[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7527742B2 - Silicone rubber composition - Google Patents

Silicone rubber composition Download PDF

Info

Publication number
JP7527742B2
JP7527742B2 JP2021134269A JP2021134269A JP7527742B2 JP 7527742 B2 JP7527742 B2 JP 7527742B2 JP 2021134269 A JP2021134269 A JP 2021134269A JP 2021134269 A JP2021134269 A JP 2021134269A JP 7527742 B2 JP7527742 B2 JP 7527742B2
Authority
JP
Japan
Prior art keywords
silicone rubber
parts
mass
component
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021134269A
Other languages
Japanese (ja)
Other versions
JP2023028519A (en
Inventor
昌克 堀田
修 林田
義明 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2021134269A priority Critical patent/JP7527742B2/en
Publication of JP2023028519A publication Critical patent/JP2023028519A/en
Application granted granted Critical
Publication of JP7527742B2 publication Critical patent/JP7527742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、耐火性に優れ、特に火災時の様な高温下での形状保持性、難着火性に優れたシリコーンゴム組成物に関する。 The present invention relates to a silicone rubber composition that has excellent fire resistance, shape retention and ignition resistance, particularly at high temperatures such as during a fire.

従来、建築用耐火材としては、クロロプレン系ゴム及びエチレン-プロピレン-ジエン系ゴム等のゴム材料で成型されたものが使用されている。しかし、これらのゴム材料は難燃性には優れるものの、火災時に高温に曝されると多量の煙が発生し視界を妨げ、時に有毒な成分を含む場合もある。また、高温下での形状保持性も十分とは言えない。その様な状況から、最近では建築用耐火材として、耐熱耐候性、耐クリープ性に優れたシリコーンゴムが使用されるようになってきた。また、同様の理由から電線被覆材料としてもシリコーンゴムの使用量が増加している。 Traditionally, fire-resistant construction materials have been made from rubber materials such as chloroprene rubber and ethylene-propylene-diene rubber. However, although these rubber materials have excellent flame retardancy, when exposed to high temperatures during a fire, they produce large amounts of smoke, impairing visibility, and sometimes contain toxic components. In addition, their shape retention at high temperatures is not sufficient. For these reasons, silicone rubber, which has excellent heat and weather resistance and creep resistance, has recently come to be used as a fire-resistant construction material. For the same reason, the use of silicone rubber as an electric wire coating material is also increasing.

通常のシリコーンゴムは、火炎等の高温下に長時間曝されると燃焼、灰化するため、ガスケットとして十分な機能を有しない。 Normal silicone rubber burns and turns to ash when exposed to high temperatures such as flames for long periods of time, so it does not function adequately as a gasket.

そこで、シリコーンゴムからなる耐火材においては、上記欠点を改善するために、酸化亜鉛及び/又は水酸化アルミニウムと白金化合物の配合(特許文献1)、炭酸マンガン、マイカ、黒ベンガラから選択される少なくとも1種と酸化亜鉛及び/又は石英粉末と白金化合物の配合(特許文献2)が検討されている。更には、オルガノポリシロキサンに、水酸化マグネシウム(特許文献3)や焼成マイカ(特許文献4)を添加することで、高温下で焼結化(セラミック化)させることが提案されている。しかしながら、これらのシリコーンゴムでは、高温下での寸法安定性が不十分であり、更にゴムが部分的に発泡し、そこに含まれるシロキサンガスが燃焼する場合もある。 In order to improve the above-mentioned drawbacks of fire-resistant materials made of silicone rubber, the following have been considered: a combination of zinc oxide and/or aluminum hydroxide with a platinum compound (Patent Document 1); and a combination of at least one selected from manganese carbonate, mica, and black iron oxide with zinc oxide and/or quartz powder and a platinum compound (Patent Document 2). Furthermore, it has been proposed to add magnesium hydroxide (Patent Document 3) or calcined mica (Patent Document 4) to organopolysiloxane to sinter (ceramize) it at high temperatures. However, these silicone rubbers have insufficient dimensional stability at high temperatures, and the rubber may partially foam, causing the siloxane gas contained therein to burn.

特開昭60-141778号公報Japanese Patent Publication No. 141778/1983 特公平5-73158号公報Special Publication No. 5-73158 特開2000-169706号公報JP 2000-169706 A 国際公開第2015/011971号International Publication No. 2015/011971

従って、本発明は、長時間高温に曝されても、優れた形状保持性を示すシリコーンゴム組成物を提供することを目的とする。 Therefore, the object of the present invention is to provide a silicone rubber composition that exhibits excellent shape retention even when exposed to high temperatures for a long period of time.

本発明者らは、上記目的を達成するため鋭意検討した結果、重合度が100以上であって、1分子中にケイ素原子に結合した2個以上のアルケニル基を有するオルガノポリシロキサン、BET法で測定した比表面積が50m2/g以上である補強性シリカ及び硬化剤を含有する組成物において、更に、特定粒径の焼成マイカ及び金属水酸化物を併用することで、高温下での形状保持性に特に優れたシリコーンゴム組成物を提供できることを見出し、本発明を完成した。 As a result of intensive research to achieve the above-mentioned objective, the inventors have discovered that a silicone rubber composition that is particularly excellent in shape retention at high temperatures can be provided by using a composition containing an organopolysiloxane having a degree of polymerization of 100 or more and having two or more alkenyl groups bonded to silicon atoms in each molecule, reinforcing silica having a specific surface area measured by the BET method of 50 m2 /g or more, and a curing agent, and further using in combination calcined mica of a specific particle size and a metal hydroxide, and have thus completed the present invention.

従って、本発明は、以下のシリコーンゴム組成物を提供するものである。
〔1〕
(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン: 100質量部、
(B)BET法で測定した比表面積が50~500m2/gである補強性シリカ: 10~100質量部、
(C)平均粒径が0.5~20μmである焼成マイカ: 1~100質量部、
(D)平均粒径が0.5~20μmである金属水酸化物: 0.3~15質量部
及び
(E)硬化剤: 有効量
を含有するシリコーンゴム組成物。
〔2〕
(C)成分の焼成マイカが白雲母粉砕品を焼成したものである〔1〕に記載のシリコーンゴム組成物。
〔3〕
(D)成分の金属水酸化物が水酸化アルミニウム又は水酸化マグネシウムである〔1〕又は〔2〕に記載のシリコーンゴム組成物。
〔4〕
耐火ガスケット又は耐火電線用である〔1〕~〔3〕のいずれか1つに記載のシリコーンゴム組成物。
Accordingly, the present invention provides the following silicone rubber composition.
[1]
(A) an organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in each molecule: 100 parts by mass,
(B) reinforcing silica having a specific surface area of 50 to 500 m 2 /g as measured by the BET method: 10 to 100 parts by mass,
(C) Calcined mica having an average particle size of 0.5 to 20 μm: 1 to 100 parts by mass,
A silicone rubber composition comprising: (D) 0.3 to 15 parts by mass of a metal hydroxide having an average particle size of 0.5 to 20 μm; and (E) an effective amount of a curing agent.
[2]
The silicone rubber composition according to claim 1, wherein the calcined mica of component (C) is obtained by calcining pulverized muscovite.
[3]
The silicone rubber composition according to claim 1 or 2, wherein the metal hydroxide of component (D) is aluminum hydroxide or magnesium hydroxide.
[4]
The silicone rubber composition according to any one of [1] to [3], which is for use in a fire-resistant gasket or a fire-resistant electric wire.

本発明によれば、耐火性に優れ、特に高温下での形状保持性に優れたシリコーンゴム組成物を提供することができる。 The present invention provides a silicone rubber composition that has excellent fire resistance and shape retention, particularly at high temperatures.

本発明の実施例において、破壊強さの測定に用いた試験機の概略図である。FIG. 2 is a schematic diagram of a testing machine used to measure breaking strength in the examples of the present invention.

以下、本発明につき更に詳しく説明する。
[(A)アルケニル基含有オルガノポリシロキサン]
本発明のシリコーンゴム組成物に使用する(A)成分は、重合度(又は分子中のケイ素原子数)が100~10,000であって、1分子中にケイ素原子に結合した2個以上のアルケニル基を有するオルガノポリシロキサンである。この(A)成分は、本組成物の主剤(ベースポリマー)として作用するものである。また、(A)成分のアルケニル基含有オルガノポリシロキサンは、好適には、室温(25℃)で生ゴム状(即ち、高粘度で自己流動性のない非液状)の成分である。このような生ゴム状のアルケニル基含有オルガノポリシロキサンを主剤として配合する本発明のシリコーンゴム組成物は、通常、ミラブル型の(即ち、生ゴム状であって、ロールミル等の混練機により、せん断応力下に均一に混練することが可能な)組成物を与えるものである。(A)成分のアルケニル基含有オルガノポリシロキサンとしては、例えば、下記平均組成式(I)で表されるものが好ましい。
aSiO(4-a)/2 (I)
(式(I)中、Rは同一又は異種の炭素数1~12の1価炭化水素基を示し、aは1.95~2.05の数である。)
The present invention will now be described in further detail.
[(A) Alkenyl-containing organopolysiloxane]
The component (A) used in the silicone rubber composition of the present invention is an organopolysiloxane having a degree of polymerization (or the number of silicon atoms in the molecule) of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in one molecule. This component (A) acts as the main component (base polymer) of the composition. The alkenyl-containing organopolysiloxane of component (A) is preferably a raw rubber-like component (i.e., a non-liquid component with high viscosity and no self-flowability) at room temperature (25°C). The silicone rubber composition of the present invention, which contains such a raw rubber-like alkenyl-containing organopolysiloxane as the main component, usually gives a millable type composition (i.e., a raw rubber-like composition that can be uniformly kneaded under shear stress by a kneader such as a roll mill). The alkenyl-containing organopolysiloxane of component (A) is preferably, for example, one represented by the following average composition formula (I):
R a SiO (4-a)/2 (I)
(In formula (I), R represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, and a is a number from 1.95 to 2.05.)

上記平均組成式(I)中、Rは同一又は異種の炭素数1~12、好ましくは1~8の1価炭化水素基を示し、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、3,3,3-トリフルオロプロピル基等のフルオロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、シクロアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基等が挙げられ、メチル基、ビニル基、フェニル基、トリフルオロプロピル基が好ましく、特にメチル基、ビニル基が好ましい。全R中の80%以上、特に90%以上がメチル基であることが好ましく、更にはアルケニル基を除く全てのR基がメチル基であることが好ましい。 In the above average composition formula (I), R represents the same or different monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, and specifically includes alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, and octyl groups, cycloalkyl groups such as cyclopentyl and cyclohexyl groups, fluoroalkyl groups such as 3,3,3-trifluoropropyl groups, alkenyl groups such as vinyl, allyl, and propenyl groups, aryl groups such as cycloalkenyl groups, phenyl groups, and tolyl groups, and aralkyl groups such as benzyl and 2-phenylethyl groups. Methyl, vinyl, phenyl, and trifluoropropyl groups are preferred, and methyl and vinyl groups are particularly preferred. It is preferable that 80% or more, and particularly 90% or more of all R groups are methyl groups, and it is further preferable that all R groups except for alkenyl groups are methyl groups.

(A)成分のアルケニル基含有オルガノポリシロキサンとして、具体的には、該オルガノポリシロキサンの主鎖がジメチルシロキサン単位からなるもの、又はこのジメチルポリシロキサンの主鎖の一部にフェニル基、ビニル基、3,3,3-トリフルオロプロピル基等を有するジフェニルシロキサン単位、メチルビニルシロキサン単位、メチル-3,3,3-トリフルオロプロピルシロキサン単位等を導入したもの等が好適である。 Specific examples of the alkenyl-containing organopolysiloxane of component (A) include organopolysiloxanes whose main chain is made of dimethylsiloxane units, and dimethylpolysiloxanes whose main chain has diphenylsiloxane units having phenyl groups, vinyl groups, 3,3,3-trifluoropropyl groups, etc., methylvinylsiloxane units, methyl-3,3,3-trifluoropropylsiloxane units, etc., introduced into part of the main chain.

(A)成分のオルガノポリシロキサンは、1分子中に2個以上(通常、2~50個、特には2~20個程度)のアルケニル基、好ましくはビニル基を有し、例えば、上記平均組成式(I)中の全R基に対して、0.01~10%、特に0.02~5%がアルケニル基であることが好ましい。なお、このアルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中(非末端)のケイ素原子に結合していても、その両方であってもよいが、(A)成分のオルガノポリシロキサンとしては、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を有しているものが好ましい。具体的には分子鎖両末端がジメチルビニルシリル基、メチルジビニルシリル基、トリビニルシリル基等で封鎖されたものが好ましい。 The organopolysiloxane of component (A) has two or more alkenyl groups, preferably vinyl groups, per molecule (usually 2 to 50, particularly about 2 to 20). For example, it is preferable that 0.01 to 10%, particularly 0.02 to 5%, of all R groups in the average composition formula (I) above are alkenyl groups. The alkenyl groups may be bonded to silicon atoms at the ends of the molecular chain, or to silicon atoms in the middle of the molecular chain (non-terminal), or both. However, it is preferable that the organopolysiloxane of component (A) has alkenyl groups bonded to silicon atoms at at least both ends of the molecular chain. Specifically, it is preferable that both ends of the molecular chain are blocked with dimethylvinylsilyl groups, methyldivinylsilyl groups, trivinylsilyl groups, or the like.

上記平均組成式(I)において、aは1.95~2.05の数であり、好ましくは1.98~2.02、より好ましくは1.99~2.01の数である。(A)成分のオルガノポリシロキサンの分子構造は、基本的には、主鎖がジオルガノシロキサン単位(R2SiO2/2)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R3SiO1/2)で封鎖された直鎖状構造であることが一般的であるが、ゴム弾性を損なわない範囲において主鎖中に少量の分岐単位(RSiO3/2)を含有した分岐状構造を有していてもよい(Rは上記と同様)。 In the above average composition formula (I), a is a number from 1.95 to 2.05, preferably from 1.98 to 2.02, and more preferably from 1.99 to 2.01. The molecular structure of the organopolysiloxane of component (A) is generally a straight-chain structure in which the main chain is basically composed of repeating diorganosiloxane units (R 2 SiO 2/2 ) and both ends of the molecular chain are blocked with triorganosiloxy groups (R 3 SiO 1/2 ), but it may also have a branched structure containing a small amount of branch units (RSiO 3/2 ) in the main chain within a range that does not impair rubber elasticity (R is as defined above).

(A)成分のオルガノポリシロキサンの重合度は100~10,000であり、好ましくは1,000~10,000であり、より好ましくは2,000~10,000、更に好ましくは3,000~8,000、特に好ましくは5,000~8,000である。重合度が100未満であると十分なゴム強度が得られない。なお、本発明において、重合度は、オルガノポリシロキサン中のケイ素原子の数であり、トルエン等を展開溶媒としてGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均重合度(又は重量平均分子量)等として求めることができる。なお、本明細書中で重合度とは下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均分子量から重量平均重合度として求めた値である。
[測定条件]
展開溶媒:トルエン
流量:0.6mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-H
TSKgel SuperH5000(6.0mmI.D.×15cm×1)
TSKgel SuperH4000(6.0mmI.D.×15cm×1)
TSKgel SuperH3000(6.0mmI.D.×15cm×1)
(いずれも東ソー社製)
カラム温度:40℃
試料注入量:50μL(濃度0.5質量%のトルエン溶液)
The degree of polymerization of the organopolysiloxane of component (A) is 100 to 10,000, preferably 1,000 to 10,000, more preferably 2,000 to 10,000, even more preferably 3,000 to 8,000, and particularly preferably 5,000 to 8,000. If the degree of polymerization is less than 100, sufficient rubber strength cannot be obtained. In the present invention, the degree of polymerization is the number of silicon atoms in the organopolysiloxane, and can be determined as the weight-average degree of polymerization (or weight-average molecular weight) in terms of polystyrene in GPC (gel permeation chromatography) analysis using toluene or the like as a developing solvent. In the present specification, the degree of polymerization is a value determined as the weight-average degree of polymerization from the number-average molecular weight in terms of polystyrene in gel permeation chromatography (GPC) analysis measured under the following conditions.
[Measurement condition]
Developing solvent: toluene Flow rate: 0.6 mL/min
Detector: Refractive index detector (RI)
Column: TSK Guard column Super H-H
TSKgel SuperH5000 (6.0mm I.D. x 15cm x 1)
TSKgel SuperH4000 (6.0mm I.D. x 15cm x 1)
TSKgel SuperH3000 (6.0mm I.D. x 15cm x 1)
(Both manufactured by Tosoh Corporation)
Column temperature: 40°C
Sample injection volume: 50 μL (toluene solution with a concentration of 0.5% by mass)

また、(A)成分のオルガノポリシロキサンは、1種で用いても、分子構造や重合度の異なる2種以上を併用してもよい。 The organopolysiloxane of component (A) may be used alone or in combination with two or more different types with different molecular structures or degrees of polymerization.

このようなオルガノポリシロキサンは、公知の方法、例えばオルガノハロゲノシランの1種又は2種以上を(共)加水分解縮合することにより、又は環状ポリシロキサンをアルカリ性又は酸性触媒を用いて開環重合することによって得ることができる。 Such organopolysiloxanes can be obtained by known methods, for example, by (co)hydrolytic condensation of one or more organohalogenosilanes, or by ring-opening polymerization of cyclic polysiloxanes using an alkaline or acidic catalyst.

[(B)補強性シリカ]
(B)成分の補強性シリカは、通常シリコーンゴム組成物に使用される補強性シリカ微粉末が例示される。例えば、煙霧質シリカ(ヒュームドシリカ)、焼成シリカ等の乾式シリカ、沈降性シリカ等の湿式シリカ等が挙げられ、中でも耐熱性の観点から煙霧質シリカが好ましい。BET法で測定した比表面積は50~500m2/gであり、好ましくは100~400m2/g、特に好ましくは100~300m2/gである。比表面積が50m2/g未満では機械的強度の付与が不十分となる。また、比表面積が500m2/gよりも大きいものは工業的な生産が難しくなる。
[(B) Reinforcing Silica]
The reinforcing silica of component (B) is exemplified by reinforcing silica fine powders that are usually used in silicone rubber compositions. For example, fumed silica, dry silica such as calcined silica, and wet silica such as precipitated silica are exemplified, and among these, fumed silica is preferred from the viewpoint of heat resistance. The specific surface area measured by the BET method is 50 to 500 m 2 /g, preferably 100 to 400 m 2 /g, and particularly preferably 100 to 300 m 2 /g. If the specific surface area is less than 50 m 2 /g, the mechanical strength is insufficient. If the specific surface area is greater than 500 m 2 /g, industrial production becomes difficult.

この補強性シリカは、必要に応じ、表面をクロロシランやヘキサメチルジシラザン等の公知の処理剤で疎水化処理してもよい。 If necessary, the surface of this reinforcing silica may be hydrophobized with a known treating agent such as chlorosilane or hexamethyldisilazane.

(B)成分の補強性シリカの添加量は、(A)成分のオルガノポリシロキサン100質量部に対して、10~100質量部であり、好ましくは20~70質量部、特に好ましくは30~60質量部である。(A)成分100質量部に対する(B)成分の添加量が10質量部未満であると、添加量が少なすぎて十分な補強効果が得られず、100質量部を超えると加工性が悪くなり、また機械的強度が低下してしまう場合がある。 The amount of reinforcing silica in component (B) added is 10 to 100 parts by mass, preferably 20 to 70 parts by mass, and particularly preferably 30 to 60 parts by mass, per 100 parts by mass of the organopolysiloxane in component (A). If the amount of component (B) added per 100 parts by mass of component (A) is less than 10 parts by mass, the amount is too small to achieve a sufficient reinforcing effect, and if it exceeds 100 parts by mass, processability may deteriorate and mechanical strength may decrease.

[(C)焼成マイカ]
(C)成分の焼成マイカは、シリコーンゴム組成物を硬化して得られるシリコーンゴムに耐火性能(即ち、燃焼後の焼結性(形状保持性))を付与する成分である。本発明で使用する焼成マイカは、湿式マイカ又は乾式マイカを800℃以上の温度条件で熱処理したものである。このような焼成マイカとしては、例えば、白雲母粉砕品を焼成して製造された(株)レプコ製の焼成マイカ等が挙げられる。非焼成マイカは2本ロールによる混錬時に金属ロール表面に粘着しやすいという欠点がある。また、非焼成マイカはシリコーンゴムの成型時や成型品が高温に曝されたときに著しい発泡を起こす場合がある。
[(C) Calcined mica]
The calcined mica of component (C) is a component that imparts fire resistance (i.e., sinterability (shape retention) after combustion) to the silicone rubber obtained by curing the silicone rubber composition. The calcined mica used in the present invention is obtained by heat treating wet mica or dry mica at a temperature of 800°C or higher. An example of such calcined mica is calcined mica manufactured by Repco Co., Ltd., which is manufactured by calcining pulverized muscovite. Non-calcined mica has the disadvantage that it easily adheres to the metal roll surface during kneading with two rolls. Furthermore, non-calcined mica may cause significant foaming during molding of silicone rubber or when the molded product is exposed to high temperatures.

焼成マイカは、平均粒径が0.5~200μmであり、好ましくは1~100μm、特に好ましくは1~50mである。焼成マイカの平均粒径が0.5μm未満では凝集しやすく取扱い性が劣り、また200μmより大きいと、シリコーンゴム成形品を高温加熱(燃焼又は焼結)した際に、焼結後のセラミック化が不十分となり、灰化(焼結化)したシリコーンゴム成形品の形状保持性が低下する。
なお、本発明において平均粒径は、レーザー回折法による粒度分布測定における累積重量平均径(又はメジアン径、d50)として求めたものである。
The calcined mica has an average particle size of 0.5 to 200 μm, preferably 1 to 100 μm, and particularly preferably 1 to 50 μm. If the average particle size of the calcined mica is less than 0.5 μm, it is prone to agglomeration and is difficult to handle, while if it is more than 200 μm, when the silicone rubber molded article is heated at high temperatures (combustion or sintering), the ceramicization after sintering is insufficient, and the shape retention of the incinerated (sintered) silicone rubber molded article is reduced.
In the present invention, the average particle size is determined as the cumulative weight average diameter (or median diameter, d50) in particle size distribution measurement by laser diffraction method.

(C)成分の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して1~100質量部であり、好ましくは10~80質量部である。(A)成分100質量部に対する(C)成分の添加量が1質量部未満だと十分な形状保持性が得られず、100質量部を超えると材料の可塑度が高くなり混錬や成型が困難となる場合がある。 The amount of component (C) added is 1 to 100 parts by mass, and preferably 10 to 80 parts by mass, per 100 parts by mass of the organopolysiloxane of component (A). If the amount of component (C) added per 100 parts by mass of component (A) is less than 1 part by mass, sufficient shape retention will not be obtained, and if it exceeds 100 parts by mass, the plasticity of the material will be high, making kneading and molding difficult.

[(D)金属水酸化物]
(D)成分の金属水酸化物としては、水酸化アルミニウム又は水酸化マグネシウムが好ましい。組成物に適量の金属水酸化物を添加することで、故意に微小な発泡を均一に発生させ、大きな発泡を抑制できる。組成物に金属水酸化物を加えないと、500℃以上の高温下に曝した場合、大きな膨らみ(発泡)が生じることがある。この発泡は、シリカや焼成マイカに由来する水分や低分子シロキサンに因るものと考えられるが、この膨らみの部分は肉薄となり強度が低下する。特にガスケットの場合、ガラスとガスケットの間に隙間を作り熱気が通り抜けるおそれもある。また、膨らみ部分には可燃性のシロキサンガスが充満しており、高温化で破裂するとそのガスが燃焼するおそれがある。
[(D) Metal hydroxide]
As the metal hydroxide of component (D), aluminum hydroxide or magnesium hydroxide is preferred. By adding an appropriate amount of metal hydroxide to the composition, fine bubbles can be intentionally generated uniformly and large bubbles can be suppressed. If a metal hydroxide is not added to the composition, large swelling (foaming) may occur when exposed to high temperatures of 500°C or higher. This foaming is thought to be caused by moisture and low molecular weight siloxane derived from silica and calcined mica, and the swelling part becomes thin and the strength is reduced. In particular, in the case of a gasket, there is a risk of a gap being created between the glass and the gasket and hot air passing through. In addition, the swelling part is filled with flammable siloxane gas, and if it bursts at high temperatures, the gas may burn.

金属水酸化物の平均粒径は、0.5~20μmであり、好ましくは1~15μm、特に好ましくは2~10μmである。0.5μmよりも小さいと組成物への充填性が悪く、また20μmより大きいと、高温下での発泡が不均一になったり、シリコーンゴム成形品の強度が低下したりするおそれがある。
なお、平均粒径は、例えば、レーザー回折法による粒度分布測定における累積重量平均径(又はメジアン径、d50)として求めたものである。
The average particle size of the metal hydroxide is 0.5 to 20 μm, preferably 1 to 15 μm, and particularly preferably 2 to 10 μm. If it is smaller than 0.5 μm, it will not be easily filled into the composition, and if it is larger than 20 μm, it may foam non-uniformly at high temperatures or the strength of the silicone rubber molded product may decrease.
The average particle size is determined, for example, as the cumulative weight average diameter (or median diameter, d50) in particle size distribution measurement by laser diffraction method.

(D)成分の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して0.3~15質量部であり、好ましくは0.5~10質量部である。(A)成分100質量部に対する(D)成分の添加量が0.3質量部未満では効果が不十分であり、15質量部を超えると高温下での発泡量が著しく増加し、シリコーンゴム組成物のロール加工性も悪化する場合がある。 The amount of component (D) added is 0.3 to 15 parts by mass, and preferably 0.5 to 10 parts by mass, per 100 parts by mass of the organopolysiloxane of component (A). If the amount of component (D) added is less than 0.3 parts by mass per 100 parts by mass of component (A), the effect is insufficient, and if it exceeds 15 parts by mass, the amount of foaming at high temperatures increases significantly and the roll processability of the silicone rubber composition may also deteriorate.

[(E)硬化剤]
(E)成分の硬化剤は、本発明のシリコーンゴム組成物を硬化させ得るものであれば特に限定されるものではない。従って公知のシリコーンゴム用の加硫剤(硬化剤)、例えば、有機過酸化物加硫剤(硬化剤)及び付加加硫剤(硬化剤)が使用可能である。
[(E) Curing agent]
The curing agent of component (E) is not particularly limited as long as it can cure the silicone rubber composition of the present invention. Therefore, known vulcanizing agents (curing agents) for silicone rubber, such as organic peroxide vulcanizing agents (curing agents) and addition vulcanizing agents (curing agents), can be used.

有機過酸化物加硫剤(硬化剤)として使用する有機過酸化物としては、例えばベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。これらは1種又は2種以上併用してもよい。
有機過酸化物の添加量は、シリコーンゴム組成物を硬化させるのに十分な有効量であればよいが、(A)成分100質量部に対して0.1~10質量部が好ましく、特に0.2~5質量部が好ましい。
また、硬化剤として有機過酸化物加硫剤(硬化剤)を用いる場合、耐熱性を高める目的で後述する白金系触媒を併用してもよい。併用する場合、白金系触媒の配合量としては、(A)成分100質量部に対して白金族金属の質量換算で1~2,000ppmが好ましく、特に10~1,000ppmが好ましい。
Examples of organic peroxides used as organic peroxide vulcanizing agents (curing agents) include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-bis(2,5-t-butylperoxy)hexane, di-t-butyl peroxide, t-butyl perbenzoate, 1,6-hexanediol-bis-t-butylperoxycarbonate, etc. These may be used alone or in combination of two or more.
The amount of organic peroxide added may be any amount sufficient to effectively cure the silicone rubber composition, but is preferably 0.1 to 10 parts by weight, and more preferably 0.2 to 5 parts by weight, per 100 parts by weight of component (A).
When an organic peroxide vulcanizing agent (curing agent) is used as the curing agent, a platinum-based catalyst, which will be described later, may be used in combination in order to improve heat resistance. When used in combination, the amount of platinum-based catalyst is preferably 1 to 2,000 ppm, and more preferably 10 to 1,000 ppm, calculated as the mass of platinum group metal per 100 parts by mass of component (A).

付加反応(ヒドロシリル化付加反応)により硬化させる場合には、付加加硫剤(硬化剤)として、オルガノハイドロジェンポリシロキサン(硬化剤又は架橋剤)と白金系触媒(硬化触媒)との組合せを使用する。 When curing by addition reaction (hydrosilylation addition reaction), a combination of organohydrogenpolysiloxane (curing agent or crosslinking agent) and platinum catalyst (curing catalyst) is used as the addition vulcanizing agent (curing agent).

白金系触媒としては、白金元素単体、白金化合物、白金複合体、塩化白金酸、塩化白金酸のアルコール化合物、アルデヒド化合物、エーテル化合物、各種オレフィン類とのコンプレックスや、該白金化合物と同様のロジウム、パラジウム、ルテニウムの化合物等の白金族金属触媒が例示される。
白金系触媒の添加量は、(A)成分のオルガノポリシロキサンに対し、白金族金属の質量換算で1~2,000ppmが好ましく、特に10~1,000ppmが好ましい。
Examples of platinum-based catalysts include platinum element alone, platinum compounds, platinum complexes, chloroplatinic acid, alcohol compounds of chloroplatinic acid, aldehyde compounds, ether compounds, complexes with various olefins, and platinum group metal catalysts such as compounds of rhodium, palladium, and ruthenium similar to the platinum compounds.
The amount of platinum catalyst added is preferably 1 to 2,000 ppm, and particularly preferably 10 to 1,000 ppm, calculated as the mass of platinum group metal relative to the organopolysiloxane of component (A).

一方、硬化剤(架橋剤)として使用するオルガノハイドロジェンポリシロキサンとしては、1分子中に2個以上(通常、2~200個)、好ましくは3個以上(例えば、3~150個、好ましくは4~100個)のケイ素原子に結合した水素原子(ヒドロシリル基)を含有するオルガノハイドロジェンポリシロキサンが挙げられる。オルガノハイドロジェンポリシロキサンは、直鎖状、分岐鎖状、環状、三次元網状構造のいずれであってもよい。このオルガノハイドロジェンポリシロキサンの重合度は、300以下が好ましく、2~300がより好ましく、3~150が特に好ましい。このオルガノハイドロジェンポリシロキサンとして具体的には、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、1-プロピル-3,5,7-トリハイドロジェン-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジハイドロジェン-3,7-ジヘキシル-1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C653SiO1/2単位とからなる共重合体等が挙げられる。 On the other hand, the organohydrogenpolysiloxane used as the curing agent (crosslinking agent) may be an organohydrogenpolysiloxane containing two or more (usually 2 to 200), preferably three or more (for example, 3 to 150, preferably 4 to 100) hydrogen atoms bonded to silicon atoms (hydrosilyl groups) in one molecule. The organohydrogenpolysiloxane may have a linear, branched, cyclic, or three-dimensional network structure. The degree of polymerization of this organohydrogenpolysiloxane is preferably 300 or less, more preferably 2 to 300, and particularly preferably 3 to 150. Specific examples of this organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trihydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-dihydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, tris(hydrogendimethylsiloxy)methylsilane, tris(hydrogendimethylsiloxy)phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, methylhydrogenpolysiloxane blocked at both ends with trimethylsiloxy groups, dimethylsiloxane-methylhydrogensiloxane copolymer blocked at both ends with trimethylsiloxy groups, and copolymers of dimethylsiloxane and methylhydrogensiloxane blocked at both ends with dimethylsiloxy groups. Methylhydrogensiloxy group-blocked dimethylpolysiloxane, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both ends with dimethylhydrogensiloxy groups, methylhydrogensiloxane/diphenylsiloxane copolymer blocked at both ends with trimethylsiloxy groups, methylhydrogensiloxane/diphenylsiloxane/dimethylsiloxane copolymer blocked at both ends with trimethylsiloxy groups, methylhydrogensiloxane/methylphenylsiloxane/dimethylsiloxane copolymer blocked at both ends with trimethylsiloxy groups, methylhydrogensiloxane/dimethylsiloxane/diphenylsiloxane copolymer blocked at both ends with dimethylhydrogensiloxy groups, methylhydrogensiloxane/dimethylsiloxane/methylphenylsiloxane copolymer blocked at both ends with dimethylhydrogensiloxy groups, (CH Examples of the copolymer include a copolymer consisting of ( CH3 ) 2HSiO1 /2 units, ( CH3 ) 3SiO1 /2 units and SiO4 /2 units, a copolymer consisting of ( CH3 ) 2HSiO1 / 2 units and SiO4/ 2 units, and a copolymer consisting of ( CH3 )2HSiO1 /2 units , SiO4 /2 units and ( C6H5 ) 3SiO1 /2 units .

この硬化剤としてのオルガノハイドロジェンポリシロキサンの添加量は、(A)成分のオルガノポリシロキサン中のアルケニル基に対して、オルガノハイドロジェンポリシロキサン中のケイ素原子に直結した水素原子(ヒドロシリル基)のモル比が0.5~5モル/モルとなる割合で用いられることが好ましい。本発明の組成物を硬化させる際には、(D)成分の硬化剤として、上記した有機過酸化物加硫剤(硬化剤)と、付加加硫剤(硬化剤)とを併用した共加硫タイプとすることもできる。 The amount of organohydrogenpolysiloxane added as a curing agent is preferably such that the molar ratio of hydrogen atoms (hydrosilyl groups) directly bonded to silicon atoms in the organohydrogenpolysiloxane is 0.5 to 5 mol/mol relative to the alkenyl groups in the organopolysiloxane of component (A). When curing the composition of the present invention, a co-vulcanization type can be used in which the above-mentioned organic peroxide vulcanizing agent (curing agent) and an addition vulcanizing agent (curing agent) are used together as the curing agent of component (D).

本発明のシリコーンゴム組成物には、上記成分に加え、任意成分として本発明の効果を妨げない範囲で必要に応じ、前記(B)補強性シリカの分散剤(例えば、α,ω-シラノール基封鎖の低重合度ジオルガノポリシロキサン等)、白金化合物(例えば、前記(D)成分の付加加硫剤中の成分として例示した、白金系触媒と同様の白金化合物等)、酸化鉄や酸化チタン、カーボン、ハロゲン化合物のような難燃性付与剤や耐熱性向上剤、老化防止剤、紫外線吸収剤、着色剤、離型剤等のシリコーンゴム組成物における公知の添加剤を添加することができる。 In addition to the above components, the silicone rubber composition of the present invention may contain optional components, as necessary, within the range that does not impair the effects of the present invention, such as dispersants for the reinforcing silica (B) (e.g., α,ω-silanol-blocked low-polymerization diorganopolysiloxanes, etc.), platinum compounds (e.g., platinum compounds similar to the platinum-based catalysts exemplified as components in the addition vulcanizing agent of the above-mentioned component (D)), flame retardants such as iron oxide, titanium oxide, carbon, and halogen compounds, heat resistance improvers, anti-aging agents, ultraviolet absorbers, colorants, and mold release agents, and other additives known in silicone rubber compositions.

本発明のシリコーンゴム組成物の製造方法は、特に限定されないが、上述した成分の所定量を2本ロール(ロールミル)、ニーダー、バンバリーミキサー等公知の混練機で混練りすることによって得ることができる。また、必要により熱処理(加熱下での混練り)してもよい。具体的には(A)、(B)成分を混練し、必要に応じて熱処理してから室温において(E)成分を添加する方法が好ましい。この場合、(C)、(D)成分は熱処理前に配合しても熱処理後に配合してもよい。熱処理する場合、熱処理温度、時間は特に限定されないが、100~250℃、特に140~180℃で30分~5時間程度行うことが好ましい。 The method for producing the silicone rubber composition of the present invention is not particularly limited, but it can be obtained by kneading the predetermined amounts of the above-mentioned components with a known kneading machine such as a two-roll (roll mill), kneader, or Banbury mixer. If necessary, heat treatment (kneading under heat) may also be performed. Specifically, a method is preferred in which components (A) and (B) are kneaded, and if necessary, heat treatment is performed, and then component (E) is added at room temperature. In this case, components (C) and (D) may be mixed either before or after the heat treatment. When heat treatment is performed, the heat treatment temperature and time are not particularly limited, but it is preferable to perform the heat treatment at 100 to 250°C, especially 140 to 180°C, for about 30 minutes to 5 hours.

本発明のシリコーンゴム組成物は、必要とされる用途(成形品)に応じての成形方法を選択すればよい。具体的には、コンプレッション成形、インジェクション成形、トランスファー成形、常圧熱気加硫、スチーム加硫等が挙げられる。硬化条件は特に限定されず、硬化方法や成形品により適宜選択すればよく、一般的には80~600℃、特に100~450℃で数秒~数日、特に5秒~1時間程度である。また、必要に応じて2次加硫してもよい。2次加硫は通常180~250℃で1~10時間程度である。 The silicone rubber composition of the present invention may be molded in a manner that is appropriate for the intended use (molded product). Specific examples include compression molding, injection molding, transfer molding, normal pressure hot air vulcanization, and steam vulcanization. There are no particular limitations on the curing conditions, which may be appropriately selected depending on the curing method and molded product. Curing conditions are generally 80 to 600°C, particularly 100 to 450°C, for a few seconds to several days, particularly about 5 seconds to 1 hour. Secondary vulcanization may also be performed if necessary. Secondary vulcanization is usually performed at 180 to 250°C for about 1 to 10 hours.

本発明のシリコーンゴム組成物は、建築用ガスケット材(耐火ガスケット用材料)として、更に耐火性が要求される電線被覆材料(耐火電線用材料)、車両用及び/又は車載用ゴム材料、電池保護材料としても有用である。 The silicone rubber composition of the present invention is useful as a construction gasket material (fire-resistant gasket material), and also as a wire coating material (fire-resistant wire material) that requires fire resistance, a rubber material for vehicles and/or on-board use, and a battery protection material.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例中の部は質量部を示す。重合度は、トルエンを展開溶媒としたGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均重合度を示す。平均粒径は、レーザー回折法による粒度分布測定における累積重量平均径;d50を示す。 The present invention will be specifically described below with examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, parts indicate parts by mass. The degree of polymerization indicates the weight average degree of polymerization in terms of polystyrene in GPC (gel permeation chromatography) analysis using toluene as the developing solvent. The average particle size indicates the cumulative weight average diameter; d50 in particle size distribution measurement by laser diffraction method.

[実施例1~6、比較例1~3]
ジメチルシロキサン単位99.825モル%、メチルビニルシロキサン単位0.15モル%、ジメチルビニルシロキシ単位0.025モル%からなり、重合度7,000であるオルガノポリシロキサン100部、BET法による比表面積200m2/gの煙霧質シリカ(アエロジル-200(日本アエロジル(株)製))45部、及び両末端にシラノール基を有し、重合度が5のジメチルポリシロキサン5部をニーダーで配合し、150℃で2時間熱処理を行い、シリコーンゴムコンパウンドを作製した。
得られたゴムコンパウンド100部に、白雲母粉砕品を焼成して製造された焼成マイカ((株)レプコ製、平均粒径18μm)、水酸化アルミニウム(フーバー・エンジニアード・マテリアルズ製、平均粒径1μm又は8μm)、水酸化マグネシウム(協和化学工業(株)製、平均粒径0.8μm又は1.7μm)、酸化チタン(日本アエロジル株式会社製、BET法による比表面積50mm2/g)をそれぞれ表1に示す部数添加し、更に、塩化白金酸のアルコール溶液(Pt濃度2質量%)0.1部を2本ロールで添加し、次いでp-メチルベンゾイルパーオキサイド50質量%ペースト1.3部を添加してシリコーンゴム組成物を調製した。
[Examples 1 to 6, Comparative Examples 1 to 3]
100 parts of an organopolysiloxane consisting of 99.825 mol % dimethylsiloxane units, 0.15 mol % methylvinylsiloxane units, and 0.025 mol % dimethylvinylsiloxy units and having a degree of polymerization of 7,000, 45 parts of fumed silica (Aerosil-200, manufactured by Nippon Aerosil Co., Ltd.) having a specific surface area of 200 m2 /g as measured by the BET method, and 5 parts of dimethylpolysiloxane having silanol groups at both ends and a degree of polymerization of 5 were mixed in a kneader and heat-treated at 150°C for 2 hours to produce a silicone rubber compound.
To 100 parts of the obtained rubber compound, calcined mica (manufactured by Repco Corporation, average particle size 18 μm) produced by calcining pulverized muscovite, aluminum hydroxide (manufactured by Huber Engineered Materials, average particle size 1 μm or 8 μm), magnesium hydroxide (manufactured by Kyowa Chemical Industry Co., Ltd., average particle size 0.8 μm or 1.7 μm), and titanium oxide (manufactured by Nippon Aerosil Co., Ltd., specific surface area by BET method 50 mm2/g) were added in the amounts shown in Table 1, and further 0.1 parts of an alcohol solution of chloroplatinic acid (Pt concentration 2% by mass) was added using a two-roll mill, followed by the addition of 1.3 parts of a 50% by mass paste of p-methylbenzoyl peroxide to prepare a silicone rubber composition.

この組成物を120℃で10分間プレス成型して得られた厚さ2mmのゴムシートを、更に200℃で4時間ポストキュアした。このゴムシートから3.5cm×3.5cmのシート片を4枚切り出し、高温炉にて800℃で5分間加熱し、試験片としての焼結体を各例4片ずつ得た。図1に示すロードセル1付試験機(先端部は直径4mmの円柱状)の台座3に、得られた焼結体2を載置し、破壊速度は120mm/分(図1中の矢印は荷重方向を示す)にて破壊した。各例における4片の焼結体(焼結体1~焼結体4)の試験力の測定結果を表1に示す。 This composition was press molded at 120°C for 10 minutes to obtain a 2 mm thick rubber sheet, which was then post-cured at 200°C for 4 hours. Four pieces of 3.5 cm x 3.5 cm were cut out of this rubber sheet and heated in a high-temperature furnace at 800°C for 5 minutes to obtain four sintered bodies as test pieces for each example. The obtained sintered body 2 was placed on the base 3 of a testing machine (with a cylindrical tip and a diameter of 4 mm) equipped with a load cell 1 as shown in Figure 1, and was broken at a breaking speed of 120 mm/min (the arrow in Figure 1 indicates the load direction). The test force measurement results of the four sintered bodies (sintered body 1 to sintered body 4) for each example are shown in Table 1.

Figure 0007527742000001
Figure 0007527742000001

いずれの実施例も焼結体の形状が安定することが確認された。また、各実施例では、焼結体1~焼結体4のいずれの試験片においても試験力の値は安定して高い値が得られた。
一方、(D)金属水酸化物を配合しない比較例1は、優れた焼結性を示すものの、ところどころに焼結体に大きな膨らみが見られた。また、水酸化アルミニウム及び水酸化マグネシウムをそれぞれ過剰に添加した比較例2、3は焼結後に全体が大きく膨れ、すべての試験片で強度が著しく低下した。また、ロール作業時に粘着性も見られた。
It was confirmed that the shape of the sintered body was stable in each of the Examples. Furthermore, in each of the Examples, the test force values of the test pieces of Sintered Body 1 to Sintered Body 4 were stable and high.
On the other hand, Comparative Example 1, which did not contain (D) metal hydroxide, showed excellent sinterability, but large swelling was observed in some places in the sintered body. Comparative Examples 2 and 3, which contained excessive amounts of aluminum hydroxide and magnesium hydroxide, respectively, showed large swelling overall after sintering, and the strength of all test pieces was significantly reduced. Also, stickiness was observed during rolling.

1 ロードセル
2 焼結体
3 台座
1 Load cell 2 Sintered body 3 Base

Claims (4)

(A)重合度が100~10,000であって、1分子中にケイ素原子に結合したアルケニル基を2個以上有するオルガノポリシロキサン: 100質量部、
(B)BET法で測定した比表面積が50~500m2/gである補強性シリカ: 10~100質量部、
(C)平均粒径が0.5~20μmである焼成マイカ: 10~80質量部、
(D)平均粒径が0.5~20μmである金属水酸化物: 0.5~10質量部
及び
(E)硬化剤: 有効量
を含有するシリコーンゴム組成物。
(A) an organopolysiloxane having a degree of polymerization of 100 to 10,000 and having two or more alkenyl groups bonded to silicon atoms in each molecule: 100 parts by mass,
(B) reinforcing silica having a specific surface area of 50 to 500 m 2 /g as measured by the BET method: 10 to 100 parts by mass,
(C) Calcined mica having an average particle size of 0.5 to 20 μm: 10 to 80 parts by mass,
A silicone rubber composition comprising: (D) 0.5 to 10 parts by mass of a metal hydroxide having an average particle size of 0.5 to 20 μm; and (E) an effective amount of a curing agent.
(C)成分の焼成マイカが白雲母粉砕品を焼成したものである請求項1に記載のシリコーンゴム組成物。 The silicone rubber composition according to claim 1, wherein the calcined mica of component (C) is obtained by calcining pulverized muscovite. (D)成分の金属水酸化物が水酸化アルミニウム又は水酸化マグネシウムである請求項1又は2に記載のシリコーンゴム組成物。 The silicone rubber composition according to claim 1 or 2, wherein the metal hydroxide of component (D) is aluminum hydroxide or magnesium hydroxide. 耐火ガスケット用又は耐火電線用である請求項1~3のいずれか1項に記載のシリコーンゴム組成物。
The silicone rubber composition according to any one of claims 1 to 3, which is used for a fire-resistant gasket or a fire-resistant electric wire.
JP2021134269A 2021-08-19 2021-08-19 Silicone rubber composition Active JP7527742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021134269A JP7527742B2 (en) 2021-08-19 2021-08-19 Silicone rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021134269A JP7527742B2 (en) 2021-08-19 2021-08-19 Silicone rubber composition

Publications (2)

Publication Number Publication Date
JP2023028519A JP2023028519A (en) 2023-03-03
JP7527742B2 true JP7527742B2 (en) 2024-08-05

Family

ID=85331105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021134269A Active JP7527742B2 (en) 2021-08-19 2021-08-19 Silicone rubber composition

Country Status (1)

Country Link
JP (1) JP7527742B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011971A1 (en) 2013-07-22 2015-01-29 信越化学工業株式会社 Silicone rubber composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011971A1 (en) 2013-07-22 2015-01-29 信越化学工業株式会社 Silicone rubber composition

Also Published As

Publication number Publication date
JP2023028519A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
JP4762781B2 (en) Conductive silicone rubber composition and conductive silicone rubber sponge
JP5768824B2 (en) Foamable silicone rubber composition and silicone rubber sponge
JP6565850B2 (en) Method for producing high-ream silicone rubber sponge, liquid silicone rubber composition for high-ream silicone rubber sponge, and silicone rubber sponge
JP6020727B2 (en) Silicone rubber composition
EP2554585B1 (en) Silicone Rubber Composition Having Excellent Heat Resistance
US10954385B2 (en) Heat-resistant millable silicone rubber composition
CN105440683B (en) Antistatic silicone rubber composition, cured product thereof, and method for producing same
JP5304603B2 (en) Silicone rubber composition and keypad
KR101721163B1 (en) Composition for silicone rubber sponge and manufacturing method for silicone rubber sponge
EP3219762B1 (en) Addition-curable silicone rubber composition
JP7527742B2 (en) Silicone rubber composition
JP6245119B2 (en) Silicone rubber composition and method for improving tear strength of cured silicone rubber
JP6776797B2 (en) Method for manufacturing a cured silicone rubber product having a low friction surface
JP2009275158A (en) Silicone rubber composition and keypad
JP6738776B2 (en) Silicone rubber composition
JP2024524798A (en) Foamable silicone composition and use thereof
JP7451027B2 (en) Liquid silicone rubber composition and silicone rubber sponge
JP7526115B2 (en) Heat-resistant millable silicone rubber composition
JP7427542B2 (en) Silicone rubber sponge composition and its manufacturing method
JP7413966B2 (en) Liquid silicone rubber sponge composition and method for producing highly open-cell silicone rubber sponge
JP4725713B2 (en) Silicone rubber composition and method for improving heat resistance of cured product of silicone rubber composition
JP4766244B2 (en) Conductive silicone rubber composition and conductive silicone rubber sponge
JP2020122107A (en) Silicone rubber composition
JP2019104813A (en) Liquid silicone rubber sponge composition and electrophotographic image forming member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240723

R150 Certificate of patent or registration of utility model

Ref document number: 7527742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150