[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004137748A - Snow melting equipment - Google Patents

Snow melting equipment Download PDF

Info

Publication number
JP2004137748A
JP2004137748A JP2002303078A JP2002303078A JP2004137748A JP 2004137748 A JP2004137748 A JP 2004137748A JP 2002303078 A JP2002303078 A JP 2002303078A JP 2002303078 A JP2002303078 A JP 2002303078A JP 2004137748 A JP2004137748 A JP 2004137748A
Authority
JP
Japan
Prior art keywords
water
heat
collected
temperature
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002303078A
Other languages
Japanese (ja)
Inventor
Yasuo Uchikawa
内川 靖夫
Masafumi Inoue
井上 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002303078A priority Critical patent/JP2004137748A/en
Publication of JP2004137748A publication Critical patent/JP2004137748A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Road Paving Structures (AREA)

Abstract

【課題】散水による融雪の効率を安定的に高く保ちながら採取水保有熱量の有効利用を促進する。
【解決手段】取水源4から採取した水Wを第1融雪対象箇所1Gに対して散水する融雪用の散水手段1と、第2融雪対象箇所2Gに対して熱媒Mを放熱させる融雪用の放熱手段2と、取水源4から散水手段1に送る採取水W(Wa)を採熱源として放熱手段2に対する供給熱媒Mを加熱するヒートポンプ3とを備える融雪設備において、取水源4における採取対象水Wの温度変化に応じヒートポンプ3の出力を調整して、散水手段1に対する供給採取水Wcの温度tzを設定適正温度tzzに調整する制御手段12を設ける。
【選択図】    図1
An object of the present invention is to promote the effective use of the calorific value of collected water while keeping the efficiency of snowmelt by water spray stable.
A water spraying means for spraying water W collected from a water intake source to a first snow melting target location, and a snow melting means for dissipating a heat medium to the second snow melting target location. In a snow melting facility including a heat dissipating means 2 and a heat pump 3 for heating a supply heat medium M to the heat dissipating means 2 using the sampled water W (Wa) sent from the water intake source 4 to the water sprinkling means 1 as a heat source, the collection target of the water intake source 4 Control means 12 is provided for adjusting the output of the heat pump 3 in accordance with the temperature change of the water W to adjust the temperature tz of the supply and sampling water Wc to the water sprinkling means 1 to a set appropriate temperature tzz.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、取水源から採取した水を第1融雪対象箇所に対して散水する融雪用の散水手段と、第2融雪対象箇所に対して熱媒を放熱させる融雪用の放熱手段と、前記取水源から前記散水手段に送る採取水を採熱源として前記放熱手段に対する供給熱媒を加熱するヒートポンプとを備える融雪設備に関する。
【0002】
【従来の技術】
従来、この種の融雪設備では、融雪用の散水手段に送る採取地下水を採熱源として融雪用放熱手段に対する供給熱媒をヒートポンプで加熱するのに、採熱源である地下水をほぼ一定の温度幅だけ降温させるようにヒートポンプで採熱し、その採熱後の地下水を散水手段に送って第1融雪対象箇所に散水するようにしていた。
【0003】
即ち、散水手段からは取水源における採取対象地下水の温度よりも一定温度幅だけ降温させた地下水を散水するようにして、その降温分のヒートポンプでの採取熱量をもって放熱手段で無散水式の融雪を実施し、これにより、地下水の保有熱量を有効利用するように、また、その分、地下水の採取必要量を削減できるようにしていた(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特許第2973276号公報
【0005】
【発明が解決しようとする課題】
しかし、地下水とはいえ取水源において温度の変動があり、このため、ヒートポンプでほぼ一定の温度幅だけ降温させた地下水を散水する上記の従来設備では、取水源における採取対象地下水の温度が低下したとき、散水する地下水の温度が過度に低くなって散水による融雪の効率が低下してしまう問題があり、場合によっては散水した地下水が融雪対象箇所で氷結する恐れもあった。
【0006】
また、取水源における採取対象地下水の温度が上昇したときには、散水する地下水の温度が必要以上に高くなって地下水の保有熱を散水で無駄に捨ててしまう熱ロスを生じ、そのことで所期の目的である地下水保有熱量の有効利用が不充分になる問題があり、場合によっては散水した融雪対象箇所で多量の湯気が発生して交通障害等を招来する恐れもあった。
【0007】
この実情に鑑み、本発明の主たる課題は、上記問題を合理的な改良を以って効果的に解消する点にある。
【0008】
【課題を解決するための手段】
〔1〕請求項1に係る発明は融雪設備に係り、その特徴は、
取水源から採取した水を第1融雪対象箇所に対して散水する融雪用の散水手段と、第2融雪対象箇所に対して熱媒を放熱させる融雪用の放熱手段と、前記取水源から前記散水手段に送る採取水を採熱源として前記放熱手段に対する供給熱媒を加熱するヒートポンプとを備える融雪設備において、
前記取水源における採取対象水の温度変化に応じ前記ヒートポンプの出力を調整して、前記散水手段に対する供給採取水の温度を設定適正温度に調整する制御手段を設けてある点にある。
【0009】
つまり、この構成によれば、取水源における採取対象水の温度が低下したときには、それに応じヒートポンプの出力を低下させてヒートポンプでの採熱量を減少させることで、散水手段に対し供給する採取水の過度の温度低下を回避することができ、一方、取水源における採取対象水の温度が上昇したときには、それに応じヒートポンプの出力を増大させてヒートポンプでの採熱量を増大させることで、その大きな採取熱量を放熱手段による無散水式融雪の方で充分に有効利用するようにしながら、散水手段に対し供給する採取水の必要以上の高温化を回避することができ、これにより、従来に比べ、散水による融雪の効率を安定的に高く保ち、また、散水した水の氷結も一層確実に防止するようにしながら、所期の目的である採取水保有熱量の有効利用を一層効果的に促進することができ、また、高温水の散水による融雪対象箇所での多量の湯気発生も一層確実に防止することができる。
【0010】
なお、請求項1に係る発明の実施において、取水源から採取する水は、地下水、河川水、湖沼水、海水、下水など、融雪に使用可能な温度を有するものであれば、どのような水であってもよい。
【0011】
また、取水源における採取対象水の温度変化に応じヒートポンプの出力を調整して散水手段に対する供給採取水の温度を設定適正温度に調整するための具体的調整方式としては、取水源における採取対象水の温度を検出してその検出温度に基づきヒートポンプの出力調整を行なう方式や、ヒートポンプで採熱した後の散水手段に対する供給採取水の温度を検出してその検出温度に基づきヒートポンプの出力調整を行なう方式など、種々の調整方式を採用できる。
【0012】
設定適正温度を具体的にどの程度の温度にするかは設備の設置条件や融雪条件等に応じて適宜決定すればよく、散水による融雪を効率を良く行うことができ、かつ、必要以上に高温の水の散水による熱ロスを効果的に防止できる適当な温度を採用すればよい。
【0013】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記取水源から採取した水を、採熱源として前記ヒートポンプに通過させる水と前記ヒートポンプを迂回させる水とに分流させて前記散水手段に送る構成にしてある点にある。
【0014】
つまり、この構成では、ヒートポンプを通過させた採熱後の降温水とヒートポンプを迂回させた水との混合水の温度が設定適正温度になるようにヒートポンプの出力を調整する形態を採るが、取水源から採取した水を上記のように分流させて散水手段に送ることにより、取水源から採取した水の全量をヒートポンプを通じて散水手段に送る形態を採るのに比べ、散水手段からの散水量を確保しながらも散水手段に対する全体としての送水抵抗を小さくすることができて、散水手段への送水における圧力損失を効果的に低減することができ、これにより、散水手段への送水に要するポンプを所要動力の小さなもので済ませることができて、設備コスト、運転コスト、省エネ面で有利にすることができる。
【0015】
なお、取水源から採取した水の分流に関しては、その分流比を固定にする構成、あるいは、その分流比を調整自在にする構成のいずれを採用してもよいが、取水源における採取対象水の温度が低下してヒートポンプに送る水の温度が低下傾向になるほどヒートポンプに送る水の流量を増大させる側に分流比を自動調整するようにし、これにより、採熱部での水温低下や冷媒温低下によるヒートポンプの自動停止を抑止して設備の運転安定性を高めるようにしてもよい。
【0016】
また、ヒートポンプを通過させた採熱後の降温水の温度が所定の温度よりも低下するときは、ヒートポンプの出力調整により採熱後の水の温度を所定温度に維持するようにして、採熱部での水温低下や冷媒温低下によるヒートポンプの自動停止を抑止して設備の運転安定性を高めるようにしてもよい。
【0017】
〔3〕請求項3に係る発明は、請求項2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記取水源から採取した水を前記散水手段に導く管路に、その採取水を採熱源として前記ヒートポンプに通過させる水と前記ヒートポンプを迂回させる水とに分流する分流部を設けてある点にある。
【0018】
つまり、この構成によれば、ヒートポンプを通過させる水とヒートポンプを迂回させる水とに分流させる形式を採りながらも、その分流は取水源から採取した水を散水手段に導く管路上での分流であることから、その分流部よりも上流側に装備する1つのポンプで採取水を散水手段に送ることができ、これにより、設備コストを低廉化することができる。
【0019】
また、既設の散水式融雪設備に対し放熱手段とヒートポンプとを増設して設備を構築する場合では、前述のように散水手段に対する全体としての送水抵抗を分流により小さくし得ることも相俟って、既設の散水式融雪設備で使用していたポンプをそのまま使用する、または、ポンプの変更が必要であるとしても既設ポンプより少しだけ揚程の高いポンプに変更するだけで済ませることができ、これにより、設備コストを一層低廉化することができる。
【0020】
〔4〕請求項4に係る発明は、請求項2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記取水源から採取した水を受け入れる上流槽と、その上流槽から溢水堰を通じて流出する水を受け入れる下流槽とを設け、
前記上流槽から取り出した貯留水を採熱源として前記ヒートポンプに送った後、前記下流槽に戻すとともに、それに並行して、前記散水手段に送る水を前記下流槽から取り出す構成にしてある点にある。
【0021】
つまり、この構成では、採熱源としてヒートポンプに送る水を上流槽から取り出すことと、それに伴って、散水手段に送る水を取り出す下流槽に対し上流槽から溢水堰を通じて水を流出させることとをもって、取水源からの採取水をヒートポンプに通過させる水とヒートポンプを迂回させる水とに分流する。
そして、ヒートポンプを通過させた採熱後の降温水を下流槽に戻すことで、その戻り降温水と溢水堰から下流槽へ流入した水との混合水を散水手段に送るようにし、この混合水の温度が設定適正温度になるようにヒートポンプの出力を調整する形態を採る。
【0022】
この構成によれば、上流槽や下流槽を沈砂槽に兼用して取水源からの採取水に対し除砂処理を施すことができ、この兼用化により設備コストを低廉化することができて、除砂処理が必要な採取水(例えば地下水や湧水)を用いる場合に好適な設備にすることができる。
また、既設の散水式融雪設備に対し放熱手段とヒートポンプとを増設して設備を構築する場合には、既設の散水式融雪設備が備える沈砂槽を利用して上流槽や下流槽を形成することもでき、これによって設備コストを一層低廉化することもできる。
【0023】
〔5〕請求項5に係る発明は、請求項1〜4のいずれか1項に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段を、前記取水源における採取対象水の温度変化に応じて、前記散水手段に対する供給水量を調整する構成にしてある点にある。
【0024】
つまり、この構成によれば、取水源における採取対象水の温度がかなり高くなってヒートポンプを上限出力で運転しても散水手段に対する供給採取水の温度が必要以上に高温になる場合に、制御手段による上記の供給水量調整により散水手段に対する供給水量(換言すれば、取水源からの採取水量)を減少させて、必要以上の無駄な高温水散水を回避することができ、この点、採取水保有熱量の有効利用の面、及び、採取必要水量の削減の面で一層優れた融雪設備にすることができる。
【0025】
また、取水源における採取対象水の温度がかなり低くなってヒートポンプを下限出力で運転しても散水手段に対する供給採取水の温度が過度に低温になる場合に、制御手段による上記の供給水量調整により散水手段に対する供給水量やヒートポンプに対する通過水量を増加させて、散水による融雪の能力低下やヒートポンプの停止を回避することができ、この点、融雪機能の安定性の面でも一層優れた融雪設備にすることができる。
【0026】
なお、請求項5に係る発明の実施において、取水源から採取した水をヒートポンプに通過させる水とヒートポンプを迂回させる水とに分流させて散水手段に送る形態を採る場合には、前述の如くその分流比の調整も自在な構成にするのが望ましい。
【0027】
【発明の実施の形態】
〔第1実施形態〕
図1は請求項3に係る発明を適用した融雪設備を示し、1は第1融雪対象箇所1Gに対して多数の散水ノズル1aから水Wcを散水することで第1融雪対象箇所1Gの融雪を行なう散水手段としての散水装置、2は第2融雪対象箇所2Gに対して熱媒放熱による融雪を行なう放熱手段としての融雪用熱交換器、3は融雪用熱交換器2に循環させる熱媒Mを加熱するヒートポンプであり、ヒートポンプ3には、圧縮機3a、凝縮器3b、膨張弁3c、蒸発器3dを主要構成品として冷媒回路3rを形成した蒸気圧縮式のヒートポンプを用いている。
【0028】
4は散水装置1に供給する水Wcの取水源である井戸、5は井戸4における採取対象水W(すなわち、採取対象の地下水)を取水ポンプP1により貯水槽6に送出する取水路であり、貯水槽6は井戸4から採取した水Wを貯留することでその採取水Wに対し沈砂処理を施す沈砂槽を兼ねている。
【0029】
7は貯水槽6に貯留してある水Wを給水ポンプP2により散水装置1に対して送出するための送出管路で、この送出管路7の途中部分には、給水ポンプP2からの送出水Wをヒートポンプ側分流管路7aを通じヒートポンプ3に通過させて散水装置1に送る水Waと、短絡側分流管路7bを通じヒートポンプ3を迂回させて直接に散水装置1に送る水Wbとに分流する分流部8を設けてある。
【0030】
そして、ヒートポンプ側分流管路7aを通じヒートポンプ3に通過させる水Waは、採熱源としてヒートポンプ3の蒸発器3dで冷媒Rと熱交換させた後、短絡側分流管路7bの通過水Wbと合流部9で合流させて散水装置1に送るようにしてある。
【0031】
すなわち、蒸発器3dで採熱されて温度降下したヒートポンプ通過側の低温tyの水Waを、温度降下なく短絡側分流管路7bを通過した高温txの水Wbと混合し、この混合により均温化した混合水Wcを散水装置1に供給するようにしてある。
【0032】
合流部9には三方弁10を設けてあり、この三方弁10により、ヒートポンプ3に通過させて散水装置1に送る水Waとヒートポンプ3を迂回させて散水装置1に送る水Wbとの分流比を初期設定的に設定する。
【0033】
11は融雪用熱交換器2とヒートポンプ3とに亘らせた熱媒循環路であり、循環ポンプP3の運転により熱媒循環路11を通じてヒートポンプ3の凝縮器3bと融雪用熱交換器2との間で熱媒Mを循環させる。
【0034】
すなわち、ヒートポンプ3において冷媒Rを圧縮機3a−凝縮器3b−膨張弁3c−蒸発器3dの順に循環させることで、ヒートポンプ側分流管路7aの通過水Waに対し蒸発器3dを採熱機能させながら、熱媒循環路11の循環熱媒Mに対し凝縮器3bを加熱機能させて、融雪用熱交換器2に送る熱媒Mを加熱し、この加熱した熱媒Mを融雪用熱交換器2において放熱させることで第2融雪対象箇所2Gの融雪を行う。
【0035】
Sは合流部9の下流側において散水装置1に対する供給水Wcの温度tz(すなわち、前記混合水の温度)を検出する温度センサ、12は設備の運転制御を司る制御器であり、この制御器12は、温度センサSによる検出温度tzに応じヒートポンプ3の出力を調整して散水装置1に対する供給水Wcの温度tzを設定適正温度tzzに調整する。
【0036】
つまり、この制御器12は取水源4における採取対象水Wの温度変化に応じヒートポンプ3の出力を調整して散水装置1に対する供給採取水Wcの温度tzを設定適正温度tzzに調整する制御手段を構成し、井戸4における採取対象水Wの温度が低下したときには、制御器12による上記出力調整によりヒートポンプ3の出力が低下側に調整されてヒートポンプ3での採熱量が減少側に調整されることで、散水装置1に対する供給水Wcの過度の温度低下が回避され、また、井戸4における採取対象水Wの温度が上昇したときには、制御器12による上記出力調整によりヒートポンプ3の出力が増大側に調整されてヒートポンプ3での採熱量が増大側に調整されることで、その大きな採取熱量を融雪用熱交換器2の方で充分に有効利用するようにしながら、散水装置1に対する供給水Wcの必要以上の高温化が回避される。
【0037】
なお、上記の例では、ヒートポンプ側分流管路7aを通じヒートポンプ3に通過させて散水装置1に送る水Waと、短絡側分流管路7bを通じヒートポンプ3を迂回させて直接に散水装置1に送る水Wbとの分流比を三方弁10により初期設定的に設定(すなわち、固定的に設定)するようにしたが、井戸4における採取対象水Wの温度が低下してヒートポンプ3に送る水Waの温度txが低下傾向になるほどヒートポンプ3に送る水Waの流量を増大させる側に上記三方弁10により分流比を自動調整するようにし、これにより、蒸発器3dにおいて水温や冷媒温が下限温度よりも低下することによるヒートポンプ3の自動停止を抑止して、設備の運転安定性を高めるようにしてもよい。
【0038】
また、この分流比の自動調整を行う場合、具体的な調整形態としては、採熱源としてヒートポンプ3に送る水Waの温度txを検出して、その検出温度txに基づき三方弁10を調整する形態や、ヒートポンプ3から送出される採熱後の水Waの温度tyを検出して、その検出温度tyに基づき三方弁10を調整する形態を採用すればよい。
【0039】
〔第2実施形態〕
図2は請求項4に係る発明を適用した融雪設備を示し、21は第1融雪対象箇所1Gに対して多数の散水ノズル21aから水Wを散水することで第1融雪対象箇所1Gの融雪を行なう散水手段としての散水装置、22は第2融雪対象箇所2Gに対して熱媒放熱による融雪を行なう放熱手段としての融雪用熱交換器、23は融雪用熱交換器22に循環させる熱媒Mを加熱するヒートポンプであり、このヒートポンプ23には、圧縮機23a、凝縮器23b、膨張弁23c、蒸発器23dを主要構成品として冷媒回路23rを形成した蒸気圧縮式のヒートポンプを用いている。
【0040】
24は散水装置21に供給する水Wcの取水源である井戸、25は井戸24における採取対象水Wを取水ポンプP1により貯水槽26に送る取水路であり、貯水槽26は、第1溢水堰27aとその第1溢水堰27aよりも低い第2溢水堰27bとにより、井戸24からの採取水Wを受け入れる第1貯水槽26Aと、第1貯水槽26Aから第1溢水堰27aを通じて流出する水Wを受け入れる第2貯水槽26Bと、第2貯水槽26Bから第2溢水堰27bを通じて流出する水Wbを受け入れる第3貯水槽26Cとに区画してある。
【0041】
そして、第1貯水槽26Aは、井戸24から採取した水Wを受け入れてその採取水Wに含まれる砂を沈砂させる沈砂槽として機能させ、第2貯水槽26Bは、ポンプP2′により分流路28を通じてヒートポンプ23の蒸発器23dに送る水Waを取り出す分流用の上流槽として機能させ、また、第3貯水槽26Cはヒートポンプ23の蒸発器23dから戻る水Waを受け入れて、その戻り水Waを第2貯水槽26Bからの流入水Wbと混合する合流用の下流槽として機能させるようにしてあり、散水装置21に対しては、この第3貯水槽26Cから取り出した混合水Wcを給水ポンプP2″により送出路29を通じて供給するようにしてある。
【0042】
つまり、ヒートポンプ23の蒸発器23dに送る水Waを第2貯水槽26Bから取り出すことと、それに伴って、第3貯水槽26Cに対し第2貯水槽26Bから第2溢水堰27bを通じて水Wbを流出させることとをもって、井戸4からの採取水Wを採熱源としてヒートポンプ23の蒸発器23dに通過させる水Waとヒートポンプ23を迂回させる水Wbとに分流し、そして、ヒートポンプ23の蒸発器23dで採熱されて温度降下した低温tyの水Waを第3貯水槽26Cに戻すことで、その戻り降温水Waを温度降下なく第2溢水堰27bを通じて第2貯水槽26Bから第3貯水槽26Cへ流入する高温txの水Wbと混合し、この混合により均温化した混合水Wcを散水装置21に供給するようにしてある。
【0043】
31は融雪用熱交換器22とヒートポンプ23とに亘らせた熱媒循環路であり、循環ポンプP3の運転により熱媒循環路31を通じてヒートポンプ23の凝縮器23bと融雪用熱交換器22との間で熱媒Mを循環させる。
【0044】
すなわち、第1実施形態と同様、ヒートポンプ23において冷媒Rを圧縮機23a−凝縮器23b−膨張弁23c−蒸発器23dの順に循環させることで、分流路28の通過水Waに対し蒸発器23dを採熱機能させながら、熱媒循環路31の循環熱媒Mに対し凝縮器23bを加熱機能させて、融雪用熱交換器22に送る熱媒Mを加熱し、この加熱した熱媒Mを融雪用熱交換器22において放熱させることで第2融雪対象箇所2Gの融雪を行う。
【0045】
Sは散水装置21に対して供給する混合水Wcの温度tzを検出する温度センサ、32は設備の運転制御を司る制御器であり、この制御器32は、温度センサSによる検出温度tzに応じヒートポンプ23の出力を調整して散水装置21に対する供給水Wcの温度tzを設定適正温度tzzに調整し、取水源24における採取対象水Wの温度変化に応じヒートポンプ23の出力を調整して散水装置21に対する供給採取水Wcの温度tzを設定適正温度tzzに調整する制御手段を構成する。
【0046】
〔別の実施形態〕
次に別実施形態を列記する。
【0047】
上記の第1及び第2実施形態では、取水源4,24からの採取水Wを採熱源としてヒートポンプ3,23を通過させて散水手段1,21に送る水Waとヒートポンプ3,23を迂回させて直接に散水手段1,21に送る水Wbとに分流するようにしたが、これに代え、図3に示す如く、取水源4からの採取水Wの全量を採熱源としてヒートポンプ3の蒸発器3dに通過させた上で散水手段1に供給するようにし、この構成において、ヒートポンプ3を通過した採熱後の採取水Wcの温度tzを検出する温度センサS、及び、この温度センサSによる検出温度tzに応じヒートポンプ3の出力を調整して、散水手段1に送る水Wcの温度tzを設定適正温度tzzに調整する制御手段12を設けるようにしてもよい。
【0048】
なお、図3において、第1実施形態と同機能のものには第1実施形態で用いた符号と同じ符号を付してある。
【0049】
取水源4,24における採取対象水Wの温度変化に応じヒートポンプ3,23の出力を調整して散水手段1,21に送る水Wcの温度tzを設定適正温度tzzに調整するのに、前述の如くヒートポンプ3,23で採熱した後の散水手段1,21に対する供給採取水Wc (第1,第2実施形態ではヒートポンプ3,23を通過させた水Waとヒートポンプ3,23を迂回させた水Wbとの混合水、図3に示す実施形態ではヒートポンプ3を通過させた水)の温度tzを検出して、その検出温度tzに基づきヒートポンプ3,23の出力を調整する制御形態に代え、取水源4,24における採取対象水Wの温度や貯水槽6,26Aにおける採取水Wの温度を検出して、その検出温度に基づきヒートポンプ3,23の出力を調整する制御形態を採用するなど、その調整のための具体的な制御形態は種々の変更が可能である。
【0050】
請求項5に係る発明の実施形態として、取水源4,24における採取対象水Wの温度変化に応じヒートポンプ3,23の出力を調整して散水手段1,21に対する供給採取水Wcの温度tzを設定適正温度tzzに調整する制御手段12,32を、そのヒートポンプ出力の調整に加え、取水源4,24における採取対象水Wの温度変化に応じ散水手段1,21に対する取水源4,24からの供給水量を調整する構成にしてもよい。
【0051】
また、その場合、取水源4,24における採取対象水Wの温度低下でヒートポンプ3,23の出力が下限出力近傍まで低下側に調整されたときに散水手段1,21に対する取水源4,24からの供給水量を増加させたり、取水源4,24における採取対象水Wの温度上昇でヒートポンプ3,23の出力が上限出力近傍まで上昇側に調整されたときに散水手段1,21に対する取水源4,24からの供給水量を減少させたりする調整形態に限らず、場合によっては、取水源4,24における採取対象水Wの温度変化に応じ、ヒートポンプ3,23の出力調整と並行して散水手段1,21に対する取水源4,24からの供給水量を調整する調整形態を採るようにしてもよい。
【0052】
取水源4,24から融雪用の散水手段1,21に送る水Wを採熱源として融雪用の放熱手段2,22に対する供給熱媒Mを加熱するヒートポンプ3,23には、蒸気圧縮式のヒートポンプに限らず、吸収式ヒートポンプなど、その他、種々の形式のヒートポンプを採用することができる。
【0053】
本発明の実施において、第1及び第2融雪対象箇所1G,2Gは夫々、道路、屋外駐車場、屋外階段を初め、融雪が必要な箇所であれば、どのような箇所であってもよく、また、第1融雪対象箇所1Gと第2融雪対象箇所2Gとは互いに接する箇所、一方が他方を囲む配置関係の箇所、互いに離間した箇所など、どのような配置関係の箇所であってもよい。
【0054】
本発明で言う融雪とは、降雪した雪を融かす狭義の融雪に限らず、道路などの凍結防止を含む広義のものである。
【図面の簡単な説明】
【図1】第1実施形態を示す設備構成図
【図2】第2実施形態を示す設備構成図
【図3】別の実施形態を示す設備構成図
【符号の説明】
1G      第1融雪対象箇所
2G      第2融雪対象箇所
1,21    散水手段
2,22    放熱手段
3,23    ヒートポンプ
4,24    取水源
7       管路
8       分流部
12,32   制御手段
26B     上流槽
26C     下流槽
27b     溢水堰
M       熱媒
W       採取水
Wa      ヒートポンプに通過させる水
Wb      ヒートポンプを迂回させる水
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a water-spraying means for spraying water collected from a water intake source to a first snow-melting target, a heat-dissipating means for snow-melting a heat medium to a second snow-melting target, The present invention relates to a snow melting facility comprising: a heat pump that heats a heat medium supplied to the heat radiating means by using a collected water sent from a water source to the water sprinkling means as a heat collecting source.
[0002]
[Prior art]
Conventionally, in this type of snow melting equipment, the groundwater that is supplied to the snowmelting radiating means is heated by a heat pump using the collected groundwater sent to the watermelting means for snowmelting as a heat source. The heat was collected by a heat pump so as to lower the temperature, and the groundwater after the heat collection was sent to a water spraying unit to spray water to the first snow melting target.
[0003]
In other words, from the water sprinkling means, the groundwater whose temperature has been lowered by a certain temperature range from the temperature of the groundwater to be collected at the water intake source is sprinkled, and the amount of heat collected by the heat pump for the lowered temperature is used to disperse the waterless snowmelt by the heat radiating means. By doing so, the calorific value of the groundwater can be effectively used, and the required amount of groundwater can be reduced accordingly (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Patent No. 2973276 [0005]
[Problems to be solved by the invention]
However, despite the groundwater, there is a fluctuation in the temperature at the water intake source.For this reason, the temperature of the groundwater to be collected at the water intake source was reduced in the above-mentioned conventional facility for spraying the groundwater whose temperature was lowered by an almost constant temperature range with a heat pump. Sometimes, there is a problem that the temperature of the sprinkled groundwater becomes excessively low and the efficiency of snowmelt by sprinkling is reduced, and in some cases, the sprinkled groundwater may freeze at a snowmelting target location.
[0006]
Also, when the temperature of the groundwater to be collected at the water intake source rises, the temperature of the groundwater to be sprinkled rises more than necessary, causing heat loss that wastes the retained heat of the groundwater by sprinkling. There is a problem that the purpose of effectively utilizing the calorific value of groundwater is insufficient, and in some cases, a large amount of steam is generated at a location where snow is melted, which may cause a traffic obstacle.
[0007]
In view of this situation, a main problem of the present invention is to solve the above problem effectively with a rational improvement.
[0008]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a snow melting facility.
Water spraying means for spraying water collected from a water intake source to a first snow melting target location; a heat dissipating means for snow melting for releasing a heat medium to a second snow melting target location; and water spraying from the water intake source. A heat pump that heats a heat medium supplied to the heat radiating means with the collected water sent to the means as a heat source,
A control means is provided for adjusting the output of the heat pump in accordance with a change in the temperature of the water to be collected in the water intake source, and adjusting the temperature of the water to be supplied to the watering means to a set appropriate temperature.
[0009]
In other words, according to this configuration, when the temperature of the water to be collected at the water intake source is reduced, the output of the heat pump is correspondingly reduced to reduce the amount of heat collected by the heat pump, thereby obtaining the collected water to be supplied to the water sprinkling means. Excessive temperature drop can be avoided, but when the temperature of the water to be collected at the water intake source rises, the output of the heat pump is correspondingly increased to increase the amount of heat collected by the heat pump, thereby increasing the amount of heat collected. It is possible to avoid unnecessarily increasing the temperature of the collected water supplied to the water sprinkling means more than necessary, while making effective use of the non-sprinkling snow melting by the heat radiating means. While maintaining the efficiency of snowmelt stably and preventing ice from sprinkling water more reliably, the intended purpose of holding Effectively utilized can be more effectively promoted, also can be a large amount of steam generated in the snow melting target portion by sprinkling hot water to more reliably prevent the.
[0010]
In the practice of the invention according to claim 1, water collected from a water intake source may be any water having a temperature usable for snow melting, such as groundwater, river water, lake water, seawater, sewage, and the like. It may be.
[0011]
In addition, as a specific adjustment method for adjusting the output of the heat pump in accordance with the temperature change of the water to be collected at the water intake source to adjust the temperature of the water to be supplied to the watering means to the set appropriate temperature, the water to be collected at the water intake source is Or the output of the heat pump is adjusted based on the detected temperature.The output of the heat pump is adjusted based on the detected temperature by detecting the temperature of the water collected and supplied to the watering means after the heat is collected by the heat pump. Various adjustment methods such as a method can be adopted.
[0012]
The specific temperature to be set as the appropriate temperature may be appropriately determined according to the installation conditions of the equipment, snow melting conditions, and the like, so that snow melting by water spray can be performed efficiently and the temperature is higher than necessary. Any suitable temperature that can effectively prevent heat loss due to water spraying may be employed.
[0013]
[2] The invention according to claim 2 specifies an embodiment suitable for carrying out the invention according to claim 1, and its features are as follows.
The point is that the water collected from the water intake source is divided into water that passes through the heat pump as a heat collection source and water that bypasses the heat pump, and is sent to the water sprinkling means.
[0014]
In other words, in this configuration, the output of the heat pump is adjusted so that the temperature of the mixed water of the temperature-reduced water that has passed through the heat pump and the water that has bypassed the heat pump reaches the set appropriate temperature. By dividing the water collected from the water source as described above and sending it to the sprinkling means, the amount of water sprinkled from the water sprinkling means is secured compared to the case where the whole amount of water collected from the water intake source is sent to the water sprinkling means through a heat pump. However, it is possible to reduce the water resistance as a whole with respect to the watering means, and to effectively reduce the pressure loss in watering to the watering means, thereby requiring a pump required for watering to the watering means. Since only a small amount of power is required, it is possible to make an advantage in equipment cost, operation cost, and energy saving.
[0015]
In addition, with respect to the shunt of water collected from the intake source, either a configuration in which the shunt ratio is fixed or a configuration in which the shunt ratio can be adjusted may be adopted. As the temperature decreases and the temperature of the water sent to the heat pump tends to decrease, the split ratio is automatically adjusted to increase the flow rate of the water sent to the heat pump, thereby reducing the water temperature and the refrigerant temperature in the heat collection unit. , The automatic stop of the heat pump may be suppressed to improve the operation stability of the equipment.
[0016]
Further, when the temperature of the temperature-reducing water after heat passing through the heat pump falls below a predetermined temperature, the temperature of the water after heat collection is maintained at the predetermined temperature by adjusting the output of the heat pump, and the heat is collected. The operation stability of the equipment may be enhanced by suppressing the automatic stop of the heat pump due to a decrease in the water temperature or the refrigerant temperature in the section.
[0017]
[3] The invention according to claim 3 specifies an embodiment suitable for carrying out the invention according to claim 2, and its features are as follows.
A conduit that guides water collected from the water intake source to the water sprinkling means is provided with a branch portion that divides the collected water into water that passes through the heat pump as a heat source and water that bypasses the heat pump. .
[0018]
In other words, according to this configuration, while taking a form of diverting the water that passes through the heat pump and the water that bypasses the heat pump, the diverting is a diverting on a pipe that guides the water collected from the water intake source to the water sprinkling means. Therefore, the collected water can be sent to the water sprinkling means by one pump provided on the upstream side of the branch portion, thereby reducing the equipment cost.
[0019]
In addition, in the case of constructing equipment by adding a heat radiating means and a heat pump to the existing water-sprinking snow melting equipment, as described above, the overall water supply resistance to the water sprinkling means can be reduced by shunting. , It is possible to use the pump that was used for the existing water-sprinking snow melting equipment as it is, or even if it is necessary to change the pump, simply change it to a pump with a slightly higher head than the existing pump, In addition, the equipment cost can be further reduced.
[0020]
[4] The invention according to claim 4 specifies an embodiment suitable for carrying out the invention according to claim 2, and its features are as follows.
An upstream tank for receiving water collected from the water intake source and a downstream tank for receiving water flowing out of the upstream tank through the overflow weir are provided.
After the stored water taken out from the upstream tank is sent to the heat pump as a heat source, the water is returned to the downstream tank and, in parallel with this, water sent to the water sprinkling means is taken out from the downstream tank. .
[0021]
In other words, in this configuration, by taking out the water to be sent to the heat pump from the upstream tank as a heat source, and by causing the water to flow out from the upstream tank through the overflow weir to the downstream tank to take out the water to be sent to the water sprinkling means, The water sampled from the water intake source is divided into water that passes through the heat pump and water that bypasses the heat pump.
Then, by returning the temperature-reduced water that has passed through the heat pump to the downstream tank, the mixed water of the returned temperature-reduced water and the water that has flowed into the downstream tank from the overflow weir is sent to the sprinkling means. In this case, the output of the heat pump is adjusted so that the temperature of the heat pump becomes the set appropriate temperature.
[0022]
According to this configuration, the sand removal treatment can be performed on the water collected from the water intake source by using the upstream tank and the downstream tank also as the sedimentation tank, and this dual use can reduce the equipment cost, Suitable facilities can be provided when using collected water (for example, groundwater or spring water) that requires sand removal treatment.
In addition, when constructing equipment by adding heat radiation means and heat pumps to the existing water-sprinking snow melting equipment, use the sand settling tank provided in the existing water-sprinking snow melting equipment to form upstream and downstream tanks. Therefore, the equipment cost can be further reduced.
[0023]
[5] The invention according to claim 5 specifies an embodiment suitable for carrying out the invention according to any one of claims 1 to 4, and its features are as follows.
The control means is configured to adjust the amount of water supplied to the water sprinkling means in accordance with a change in the temperature of the water to be collected at the water intake source.
[0024]
In other words, according to this configuration, when the temperature of the water to be collected at the water intake source becomes considerably high and the temperature of the water to be supplied to the watering means becomes unnecessarily high even when the heat pump is operated at the upper limit output, the control means In this way, the amount of water supplied to the water sprinkling means (in other words, the amount of water collected from the water intake source) can be reduced by the above-mentioned water supply amount adjustment, and unnecessary unnecessary high-temperature water watering can be avoided. It is possible to provide a more excellent snow melting facility in terms of effective use of heat and reduction in required amount of collected water.
[0025]
In addition, when the temperature of the water to be collected at the water intake source is considerably low and the temperature of the water to be collected to the water sprinkling means is excessively low even when the heat pump is operated at the lower limit output, the supply water amount is adjusted by the control means. By increasing the amount of water supplied to the watering means and the amount of water passing through the heat pump, it is possible to avoid a decrease in the ability to melt snow due to water spraying and to stop the heat pump. In this regard, the snow melting facility is more excellent in terms of stability of the snow melting function. be able to.
[0026]
In the practice of the invention according to claim 5, in a case where the water collected from the water intake source is divided into water for passing through the heat pump and water for bypassing the heat pump and sent to the water spraying means, as described above, It is desirable to have a configuration in which the division ratio can be adjusted freely.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
FIG. 1 shows a snow melting facility to which the invention according to claim 3 is applied. Reference numeral 1 denotes a first snow melting target location 1G which is sprayed with water Wc from a number of water spray nozzles 1a to thereby melt snow at a first snow melting target location 1G. A water spraying device 2 as a water spraying means for performing heat melting, and a heat medium M circulating through the heat exchanger 2 for snow melting as a heat radiating means for radiating the snow by radiating the heat medium to the second snow melting target portion 2G. As the heat pump 3, a vapor compression heat pump in which a refrigerant circuit 3r is formed with a compressor 3a, a condenser 3b, an expansion valve 3c, and an evaporator 3d as main components is used.
[0028]
4 is a well which is a water intake source of water Wc to be supplied to the water sprinkling device 1, 5 is a water intake channel which sends out the water W to be collected in the well 4 (that is, the groundwater to be collected) to the water storage tank 6 by the water pump P1. The water storage tank 6 also serves as a sand settling tank for storing the water W collected from the well 4 and subjecting the collected water W to a sand setting process.
[0029]
Reference numeral 7 denotes a delivery line for sending out the water W stored in the water storage tank 6 to the watering device 1 by the water supply pump P2. W is diverted into water Wa which is passed through the heat pump 3 through the heat pump side branch pipe 7a and is sent to the sprinkler 1 and water Wb which is sent directly to the sprinkler 1 by bypassing the heat pump 3 through the short circuit side branch pipe 7b. A diverter 8 is provided.
[0030]
Then, the water Wa passed through the heat pump 3 through the heat pump side branch pipe 7a is subjected to heat exchange with the refrigerant R in the evaporator 3d of the heat pump 3 as a heat collecting source, and then merges with the passing water Wb of the short circuit side branch pipe 7b. At 9, they are merged and sent to the sprinkler 1.
[0031]
That is, the low-temperature ty water Wa on the heat pump passing side, which has been cooled down by the evaporator 3d, is mixed with the high-temperature tx water Wb that has passed through the short-circuit side branch pipe 7b without a temperature drop. The mixed water Wc is supplied to the sprinkler 1.
[0032]
The junction 9 is provided with a three-way valve 10. The three-way valve 10 allows the water Wa to be sent to the water sprinkler 1 by passing through the heat pump 3 and the water Wb to be sent to the water sprinkler 1 by bypassing the heat pump 3. Is set as the initial setting.
[0033]
Reference numeral 11 denotes a heat medium circulation path extending between the snow melting heat exchanger 2 and the heat pump 3. The condenser 3b of the heat pump 3 and the snow melting heat exchanger 2 are operated through the heat medium circulation path 11 by operating the circulation pump P3. The heat medium M is circulated between them.
[0034]
That is, by circulating the refrigerant R in the heat pump 3 in the order of the compressor 3a-the condenser 3b-the expansion valve 3c-the evaporator 3d, the evaporator 3d has a function of collecting heat from the passing water Wa of the heat pump side branch pipe 7a. In the meantime, the condenser 3b functions to heat the circulating heat medium M in the heat medium circulation path 11 to heat the heat medium M to be sent to the snow melting heat exchanger 2, and the heated heat medium M is transferred to the snow melting heat exchanger. 2, the second snow melting target location 2G is melted by releasing heat.
[0035]
S is a temperature sensor that detects the temperature tz of the supply water Wc to the sprinkler 1 (that is, the temperature of the mixed water) on the downstream side of the junction 9, and 12 is a controller that controls the operation of the equipment. 12 adjusts the output of the heat pump 3 in accordance with the temperature tz detected by the temperature sensor S to adjust the temperature tz of the supply water Wc to the sprinkler 1 to the set appropriate temperature tzz.
[0036]
That is, the controller 12 adjusts the output of the heat pump 3 in accordance with a change in the temperature of the water W to be collected in the water intake source 4 and adjusts the temperature tz of the supply and collected water Wc to the sprinkler 1 to the set appropriate temperature tzz. When the temperature of the water W to be collected in the well 4 is reduced, the output of the heat pump 3 is adjusted to a lower side by the output adjustment by the controller 12, and the amount of heat collected by the heat pump 3 is adjusted to a lower side. Therefore, when the temperature of the water W to be collected in the well 4 is increased, the output of the heat pump 3 is increased by the output adjustment by the controller 12 when the temperature of the water W to be collected in the well 4 is increased. By adjusting the amount of heat collected by the heat pump 3 to the increasing side, the large amount of collected heat is more effectively utilized by the heat exchanger 2 for snow melting. While Unishi, excessive high temperature of supply water Wc is avoided for the water spraying unit 1.
[0037]
In the above example, the water Wa to be sent to the water spray device 1 through the heat pump 3 through the heat pump side branch line 7a and the water to be directly sent to the water spray device 1 by bypassing the heat pump 3 through the short side branch line 7b. Although the split ratio with respect to Wb is set initially (that is, fixedly set) by the three-way valve 10, the temperature of the water Wa to be sent to the heat pump 3 when the temperature of the water W to be collected in the well 4 decreases and the temperature of the water Wa sent to the heat pump 3 is lowered. As the flow rate of the water Wa sent to the heat pump 3 increases as the value of tx decreases, the three-way valve 10 automatically adjusts the split ratio, whereby the water temperature or the refrigerant temperature in the evaporator 3d is lower than the lower limit temperature. In this case, the automatic stop of the heat pump 3 may be suppressed to improve the operation stability of the equipment.
[0038]
In addition, when performing the automatic adjustment of the split ratio, as a specific adjustment mode, a temperature tx of water Wa sent to the heat pump 3 as a heat source is detected, and the three-way valve 10 is adjusted based on the detected temperature tx. Alternatively, a mode may be adopted in which the temperature ty of the water Wa after heat taken out from the heat pump 3 is detected and the three-way valve 10 is adjusted based on the detected temperature ty.
[0039]
[Second embodiment]
FIG. 2 shows a snow melting facility to which the invention according to claim 4 is applied. Reference numeral 21 denotes a first snow melting target location 1G that sprays water W from a number of water spray nozzles 21a to the first snow melting target location 1G. A water spraying device as a water spraying means for performing the operation, 22 is a heat exchanger for snow melting as a heat radiating means for performing snow melting by radiating the heat medium to the second snow melting target location 2G, and 23 is a heat medium M circulated to the heat exchanger 22 for snow melting. The heat pump 23 uses a vapor compression heat pump in which a refrigerant circuit 23r is formed by using a compressor 23a, a condenser 23b, an expansion valve 23c, and an evaporator 23d as main components.
[0040]
Reference numeral 24 denotes a well which is a source of water Wc to be supplied to the sprinkler 21, reference numeral 25 denotes a water intake passage for sending the water W to be collected in the well 24 to the water storage tank 26 by the water pump P1, and the water storage tank 26 is a first flood weir. 27a and a second overflow weir 27b lower than the first overflow weir 27a, a first water storage tank 26A for receiving the collected water W from the well 24, and water flowing out of the first water storage tank 26A through the first overflow weir 27a. It is partitioned into a second water storage tank 26B for receiving W and a third water storage tank 26C for receiving water Wb flowing out from the second water storage tank 26B through the second overflow weir 27b.
[0041]
The first water storage tank 26A receives the water W collected from the well 24 and functions as a sedimentation tank for setting the sand contained in the collected water W, and the second water storage tank 26B is operated by the pump P2 'to divide the water in the distribution channel 28. Through which the water Wa to be sent to the evaporator 23d of the heat pump 23 is taken out, and the third water storage tank 26C receives the water Wa returned from the evaporator 23d of the heat pump 23 and transfers the returned water Wa to the third water storage tank 26C. The mixed water Wc taken out of the third water storage tank 26C is supplied to a water supply pump P2 ″ for the sprinkler 21 by mixing the inflow water Wb from the second water storage tank 26B with the downstream water tank. To supply through the delivery path 29.
[0042]
That is, the water Wa sent to the evaporator 23d of the heat pump 23 is taken out from the second water storage tank 26B, and accordingly, the water Wb flows out from the second water storage tank 26B to the third water storage tank 26C through the second overflow weir 27b. In this case, the water W collected from the well 4 is divided into water Wa that passes through the evaporator 23d of the heat pump 23 and water Wb that bypasses the heat pump 23 as heat sources, and is collected by the evaporator 23d of the heat pump 23. By returning the heated low-temperature ty water Wa whose temperature has dropped to the third water tank 26C, the returned temperature-falling water Wa flows from the second water tank 26B to the third water tank 26C through the second overflow weir 27b without a temperature drop. The water Wb is mixed with the water Wb having a high temperature tx, and the mixed water Wc, which has been temperature-balanced by the mixing, is supplied to the sprinkler 21.
[0043]
Reference numeral 31 denotes a heat medium circulating path extending between the snow melting heat exchanger 22 and the heat pump 23. The condenser 23b of the heat pump 23 and the snow melting heat exchanger 22 pass through the heat medium circulating path 31 by the operation of the circulation pump P3. The heat medium M is circulated between them.
[0044]
That is, as in the first embodiment, the refrigerant R is circulated in the heat pump 23 in the order of the compressor 23a, the condenser 23b, the expansion valve 23c, and the evaporator 23d, thereby causing the evaporator 23d to pass through the passing water Wa of the branch flow path 28. While making the heat collecting function, the condenser 23b is made to heat the circulating heat medium M in the heat medium circulating path 31 to heat the heat medium M to be sent to the heat exchanger 22 for melting snow, and the heated heat medium M is melted in snow. The second heat-melting target portion 2G is melted by radiating heat in the heat exchanger 22 for use.
[0045]
S is a temperature sensor for detecting the temperature tz of the mixed water Wc to be supplied to the sprinkling device 21, 32 is a controller for controlling the operation of the equipment, and the controller 32 responds to the temperature tz detected by the temperature sensor S. The output of the heat pump 23 is adjusted to adjust the temperature tz of the supply water Wc to the water sprinkling device 21 to the set appropriate temperature tzz, and the output of the heat pump 23 is adjusted according to the temperature change of the water W to be collected in the water intake source 24. A control means for adjusting the temperature tz of the supply and sampling water Wc with respect to 21 to the set appropriate temperature tzz is constituted.
[0046]
[Another embodiment]
Next, another embodiment will be described.
[0047]
In the above-described first and second embodiments, the water Wa sent from the water intake sources 4 and 24 as the heat collection source is passed through the heat pumps 3 and 23, and the water Wa sent to the water spraying means 1 and 21 and the heat pumps 3 and 23 are bypassed. In this case, as shown in FIG. 3, the evaporator of the heat pump 3 uses the entire amount of the water W collected from the water intake source 4 as a heat source. In this configuration, the temperature sensor S detects the temperature tz of the collected water Wc after the heat has passed through the heat pump 3 and the temperature sensor S detects the temperature tz of the collected water Wc that has passed through the heat pump 3. A control unit 12 that adjusts the output of the heat pump 3 in accordance with the temperature tz and adjusts the temperature tz of the water Wc sent to the water sprinkling unit 1 to the set appropriate temperature tzz may be provided.
[0048]
In FIG. 3, components having the same functions as those in the first embodiment are denoted by the same reference numerals as those used in the first embodiment.
[0049]
In order to adjust the temperature tz of the water Wc sent to the watering means 1 and 21 to the set appropriate temperature tzz by adjusting the output of the heat pumps 3 and 23 according to the temperature change of the water W to be collected in the water intake sources 4 and 24, as described above. As described above, the supply water Wc supplied to the water sprinkling means 1 and 21 after the heat is collected by the heat pumps 3 and 23 (in the first and second embodiments, the water Wa that has passed through the heat pumps 3 and 23 and the water that has bypassed the heat pumps 3 and 23). In the embodiment shown in FIG. 3, the temperature tz of the mixed water with Wb, in the embodiment shown in FIG. 3, the water passed through the heat pump 3) is detected, and the output of the heat pumps 3, 23 is adjusted based on the detected temperature tz. A control mode is adopted in which the temperature of the sampling water W in the water sources 4, 24 and the temperature of the sampling water W in the water storage tanks 6, 26A are detected, and the outputs of the heat pumps 3, 23 are adjusted based on the detected temperatures. Various changes can be made to the specific control form for the adjustment, such as the use.
[0050]
As an embodiment of the invention according to claim 5, the output of the heat pumps 3, 23 is adjusted according to the temperature change of the water W to be collected in the water intake sources 4, 24 to adjust the temperature tz of the supply water Wc supplied to the watering means 1, 21. The control means 12, 32 for adjusting the temperature to the set appropriate temperature tzz, in addition to the adjustment of the output of the heat pump, adjusts the temperature of the water W to be collected in the water supply sources 4, 24 to the watering means 1, 21 from the water supply sources 4, 24. A configuration in which the amount of supplied water is adjusted may be adopted.
[0051]
Also, in this case, when the output of the heat pumps 3, 23 is adjusted to a lower side near the lower limit output due to a decrease in the temperature of the water W to be collected at the water sources 4, 24, the water sources 4, 24 for the watering means 1, 21 are provided. When the output of the heat pumps 3 and 23 is adjusted to the rising side near the upper limit output by increasing the supply water amount of the water or the temperature of the water W to be sampled at the water intake sources 4 and 24, the water supply source 4 for the watering means 1 and 21 is increased. The water supply means is not limited to an adjustment mode for reducing the amount of water supplied from the water pumps 24, 24, and in some cases, in accordance with a temperature change of the water W to be collected in the water intake sources 4, 24, in parallel with the output adjustment of the heat pumps 3, 23. It is also possible to adopt an adjustment mode for adjusting the amount of water supplied from the water intake sources 4 and 24 with respect to 1 and 21.
[0052]
The heat pumps 3, 23 for heating the supply heat medium M to the heat dissipating means 2, 22 for snow melting using the water W sent from the water intake sources 4, 24 to the water dispersing means 1, 21 for snow melting as a heat collecting source, include a vapor compression heat pump. However, various types of heat pumps, such as an absorption heat pump, can be adopted.
[0053]
In the practice of the present invention, the first and second snow melting target locations 1G and 2G may be any locations where snow melting is required, including roads, outdoor parking lots, and outdoor stairs, respectively. Further, the first snow-melting target location 1G and the second snow-melting target location 2G may be in any location such as a location in contact with each other, a location in which one surrounds the other, or a location separated from each other.
[0054]
The term “melting snow” as used in the present invention is not limited to melting snow in the narrow sense of melting snow that has fallen, but is in a broad sense including preventing freezing of roads and the like.
[Brief description of the drawings]
FIG. 1 is an equipment configuration diagram showing a first embodiment. FIG. 2 is an equipment configuration diagram showing a second embodiment. FIG. 3 is an equipment configuration diagram showing another embodiment.
1G First snow melting target location 2G Second snow melting target location 1, 21 Water spraying means 2, 22 Heat dissipating means 3, 23 Heat pump 4, 24 Water intake source 7 Pipe line 8 Dividing section 12, 32 Control means 26B Upstream tank 26C Downstream tank 27b Overflow Weir M Heat medium W Sampling water Wa Water passing through the heat pump Wb Water bypassing the heat pump

Claims (5)

取水源から採取した水を第1融雪対象箇所に対して散水する融雪用の散水手段と、第2融雪対象箇所に対して熱媒を放熱させる融雪用の放熱手段と、前記取水源から前記散水手段に送る採取水を採熱源として前記放熱手段に対する供給熱媒を加熱するヒートポンプとを備える融雪設備であって、
前記取水源における採取対象水の温度変化に応じ前記ヒートポンプの出力を調整して、前記散水手段に対する供給採取水の温度を設定適正温度に調整する制御手段を設けてある融雪設備。
Water spraying means for spraying water collected from a water intake source to a first snow melting target location; a heat dissipating means for snow melting for releasing a heat medium to a second snow melting target location; and water spraying from the water intake source. A heat pump that heats a heat medium supplied to the heat radiating means with the collected water sent to the means as a heat source,
A snow melting facility provided with control means for adjusting the output of the heat pump in accordance with a change in the temperature of the water to be collected in the water intake source to adjust the temperature of the water to be supplied to the watering means to a set appropriate temperature.
前記取水源から採取した水を、採熱源として前記ヒートポンプに通過させる水と前記ヒートポンプを迂回させる水とに分流させて前記散水手段に送る構成にしてある請求項1記載の融雪設備。2. The snow melting facility according to claim 1, wherein the water collected from the water intake source is divided into water that passes through the heat pump as a heat collection source and water that bypasses the heat pump, and is sent to the water spraying unit. 3. 前記取水源から採取した水を前記散水手段に導く管路に、その採取水を採熱源として前記ヒートポンプに通過させる水と前記ヒートポンプを迂回させる水とに分流する分流部を設けてある請求項2記載の融雪設備。3. A pipe for guiding water collected from the water intake source to the water sprinkling means, wherein a diversion section is provided for dividing the collected water into water that passes through the heat pump as a heat source and water that bypasses the heat pump. The described snow melting facility. 前記取水源から採取した水を受け入れる上流槽と、その上流槽から溢水堰を通じて流出する水を受け入れる下流槽とを設け、
前記上流槽から取り出した貯留水を採熱源として前記ヒートポンプに送った後、前記下流槽に戻すとともに、それに並行して、前記散水手段に送る水を前記下流槽から取り出す構成にしてある請求項2記載の融雪設備。
An upstream tank for receiving water collected from the water intake source and a downstream tank for receiving water flowing out of the upstream tank through the overflow weir are provided.
3. A configuration in which stored water taken out from the upstream tank is sent to the heat pump as a heat source, and then returned to the downstream tank, and water sent to the water sprinkling means is taken out from the downstream tank in parallel. The described snow melting equipment.
前記制御手段を、前記取水源における採取対象水の温度変化に応じて前記散水手段に対する供給水量を調整する構成にしてある請求項1〜4のいずれか1項に記載の融雪設備。The snow melting facility according to any one of claims 1 to 4, wherein the control means is configured to adjust an amount of water supplied to the water sprinkling means in accordance with a temperature change of the water to be collected at the water intake source.
JP2002303078A 2002-10-17 2002-10-17 Snow melting equipment Withdrawn JP2004137748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303078A JP2004137748A (en) 2002-10-17 2002-10-17 Snow melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303078A JP2004137748A (en) 2002-10-17 2002-10-17 Snow melting equipment

Publications (1)

Publication Number Publication Date
JP2004137748A true JP2004137748A (en) 2004-05-13

Family

ID=32450973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303078A Withdrawn JP2004137748A (en) 2002-10-17 2002-10-17 Snow melting equipment

Country Status (1)

Country Link
JP (1) JP2004137748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329465A (en) * 2005-05-24 2006-12-07 Sanken Setsubi Kogyo Co Ltd Ice slurry manufacturing system by steam compression refrigerating machine utilizing snow and ice
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device using wells
JP2011149142A (en) * 2010-01-19 2011-08-04 Nikko Co Ltd Asphalt plant
JP7511730B1 (en) 2023-08-24 2024-07-05 三菱重工サーマルシステムズ株式会社 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329465A (en) * 2005-05-24 2006-12-07 Sanken Setsubi Kogyo Co Ltd Ice slurry manufacturing system by steam compression refrigerating machine utilizing snow and ice
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device using wells
JP2011149142A (en) * 2010-01-19 2011-08-04 Nikko Co Ltd Asphalt plant
JP7511730B1 (en) 2023-08-24 2024-07-05 三菱重工サーマルシステムズ株式会社 CONTROL DEVICE, GROUND SOURCE HEAT UTILIZATION SYSTEM, CONTROL METHOD, AND PROGRAM

Similar Documents

Publication Publication Date Title
CN102239372A (en) Heat pump/air conditioning apparatus with sequential operation
CN104791934B (en) The air-conditioning system of air-conditioning fan cooling is evaporated based on solar heating and fog gun formula
JP2013181676A (en) Air conditioning system and air conditioning method
JP2004137748A (en) Snow melting equipment
JP2007278054A (en) Water sprinkling snow-melting system by automatic preparation of antifreezing liquid
CN204678568U (en) To combine the air-conditioning system in region with public bicycles stopping pad for bus platform
JP2010185650A (en) Fuel cell waste heat-used heat supply system
KR102328622B1 (en) Water heat system for continuous operation using raw water and water storage tank
JP2827078B2 (en) Ice water cooling system
CN210141714U (en) Water source heat pump device
KR102093777B1 (en) Heat source extension type geothermal heat pump apparatus for handling peak load of air conditioning and heating
JP2006046677A (en) Utilization system of ground water
JPH0718137B2 (en) Snow melting equipment
JPH086944B2 (en) Water-cooled refrigerator for refrigerator
JP2981589B2 (en) Snow melting equipment
JP2000104233A (en) Heat pump snow melting device
JPH06331181A (en) Cooling, heating, and heat accumulating system
JP2973276B2 (en) Snow melting equipment
JPH04336180A (en) Roof-snow melting device
JPH0745786B2 (en) Snow melting device using engine exhaust heat, water level double adjustment tank, power generation and exhaust heat snow melting device
JPS6117854A (en) Heat pump type snow melting/heating/cooling equipment
JP3118616B2 (en) Cooling or cooling / heating device
FR2557683A1 (en) Moist atmospheric refrigerant with antifreeze device
JPH0635894B2 (en) Secondary system of cooling system using ice water
FI105592B (en) Method for producing and distributing refrigeration to users via systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061227