis using urea as a nitrogen substitute for NaNO3
CN103255073A (en) Method for rapid propagation of high purity photosynthetic bacterium
CN107686813A (en) A kind of Euglena high-density cultivation method
CN1657444A (en) Super-concentrated algae bacterium micro-ecological balance suspension type water quality modifier and preparation method thereof
CN106635801A (en) Chrysophyceae preservation technology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230711

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240423

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240722

R150 Certificate of patent or registration of utility model

Ref document number: 7539013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150