[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7511730B1 - CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM - Google Patents

CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM Download PDF

Info

Publication number
JP7511730B1
JP7511730B1 JP2023136261A JP2023136261A JP7511730B1 JP 7511730 B1 JP7511730 B1 JP 7511730B1 JP 2023136261 A JP2023136261 A JP 2023136261A JP 2023136261 A JP2023136261 A JP 2023136261A JP 7511730 B1 JP7511730 B1 JP 7511730B1
Authority
JP
Japan
Prior art keywords
cold
heat
water well
heat source
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023136261A
Other languages
Japanese (ja)
Inventor
伸治 三原
林日 崔
正頌 坂井
憲治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2023136261A priority Critical patent/JP7511730B1/en
Application granted granted Critical
Publication of JP7511730B1 publication Critical patent/JP7511730B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】帯水層の蓄熱量のバランスをとりやすくすることができる制御装置、地中熱利用システム、制御方法、プログラムを提供する。【解決手段】制御装置は、温水井戸に蓄えた温熱を、熱源機を介さず冷却塔に供給し、冷却塔から得られた冷熱を、熱源機を介さず冷水井戸に蓄える第一蓄冷熱モード、温水井戸に蓄えた温熱を、熱源機を介して冷却塔に供給し、冷却塔から得られた冷熱を、熱源機を介して冷水井戸に蓄える第二蓄冷熱モード、冷水井戸に蓄えた冷熱を、熱源機を介さず機器に供給する第一放冷熱モード、及び冷水井戸に蓄えた冷熱を、熱源機を介して機器に供給する第二放冷熱モード、の間でモードの切替可能とする運転制御部と、積算蓄冷量を算出する算出部と、必要蓄冷量を予測する予測部と、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードで制御すべきか、第二蓄冷熱モードで制御すべきか判定するモード判定部と、備える。【選択図】図1[Problem] To provide a control device, a geothermal heat utilization system, a control method, and a program that can facilitate balancing of the amount of heat stored in an aquifer. [Solution] The control device includes an operation control unit that can switch between a first cold heat storage mode in which hot heat stored in a hot water well is supplied to a cooling tower without a heat source device and cold heat obtained from the cooling tower is stored in a cold water well without a heat source device, a second cold heat storage mode in which hot heat stored in the hot water well is supplied to a cooling tower via a heat source device and cold heat obtained from the cooling tower is stored in a cold water well via the heat source device, a first cold heat release mode in which cold heat stored in the cold water well is supplied to equipment without a heat source device, and a second cold heat release mode in which cold heat stored in the cold water well is supplied to equipment via the heat source device, and a calculation unit that calculates an accumulated cold heat storage amount, a prediction unit that predicts a required cold heat storage amount, and a mode determination unit that determines whether to control in the first cold heat storage mode or the second cold heat storage mode based on the accumulated cold heat storage amount and the required cold heat storage amount. [Selected Figure] Figure 1

Description

本開示は、制御装置、地中熱利用システム、制御方法、プログラムに関する。 This disclosure relates to a control device, a geothermal energy utilization system, a control method, and a program.

近年、地下水を温熱源又は冷熱源として利用する地中熱利用システムが提案されている。 In recent years, geothermal energy utilization systems have been proposed that use groundwater as a source of hot or cold energy.

例えば、特許文献1には、温水井戸、冷水井戸、井戸側配管、及び井戸側配管に設けられたポンプを有する熱源井戸設備と、冷凍サイクルを有する熱源機と、熱源機と井戸側配管との間で熱交換可能な1次側冷媒回路と、熱源機と負荷の間で熱交換可能な2次側冷媒回路と、を備える地中熱利用システムが開示されている。このシステムでは、熱源機は、凝縮器及び蒸発器を備えている。この地中熱利用システムでは、季節に応じて、蓄冷熱運転モードと、放冷熱運転モードとで、モード切換が可能に構成されている。蓄冷熱運転モードは、熱源機の蒸発器と井戸側配管との間で熱交換するとともに、熱源機の凝縮器と負荷との間で熱交換する。放冷熱運転モードは、熱源機の凝縮器と井戸側配管との間で熱交換するとともに、熱源機の蒸発器と負荷との間で熱交換する。 For example, Patent Document 1 discloses a geothermal energy utilization system that includes a heat source well facility having a hot water well, a cold water well, well-side piping, and a pump installed in the well-side piping, a heat source machine having a refrigeration cycle, a primary refrigerant circuit capable of heat exchange between the heat source machine and the well-side piping, and a secondary refrigerant circuit capable of heat exchange between the heat source machine and a load. In this system, the heat source machine includes a condenser and an evaporator. In this geothermal energy utilization system, the mode can be switched between a cold heat storage operation mode and a cold heat dissipation operation mode depending on the season. In the cold heat storage operation mode, heat is exchanged between the evaporator of the heat source machine and the well-side piping, and heat is exchanged between the condenser of the heat source machine and the load. In the cold heat dissipation operation mode, heat is exchanged between the condenser of the heat source machine and the well-side piping, and heat is exchanged between the evaporator of the heat source machine and the load.

特許第6857883号公報Patent No. 6857883

特許文献1に記載の地中熱利用システムでは、放冷熱運転モードで冷熱を放出するのに備え、夏期夜間、冬期等に蓄冷熱運転モードを実施することで、蓄熱量のバランスを維持しようとしている。しかしながら、放冷熱運転モードで運転を行う際、ピーク期で必要とされる熱量に対し、蓄冷熱運転モードで蓄えた冷熱が不足したり、余ったりすることがある。このため、帯水層の蓄熱量のバランスをとりにくいという課題がある。 The geothermal energy utilization system described in Patent Document 1 attempts to maintain a balance in the amount of stored heat by implementing a cold heat storage operation mode during summer nights, winter, etc., in preparation for releasing cold heat in the cold heat discharge operation mode. However, when operating in the cold heat discharge operation mode, the cold heat stored in the cold heat storage operation mode may be insufficient or surplus to the amount of heat required during peak periods. This poses the problem of making it difficult to balance the amount of heat stored in the aquifer.

本開示は、上記課題を解決するためになされたものであって、帯水層の蓄熱量のバランスをとりやすくすることができる制御装置、地中熱利用システム、制御方法、プログラムを提供することを目的とする。 The present disclosure has been made to solve the above problem, and aims to provide a control device, geothermal heat utilization system, control method, and program that can easily balance the amount of heat stored in an aquifer.

上記課題を解決するために、本開示に係る制御装置は、温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備える地中熱利用システムを制御する制御装置であって、前記地中熱利用システムを、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能とする運転制御部と、前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出する算出部と、
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測する予測部と、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するモード判定部と、備える。
In order to solve the above problems, a control device according to the present disclosure is a control device for controlling a geothermal heat utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source unit, and the geothermal heat utilization system is configured to operate in a first cold heat storage mode in which hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source unit, and cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source unit, an operation control unit that switches between a second cold-water storage mode in which the cold energy obtained from the cooling tower is supplied to the cooling tower via a heat source machine and stored in the cold water well via the heat source machine, a first cold-water release mode in which the cold energy stored in the cold water well is supplied to equipment without going through the heat source machine, and a second cold-water release mode in which the cold energy stored in the cold water well is supplied to the equipment via the heat source machine; and a calculation unit that calculates an accumulated cold energy storage amount, which is the amount of cold energy stored in the cold water well.
The system is equipped with a prediction unit that predicts a required cold storage amount, which is the amount of cold storage required to cool the equipment, and a mode determination unit that determines whether control should be performed in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount.

本開示に係る地中熱利用システムは、上記したような制御装置と、前記熱源井戸設備と、前記蓄熱補助設備と、を備える。 The geothermal energy utilization system according to the present disclosure includes the control device described above, the heat source well equipment, and the heat storage auxiliary equipment.

本開示に係る制御方法は、温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムの前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、を含む。 The control method according to the present disclosure includes a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source machine, and includes a first cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source machine, a second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine, and the cold heat stored in the cold water well is The method includes a step of calculating an accumulated cold storage amount, which is the amount of cold stored in the cold water well of a geothermal energy utilization system that can switch between a first cold storage mode in which the cold energy is supplied to the equipment without going through the heat source equipment and a second cold storage mode in which the cold energy stored in the cold water well is supplied to the equipment through the heat source equipment, a step of predicting a required cold storage amount, which is the amount of cold storage required to cool the equipment, and a step of determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount.

本開示に係るプログラムは、温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムのコンピュータに、前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、を含む処理を実行させる。 The program according to the present disclosure includes a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source machine, and includes a first cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source machine, a second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine, and a third cold heat storage mode in which the cold heat stored in the cold water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine, A computer of a geothermal heat utilization system capable of switching between a first cold heat release mode in which the cold heat stored in the cold water well is supplied to the equipment without being cooled, and a second cold heat release mode in which the cold heat stored in the cold water well is supplied to the equipment via the heat source machine executes a process including a step of calculating an accumulated cold heat storage amount, which is the amount of cold heat stored in the cold water well, a step of predicting a required cold heat storage amount, which is the amount of cold heat storage required to cool the equipment, and a step of determining whether to control in the first cold heat storage mode or the second cold heat storage mode based on the accumulated cold heat storage amount and the required cold heat storage amount.

本開示の制御装置、地中熱利用システム、制御方法、プログラムによれば、帯水層の蓄熱量のバランスをとりやすくすることができる。 The control device, geothermal heat utilization system, control method, and program disclosed herein make it easier to balance the amount of heat stored in an aquifer.

本開示の実施形態に係る地中熱利用システムの概略構成を示す系統図である。1 is a system diagram showing a schematic configuration of a geothermal heat utilization system according to an embodiment of the present disclosure. 本開示の実施形態に係る地中熱利用システムにおいて、第一蓄冷熱モードで運転を行う場合の地下水、媒体の流れを示す図である。1 is a diagram showing the flow of groundwater and a medium when operating in a first cold heat storage mode in a geothermal energy utilization system according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る地中熱利用システムにおいて、第二蓄冷熱モードで運転を行う場合の地下水、媒体の流れを示す図である。1 is a diagram showing the flow of groundwater and a medium when operating in a second cold heat storage mode in a geothermal energy utilization system according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る地中熱利用システムにおいて、第一放冷熱モードで運転を行う場合の地下水、媒体の流れを示す図である。1 is a diagram showing the flow of groundwater and medium when operating in a first cold heat release mode in a geothermal energy utilization system according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る地中熱利用システムにおいて、第一放冷熱モードで運転を行う場合の地下水、媒体の流れを示す図である。1 is a diagram showing the flow of groundwater and medium when operating in a first cold heat release mode in a geothermal energy utilization system according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る制御装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a control device according to an embodiment of the present disclosure. 本開示の実施形態に係る制御方法の流れを示すフローチャートである。4 is a flowchart showing the flow of a control method according to an embodiment of the present disclosure. 本開示の実施形態に係る計算装置、制御装置がそれぞれ備えるコンピュータのハードウェア構成の例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a computer included in each of a calculation device and a control device according to an embodiment of the present disclosure.

本開示に係る地中熱利用システムの実施形態について、図1~図8を参照して説明する。
(地中熱利用システムの構成)
図1に示すように、地中熱利用システム1は、熱源井戸設備10と、蓄熱補助設備100と、熱交換器4と、制御装置300(図6参照)と、を主に備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a geothermal energy utilization system according to the present disclosure will be described with reference to FIGS.
(Configuration of geothermal energy utilization system)
As shown in FIG. 1, the geothermal energy utilization system 1 mainly includes a heat source well facility 10, a heat storage auxiliary facility 100, a heat exchanger 4, and a control device 300 (see FIG. 6).

(熱源井戸設備の構成)
図1に示すように、熱源井戸設備10は、温水井戸21と、冷水井戸22と、井戸側配管3と、ポンプ31と、を主に備える。
(Configuration of heat source well equipment)
As shown in FIG. 1 , the heat source well facility 10 mainly comprises a hot water well 21 , a cold water well 22 , well-side piping 3 , and a pump 31 .

温水井戸21、冷水井戸22は、それぞれ、地上から帯水層内に延びている。
温水井戸21、冷水井戸22は、それぞれ、帯水層の地下水を取り込んだり、温水井戸21、冷水井戸22の内部から帯水層へ地下水を戻したりできるように構成されている。
The hot water well 21 and the cold water well 22 each extend from the ground into the aquifer.
The hot water well 21 and the cold water well 22 are configured so as to take in groundwater from the aquifer and return groundwater from the inside of the hot water well 21 and the cold water well 22 to the aquifer, respectively.

熱源井戸設備10は、温水井戸21および冷水井戸22のうちの一方から地下水をくみ上げ、熱交換器4で熱交換を行った後、温水井戸21および冷水井戸22のうちの他方に熱交換後の地下水を注入する。つまり、熱源井戸設備10は、温水井戸21から地下水をくみ上げて冷水井戸22に注水する場合と、冷水井戸22から地下水をくみ上げて温水井戸21に注水する場合と、がある。 The heat source well facility 10 pumps up groundwater from one of the hot water well 21 and the cold water well 22, exchanges heat in the heat exchanger 4, and then injects the heat-exchanged groundwater into the other of the hot water well 21 and the cold water well 22. In other words, the heat source well facility 10 may pump up groundwater from the hot water well 21 and inject it into the cold water well 22, or it may pump up groundwater from the cold water well 22 and inject it into the hot water well 21.

井戸側配管3は、温水井戸21と冷水井戸22とを接続する。
井戸側配管3の両端は、温水井戸21、冷水井戸22の内部に延びている。
例えば、井戸側配管3は、温水井戸21と冷水井戸22とを接続するように、温水井戸21と冷水井戸22との各地下水に両端が浸漬されていてもよい。
The well side piping 3 connects the hot water well 21 and the cold water well 22 .
Both ends of the well side piping 3 extend into the hot water well 21 and the cold water well 22 .
For example, the well-side piping 3 may have both ends immersed in the groundwater of the hot water well 21 and the cold water well 22 so as to connect the hot water well 21 and the cold water well 22 .

井戸側配管3には、ポンプ31が設けられている。
井戸側配管3の両端部には、ポンプ31がそれぞれ設けられている。
ポンプ31は、温水井戸21、冷水井戸22から井戸側配管3に揚水する。
例えば、ポンプ31は、井戸側配管3の両端に設けられ、温水井戸21、冷水井戸22内の地下水に浸漬されていてもよい。
例えば、ポンプ31は、インバータ制御により出力を変更できてもよい。
A pump 31 is provided on the well side piping 3.
A pump 31 is provided at each end of the well side piping 3.
The pump 31 pumps water from the hot water well 21 and the cold water well 22 to the well side piping 3.
For example, the pump 31 may be provided at both ends of the well-side piping 3 and immersed in the groundwater in the hot water well 21 and the cold water well 22.
For example, the output of the pump 31 may be changed by inverter control.

熱交換器4は、井戸側配管3内の地下水と、蓄熱補助設備100側の後述の冷媒回路101内の媒体と、の間で熱交換する。
本実施形態において,熱交換器4は、第一熱交換器41と、第二熱交換器42と、を備えている。
第一熱交換器41、及び第二熱交換器42は、井戸側配管3に対して、直列に配置される。
第一熱交換器41、及び第二熱交換器42は、井戸側配管3に対して、個別に接続される。
第一熱交換器41の一方側、及び第二熱交換器42の一方側は、それぞれ、井戸側配管3の途中に接続される。
第一熱交換器41の他方側、及び第二熱交換器42の他方側は、それぞれ、後述の冷媒回路101に接続される。
第一熱交換器41、及び第二熱交換器42は、井戸側配管3との間に設けられた開閉弁(図示無し)を開閉することで、第一熱交換器41、及び第二熱交換器42のいずれか一方に、井戸側配管3内の地下水が流入し、熱交換がなされる。
The heat exchanger 4 exchanges heat between the groundwater in the well-side piping 3 and a medium in a refrigerant circuit 101 (described later) on the thermal storage auxiliary equipment 100 side.
In the present embodiment, the heat exchanger 4 includes a first heat exchanger 41 and a second heat exchanger 42 .
The first heat exchanger 41 and the second heat exchanger 42 are arranged in series with respect to the well side piping 3.
The first heat exchanger 41 and the second heat exchanger 42 are individually connected to the well side piping 3.
One side of the first heat exchanger 41 and one side of the second heat exchanger 42 are each connected midway through the well side piping 3.
The other side of the first heat exchanger 41 and the other side of the second heat exchanger 42 are each connected to a refrigerant circuit 101 described below.
The first heat exchanger 41 and the second heat exchanger 42 are configured such that by opening and closing an on-off valve (not shown) provided between the well side piping 3, groundwater in the well side piping 3 flows into either the first heat exchanger 41 or the second heat exchanger 42, and heat exchange takes place.

第一熱交換器41、及び第二熱交換器42の各々は、温水井戸21からくみ上げられて井戸側配管3内を流れる地下水と、蓄熱補助設備100側の媒体との間で熱交換する。熱交換が行われた後の地下水は、第一熱交換器41及び第二熱交換器42の各々から、井戸側配管3内を流れ、冷水井戸22に注水される。
第一熱交換器41、及び第二熱交換器42の各々は、冷水井戸22からくみ上げられて井戸側配管3内を流れる地下水と、蓄熱補助設備100側の媒体との間で熱交換する。熱交換が行われた後の地下水は、第一熱交換器41、及び第二熱交換器42の各々から井戸側配管3内を流れ、温水井戸21に注水される。
例えば、第一熱交換器41及び第二熱交換器42は、地上において、井戸側配管3の途中に設けられていてもよい。
Each of the first heat exchanger 41 and the second heat exchanger 42 exchanges heat between groundwater pumped up from the hot water well 21 and flowing in the well-side piping 3 and the medium on the thermal storage auxiliary equipment 100 side. The groundwater after the heat exchange flows from each of the first heat exchanger 41 and the second heat exchanger 42 through the well-side piping 3 and is injected into the cold water well 22.
Each of the first heat exchanger 41 and the second heat exchanger 42 exchanges heat between groundwater pumped up from the cold water well 22 and flowing in the well-side piping 3 and the medium on the thermal storage auxiliary equipment 100 side. The groundwater after the heat exchange flows from each of the first heat exchanger 41 and the second heat exchanger 42 through the well-side piping 3 and is injected into the hot water well 21.
For example, the first heat exchanger 41 and the second heat exchanger 42 may be provided on the ground, midway along the well-side piping 3 .

第一熱交換器41、及び第二熱交換器42の各々に対し、温水井戸21から地下水として温水が送り込まれる場合、第一熱交換器41、及び第二熱交換器42の各々は、蓄熱補助設備100側の媒体との熱交換により、温水を冷却して冷水とする。この冷水は、冷水井戸22に送り込まれる。この場合、温水井戸21では温熱を放出する放温熱を行い、冷水井戸22では、冷熱を蓄える蓄冷熱を行う。
第一熱交換器41、及び第二熱交換器42の各々に対し、冷水井戸22から地下水として冷水が送り込まれる場合、第一熱交換器41、及び第二熱交換器42の各々は、蓄熱補助設備100側の媒体との熱交換により、冷水が加熱されて温水となる。この温水は、温水井戸21に送り込まれる。この場合、冷水井戸22では冷熱を放熱する放冷熱を行い、温水井戸21では、温熱を蓄える蓄温熱を行う。
ここで「温水」とは、帯水層の地下水の初期地中温度より高い温度の水、又は帯水層の地下水の初期地中温度と同程度の温度の水のことであり、「冷水」とは、帯水層の地下水の初期地中温度より低い温度の水のことである。
例えば、帯水層の地下水の初期地中温度は18℃である。
When hot water is sent from the hot water well 21 as groundwater to each of the first heat exchanger 41 and the second heat exchanger 42, each of the first heat exchanger 41 and the second heat exchanger 42 cools the hot water to cold water by heat exchange with the medium on the thermal storage auxiliary equipment 100 side. This cold water is sent to the cold water well 22. In this case, the hot water well 21 releases hot heat, and the cold water well 22 stores cold heat.
When cold water is sent as groundwater from the cold water well 22 to each of the first heat exchanger 41 and the second heat exchanger 42, the cold water is heated to hot water in each of the first heat exchanger 41 and the second heat exchanger 42 by heat exchange with the medium on the thermal storage auxiliary equipment 100 side. This hot water is sent to the hot water well 21. In this case, the cold water well 22 performs cold heat dissipation, that is, cold heat dissipation, and the hot water well 21 performs hot heat storage, that is, hot heat storage.
Here, "hot water" refers to water whose temperature is higher than the initial underground temperature of the groundwater in the aquifer or water whose temperature is similar to the initial underground temperature of the groundwater in the aquifer, and "cold water" refers to water whose temperature is lower than the initial underground temperature of the groundwater in the aquifer.
For example, the initial subsurface temperature of the groundwater in an aquifer is 18°C.

(蓄熱補助設備の構成)
蓄熱補助設備100は、第一熱交換器41及び第二熱交換器42で井戸側配管3内の地下水と熱交換を行った媒体を利用する。
本実施形態において、蓄熱補助設備100は、例えば、熱源機110と、冷却塔130と、冷媒回路101と、を備えている。
(Configuration of heat storage auxiliary equipment)
The thermal storage auxiliary equipment 100 utilizes a medium that has exchanged heat with the groundwater in the well-side piping 3 in the first heat exchanger 41 and the second heat exchanger 42 .
In this embodiment, the thermal storage auxiliary equipment 100 includes, for example, a heat source unit 110, a cooling tower 130, and a refrigerant circuit 101.

例えば、熱源機110は、コンデンサ、エバポレータ、コンプレッサ等を備えたヒートポンプであってもよい。
熱源機110は、機器120に媒体(冷水)を供給する。
機器120は、例えば、熱源機110から供給される媒体(冷水)と熱交換することで、機器120が設置された空間の空気調和を行う空気調和装置である。
本実施形態において、機器120は、例えば、データセンター等において、複数のコンピュータ(サーバ)等が収容された空間の空気調和を行う。
機器120により空気調和を行う空間の用途については、データセンターに限らず、他の用途であってもよい。
したがって、地中熱利用システム1と機器120とを備えたシステムは、空気調和システムとして機能する。
For example, the heat source unit 110 may be a heat pump equipped with a condenser, an evaporator, a compressor, and the like.
The heat source unit 110 supplies a medium (chilled water) to the equipment 120 .
The equipment 120 is, for example, an air-conditioning device that performs air conditioning of the space in which the equipment 120 is installed by exchanging heat with a medium (chilled water) supplied from the heat source unit 110 .
In this embodiment, the device 120 conditions the air in a space that houses a plurality of computers (servers) and the like, for example, in a data center or the like.
The use of the space conditioned by the equipment 120 is not limited to a data center, and may be for other purposes.
Therefore, a system including the geothermal energy utilization system 1 and the equipment 120 functions as an air conditioning system.

冷却塔130は、冷却水を大気と接触させて気化させるときの気化熱により、冷却水を冷却する。
冷却塔130は、熱源機110、及び第二熱交換器42との間で冷却水を循環させる。
あるモードにおいて、冷却塔130は、熱源機110、及び第二熱交換器42のいずれか一方を選択して、冷却水を循環可能である。
他のモードにおいて、冷却塔130は、熱源機110、及び第二熱交換器42の双方との間で、冷却水を循環可能である。
すなわち、上記熱源機110と、冷却塔130とを備えるユニットは、冷凍機として機能する。
The cooling tower 130 cools the cooling water by the heat of vaporization generated when the cooling water comes into contact with the air and is vaporized.
The cooling tower 130 circulates cooling water between the heat source unit 110 and the second heat exchanger 42 .
In a certain mode, the cooling tower 130 can select either the heat source unit 110 or the second heat exchanger 42 to circulate cooling water.
In another mode, the cooling tower 130 can circulate cooling water between both the heat source unit 110 and the second heat exchanger 42.
That is, a unit including the heat source unit 110 and the cooling tower 130 functions as a refrigerator.

冷媒回路101は、第一熱交換器41及び第二熱交換器42と、熱源機110と、機器120と、との間で、媒体の流路を形成する。
冷媒回路101は、熱源機110と機器120とを接続する機器側回路部102と、熱源機110と冷却塔130とを接続する冷却塔側回路部103と、を有している。
機器側回路部102を流れる媒体と、冷却塔側回路部103とを流れる媒体は、熱源機110で熱交換する。
The refrigerant circuit 101 forms a flow path of the medium between the first heat exchanger 41 and the second heat exchanger 42 , the heat source unit 110 , and the device 120 .
The refrigerant circuit 101 has an equipment side circuit section 102 that connects the heat source unit 110 and the equipment 120 , and a cooling tower side circuit section 103 that connects the heat source unit 110 and the cooling tower 130 .
The medium flowing through the equipment side circuit section 102 and the medium flowing through the cooling tower side circuit section 103 exchange heat in the heat source unit 110.

機器側回路部102は、熱源機110から機器120に媒体を送る送りライン102aと、機器120から熱源機110に媒体を戻す戻りライン102bと、を有している。
冷却塔側回路部103は、冷却塔130から熱源機110に媒体を送る送りライン103aと、熱源機110から冷却塔130に媒体を戻す戻りライン103bと、を有している。
The device side circuit section 102 has a feed line 102 a that feeds the medium from the heat source unit 110 to the device 120 , and a return line 102 b that returns the medium from the device 120 to the heat source unit 110 .
The cooling tower side circuit section 103 has a feed line 103 a that feeds the medium from the cooling tower 130 to the heat source unit 110 , and a return line 103 b that returns the medium from the heat source unit 110 to the cooling tower 130 .

冷媒回路101は、機器側回路部102と第一熱交換器41の他方側とを接続する第一熱交換器側回路104と、冷却塔側回路部103と第二熱交換器42の他方側とを接続する第二熱交換器側回路105と、をさらに有している。
第一熱交換器側回路104は、冷水が流通する冷水ライン104aと、温水が流通する温水ライン104bと、を有している。
第二熱交換器側回路105は、冷水が流通する冷水ライン105aと、温水が流通する温水ライン105bと、を有している。
The refrigerant circuit 101 further has a first heat exchanger side circuit 104 connecting the equipment side circuit section 102 and the other side of the first heat exchanger 41, and a second heat exchanger side circuit 105 connecting the cooling tower side circuit section 103 and the other side of the second heat exchanger 42.
The first heat exchanger side circuit 104 has a cold water line 104a through which cold water flows, and a hot water line 104b through which hot water flows.
The second heat exchanger side circuit 105 has a cold water line 105a through which cold water flows, and a hot water line 105b through which hot water flows.

冷媒回路101は、不図示のポンプ、開閉弁等が適宜設けられ、運転モードに応じ、第一熱交換器41と熱源機110と機器120との間と、第二熱交換器42と熱源機110と冷却塔130との間とで、それぞれ、媒体を所定のルートで循環可能に構成されている。
例えば、蓄熱補助設備100は、冷媒回路101における媒体の循環ルートを切り換えることで、以下に示す第一蓄冷熱モードM1、第二蓄冷熱モードM2、第一放冷熱モードM3、及び第二放冷熱モードM4とで、運転モードの切換が可能に構成されている。
The refrigerant circuit 101 is appropriately provided with pumps, on-off valves, etc. (not shown), and is configured to be able to circulate the medium via a predetermined route between the first heat exchanger 41, the heat source unit 110, and the equipment 120, and between the second heat exchanger 42, the heat source unit 110, and the cooling tower 130, depending on the operating mode.
For example, the heat storage auxiliary equipment 100 is configured to be able to switch operating modes between a first cold heat storage mode M1, a second cold heat storage mode M2, a first cold heat release mode M3, and a second cold heat release mode M4 by switching the medium circulation route in the refrigerant circuit 101, as shown below.

(第一蓄冷熱モードの構成)
図2に示すように、第一蓄冷熱モードM1では、地中熱利用システム1は、温水井戸21に蓄えた温熱を、熱源機110を介さず冷却塔130に供給し、冷却塔130から得られた冷熱を、熱源機110を介さず冷水井戸22に蓄える。
なお、図2において、井戸側配管3と、機器側回路部102と、冷却塔側回路部103と、第二熱交換器側回路105との各々に流れる媒体のうち、温かい媒体は点線で示され、冷たい媒体は太線で示されている。
(Configuration of the first cold storage mode)
As shown in Figure 2, in the first cold water storage mode M1, the geothermal energy utilization system 1 supplies the hot water stored in the hot water well 21 to the cooling tower 130 without passing through the heat source unit 110, and stores the cold water obtained from the cooling tower 130 in the cold water well 22 without passing through the heat source unit 110.
In Figure 2, among the media flowing through the well side piping 3, the equipment side circuit section 102, the cooling tower side circuit section 103, and the second heat exchanger side circuit 105, warm media are indicated by dotted lines and cold media are indicated by thick lines.

具体的には、第一蓄冷熱モードM1では、地中熱利用システム1は、温水井戸21のポンプ31で、温水をくみ上げて第二熱交換器42に送り込む。
他方、蓄熱補助設備100側の冷却塔側回路部103において、地中熱利用システム1は、冷却塔130で冷却した媒体(冷水)と、機器側回路部102を流れる媒体とを、熱源機110で熱交換する。これにより、機器側回路部102は、機器120と熱源機110との間で循環する媒体を冷却して機器120に送る。熱源機110では、機器側回路部102を流れる媒体と熱交換することで温度上昇した媒体(温水)が、冷却塔130に戻される。
Specifically, in the first cold-heat-storage mode M1, the geothermal energy utilization system 1 pumps up hot water using the pump 31 in the hot water well 21 and sends it to the second heat exchanger 42.
On the other hand, in the cooling tower side circuit section 103 on the thermal storage auxiliary equipment 100 side, the geothermal energy utilization system 1 exchanges heat between the medium (cold water) cooled in the cooling tower 130 and the medium flowing through the equipment side circuit section 102 in the heat source unit 110. As a result, the equipment side circuit section 102 cools the medium circulating between the equipment 120 and the heat source unit 110 and sends it to the equipment 120. In the heat source unit 110, the medium (hot water) whose temperature has increased by heat exchange with the medium flowing through the equipment side circuit section 102 is returned to the cooling tower 130.

加えて、冷却塔130で冷却した媒体(冷水)の一部は、第二熱交換器側回路105を介して第二熱交換器42に送られ、温水井戸21から送られた、熱源井戸設備10側の温水と熱交換する。これにより、熱源井戸設備10側の温水が冷却され、井戸側配管3を通して冷水井戸22へと送られる。このため、冷水井戸22に、蓄冷熱がなされる。なお、熱源井戸設備10側の温水との熱交換により温度上昇した媒体は、冷却塔130に戻る。 In addition, a portion of the medium (cold water) cooled in the cooling tower 130 is sent to the second heat exchanger 42 via the second heat exchanger side circuit 105, and exchanges heat with the hot water on the heat source well equipment 10 side sent from the hot water well 21. This cools the hot water on the heat source well equipment 10 side, and sends it to the cold water well 22 through the well side piping 3. This causes cold heat to be stored in the cold water well 22. The medium, whose temperature has increased due to heat exchange with the hot water on the heat source well equipment 10 side, returns to the cooling tower 130.

このような第一蓄冷熱モードM1は、特に、夜間や冬期等、外気温度が低く、冷却塔130のみで十分な媒体の冷却効果が得られる場合に有効である。
第一蓄冷熱モードM1では、熱源機110を、熱源井戸設備10側の温水の冷却のために用いないため、熱源機110における電力消費が抑えられる。
Such a first cold-storage mode M1 is particularly effective at night or in winter when the outside air temperature is low and the cooling tower 130 alone can provide a sufficient cooling effect for the medium.
In the first cold heat storage mode M1, the heat source unit 110 is not used to cool the hot water on the heat source well equipment 10 side, so that power consumption in the heat source unit 110 is reduced.

(第二蓄冷熱モードの構成)
図3に示すように、第二蓄冷熱モードM2では、地中熱利用システム1は、温水井戸21に蓄えた温熱を、熱源機110を介して冷却塔130に供給し、冷却塔130から得られた冷熱を、熱源機110を介して冷水井戸22に蓄える。
なお、図3において、井戸側配管3と、機器側回路部102と、冷却塔側回路部103と、第一熱交換器側回路104との各々に流れる媒体のうち、温かい媒体は点線で示され、冷たい媒体は太線で示されている。
(Configuration of the second cold storage mode)
As shown in Figure 3, in the second cold water storage mode M2, the geothermal energy utilization system 1 supplies the hot water stored in the hot water well 21 to the cooling tower 130 via the heat source unit 110, and stores the cold water obtained from the cooling tower 130 in the cold water well 22 via the heat source unit 110.
In Figure 3, among the media flowing through the well side piping 3, the equipment side circuit section 102, the cooling tower side circuit section 103, and the first heat exchanger side circuit 104, warm media are indicated by dotted lines and cold media are indicated by thick lines.

具体的には、第二蓄冷熱モードM2では、地中熱利用システム1は、温水井戸21のポンプ31で、温水をくみ上げて第一熱交換器41に送り込む。
他方、蓄熱補助設備100側の冷却塔側回路部103において、地中熱利用システム1は、冷却塔130で冷却した媒体(冷水)と、機器側回路部102を流れる媒体とを、熱源機110で熱交換する。
例えば、機器120の冷房も必要であれば、機器側回路部102は、機器120と熱源機110との間で循環する媒体を冷却して機器120に送ってもよい。熱源機110では、機器側回路部102を流れる媒体と熱交換することで温度上昇した媒体(温水)が、冷却塔130に戻される。
Specifically, in the second cold-heat-storage mode M2, the geothermal energy utilization system 1 pumps up hot water using the pump 31 in the hot water well 21 and sends it to the first heat exchanger 41.
On the other hand, in the cooling tower side circuit section 103 on the heat storage auxiliary equipment 100 side, the geothermal energy utilization system 1 exchanges heat between the medium (cold water) cooled in the cooling tower 130 and the medium flowing through the equipment side circuit section 102 in the heat source unit 110.
For example, if cooling of the equipment 120 is also required, the equipment-side circuit unit 102 may cool the medium circulating between the equipment 120 and the heat source unit 110 and send the cooled medium to the equipment 120. In the heat source unit 110, the medium (hot water) whose temperature has been increased by heat exchange with the medium flowing through the equipment-side circuit unit 102 is returned to the cooling tower 130.

加えて、熱源機110で冷却された媒体(冷水)の全部又は一部は、機器側回路部102から第一熱交換器側回路104を介して第一熱交換器41に送られ、熱源井戸設備10側の温水と熱交換する。これにより、熱源井戸設備10側の温水が冷却され、井戸側配管3を通して冷水井戸22へと送られる。このため、冷水井戸22に蓄冷熱がなされる。なお、熱源井戸設備10側の温水との熱交換により温度上昇した媒体は、第一熱交換器側回路104を介して熱源機110に戻る。 In addition, all or part of the medium (cold water) cooled by the heat source unit 110 is sent from the equipment side circuit section 102 to the first heat exchanger 41 via the first heat exchanger side circuit 104, and exchanges heat with the hot water on the heat source well equipment 10 side. As a result, the hot water on the heat source well equipment 10 side is cooled and sent to the cold water well 22 through the well side piping 3. As a result, cold heat is stored in the cold water well 22. The medium whose temperature has increased due to heat exchange with the hot water on the heat source well equipment 10 side returns to the heat source unit 110 via the first heat exchanger side circuit 104.

熱源機110は、機器側回路部102側と、冷却塔側回路部103側との媒体の温度差が小さい場合に、その性能が向上する。このため、第二蓄冷熱モードM2は、特に、夜間や冬期等、外気温度が低く、熱源機110において、機器側回路部102側と、冷却塔側回路部103側との媒体の温度差が小さい場合に有効である。
第二蓄冷熱モードM2では、熱源機110を、その性能が向上するときに有効利用することで、効率良く蓄冷熱を行うことができる。
The performance of the heat source unit 110 is improved when there is a small temperature difference between the medium on the device side circuit unit 102 side and the cooling tower side circuit unit 103 side. For this reason, the second cold heat storage mode M2 is effective when the outside air temperature is low, such as at night or in winter, and there is a small temperature difference between the medium on the device side circuit unit 102 side and the cooling tower side circuit unit 103 side in the heat source unit 110.
In the second cold-heat-storage mode M2, the heat source unit 110 is effectively utilized when its performance is improved, so that cold-heat storage can be performed efficiently.

(第一放冷熱モードの構成)
図4に示すように、第一放冷熱モードM3では、地中熱利用システム1は、冷水井戸22に蓄えた冷熱を、熱源機110を介さず機器120に供給する。
なお、図4において、井戸側配管3と、機器側回路部102と、第一熱交換器側回路104との各々に流れる媒体のうち、温かい媒体は点線で示され、冷たい媒体は太線で示されている。
(Configuration of the first cold heat release mode)
As shown in FIG. 4 , in the first cold heat release mode M3, the geothermal heat utilization system 1 supplies the cold heat stored in the cold water well 22 to the equipment 120 without passing through the heat source unit 110.
In Figure 4, among the media flowing through the well side piping 3, the equipment side circuit section 102, and the first heat exchanger side circuit 104, warm media are indicated by dotted lines and cold media are indicated by thick lines.

具体的には、第一放冷熱モードM3では、地中熱利用システム1は、冷水井戸22のポンプ31で、冷水をくみ上げて第一熱交換器41に送り込む。
第一熱交換器41において、地中熱利用システム1は、熱源井戸設備10側の冷水と、機器側回路部102を流れる媒体との間で熱交換する。これにより、機器側回路部102は、機器120と第一熱交換器41との間で循環する媒体を冷却して機器120に送る。
Specifically, in the first cold heat release mode M3, the geothermal heat utilization system 1 pumps up cold water using the pump 31 in the cold water well 22 and sends it to the first heat exchanger 41.
In the first heat exchanger 41, the geothermal heat utilization system 1 exchanges heat between the cold water on the heat source well facility 10 side and the medium flowing through the equipment side circuit unit 102. As a result, the equipment side circuit unit 102 cools the medium circulating between the equipment 120 and the first heat exchanger 41 and sends the cooled medium to the equipment 120.

他方、第一熱交換器41における熱交換により、熱源井戸設備10側の冷水は温度上昇して温水となり、井戸側配管3を通して温水井戸21へと送られる。これにより、冷水井戸22では、放冷熱がなされる。 On the other hand, the cold water on the heat source well equipment 10 side is heated and becomes hot water through the heat exchange in the first heat exchanger 41, and is sent to the hot water well 21 through the well side piping 3. This causes the cold water well 22 to release cold heat.

このようにして、第一放冷熱モードM3では、冷水井戸22に蓄えた冷水を利用して、熱源機110を用いず、機器120に直接冷熱を供給することができる。 In this way, in the first cold heat release mode M3, cold water stored in the cold water well 22 can be used to supply cold heat directly to the equipment 120 without using the heat source unit 110.

(第二放冷熱モードの構成)
図5に示すように、第二放冷熱モードM4では、地中熱利用システム1は、冷水井戸22に蓄えた冷熱を、熱源機110を介して機器120に供給する。
なお、図5において、井戸側配管3と、機器側回路部102と、冷却塔側回路部103と、第二熱交換器側回路105との各々に流れる媒体のうち、温かい媒体は点線で示され、冷たい媒体は太線で示されている。
(Configuration of the second cold heat dissipation mode)
As shown in FIG. 5 , in the second cold heat release mode M<b>4 , the geothermal heat utilization system 1 supplies the cold heat stored in the cold water well 22 to the equipment 120 via the heat source unit 110 .
In Figure 5, among the media flowing through the well side piping 3, the equipment side circuit section 102, the cooling tower side circuit section 103, and the second heat exchanger side circuit 105, warm media are indicated by dotted lines and cold media are indicated by thick lines.

具体的には、第二放冷熱モードM4では、地中熱利用システム1は、冷水井戸22のポンプ31で、冷水をくみ上げて第二熱交換器42に送り込む。
第二熱交換器42において、地中熱利用システム1は、熱源井戸設備10側の冷水と、冷却塔側回路部103を流れる媒体との間で熱交換する。これにより、冷却塔側回路部103は、熱源機110と第二熱交換器42との間で循環する媒体を冷却して熱源機110に送る。
熱源機110において、地中熱利用システム1は、冷却された冷却塔側回路部103側の媒体と、機器側回路部102を流れる媒体との間で熱交換する。これにより、機器側回路部102は、機器120と熱源機110との間で循環する媒体を冷却して機器120に送る。
Specifically, in the second cold heat release mode M4, the geothermal heat utilization system 1 pumps up cold water using the pump 31 in the cold water well 22 and sends it to the second heat exchanger 42.
In the second heat exchanger 42, the geothermal heat utilization system 1 exchanges heat between the cold water on the heat source well facility 10 side and the medium flowing through the cooling tower side circuit section 103. As a result, the cooling tower side circuit section 103 cools the medium circulating between the heat source unit 110 and the second heat exchanger 42 and sends it to the heat source unit 110.
In the heat source unit 110, the geothermal heat utilization system 1 exchanges heat between the cooled medium on the cooling tower side circuit unit 103 side and the medium flowing through the equipment side circuit unit 102. As a result, the equipment side circuit unit 102 cools the medium circulating between the equipment 120 and the heat source unit 110 and sends it to the equipment 120.

他方、第二熱交換器42における熱交換により、熱源井戸設備10側の冷水は温度上昇して温水となり、井戸側配管3を通して温水井戸21へと送られる。これにより、冷水井戸22では、放冷熱がなされる。 On the other hand, the cold water on the heat source well equipment 10 side is heated and becomes hot water through the heat exchange in the second heat exchanger 42, and is sent to the hot water well 21 through the well side piping 3. This causes the cold water well 22 to release cold heat.

このようにして、第二放冷熱モードM4では、冷水井戸22に蓄えた冷水を、熱源機110を用いて冷却して、機器120に冷熱を供給する。これにより、冷水井戸22に蓄えた冷熱に対し、機器120側で要求する冷熱量が大きい場合に、熱源機110を利用して、機器120側に供給する冷熱量を確保することができる。 In this way, in the second cold heat release mode M4, the cold water stored in the cold water well 22 is cooled using the heat source machine 110, and cold heat is supplied to the equipment 120. As a result, when the amount of cold heat required by the equipment 120 is greater than the amount of cold heat stored in the cold water well 22, the heat source machine 110 can be used to ensure the amount of cold heat to be supplied to the equipment 120.

(制御装置の構成)
制御装置300は、地中熱利用システム1の動作を制御する。
制御装置300は、第一蓄冷熱モードM1、第二蓄冷熱モードM2、第一放冷熱モードM3、及び第二放冷熱モードM4のそれぞれにおいて、地中熱利用システム1の各部の動作を制御する。
(Configuration of the control device)
The control device 300 controls the operation of the geothermal energy utilization system 1 .
The control device 300 controls the operation of each part of the geothermal heat utilization system 1 in each of the first cold heat storage mode M1, the second cold heat storage mode M2, the first cold heat release mode M3, and the second cold heat release mode M4.

図6に示すように、制御装置300は、運転制御部310と、算出部320と、予測部330と、外気温度取得部340と、冷水温度取得部350と、モード判定部360と、を備える。 As shown in FIG. 6, the control device 300 includes an operation control unit 310, a calculation unit 320, a prediction unit 330, an outside air temperature acquisition unit 340, a cold water temperature acquisition unit 350, and a mode determination unit 360.

運転制御部310は、第一蓄冷熱モードM1、第二蓄冷熱モードM2、第一放冷熱モードM3、及び第二放冷熱モードM4の間で、運転モードの切替を可能とする。運転制御部310は、第一蓄冷熱モードM1、第二蓄冷熱モードM2、第一放冷熱モードM3、及び第二放冷熱モードM4のうち、切り換えられた運転モードに応じて、地中熱利用システム1の各部の動作を制御する。 The operation control unit 310 enables switching of the operation mode among the first cold heat storage mode M1, the second cold heat storage mode M2, the first cold heat release mode M3, and the second cold heat release mode M4. The operation control unit 310 controls the operation of each part of the geothermal heat utilization system 1 according to the switched operation mode among the first cold heat storage mode M1, the second cold heat storage mode M2, the first cold heat release mode M3, and the second cold heat release mode M4.

運転制御部310は、第一蓄冷熱モードM1及び第二蓄冷熱モードM2のうち、少なくともいずれかのモードの実行時において、予測部330で予測される後述の必要蓄冷量に比べて積算蓄冷量が大きい場合、冷水井戸22への蓄冷量を抑制するようにしてもよい。
運転制御部310は、第一蓄冷熱モードM1及び第二蓄冷熱モードM2のうち、少なくともいずれかのモードの実行時において、予測部330で予測される後述の必要蓄冷量と、予測部330で予測される後述のピークカットすべき電力量の予測値との差に応じた冷熱を、冷水井戸22に蓄冷熱するようにしてもよい。
運転制御部310は、第一蓄冷熱モードM1及び第二蓄冷熱モードM2のうち、少なくともいずれかのモードの実行時において、ピークカットすべき電力量の予測値よりも、積算蓄冷量が大きい場合、冷水井戸22への蓄冷量を抑えるようにしてもよい。
The operation control unit 310 may be configured to suppress the amount of cold storage to the cold water well 22 when at least one of the first cold storage mode M1 and the second cold storage mode M2 is being executed and the accumulated amount of cold storage is greater than the required amount of cold storage predicted by the prediction unit 330, as described below.
The operation control unit 310 may store cold energy in the cold water well 22 when at least one of the first cold energy storage mode M1 and the second cold energy storage mode M2 is being executed, the cold energy corresponding to the difference between the required cold energy storage amount predicted by the prediction unit 330 as described below and the predicted value of the amount of electricity to be peak-cut as described below as predicted by the prediction unit 330.
The operation control unit 310 may be configured to reduce the amount of cold stored in the cold water well 22 when the accumulated amount of cold stored is greater than the predicted amount of electricity to be peak-cut when at least one of the first cold storage mode M1 and the second cold storage mode M2 is being executed.

運転制御部310は、第一放冷熱モードM3及び第二放冷熱モードM4のうち、少なくともいずれかのモードの実行時において、機器120に対し、常に冷熱を供給するようにしてもよい。つまり運転制御部310は、年間昼夜を通して、機器120に、温熱を供給する暖房運転を行わず、常に冷熱を供給する冷房運転を行うようにしてもよい。 The operation control unit 310 may be configured to constantly supply cold heat to the device 120 when at least one of the first cold heat release mode M3 and the second cold heat release mode M4 is being executed. In other words, the operation control unit 310 may be configured to constantly perform cooling operation to supply cold heat to the device 120 throughout the day and night throughout the year, without performing heating operation to supply warm heat to the device 120.

算出部320は、冷水井戸22に蓄えた蓄冷量である積算蓄冷量を算出する。ここで、「積算蓄冷量」とは、冷水井戸22における帯水層の地下水が初期地中温度にある状態から、算出時までに、冷水井戸22への注水により冷水井戸22に蓄冷した熱量の積算値から、冷水井戸22からの揚水により冷水井戸22から放冷した熱量の積算値を引いた値である。 The calculation unit 320 calculates the accumulated cold storage amount, which is the amount of cold storage stored in the cold water well 22. Here, the "accumulated cold storage amount" is the value obtained by subtracting the accumulated value of the heat released from the cold water well 22 by pumping water from the cold water well 22 from the accumulated value of the heat stored in the cold water well 22 by injecting water into the cold water well 22 from the state in which the groundwater in the aquifer in the cold water well 22 is at the initial underground temperature until the time of calculation.

予測部330は、機器120の冷却に必要な蓄冷量である必要蓄冷量を予測する。ここで、「必要蓄冷量」とは、近い将来の所定期間において必要な蓄冷量である。また「近い将来の所定期間」とは、例えば、翌日の昼間、次の直近の夏期である。
予測部330は、さらに、予め設定した閾値以上の電力量を、ピークカットすべき電力量の予測値として予測する。
予測部330は、例えば、過去の冷熱利用量、利用時期、温度、機器120で空気調和を図る空間に配置されたコンピュータ等における発熱量、台数等の情報を蓄積しておき、蓄積された情報に基づいて、予測する時期、温度、コンピュータ等の利用計画等に基づいて、必要蓄冷量とピークカットすべき電力量の予測値とを予測するようにしてもよい。
予測部330は、必要蓄冷量の予測と、ピークカットすべき電力量の予測値との予測に、人工知能等を利用し、蓄積した情報の深層学習を行うようにしてもよい。
The prediction unit 330 predicts a required cold storage amount, which is an amount of cold storage required to cool the device 120. Here, the "required cold storage amount" is an amount of cold storage required in a predetermined period in the near future. The "predetermined period in the near future" is, for example, the daytime of the next day or the next nearest summer period.
The prediction unit 330 further predicts the amount of power that is equal to or greater than a preset threshold as a predicted value of the amount of power that should be peak-cut.
The prediction unit 330 may, for example, accumulate information such as the past amount of cold energy usage, the time of usage, the temperature, the amount of heat generated by computers, etc., placed in the space where the air conditioning is to be performed by the equipment 120, and the number of computers, etc., and may predict the required amount of cold storage and the predicted amount of electricity to be peak-cut based on the accumulated information, the predicted time, temperature, and the usage plan of the computers, etc.
The prediction unit 330 may use artificial intelligence or the like to predict the required amount of cold storage and the predicted value of the amount of power to be peak-cut, and may perform deep learning of the accumulated information.

外気温度取得部340は、外気温度を取得する。
外気温度取得部340は、例えば、温度計等によって地中熱利用システム1が設けられている場所における外気温度の実測値を、外気温度として取得してもよい。
外気温度取得部340は、例えば、オペレータによって入力される外気温度の数値を取得するようにしてもよい。
外気温度取得部340は、外部のネットワークを介して、外気温度のデータを取得するようにしてもよい。
The outside air temperature acquisition unit 340 acquires the outside air temperature.
The outdoor air temperature acquisition unit 340 may acquire, as the outdoor air temperature, an actual measurement value of the outdoor air temperature at the location where the geothermal energy utilization system 1 is installed using a thermometer or the like, for example.
The outside air temperature acquisition unit 340 may acquire, for example, a numerical value of the outside air temperature input by an operator.
The outside air temperature acquisition unit 340 may acquire data on the outside air temperature via an external network.

冷水温度取得部350は、冷水井戸22の揚水温度を取得する。
冷水温度取得部350は、冷水井戸22内に設置された冷水温度センサ(図示無し)で検出される冷水井戸22の揚水温度を取得するようにしてもよい。
The cold water temperature acquisition unit 350 acquires the pumped water temperature of the cold water well 22 .
The cold water temperature acquisition unit 350 may acquire the pumped water temperature of the cold water well 22 detected by a cold water temperature sensor (not shown) installed in the cold water well 22 .

モード判定部360は、運転制御部310で、第一蓄冷熱モードM1、第二蓄冷熱モードM2、第一放冷熱モードM3、及び第二放冷熱モードM4のうちのいずれのモードに切り換えるのかを判定する。
モード判定部360は、モードの選択を、積算蓄冷量、及び必要蓄冷量の少なくとも一方に基づいて行う。
モード判定部360は、冷水井戸22に冷熱を蓄える場合、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定する。
モード判定部360は、冷水井戸22に冷熱を蓄える場合、外気温度に基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定するようにしてもよい。
モード判定部360は、冷水井戸22に冷熱を蓄える場合、積算蓄冷量と冷水井戸22の揚水温度に基づき、第一蓄冷熱モードM1又は第二蓄冷熱モードM2を実施すべきか否かを判定するようにしてもよい。
モード判定部360は、冷水井戸22に蓄えた冷熱を機器120に供給する場合、冷水井戸22の揚水温度に基づき、第一放冷熱モードM3で制御すべきか、第二放冷熱モードM4で制御すべきか判定するようにしてもよい。
The mode determination unit 360 determines to which mode the operation control unit 310 should switch to among the first cold heat storage mode M1, the second cold heat storage mode M2, the first cold heat release mode M3, and the second cold heat release mode M4.
The mode determination unit 360 selects the mode based on at least one of the accumulated amount of cold storage and the required amount of cold storage.
When storing cold energy in the cold water well 22, the mode determination unit 360 determines whether to control in the first cold energy storage mode M1 or the second cold energy storage mode M2 based on the accumulated cold energy storage amount and the required cold energy storage amount.
When storing cold energy in the cold water well 22, the mode determination unit 360 may determine whether control should be performed in the first cold energy storage mode M1 or the second cold energy storage mode M2 based on the outside air temperature.
When storing cold energy in the cold water well 22, the mode determination unit 360 may determine whether or not to implement the first cold energy storage mode M1 or the second cold energy storage mode M2 based on the accumulated cold energy storage amount and the pumping temperature of the cold water well 22.
When the cold water stored in the cold water well 22 is supplied to the equipment 120, the mode determination unit 360 may determine whether to control it in the first cold water release mode M3 or the second cold water release mode M4 based on the pumping temperature of the cold water well 22.

本実施形態の制御装置300の動作について説明する。
制御装置300の動作は、制御方法の実施形態に相当する。
制御装置300は、図7に示す各ステップを実施する。
The operation of the control device 300 of this embodiment will be described.
The operation of the control device 300 corresponds to an embodiment of a control method.
The control device 300 carries out each step shown in FIG.

まず、制御装置300は、機器120において、冷房運転がONであるか否かを確認する(ステップS11)。
ステップS11で、冷房運転がONである場合(ステップS11:Yes)、ステップS12以降に進む。ステップS11で、冷房運転がOFFである場合(ステップS11:No)、後述のステップS21以降に進む。
First, the control device 300 checks whether the cooling operation is ON in the device 120 (step S11).
In step S11, if the cooling operation is ON (step S11: Yes), the process proceeds to step S12 and subsequent steps. In step S11, if the cooling operation is OFF (step S11: No), the process proceeds to step S21 and subsequent steps described below.

ステップS12では、制御装置300が、デマンドの抑制(デマンドカット)が必要であるか否かを確認する。ここで「デマンド」とは、地中熱利用システム1と機器120とを含む空調設備に求められる電力量である。例えば、ステップS12では、制御装置300は、デマンドが電力基本料金を下げるための所定の上限を超過しないように、デマンドの抑制を、熱源井戸設備10の蓄熱分を使って行う必要があるか否かを確認する。
ステップS12で、デマンドカットが必要である場合(ステップS12:Yes)、デマンドカットの目標値(デマンド目標値)を設定する(ステップS13)。
次いで、制御装置300は、冷水井戸22の放熱量を計算する(ステップS14)。
In step S12, the control device 300 checks whether or not it is necessary to suppress the demand (demand cut). Here, "demand" refers to the amount of power required for the air conditioning facility including the geothermal heat utilization system 1 and the equipment 120. For example, in step S12, the control device 300 checks whether or not it is necessary to suppress the demand by using the heat stored in the heat source well facility 10 so that the demand does not exceed a predetermined upper limit for reducing the basic electricity charge.
In step S12, if a demand cut is necessary (step S12: Yes), a target value for the demand cut (demand target value) is set (step S13).
Next, the control device 300 calculates the amount of heat dissipation from the cold water well 22 (step S14).

次に、冷水温度取得部350で、その時点での冷水井戸22の揚水温度を取得する。制御装置300は、取得した揚水温度が、予め設定された基準温度より高いか否かを確認する(ステップS15)。
その結果、揚水温度が、基準温度以下である場合(ステップS15:No)、モード判定部360は、運転モードとして、第一放冷熱モードM3(図4参照)を選択する(ステップS16)。運転制御部310は、モード判定部360で選択された第一放冷熱モードM3で、地中熱利用システム1が動作するように、地中熱利用システム1の各部の動作を制御する。
他方、揚水温度が、基準温度より大きい場合(ステップS15:Yes)、モード判定部360は、運転モードとして、第二放冷熱モードM4(図5参照)を選択する(ステップS17)。この場合、運転制御部310は、モード判定部360で選択された第二放冷熱モードM4で、地中熱利用システム1が動作するように、地中熱利用システム1の各部の動作を制御する。
また、上記のステップS12で、デマンドカットが必要ではなかった場合(ステップS12:No)も、モード判定部360は、運転モードとして、第二放冷熱モードM4(図5参照)を選択する(ステップS17)。
Next, the cold water temperature acquisition unit 350 acquires the pumped water temperature at that time from the cold water well 22. The control device 300 checks whether the acquired pumped water temperature is higher than a preset reference temperature (step S15).
As a result, if the pumped water temperature is equal to or lower than the reference temperature (step S15: No), the mode determination unit 360 selects the first cold heat dissipation mode M3 (see FIG. 4) as the operation mode (step S16). The operation control unit 310 controls the operation of each part of the geothermal heat utilization system 1 so that the geothermal heat utilization system 1 operates in the first cold heat dissipation mode M3 selected by the mode determination unit 360.
On the other hand, if the pumped water temperature is higher than the reference temperature (step S15: Yes), the mode determination unit 360 selects the second cold-radiation mode M4 (see FIG. 5) as the operation mode (step S17). In this case, the operation control unit 310 controls the operation of each unit of the geothermal heat utilization system 1 so that the geothermal heat utilization system 1 operates in the second cold-radiation mode M4 selected by the mode determination unit 360.
Furthermore, if demand cut is not required in step S12 (step S12: No), the mode determination unit 360 also selects the second cold-heat release mode M4 (see FIG. 5) as the operation mode (step S17).

上記のステップS11で、機器120側で冷房運転がOFFである場合(ステップS11:No)、ステップS21では、まず、算出部320は、冷水井戸22に蓄えた蓄冷量である積算蓄冷量を算出する。また、ステップS21では、外気温度取得部340は、その時点での外気温度を取得する。さらに、ステップS21では、冷水温度取得部350は、冷水井戸22の揚水温度を取得する。 If the cooling operation is OFF on the device 120 side in step S11 above (step S11: No), in step S21, the calculation unit 320 first calculates the accumulated cold storage amount, which is the amount of cold storage stored in the cold water well 22. Also in step S21, the outside air temperature acquisition unit 340 acquires the outside air temperature at that time. Furthermore, in step S21, the cold water temperature acquisition unit 350 acquires the pumped water temperature of the cold water well 22.

次いで、ステップS22では、モード判定部360が、ステップS21で算出された積算蓄冷量が、予め設定された目標値未満であるか否かを確認する。また、ステップS22では、モード判定部360が、ステップS21で取得された冷水井戸22の揚水温度が、予め設定された目標温度より高いか否かを確認する。ステップS22では、積算蓄冷量が目標値未満であり、かつ、揚水温度が目標温度より高いという条件を満足する場合(ステップS22:Yes)に、モード判定部360は、ステップS23に進む。ステップS22では、積算蓄冷量が目標値未満であり、かつ、揚水温度が目標温度より高いという条件を満足できない場合(ステップS22:No)、モード判定部360は、運転モードを選択する処理を終了する。 Next, in step S22, the mode determination unit 360 checks whether the accumulated cold storage amount calculated in step S21 is less than a preset target value. Also, in step S22, the mode determination unit 360 checks whether the pumping temperature of the cold water well 22 acquired in step S21 is higher than a preset target temperature. In step S22, if the conditions that the accumulated cold storage amount is less than the target value and the pumping temperature is higher than the target temperature are satisfied (step S22: Yes), the mode determination unit 360 proceeds to step S23. In step S22, if the conditions that the accumulated cold storage amount is less than the target value and the pumping temperature is higher than the target temperature are not satisfied (step S22: No), the mode determination unit 360 ends the process of selecting the operation mode.

ステップS23では、予測部330で、機器120の冷却に必要な蓄冷量である必要蓄冷量を予測する。
次いで、ステップS24では、モード判定部360が、ステップS21で取得した外気温度に基づいて、第一蓄冷熱モードM1と、第二蓄冷熱モードM2とのいずれを選択するのかを判定する。
ステップS24では、モード判定部360が、例えば、特許第7136965号公報に記載の手法を用い、外気温度に基づいたシミュレーションを行い、そのシミュレーション結果に基づいて、第一蓄冷熱モードM1と、第二蓄冷熱モードM2とのいずれかを選択するようにしてもよい。
In step S23, the prediction unit 330 predicts a required cold storage amount, which is an amount of cold storage required to cool the device 120.
Next, in step S24, the mode determination unit 360 determines whether to select the first cold-heat-storage mode M1 or the second cold-heat-storage mode M2 based on the outside air temperature acquired in step S21.
In step S24, the mode determination unit 360 may perform a simulation based on the outside air temperature, for example, using a method described in Patent No. 7,136,965, and select either the first cold storage mode M1 or the second cold storage mode M2 based on the results of the simulation.

次いで、ステップS25では、運転制御部310が、ステップS24で選択された第一蓄冷熱モードM1、又は第二蓄冷熱モードM2における、詳細な運転条件を設定する。
これには、運転制御部310が、選択された第一蓄冷熱モードM1、又は第二蓄冷熱モードM2で、冷水井戸22に蓄冷熱する蓄冷量、蓄熱温度、流量、時間等を、過去の地中熱利用システム1の運転実績データ、又はユーザが入力するテーブルに基づいて設定する。
続く、ステップS26では、運転制御部310が、ステップS24で選択された第一蓄冷熱モードM1、又は第二蓄冷熱モードM2において、ステップS25で設定された運転条件で、地中熱利用システム1が動作するように、地中熱利用システム1の各部の動作を制御する。
Next, in step S25, the operation control unit 310 sets detailed operation conditions for the first cold-heat-storage mode M1 or the second cold-heat-storage mode M2 selected in step S24.
To achieve this, the operation control unit 310 sets the amount of cold energy stored in the cold water well 22, the heat storage temperature, flow rate, time, etc. in the selected first cold energy storage mode M1 or second cold energy storage mode M2 based on past operating data of the geothermal energy utilization system 1 or a table input by the user.
Next, in step S26, the operation control unit 310 controls the operation of each part of the geothermal energy utilization system 1 so that the geothermal energy utilization system 1 operates under the operating conditions set in step S25 in the first cold heat storage mode M1 or the second cold heat storage mode M2 selected in step S24.

(作用及び効果)
本実施形態によれば、制御装置300、地中熱利用システム1、及び制御方法は、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定することで、予測される機器の冷房に必要な冷熱を、冷水井戸に蓄えることができる。
このため、期間全体を通じて、帯水層に蓄えるべき冷熱が不足したり、余ったりしにくい。
したがって、制御装置300、地中熱利用システム1、及び制御方法は、帯水層の蓄熱量のバランスをとりやすくすることができる。
(Action and Effects)
According to this embodiment, the control device 300, the geothermal energy utilization system 1, and the control method determine whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount, thereby storing the predicted cold energy required for cooling the equipment in the cold water well.
For this reason, it is unlikely that there will be a shortage or surplus of cold energy stored in the aquifer throughout the entire period.
Therefore, the control device 300, the geothermal heat utilization system 1, and the control method can easily balance the amount of heat stored in the aquifer.

また本実施形態の一例によれば、外気温度に基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定することで、外気温度に応じた適切な蓄冷熱モードを選択して、冷水井戸22に冷熱を蓄えることができる。 In addition, according to one example of this embodiment, by determining whether to control in the first cold heat storage mode M1 or the second cold heat storage mode M2 based on the outside air temperature, an appropriate cold heat storage mode according to the outside air temperature can be selected to store cold heat in the cold water well 22.

また本実施形態の一例によれば、冷水井戸22の揚水温度が、予め設定された目標温度以上である場合に、積算蓄冷量と冷水井戸22の揚水温度に基づいて選択した適切な蓄冷熱モードで、冷水井戸22に冷熱を蓄えることができる。 In addition, according to one example of this embodiment, when the pumping temperature of the cold water well 22 is equal to or higher than a preset target temperature, cold energy can be stored in the cold water well 22 in an appropriate cold energy storage mode selected based on the accumulated cold energy storage amount and the pumping temperature of the cold water well 22.

また本実施形態の一例によれば、冷水井戸22の揚水温度に基づき、第一放冷熱モードM3で制御すべきか、第二放冷熱モードM4で制御すべきか判定することで、冷水井戸22の揚水温度に応じた適切な放冷熱モードを選択して、冷水井戸22に蓄えた冷熱を機器120に供給できる。 In addition, according to one example of this embodiment, it is possible to determine whether to control in the first cold heat dissipation mode M3 or the second cold heat dissipation mode M4 based on the pumping temperature of the cold water well 22, and to select an appropriate cold heat dissipation mode according to the pumping temperature of the cold water well 22, thereby supplying the cold heat stored in the cold water well 22 to the equipment 120.

また本実施形態の一例によれば、第一蓄冷熱モードM1、又は第二蓄冷熱モードM2の実行時において、必要蓄冷量に比べて積算蓄冷量が大きい場合、冷水井戸22への蓄冷量を抑制することで、冷水井戸22への蓄熱のために必要となる電力量であって、冷却塔130、熱源機110、各種ポンプ等の動作に必要となる電力量を抑制することができる。 Furthermore, according to one example of this embodiment, when the first cold heat storage mode M1 or the second cold heat storage mode M2 is being executed, if the accumulated cold heat storage amount is greater than the required cold heat storage amount, the amount of cold heat stored in the cold water well 22 is suppressed, thereby suppressing the amount of power required to store heat in the cold water well 22, which is the amount of power required to operate the cooling tower 130, the heat source unit 110, various pumps, etc.

また本実施形態の一例によれば、第一放冷熱モードM3及び第二放冷熱モードM4のうち、少なくともいずれかのモードの実行時に、機器120に対し、常に冷熱を供給することができる。これにより、例えば常時稼働しているコンピュータ等の発熱源が収容されている空間を、年間昼夜を通して冷房することができる。 According to one example of this embodiment, when at least one of the first cold heat release mode M3 and the second cold heat release mode M4 is being executed, cold heat can be constantly supplied to the device 120. This allows a space that contains a heat source, such as a computer that is constantly running, to be cooled throughout the day and night all year round.

<変形例>
上述の実施形態では、熱交換器4は、第一熱交換器41と第二熱交換器42とを備えているが、井戸側配管3内の地下水と、蓄熱補助設備100側の冷媒回路101内の媒体との間で熱交換できるなら、どのように構成されてもよい。
変形例として、各配管が工夫されることにより、熱交換器4が1つのシステムで構成されてもよい。そのような具体例として、熱交換器4は、第一熱交換器41と第二熱交換器42とのうち、第一熱交換器41のみを備えてもよい。その際、第一熱交換器41の一方側は、井戸側配管3の途中に接続され、第一熱交換器41の他方側は、第一熱交換器側回路104と、冷却塔側回路部103とに接続されてもよい。加えて、第一熱交換器側回路104と、冷却塔側回路部103とは、それぞれ開閉弁等を介して、第一熱交換器41に並列に接続されてもよい。
<Modification>
In the above-described embodiment, the heat exchanger 4 comprises a first heat exchanger 41 and a second heat exchanger 42, but it may be configured in any way as long as heat exchange is possible between the groundwater in the well side piping 3 and the medium in the refrigerant circuit 101 on the heat storage auxiliary equipment 100 side.
As a modified example, the heat exchanger 4 may be configured as one system by devising each pipe. As such a specific example, the heat exchanger 4 may include only the first heat exchanger 41 out of the first heat exchanger 41 and the second heat exchanger 42. In this case, one side of the first heat exchanger 41 may be connected to the middle of the well-side pipe 3, and the other side of the first heat exchanger 41 may be connected to the first heat exchanger-side circuit 104 and the cooling tower-side circuit section 103. In addition, the first heat exchanger-side circuit 104 and the cooling tower-side circuit section 103 may be connected in parallel to the first heat exchanger 41, respectively, via an on-off valve or the like.

上述の実施形態では、第二蓄冷熱モードM2において、機器側回路部102は、機器120と熱源機110との間で循環する媒体を冷却して機器120に送っているが、冷水井戸22に蓄冷熱がなされるなら、どのように構成されてもよい。
変形例として、第二蓄冷熱モードM2において、機器側回路部102は、熱源機110で冷却された媒体を機器120に送らなくてもよい。その際、熱源機110で冷却された媒体は、機器側回路部102から第一熱交換器側回路104を介して第一熱交換器41に送られる。
In the above-described embodiment, in the second cold/heat storage mode M2, the equipment side circuit section 102 cools the medium circulating between the equipment 120 and the heat source unit 110 and sends it to the equipment 120, but the configuration may be any as long as cold/heat storage is performed in the cold water well 22.
As a modified example, in the second cold-heat-storage mode M2, the device-side circuit unit 102 does not need to send the medium cooled by the heat source unit 110 to the device 120. In this case, the medium cooled by the heat source unit 110 is sent from the device-side circuit unit 102 to the first heat exchanger 41 via the first heat exchanger-side circuit 104.

上述の実施形態では、モード判定部360は、外気温度に基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定しているが、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定できるなら、モード判定部360は、どのように構成されてもよい。
変形例として、モード判定部360は、外気湿球温度に基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定してもよい。
In the above-described embodiment, the mode determination unit 360 determines whether to control in the first cold storage heat mode M1 or the second cold storage heat mode M2 based on the outside air temperature, but the mode determination unit 360 may be configured in any manner as long as it can determine whether to control in the first cold storage heat mode M1 or the second cold storage heat mode M2.
As a modified example, the mode determination unit 360 may determine whether to control in the first cold-storage mode M1 or the second cold-storage mode M2 based on the outside air wet-bulb temperature.

なお、上述の実施形態においては、制御装置300の各種機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをマイコンといったコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、コンピュータシステムのCPUの各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。 In the above embodiment, a program for implementing the various functions of the control device 300 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system such as a microcomputer and executed to perform various processes. Here, the various processes of the CPU of the computer system are stored in the form of a program on a computer-readable recording medium, and the computer reads and executes this program to perform the various processes. Also, computer-readable recording media refers to magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, etc. Also, the computer program may be distributed to a computer via a communication line, and the computer that receives the program may execute the program.

上述の実施形態において、制御装置300の各種機能を実現するためのプログラムを実行させるコンピュータ190のハードウェア構成の例について説明する。 In the above embodiment, an example of the hardware configuration of the computer 190 that executes programs to realize the various functions of the control device 300 will be described.

図8に示すように、制御装置300が備えるコンピュータ190は、プロセッサ195と、メモリ196と、記憶/再生装置197と、Input Output Interface(以下、「IO I/F」という。)198と、通信Interface(以下、「通信I/F」という。)199と、を備える。 As shown in FIG. 8, the computer 190 of the control device 300 includes a processor 195, a memory 196, a storage/playback device 197, an Input Output Interface (hereinafter referred to as "IO I/F") 198, and a communication interface (hereinafter referred to as "communication I/F") 199.

例えば、プロセッサ195は、CPUであってもよい。
例えば、メモリ196は、制御装置300で実行されるプログラムで使用されるデータ等を一時的に記憶するRandom Access Memory(以下、「RAM」という。)等の媒体であってもよい。
例えば、記憶/再生装置197は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生したりするための装置であってもよい。
例えば、IO I/F198は、制御装置300と他の装置との間で情報等の入出力を行うためのインタフェースであってもよい。
例えば、通信I/F199は、インターネット、専用通信回線等の通信回線を介して、制御装置300と他の装置との間で通信を行うインタフェースであってもよい。
For example, the processor 195 may be a CPU.
For example, the memory 196 may be a medium such as a Random Access Memory (hereinafter referred to as “RAM”) that temporarily stores data and the like used by the programs executed by the control device 300 .
For example, the storage/playback device 197 may be a device for storing data in an external medium such as a CD-ROM, a DVD, or a flash memory, and for playing back data from the external medium.
For example, the IO I/F 198 may be an interface for inputting and outputting information between the control device 300 and another device.
For example, the communication I/F 199 may be an interface for communicating between the control device 300 and another device via a communication line such as the Internet or a dedicated communication line.

<その他の実施形態>
以上、本開示の実施形態を説明したが、この実施形態は、例として示したものであり、本開示の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、本開示の範囲とその均等の範囲に含まれるものとする。
<Other embodiments>
Although the embodiment of the present disclosure has been described above, this embodiment is shown as an example and is not intended to limit the scope of the present disclosure. This embodiment can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the present disclosure. This embodiment and its modifications are included in the scope of the present disclosure and its equivalents, as well as in the scope and gist of the present disclosure.

<付記>
実施形態に記載の制御装置300、地中熱利用システム1、制御方法、プログラムは、例えば以下のように把握される。
<Additional Notes>
The control device 300, the geothermal heat utilization system 1, the control method, and the program described in the embodiment can be understood, for example, as follows.

(1)第1の態様に係る制御装置300は、温水井戸21と冷水井戸22とを含む熱源井戸設備10と、冷却塔130と熱源機110とを含む蓄熱補助設備100と、を備える地中熱利用システム1を制御する制御装置300であって、前記地中熱利用システム1を、前記温水井戸21に蓄えた温熱を、前記熱源機110を介さず前記冷却塔130に供給し、前記冷却塔130から得られた冷熱を、前記熱源機110を介さず前記冷水井戸22に蓄える第一蓄冷熱モードM1、前記温水井戸21に蓄えた前記温熱を、前記熱源機110を介して前記冷却塔130に供給し、前記冷却塔130から得られた前記冷熱を、前記熱源機110を介して前記冷水井戸22に蓄える第二蓄冷熱モードM2、前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介さず機器120に供給する第一放冷熱モードM3、及び前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介して前記機器120に供給する第二放冷熱モードM4、の間でモードの切替可能とする運転制御部310と、前記冷水井戸22に蓄えた蓄冷量である積算蓄冷量を算出する算出部320と、前記機器120の冷却に必要な蓄冷量である必要蓄冷量を予測する予測部330と、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードM1で制御すべきか、前記第二蓄冷熱モードM2で制御すべきか判定するモード判定部360と、備える。 (1) The control device 300 according to the first aspect is a control device 300 for controlling a geothermal heat utilization system 1 including a heat source well equipment 10 including a hot water well 21 and a cold water well 22, and a heat storage auxiliary equipment 100 including a cooling tower 130 and a heat source unit 110, and controls the geothermal heat utilization system 1 to operate in a first cold heat storage mode M1 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 without passing through the heat source unit 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 without passing through the heat source unit 110, and a second cold heat storage mode M2 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 via the heat source unit 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 via the heat source unit 110. The system includes an operation control unit 310 that can switch between a second cold storage mode M2 in which the cold energy stored in the cold water well 22 is stored in the cold water well 22, a first cold release mode M3 in which the cold energy stored in the cold water well 22 is supplied to the equipment 120 without going through the heat source unit 110, and a second cold release mode M4 in which the cold energy stored in the cold water well 22 is supplied to the equipment 120 through the heat source unit 110; a calculation unit 320 that calculates an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well 22; a prediction unit 330 that predicts a required cold storage amount, which is the amount of cold storage required to cool the equipment 120; and a mode determination unit 360 that determines whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount.

この制御装置300は、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定することで、予測される機器の冷房に必要な冷熱を、冷水井戸に蓄えることができる。
このため、期間全体を通じて、帯水層に蓄えるべき冷熱が不足したり、余ったりしにくい。
したがって、制御装置300は、帯水層の蓄熱量のバランスをとりやすくすることができる。
This control device 300 determines whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount, and thereby can store the cold energy predicted to be required for cooling the equipment in the cold water well.
For this reason, it is unlikely that there will be a shortage or surplus of cold energy stored in the aquifer throughout the entire period.
Therefore, the control device 300 can easily balance the heat storage in the aquifer.

(2)第2の態様に係る制御装置300は、(1)の制御装置300であって、外気温度を取得する外気温度取得部340をさらに備え、前記モード判定部360は、前記冷水井戸22に前記冷熱を蓄える場合、前記外気温度に基づき、前記第一蓄冷熱モードM1で制御すべきか、前記第二蓄冷熱モードM2で制御すべきかを判定する。 (2) The control device 300 according to the second aspect is the control device 300 of (1), further comprising an outside air temperature acquisition unit 340 that acquires the outside air temperature, and the mode determination unit 360 determines whether to control in the first cold energy storage mode M1 or the second cold energy storage mode M2 based on the outside air temperature when storing the cold energy in the cold water well 22.

これにより、外気温度に基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきかを判定することで、外気温度に応じた適切な蓄冷熱モードを選択して、冷水井戸22に冷熱を蓄えることができる。 As a result, by determining whether to control in the first cold heat storage mode M1 or the second cold heat storage mode M2 based on the outside air temperature, an appropriate cold heat storage mode according to the outside air temperature can be selected to store cold heat in the cold water well 22.

(3)第3の態様に係る制御装置300は、(1)又は(2)の制御装置300であって、前記冷水井戸22の揚水温度を取得する冷水温度取得部350をさらに備え、前記モード判定部360は、前記冷水井戸22に前記冷熱を蓄える場合、前記積算蓄冷量と前記冷水井戸22の揚水温度に基づき、前記第一蓄冷熱モードM1又は前記第二蓄冷熱モードM2を実施すべきか否かを判定する。 (3) The control device 300 according to the third aspect is the control device 300 according to (1) or (2), and further includes a cold water temperature acquisition unit 350 that acquires the pumping temperature of the cold water well 22, and the mode determination unit 360 determines whether or not to implement the first cold water storage mode M1 or the second cold water storage mode M2 when storing cold energy in the cold water well 22, based on the accumulated cold storage amount and the pumping temperature of the cold water well 22.

これにより、冷水井戸22の揚水温度が、予め設定された目標温度以上である場合に、積算蓄冷量と冷水井戸22の揚水温度に基づいて選択した適切な蓄冷熱モードで、冷水井戸22に冷熱を蓄えることができる。 As a result, when the pumping temperature of the cold water well 22 is equal to or higher than a preset target temperature, cold energy can be stored in the cold water well 22 in an appropriate cold energy storage mode selected based on the accumulated cold energy storage amount and the pumping temperature of the cold water well 22.

(4)第4の態様に係る制御装置300は、(1)から(3)の何れか一つの制御装置300であって、前記冷水井戸22の揚水温度を取得する冷水温度取得部350をさらに備え、前記モード判定部360は、前記冷水井戸22に蓄えた前記冷熱を前記機器120に供給する場合、前記冷水井戸22の揚水温度に基づき、前記第一放冷熱モードM3で制御すべきか、前記第二放冷熱モードM4で制御すべきか判定する。 (4) The control device 300 according to the fourth aspect is any one of the control devices 300 of (1) to (3), and further includes a cold water temperature acquisition unit 350 that acquires the pumping temperature of the cold water well 22, and the mode determination unit 360 determines whether to control in the first cold water release mode M3 or the second cold water release mode M4 based on the pumping temperature of the cold water well 22 when the cold energy stored in the cold water well 22 is supplied to the equipment 120.

これにより、冷水井戸22の揚水温度に基づき、第一放冷熱モードM3で制御すべきか、第二放冷熱モードM4で制御すべきか判定することで、冷水井戸22の揚水温度に応じた適切な放冷熱モードを選択して、冷水井戸22に蓄えた冷熱を機器120に供給できる。 As a result, by determining whether to control in the first cold heat dissipation mode M3 or the second cold heat dissipation mode M4 based on the pumping temperature of the cold water well 22, an appropriate cold heat dissipation mode according to the pumping temperature of the cold water well 22 can be selected, and the cold heat stored in the cold water well 22 can be supplied to the equipment 120.

(5)第5の態様に係る制御装置300は、(1)から(4)の何れか一つの制御装置300であって、前記運転制御部310は、前記第一蓄冷熱モードM1、又は前記第二蓄冷熱モードM2の実行時において、前記必要蓄冷量に比べて前記積算蓄冷量が大きい場合、前記冷水井戸22への蓄冷量を抑制する。 (5) The control device 300 according to the fifth aspect is any one of the control devices 300 of (1) to (4), and the operation control unit 310 suppresses the amount of cold stored in the cold water well 22 when the first cold storage mode M1 or the second cold storage mode M2 is executed and the accumulated amount of cold storage is greater than the required amount of cold storage.

これにより、第一蓄冷熱モードM1、又は第二蓄冷熱モードM2の実行時において、冷水井戸22への蓄熱のために必要となる電力量であって、冷却塔130、熱源機110、各種ポンプ等の動作に必要となる電力量を抑制することができる。 As a result, when the first cold heat storage mode M1 or the second cold heat storage mode M2 is being executed, the amount of electricity required to store heat in the cold water well 22 and the amount of electricity required to operate the cooling tower 130, the heat source unit 110, various pumps, etc. can be reduced.

(6)第6の態様に係る制御装置300は、(1)から(5)の何れか一つの制御装置300であって、前記第一放冷熱モードM3又は前記第二放冷熱モードM4の実行時において、前記機器120に対し、常に冷熱を供給する。 (6) The control device 300 according to the sixth aspect is any one of the control devices 300 of (1) to (5), and always supplies cold heat to the device 120 when the first cold heat release mode M3 or the second cold heat release mode M4 is being executed.

これにより、例えば常時稼働しているコンピュータ等の発熱源が収容されている空間を、年間昼夜を通して冷房することができる。 This allows a space that contains a heat source, such as a constantly running computer, to be cooled day and night all year round.

(7)第7の態様に係る地中熱利用システム1は、(1)から(6)の何れか一つの制御装置300と、前記熱源井戸設備10と、前記蓄熱補助設備100と、を備える。 (7) The geothermal heat utilization system 1 according to the seventh aspect includes any one of the control devices 300 of (1) to (6), the heat source well facility 10, and the thermal storage auxiliary facility 100.

この地中熱利用システム1は、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定することで、予測される機器の冷房に必要な冷熱を、冷水井戸に蓄えることができる。
このため、期間全体を通じて、帯水層に蓄えるべき冷熱が不足したり、余ったりしにくい。
したがって、地中熱利用システム1は、帯水層の蓄熱量のバランスをとりやすくすることができる。
This geothermal energy utilization system 1 determines whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount, and can store the predicted cold energy required for cooling the equipment in a cold water well.
For this reason, it is unlikely that there will be a shortage or surplus of cold energy stored in the aquifer throughout the entire period.
Therefore, the geothermal heat utilization system 1 can easily balance the amount of heat stored in the aquifer.

(8)第8の態様に係る制御方法は、温水井戸21と冷水井戸22とを含む熱源井戸設備10と、冷却塔130と熱源機110とを含む蓄熱補助設備100と、を備え、前記温水井戸21に蓄えた温熱を、前記熱源機110を介さず前記冷却塔130に供給し、前記冷却塔130から得られた冷熱を、前記熱源機110を介さず前記冷水井戸22に蓄える第一蓄冷熱モードM1、前記温水井戸21に蓄えた前記温熱を、前記熱源機110を介して前記冷却塔130に供給し、前記冷却塔130から得られた前記冷熱を、前記熱源機110を介して前記冷水井戸22に蓄える第二蓄冷熱モードM2、前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介さず機器120に供給する第一放冷熱モードM3、及び前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介して前記機器120に供給する第二放冷熱モードM4、の間でモードの切替可能な地中熱利用システムのコンピュータに、前記冷水井戸22に蓄えた蓄冷量である積算蓄冷量を算出するステップと、前記機器120の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードM1で制御すべきか、前記第二蓄冷熱モードM2で制御すべきか判定するステップと、を含む。 (8) The control method according to the eighth aspect includes a heat source well equipment 10 including a hot water well 21 and a cold water well 22, and a heat storage auxiliary equipment 100 including a cooling tower 130 and a heat source unit 110, and includes a first cold heat storage mode M1 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 without passing through the heat source unit 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 without passing through the heat source unit 110, a second cold heat storage mode M2 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 via the heat source unit 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 via the heat source unit 110, and The computer of the geothermal heat utilization system, which can switch between a first cold heat release mode M3 in which the cold heat stored in the cold water well 22 is supplied to the equipment 120 without going through the heat source device 110, and a second cold heat release mode M4 in which the cold heat stored in the cold water well 22 is supplied to the equipment 120 through the heat source device 110, includes a step of calculating an accumulated cold heat storage amount, which is the amount of cold heat stored in the cold water well 22, a step of predicting a required cold heat storage amount, which is the amount of cold heat storage required to cool the equipment 120, and a step of determining whether to control in the first cold heat storage mode M1 or the second cold heat storage mode M2 based on the accumulated cold heat storage amount and the required cold heat storage amount.

この制御方法は、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定することで、予測される機器の冷房に必要な冷熱を、冷水井戸に蓄えることができる。
このため、期間全体を通じて、帯水層に蓄えるべき冷熱が不足したり、余ったりしにくい。
したがって、制御方法は、帯水層の蓄熱量のバランスをとりやすくすることができる。
This control method determines whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount, and thereby enables the predicted cold required for cooling the equipment to be stored in the cold water well.
For this reason, it is unlikely that there will be a shortage or surplus of cold energy stored in the aquifer throughout the entire period.
Thus, the control method can facilitate balancing the heat storage in the aquifer.

(9)第9の態様に係るプログラムは、温水井戸21と冷水井戸22とを含む熱源井戸設備10と、冷却塔130と熱源機110とを含む蓄熱補助設備100と、を備え、前記温水井戸21に蓄えた温熱を、前記熱源機110を介さず前記冷却塔130に供給し、前記冷却塔130から得られた冷熱を、前記熱源機110を介さず前記冷水井戸22に蓄える第一蓄冷熱モードM1、前記温水井戸21に蓄えた前記温熱を、前記熱源機110を介して前記冷却塔130に供給し、前記冷却塔130から得られた前記冷熱を、前記熱源機110を介して前記冷水井戸22に蓄える第二蓄冷熱モードM2、前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介さず機器120に供給する第一放冷熱モードM3、及び前記冷水井戸22に蓄えた前記冷熱を、前記熱源機110を介して前記機器120に供給する第二放冷熱モードM4、の間でモードの切替可能な地中熱利用システムのコンピュータに、前記冷水井戸22に蓄えた蓄冷量である積算蓄冷量を算出するステップと、前記機器120の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードM1で制御すべきか、前記第二蓄冷熱モードM2で制御すべきか判定するステップと、を含む処理を実行させる。 (9) The program according to the ninth aspect includes a heat source well equipment 10 including a hot water well 21 and a cold water well 22, and a heat storage auxiliary equipment 100 including a cooling tower 130 and a heat source machine 110, and includes a first cold heat storage mode M1 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 without passing through the heat source machine 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 without passing through the heat source machine 110, a second cold heat storage mode M2 in which the hot heat stored in the hot water well 21 is supplied to the cooling tower 130 via the heat source machine 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 via the heat source machine 110, and a third cold heat storage mode M3 in which the hot water well 21 is supplied to the cooling tower 130 via the heat source machine 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 via the heat source machine 110, and a fourth cold heat storage mode M4 in which the cold water well 22 is supplied to the cooling tower 130 via the heat source machine 110, and the cold heat obtained from the cooling tower 130 is stored in the cold water well 22 via the heat source machine 110. A computer of a geothermal energy utilization system capable of switching between a first cold heat release mode M3 in which the stored cold heat is supplied to the equipment 120 without passing through the heat source device 110 and a second cold heat release mode M4 in which the cold heat stored in the cold water well 22 is supplied to the equipment 120 via the heat source device 110 executes a process including a step of calculating an accumulated cold heat storage amount, which is the amount of cold heat stored in the cold water well 22, a step of predicting a required cold heat storage amount, which is the amount of cold heat storage required to cool the equipment 120, and a step of determining whether to control in the first cold heat storage mode M1 or the second cold heat storage mode M2 based on the accumulated cold heat storage amount and the required cold heat storage amount.

このプログラムは、積算蓄冷量と必要蓄冷量とに基づき、第一蓄冷熱モードM1で制御すべきか、第二蓄冷熱モードM2で制御すべきか判定することで、予測される機器の冷房に必要な冷熱を、冷水井戸に蓄えることができる。
このため、期間全体を通じて、帯水層に蓄えるべき冷熱が不足したり、余ったりしにくい。
したがって、プログラムは、帯水層の蓄熱量のバランスをとりやすくすることができる。
This program determines whether to control in the first cold storage mode M1 or the second cold storage mode M2 based on the accumulated cold storage amount and the required cold storage amount, thereby storing the predicted cold required for cooling the equipment in the cold water well.
For this reason, it is unlikely that there will be a shortage or surplus of cold energy stored in the aquifer throughout the entire period.
Thus, the program can facilitate balancing of the heat storage in the aquifer.

1…地中熱利用システム
3…井戸側配管
4…熱交換器
10…熱源井戸設備
21…温水井戸
22…冷水井戸
31…ポンプ
41…第一熱交換器
42…第二熱交換器
100…蓄熱補助設備
101…冷媒回路
102…機器側回路部
102a…送りライン
102b…戻りライン
103…冷却塔側回路部
103a…送りライン
103b…戻りライン
104…第一熱交換器側回路
104a…冷水ライン
104b…温水ライン
105…第二熱交換器側回路
105a…冷水ライン
105b…温水ライン
110…熱源機
120…機器
130…冷却塔
190…コンピュータ
195…プロセッサ
196…メモリ
197…記憶/再生装置
198…IO I/F
199…通信I/F
300…制御装置
310…運転制御部
320…算出部
330…予測部
340…外気温度取得部
350…冷水温度取得部
360…モード判定部
M1…第一蓄冷熱モード
M2…第二蓄冷熱モード
M3…第一放冷熱モード
M4…第二放冷熱モード
1...geothermal heat utilization system 3...well side piping 4...heat exchanger 10...heat source well equipment 21...hot water well 22...cold water well 31...pump 41...first heat exchanger 42...second heat exchanger 100...heat storage auxiliary equipment 101...refrigerant circuit 102...equipment side circuit section 102a...feed line 102b...return line 103...cooling tower side circuit section 103a...feed line 103b...return line 104...first heat exchanger side circuit 104a...cold water line 104b...hot water line 105...second heat exchanger side circuit 105a...cold water line 105b...hot water line 110...heat source unit 120...equipment 130...cooling tower 190...computer 195...processor 196...memory 197...storage/playback device 198...IO I/F
199...Communication I/F
300...Control device 310...Operation control unit 320...Calculation unit 330...Prediction unit 340...Outside air temperature acquisition unit 350...Cold water temperature acquisition unit 360...Mode determination unit M1...First cold heat storage mode M2...Second cold heat storage mode M3...First cold heat release mode M4...Second cold heat release mode

Claims (15)

温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備える地中熱利用システムを制御する制御装置であって、
前記地中熱利用システムを、
前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、
前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能とする運転制御部と、
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出する算出部と、
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測する予測部と、
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するモード判定部と、
備え
前記運転制御部は、
前記第一蓄冷熱モード、又は前記第二蓄冷熱モードの実行時において、前記必要蓄冷量に比べて前記積算蓄冷量が大きい場合、前記冷水井戸への蓄冷量を抑制す
制御装置。
A control device for controlling a geothermal energy utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source machine,
The geothermal energy utilization system,
A first cold-water storage mode in which the hot water stored in the hot water well is supplied to the cooling tower without passing through the heat source machine, and the cold water obtained from the cooling tower is stored in the cold water well without passing through the heat source machine;
A second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine;
An operation control unit that can switch between a first cold heat dissipation mode in which the cold heat stored in the cold water well is supplied to the equipment without passing through the heat source unit, and a second cold heat dissipation mode in which the cold heat stored in the cold water well is supplied to the equipment via the heat source unit;
A calculation unit for calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
A prediction unit for predicting a required cold storage amount, which is a cold storage amount required for cooling the device;
a mode determination unit that determines whether to control in the first cold storage mode or the second cold storage mode based on the integrated cold storage amount and the required cold storage amount;
Preparation ,
The operation control unit is
When the first cold storage mode or the second cold storage mode is executed, if the accumulated cold storage amount is larger than the required cold storage amount, the amount of cold storage in the cold water well is suppressed .
Control device.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備える地中熱利用システムを制御する制御装置であって、A control device for controlling a geothermal energy utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source machine,
前記地中熱利用システムを、The geothermal energy utilization system,
前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、A first cold-water storage mode in which the hot water stored in the hot water well is supplied to the cooling tower without passing through the heat source machine, and the cold water obtained from the cooling tower is stored in the cold water well without passing through the heat source machine;
前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、A second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine;
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及びA first cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source machine; and
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能とする運転制御部と、A second cold heat dissipation mode in which the cold heat stored in the cold water well is supplied to the equipment via the heat source unit; and
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出する算出部と、A calculation unit for calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測する予測部と、A prediction unit for predicting a required cold storage amount, which is a cold storage amount required for cooling the device;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するモード判定部と、a mode determination unit that determines whether to control in the first cold storage mode or the second cold storage mode based on the integrated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得する冷水温度取得部と、備え、A cold water temperature acquisition unit that acquires the pumped water temperature of the cold water well;
前記モード判定部は、The mode determination unit is
前記揚水温度が基準温度以下である場合、前記第一放冷熱モードで制御すべきと判定し、前記揚水温度が前記基準温度より高い場合、前記第二放冷熱モードで制御すべきと判定する、When the pumped water temperature is equal to or lower than a reference temperature, it is determined that the water should be controlled in the first cold-heat dissipation mode, and when the pumped water temperature is higher than the reference temperature, it is determined that the water should be controlled in the second cold-heat dissipation mode.
制御装置。 Control device.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備える地中熱利用システムを制御する制御装置であって、A control device for controlling a geothermal energy utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source machine,
前記地中熱利用システムを、The geothermal energy utilization system,
前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、A first cold-water storage mode in which the hot water stored in the hot water well is supplied to the cooling tower without passing through the heat source machine, and the cold water obtained from the cooling tower is stored in the cold water well without passing through the heat source machine;
前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、A second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source machine, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source machine;
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及びA first cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source machine; and
前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能とする運転制御部と、A second cold heat dissipation mode in which the cold heat stored in the cold water well is supplied to the equipment via the heat source unit; and
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出する算出部と、A calculation unit for calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測する予測部と、A prediction unit for predicting a required cold storage amount, which is a cold storage amount required for cooling the device;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するモード判定部と、a mode determination unit that determines whether to control in the first cold storage mode or the second cold storage mode based on the integrated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得する冷水温度取得部と、備え、A cold water temperature acquisition unit that acquires the pumped water temperature of the cold water well;
前記モード判定部は、The mode determination unit is
デマンドカットが必要である場合、前記揚水温度に基づき、前記第一放冷熱モードで制御すべきか、前記第二放冷熱モードで制御すべきか判定する、When demand cutting is necessary, it is determined whether to control in the first cold heat dissipation mode or the second cold heat dissipation mode based on the pumped water temperature.
制御装置。 Control device.
外気温度を取得する外気温度取得部をさらに備え、
前記モード判定部は、
前記冷水井戸に前記冷熱を蓄える場合、前記外気温度に基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきかを判定する
請求項1から3のいずれか一項に記載の制御装置。
An outside air temperature acquisition unit for acquiring an outside air temperature is further provided,
The mode determination unit is
The control device according to any one of claims 1 to 3, wherein when storing cold energy in the cold water well, it is determined whether to control in the first cold energy storage mode or the second cold energy storage mode based on the outside air temperature.
前記冷水井戸の揚水温度を取得する冷水温度取得部をさらに備え、
前記モード判定部は、
前記冷水井戸に前記冷熱を蓄える場合、前記積算蓄冷量と前記冷水井戸の揚水温度に基づき、前記第一蓄冷熱モード又は前記第二蓄冷熱モードを実施すべきか否かを判定する
請求項1に記載の制御装置。
Further comprising a cold water temperature acquisition unit for acquiring the pumped water temperature of the cold water well;
The mode determination unit is
The control device according to claim 1 , wherein when storing cold energy in the cold water well, it is determined whether or not to implement the first cold energy storage mode or the second cold energy storage mode based on the integrated cold energy storage amount and the pumping temperature of the cold water well.
前記冷水井戸の揚水温度を取得する冷水温度取得部をさらに備え、
前記モード判定部は、
前記冷水井戸に蓄えた前記冷熱を前記機器に供給する場合、前記冷水井戸の揚水温度に基づき、前記第一放冷熱モードで制御すべきか、前記第二放冷熱モードで制御すべきか判定する
請求項1に記載の制御装置。
Further comprising a cold water temperature acquisition unit for acquiring the pumped water temperature of the cold water well;
The mode determination unit is
The control device described in claim 1, wherein when the cold energy stored in the cold water well is supplied to the equipment, it is determined whether to control it in the first cold energy release mode or the second cold energy release mode based on the pumping temperature of the cold water well .
前記予測部は、
前記地中熱利用システムと前記機器とを含む空調設備に求められる電力量のうち、ピークカットすべき電力量の予測値を予測し、
前記運転制御部は、
前記第一蓄冷熱モード、又は前記第二蓄冷熱モードの実行時において、前記ピークカットすべき電力量の予測値よりも前記積算蓄冷量が大きい場合、前記冷水井戸への蓄冷量を抑制する
請求項1から3のいずれか一項に記載の制御装置。
The prediction unit is
A predicted value of the amount of electric power to be peak-cut is predicted from the amount of electric power required for an air conditioning facility including the geothermal heat utilization system and the equipment;
The operation control unit is
The control device according to any one of claims 1 to 3, wherein when the first cold storage mode or the second cold storage mode is executed, if the integrated cold storage amount is greater than a predicted value of the amount of power to be peak-cut , the amount of cold storage in the cold water well is suppressed.
前記第一放冷熱モード又は前記第二放冷熱モードの実行時において、前記機器に対し、常に前記冷熱を供給する、
請求項1から3のいずれか一項に記載の制御装置。
When the first cold heat dissipation mode or the second cold heat dissipation mode is executed, the cold heat is always supplied to the equipment.
A control device according to any one of claims 1 to 3 .
請求項1から3のいずれか一項に記載の制御装置と、
前記熱源井戸設備と、
前記蓄熱補助設備と、
を備える
地中熱利用システム。
A control device according to any one of claims 1 to 3 ;
The heat source well facility;
The heat storage auxiliary equipment;
A geothermal energy utilization system.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムの前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、
を含み、
前記第一蓄冷熱モード、又は前記第二蓄冷熱モードの実行時において、前記必要蓄冷量に比べて前記積算蓄冷量が大きい場合、前記冷水井戸への蓄冷量を抑制する、
制御方法。
a step of calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well of a geothermal energy utilization system, which includes a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, and which is capable of switching between a first cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device;
predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
Including,
When the first cold storage mode or the second cold storage mode is executed, if the accumulated cold storage amount is larger than the required cold storage amount, the amount of cold storage in the cold water well is suppressed.
Control methods.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムの前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、a step of calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well of a geothermal energy utilization system, which includes a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, and which is capable of switching between a first cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得するステップと、Obtaining a pumping temperature of the cold water well;
を含み、Including,
前記揚水温度が基準温度以下である場合、前記第一放冷熱モードで制御すべきと判定し、前記揚水温度が前記基準温度より高い場合、前記第二放冷熱モードで制御すべきと判定する、When the pumped water temperature is equal to or lower than a reference temperature, it is determined that the water should be controlled in the first cold-heat dissipation mode, and when the pumped water temperature is higher than the reference temperature, it is determined that the water should be controlled in the second cold-heat dissipation mode.
制御方法。Control methods.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムの前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、a step of calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well of a geothermal energy utilization system, which includes a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, and which is capable of switching between a first cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得するステップと、Obtaining a pumping temperature of the cold water well;
を含み、Including,
デマンドカットが必要である場合、前記揚水温度に基づき、前記第一放冷熱モードで制御すべきか、前記第二放冷熱モードで制御すべきか判定する、When demand cutting is necessary, it is determined whether to control in the first cold heat dissipation mode or the second cold heat dissipation mode based on the pumped water temperature.
制御方法。Control methods.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムのコンピュータに、
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、
を含み、
前記第一蓄冷熱モード、又は前記第二蓄冷熱モードの実行時において、前記必要蓄冷量に比べて前記積算蓄冷量が大きい場合、前記冷水井戸への蓄冷量を抑制する、
処理を実行させる
プログラム。
a computer of a geothermal heat utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, the computer being capable of switching between a first cold heat storage mode in which hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device,
Calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
Including,
When the first cold storage mode or the second cold storage mode is executed, if the accumulated cold storage amount is larger than the required cold storage amount, the amount of cold storage in the cold water well is suppressed.
Execute the process ,
program.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムのコンピュータに、a computer of a geothermal heat utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, the computer being capable of switching between a first cold heat storage mode in which hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device,
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、Calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得するステップと、Obtaining the pumping temperature of the cold water well;
を含み、Including,
前記揚水温度が基準温度以下である場合、前記第一放冷熱モードで制御すべきと判定し、前記揚水温度が前記基準温度より高い場合、前記第二放冷熱モードで制御すべきと判定する、When the pumped water temperature is equal to or lower than a reference temperature, it is determined that the water should be controlled in the first cold-heat dissipation mode, and when the pumped water temperature is higher than the reference temperature, it is determined that the water should be controlled in the second cold-heat dissipation mode.
処理を実行させる、Execute the process,
プログラム。Program.
温水井戸と冷水井戸とを含む熱源井戸設備と、冷却塔と熱源機とを含む蓄熱補助設備と、を備え、前記温水井戸に蓄えた温熱を、前記熱源機を介さず前記冷却塔に供給し、前記冷却塔から得られた冷熱を、前記熱源機を介さず前記冷水井戸に蓄える第一蓄冷熱モード、前記温水井戸に蓄えた前記温熱を、前記熱源機を介して前記冷却塔に供給し、前記冷却塔から得られた前記冷熱を、前記熱源機を介して前記冷水井戸に蓄える第二蓄冷熱モード、前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介さず機器に供給する第一放冷熱モード、及び前記冷水井戸に蓄えた前記冷熱を、前記熱源機を介して前記機器に供給する第二放冷熱モード、の間でモードの切替可能な地中熱利用システムのコンピュータに、a computer of a geothermal heat utilization system including a heat source well facility including a hot water well and a cold water well, and a heat storage auxiliary facility including a cooling tower and a heat source device, the computer being capable of switching between a first cold heat storage mode in which hot heat stored in the hot water well is supplied to the cooling tower without passing through the heat source device, and cold heat obtained from the cooling tower is stored in the cold water well without passing through the heat source device, a second cold heat storage mode in which the hot heat stored in the hot water well is supplied to the cooling tower via the heat source device, and the cold heat obtained from the cooling tower is stored in the cold water well via the heat source device, a first cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment without passing through the heat source device, and a second cold heat release mode in which the cold heat stored in the cold water well is supplied to equipment via the heat source device,
前記冷水井戸に蓄えた蓄冷量である積算蓄冷量を算出するステップと、Calculating an accumulated cold storage amount, which is the amount of cold storage stored in the cold water well;
前記機器の冷却に必要な蓄冷量である必要蓄冷量を予測するステップと、predicting a required cold storage amount, the cold storage amount being an amount of cold storage required for cooling the equipment;
前記積算蓄冷量と前記必要蓄冷量とに基づき、前記第一蓄冷熱モードで制御すべきか、前記第二蓄冷熱モードで制御すべきか判定するステップと、determining whether to control in the first cold storage mode or the second cold storage mode based on the accumulated cold storage amount and the required cold storage amount;
前記冷水井戸の揚水温度を取得するステップと、Obtaining a pumping temperature of the cold water well;
を含み、Including,
デマンドカットが必要である場合、前記揚水温度に基づき、前記第一放冷熱モードで制御すべきか、前記第二放冷熱モードで制御すべきか判定する、When demand cutting is necessary, it is determined whether to control in the first cold heat dissipation mode or the second cold heat dissipation mode based on the pumped water temperature.
処理を実行させる、Execute the process,
プログラム。Program.
JP2023136261A 2023-08-24 2023-08-24 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM Active JP7511730B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023136261A JP7511730B1 (en) 2023-08-24 2023-08-24 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023136261A JP7511730B1 (en) 2023-08-24 2023-08-24 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM

Publications (1)

Publication Number Publication Date
JP7511730B1 true JP7511730B1 (en) 2024-07-05

Family

ID=91714581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023136261A Active JP7511730B1 (en) 2023-08-24 2023-08-24 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM

Country Status (1)

Country Link
JP (1) JP7511730B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137748A (en) 2002-10-17 2004-05-13 Kubota Corp Snow-melting system
JP2013181676A (en) 2012-02-29 2013-09-12 Univ Of Fukui Air conditioning system and air conditioning method
JP2015161463A (en) 2014-02-27 2015-09-07 三菱重工業株式会社 groundwater heat storage system
WO2022234706A1 (en) 2021-05-06 2022-11-10 三菱重工サーマルシステムズ株式会社 Computation device, computation method, program, control device, control method, and control program
WO2022234705A1 (en) 2021-05-06 2022-11-10 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system, control device, control method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137748A (en) 2002-10-17 2004-05-13 Kubota Corp Snow-melting system
JP2013181676A (en) 2012-02-29 2013-09-12 Univ Of Fukui Air conditioning system and air conditioning method
JP2015161463A (en) 2014-02-27 2015-09-07 三菱重工業株式会社 groundwater heat storage system
WO2022234706A1 (en) 2021-05-06 2022-11-10 三菱重工サーマルシステムズ株式会社 Computation device, computation method, program, control device, control method, and control program
WO2022234705A1 (en) 2021-05-06 2022-11-10 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system, control device, control method, and program

Similar Documents

Publication Publication Date Title
JP6857883B2 (en) Geothermal utilization system and geothermal utilization method
CN104613577B (en) Internal melt ice-chilling air conditioning system and its operation method
CN103857965A (en) Thermal energy storage in a chiller system
WO2022234706A1 (en) Computation device, computation method, program, control device, control method, and control program
CN104390311B (en) Air conditioner refrigeration method, system and device aiming at high-temperature server
JP3928251B2 (en) Waste heat recovery system
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
CN101598472A (en) The waste heat utilization system of refrigerating plant
WO2024212541A1 (en) Temperature control device and control method thereof, computer storage medium, and heating and ventilation device
JP6415378B2 (en) Air conditioning system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
KR101454282B1 (en) Storage heat pump system with compensated heat source
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
JP7511730B1 (en) CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM
JP2003130494A (en) Air conditioning system utilizing underground heat exchanger, and operating method for the same
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
WO2024106180A1 (en) Control apparatus, geothermal heat utilization system, control method, and program
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
US20130330679A1 (en) Heat-source selecting device for heat source system, method thereof, and heat source system
KR200339349Y1 (en) Regenerative heat pump system using geothermy
KR101272021B1 (en) Two stage heat pump cooling and heating apparatus
JP4964439B2 (en) Operation method of heat storage enhancement system by cooling coil
KR20060002400A (en) Heat pump system using the heat of the earth
CN219913383U (en) Cooling water waste heat recovery and heat pump coupling energy supply system
KR200395419Y1 (en) Improved Heating and Cooling System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240625