[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7508387B2 - Air filter media - Google Patents

Air filter media Download PDF

Info

Publication number
JP7508387B2
JP7508387B2 JP2021021825A JP2021021825A JP7508387B2 JP 7508387 B2 JP7508387 B2 JP 7508387B2 JP 2021021825 A JP2021021825 A JP 2021021825A JP 2021021825 A JP2021021825 A JP 2021021825A JP 7508387 B2 JP7508387 B2 JP 7508387B2
Authority
JP
Japan
Prior art keywords
fibers
fiber diameter
filter medium
glass
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021021825A
Other languages
Japanese (ja)
Other versions
JP2022124201A (en
Inventor
栄子 目黒
智葉 三國
正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Corp
Original Assignee
Hokuetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Corp filed Critical Hokuetsu Corp
Priority to JP2021021825A priority Critical patent/JP7508387B2/en
Publication of JP2022124201A publication Critical patent/JP2022124201A/en
Application granted granted Critical
Publication of JP7508387B2 publication Critical patent/JP7508387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Filtering Materials (AREA)

Description

本開示は、気体、特に空気中のダストを濾過するための除塵エアフィルタ用濾材に関し、特に、低い圧力損失及び高い捕集効率を有するとともに、高いダスト保持容量を有することを特徴とするエアフィルタ用濾材に関する。 This disclosure relates to a filter material for dust-removing air filters for filtering gas, particularly dust in the air, and in particular to a filter material for air filters that is characterized by low pressure loss, high collection efficiency, and high dust retention capacity.

近年、環境の変化や個人レベルでの住室内住環境に対する関心の高まりと共に、オフィスや居住空間の空気の清浄化が求められている。空気中の浮遊塵を除去する方法としては、除塵エアフィルタを用いる方法が一般的であり、種々の除塵エアフィルタ用濾材が存在している。それらのうち、大きいものはビルや工場等のシステム空調に使用され、小さいものは空気清浄機やエアコン等で広く使用されている。除塵エアフィルタ用濾材には、コスト及び環境負荷を低減する観点から、少ないエネルギー消費でダストを除去できる低い圧力損失と高い捕集効率を合わせ持つ濾材が求められているとともに、メンテナンスと濾材自体の両方のコストを低減できる、高寿命すなわち高いダスト保持容量を有する濾材が強く求められている In recent years, with the changing environment and growing interest in the indoor living environment at the individual level, there is a demand for purifying the air in offices and residential spaces. The most common method for removing suspended dust in the air is to use dust-removing air filters, and there are various types of filter media for dust-removing air filters. Of these, larger ones are used in system air conditioning in buildings and factories, while smaller ones are widely used in air purifiers and air conditioners. From the perspective of reducing costs and environmental impact, there is a demand for filter media for dust-removing air filters that combine low pressure loss and high collection efficiency, which can remove dust with little energy consumption, as well as a strong demand for filter media with a long life, i.e., a high dust retention capacity, which can reduce the costs of both maintenance and the filter media themselves.

ダスト保持容量を上昇させるために、上流側に粗い層、下流側に緻密な層を配して密度勾配を有した、少なくとも2層以上の層を合わせ持つエアフィルタ用濾材が提案されている(例えば、特許文献1を参照。)。又、別の方法として、発泡性粒子を破裂させた破片で繊維を接着する方法が提案されている(例えば、特許文献2を参照。)。 In order to increase the dust retention capacity, air filter media have been proposed that have at least two layers with a density gradient, with a coarse layer on the upstream side and a dense layer on the downstream side (see, for example, Patent Document 1). As another method, a method has been proposed in which fibers are bonded together using pieces of exploded foam particles (see, for example, Patent Document 2).

特開2015-139739号公報JP 2015-139739 A 特開2006-7209号公報JP 2006-7209 A

Journal of Power Sources,Volume 78,Issue 1-2,p.42-45,1999Journal of Power Sources, Volume 78, Issue 1-2, p. 42-45, 1999

前記の通り、エアフィルタ用濾材のダスト保持容量を上昇させる方法として、特許文献1の技術が提案されているが、この方法では製造の手間やコストがかかる問題とともに、濾材が厚くなるためにプリーツ加工フィルタユニットにおいて折込み山数が制限されて濾材面積が小さくなり、フィルタユニットの圧力損失が高くなる問題がある。又、特許文献2の技術も提案されているが、この方法では発泡性粒子の作る空隙が大きすぎるために、濾材の均一性及び捕集効率を低くする問題がある。 As mentioned above, the technology of Patent Document 1 has been proposed as a method for increasing the dust retention capacity of air filter media, but this method has problems with the labor and cost required for manufacturing, as well as the problem that the filter media becomes thicker, which limits the number of folds in the pleated filter unit, reducing the filter media area and increasing the pressure loss of the filter unit. Patent Document 2 has also been proposed, but this method has problems with the uniformity and collection efficiency of the filter media being reduced because the voids created by the expandable particles are too large.

エアフィルタ用濾材には、低い圧力損失、高い捕集効率及び高いダスト保持容量を合わせ持つことが求められているが、従来の技術ではこれらの特性の全てを合わせ持つ濾材を得ることができなかった。したがって、本発明の課題は、低い圧力損失及び高い捕集効率を有するとともに、高いダスト保持容量を有するエアフィルタ用濾材を提供することである。 Air filter media are required to have low pressure loss, high collection efficiency, and high dust retention capacity, but conventional technology has not been able to obtain filter media that combines all of these characteristics. Therefore, the objective of the present invention is to provide an air filter media that has low pressure loss, high collection efficiency, and high dust retention capacity.

本発明者らは、本発明のエアフィルタ用濾材における適切なガラス繊維の配合比率を記述するために、ガラス繊維の繊維径と該繊維から形成されたシートを通過する圧力損失の関係性を示すFiber Number(以下、FNと略す)を用いることで上記課題が解決できることを見出し、本発明を完成させた。すなわち、本発明に係るエアフィルタ用濾材は、ガラス繊維を主体とする湿式不織布からなるエアフィルタ用濾材において、FN1は数1により定義され、FN2は数2~数5により定義され、FN1を基準とするFN2の割合であるFN1/FN2が2.50以上であり、且つ、前記濾材の密度が0.17~0.20g/cmの範囲にあり、前記濾材中に含まれる前記ガラス繊維のうち、5.5μm未満の平均繊維径を有するガラスウール繊維が、1.0μm未満の平均繊維径を有する極細のガラスウール繊維と2.0μm以上5.5μm未満の平均繊維径を有する太径のガラスウール繊維とを含み、前記エアフィルタ用濾材の坪量は、84.6~100.4g/m の範囲であることを特徴とする。濾材中に含まれるガラス繊維のうち、5.5μm未満の平均繊維径を有するガラスウール繊維が、1.0μm未満の平均繊維径を有する極細のガラスウール繊維と2.0μm以上5.5μm未満の平均繊維径を有する太径のガラスウール繊維とを含むことで、濾材の均一性が良好となる。 The inventors have found that the above-mentioned problems can be solved by using Fiber Number (hereinafter, abbreviated as FN), which indicates the relationship between the fiber diameter of glass fiber and the pressure loss passing through a sheet formed from the fiber, in order to describe the appropriate glass fiber blending ratio in the air filter material of the present invention, and have completed the present invention. That is, the air filter material according to the present invention is an air filter material made of a wet nonwoven fabric mainly made of glass fibers, FN1 is defined by number 1, FN2 is defined by number 2 to number 5, FN1/FN2, which is the ratio of FN2 based on FN1, is 2.50 or more, and the density of the filter material is in the range of 0.17 to 0.20 g/cm 3 , and among the glass fibers contained in the filter material, the glass wool fibers having an average fiber diameter of less than 5.5 μm include ultrafine glass wool fibers having an average fiber diameter of less than 1.0 μm and thick glass wool fibers having an average fiber diameter of 2.0 μm or more and less than 5.5 μm, and the basis weight of the air filter material is in the range of 84.6 to 100.4 g/m 2 . Among the glass fibers contained in the filter medium, the glass wool fibers having an average fiber diameter of less than 5.5 μm include ultrafine glass wool fibers having an average fiber diameter of less than 1.0 μm and thick glass wool fibers having an average fiber diameter of 2.0 μm or more and less than 5.5 μm, thereby improving the uniformity of the filter medium.

Figure 0007508387000001
ここで、
: i番目の階級の繊維の繊維径[μm]
: i番目の階級の繊維の配合比率[質量%]
Figure 0007508387000001
here,
d i : Fiber diameter of the i-th class fiber [μm]
x i : Blend ratio of fiber of the i-th class [mass%]

Figure 0007508387000002
ここで、
total : 濾材全体の比表面積より計算した濾材全体の平均繊維径[μm]
Figure 0007508387000002
here,
d total : average fiber diameter of the entire filter medium [μm] calculated from the specific surface area of the entire filter medium

Figure 0007508387000003
ここで、
total : 各繊維の比表面積より計算した濾材全体の比表面積[m/g]
Figure 0007508387000003
here,
S total : Specific surface area of the entire filter medium calculated from the specific surface area of each fiber [m 2 /g]

Figure 0007508387000004
ここで、
: i番目の繊維の繊維径より計算した比表面積[m/g]
Figure 0007508387000004
here,
S i : Specific surface area calculated from the fiber diameter of the i-th fiber [m 2 /g]

Figure 0007508387000005
ここで、
ρ : ガラスの密度 2.49[g/cm
Figure 0007508387000005
here,
ρ: Glass density 2.49 [g/cm 3 ]

ただし、数1及び数5のdは数8によって定義され、数1及び数4のxは数9によって定義される。 Here, d i in Equations 1 and 5 is defined by Equation 8, and x i in Equations 1 and 4 is defined by Equation 9.

Figure 0007508387000006
Figure 0007508387000006

Figure 0007508387000007
ここで、
: i番目の階級の繊維の本数
Figure 0007508387000007
here,
N i : Number of fibers in the i-th class

ただし、数8のおよび数9のxは、以下の方法により決定される。まず、CD方向(濾材ロールの幅方向)に沿って切断した濾材断面の電子顕微鏡等の画像を撮影し、繊維径の測定を行う。その時の倍率については特に限定はしないが、3000倍以上が望ましく、同じ濾材中に使用されている全繊維の繊維径は同じ倍率で撮影する。前記の濾材断面の画像で確認できるガラス繊維の断面が楕円の場合はその短径を繊維径とする。前記の濾材断面の厚さ方向において、濾材の表面から裏面まで厚さ全体にわたるように必要に応じて複数枚の電子顕微鏡写真を撮影し、これら1組の写真を最低単位として各繊維の繊維径を測定する。繊維径の測定点数は400点以上とし、全測定点数が400点未満の場合は、厚さ全体にわたる複数組の写真より測定する。前記の方法により計測した繊維径を0μmから0.1μm刻みで階級分けして、1番目の階級を0μm以上~0.1μm未満、2番目の階級を0.1μm以上~0.2μm未満、最後のn番目の階級を0.1(n-1)μm以上~0.1nμm未満とする。ここで、i番目の階級の繊維径は、数8の式により計算される各階級の中央値とする。次に、電子顕微鏡写真より各階級の繊維の本数を計数し、i番目の階級の繊維の本数をNとして、i番目の階級の繊維の配合比率xを数9の式により計算する。 However, i in number 8 and x i in number 9 are determined by the following method. First, the image of the cross section of the filter material cut along the CD direction (width direction of the filter material roll) is taken with an electron microscope or the like, and the fiber diameter is measured. The magnification at this time is not particularly limited, but 3000 times or more is preferable, and the fiber diameter of all fibers used in the same filter material is taken with the same magnification. When the cross section of the glass fiber that can be confirmed in the image of the cross section of the filter material is elliptical, its short diameter is taken as the fiber diameter. In the thickness direction of the cross section of the filter material, a plurality of electron microscope photographs are taken as necessary so as to cover the entire thickness from the front surface to the back surface of the filter material, and the fiber diameter of each fiber is measured with a set of these photographs as the minimum unit. The number of measurement points of fiber diameter is 400 or more, and when the total number of measurement points is less than 400, it is measured from a plurality of sets of photographs covering the entire thickness. The fiber diameters measured by the above method are classified in increments of 0.1 μm starting from 0 μm, with the first class being 0 μm or more and less than 0.1 μm, the second class being 0.1 μm or more and less than 0.2 μm, and the last n-th class being 0.1(n-1) μm or more and less than 0.1 n μm. Here, the fiber diameter of the i-th class is the median of each class calculated by the formula 8. Next, the number of fibers in each class is counted from the electron microscope photograph, and the number of fibers in the i-th class is designated as Ni , and the blending ratio x i of the fibers in the i-th class is calculated by the formula 9.

本発明に係るエアフィルタ用濾材では、前記濾材中に含まれるガラス繊維は、ガラスウール繊維及びチョップドガラス繊維を含み、前記ガラスウール繊維は、各々が異なる平均繊維径を有する少なくとも2種のガラスウール繊維を含むことが好ましい。濾材の強度及び剛度が付与され、FN1/FN2と濾材の密度の調整が行いやすい。 In the air filter medium of the present invention, the glass fibers contained in the filter medium preferably include glass wool fibers and chopped glass fibers, and the glass wool fibers preferably include at least two types of glass wool fibers each having a different average fiber diameter. This provides the filter medium with strength and stiffness, and makes it easy to adjust FN1/FN2 and the density of the filter medium.

本発明に係るエアフィルタ用濾材では、前記濾材中に含まれる全ガラス繊維のうち、5.5μm未満の平均繊維径を有するガラスウール繊維の比率が60~95質量%であり、5.5μm以上の平均繊維径を有するチョップドガラス繊維の配合比率が5~40質量%であることが好ましい。必要とする捕集効率と濾材の強度及び剛度と濾材のダスト保持容量とのバランスが良好となる。 In the air filter medium of the present invention, it is preferable that, of all the glass fibers contained in the filter medium, the ratio of glass wool fibers having an average fiber diameter of less than 5.5 μm is 60 to 95 mass %, and the blending ratio of chopped glass fibers having an average fiber diameter of 5.5 μm or more is 5 to 40 mass %. This provides a good balance between the required collection efficiency, the strength and stiffness of the filter medium, and the dust retention capacity of the filter medium.

本発明に係るエアフィルタ用濾材では、前記濾材は、副資材としてバインダー及び撥水剤を含有することが好ましい。濾材の強度及び剛度を高め、撥水性を持たせることができる。本発明に係るエアフィルタ用濾材では、前記濾材中に含まれる全ガラス繊維中の前記太径のガラスウール繊維の配合比率は、少なくとも70%であることが好ましい。 In the filter material for air filters according to the present invention, the filter material preferably contains a binder and a water repellent as auxiliary materials. The strength and rigidity of the filter material can be increased, and the filter material can have water repellency. In the filter material for air filters according to the present invention, the blending ratio of the thick glass wool fiber in the total glass fiber contained in the filter material is preferably at least 70%.

本開示の効果は、低い圧力損失及び高い捕集効率を有するとともに、高いダスト保持容量を有するエアフィルタ用濾材が得られることである。 The effect of the present disclosure is to obtain a filter medium for air filters that has low pressure loss, high collection efficiency, and high dust retention capacity.

実施例及び比較例における圧力損失とダスト保持容量の関係を示す図である。FIG. 11 is a diagram showing the relationship between pressure loss and dust retention capacity in Examples and Comparative Examples.

以降、本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 The present invention will be described in detail below with reference to embodiments, but the present invention should not be interpreted as being limited to these descriptions. Various modifications of the embodiments may be made as long as the effects of the present invention are achieved.

本発明者らは、本実施形態のエアフィルタ用濾材における適切なガラス繊維の配合比率を記述するために、ガラス繊維の繊維径と該繊維から形成されたシートを通過する圧力損失の関係性を示すFiber Numberを用いた。FNは、0.0167m/秒の気流負荷時における90g/mのシートを通過する圧力損失[Pa]の10分の1の値として定義され、数6に示した経験式により表される(例えば、非特許文献1を参照)。 In order to describe the appropriate blending ratio of glass fiber in the air filter material of this embodiment, the inventors use Fiber Number, which indicates the relationship between the fiber diameter of glass fiber and the pressure loss passing through the sheet formed from this fiber.FN is defined as 1/10 of the pressure loss [Pa] passing through a 90g/ m2 sheet under the airflow load of 0.0167m/s, and is expressed by the empirical formula shown in Equation 6 (for example, see Non-Patent Document 1).

Figure 0007508387000008
ここで、
d : ガラス繊維の繊維径[μm]
Figure 0007508387000008
here,
d: fiber diameter of glass fiber [μm]

FNを、各々が異なる繊維径を有する複数のガラス繊維を含む濾材に適用する場合には、以下の2つの計算方法が考えられる。
(1)各繊維のFNを個別に計算した後、各繊維のFNに該繊維の配合比率を乗じて積算する(以下、FN1と称する)。
(2)濾材全体の平均繊維径からFNを計算する(以下、FN2と称する)。
ここで、FN1は、実際に作製した濾材の圧力損失に近い値となるが、FN2は、太径繊維の濾材全体の圧力損失に対する寄与が、濾材全体の平均繊維径に及ぼす寄与に比べて小さいために、実際の圧力損失よりも小さくなる。FN2の値は、各繊維の繊維径の差が大きい場合及び/又は太径繊維の相対的な配合比率が高い場合において、より小さくなる。なお、ここでいうFN1は数1により定義され、FN2は数2~数5の式により定義される。
When FN is applied to a filter medium containing multiple glass fibers, each having a different fiber diameter, there are two possible calculation methods:
(1) After calculating the FN of each fiber individually, multiply the FN of each fiber by the blending ratio of that fiber and add up (hereinafter referred to as FN1).
(2) Calculate FN from the average fiber diameter of the entire filter medium (hereinafter referred to as FN2).
Here, FN1 is close to the pressure loss of the filter material that is actually made, but FN2 is smaller than the actual pressure loss because the contribution of thick fiber to the pressure loss of the entire filter material is smaller than the contribution of the average fiber diameter of the entire filter material.The value of FN2 is smaller when the difference in fiber diameter of each fiber is large and/or when the relative blending ratio of thick fiber is high.Note that FN1 is defined by formula 1, and FN2 is defined by formulas 2 to 5.

本発明者らは、FN1/FN2の比率が2.50以上となるように、濾材中のガラス繊維の繊維径及び配合比率を調整することにより、濾材のダスト保持容量が高くなることを見出した。これはすなわち、濾材中に含まれる繊維の繊維径の差が大きい及び/又は太径繊維の相対的な配合比率が高いことを意味する。詳細な機構は明らかではないが、太径繊維が形成する粗い繊維ネットワーク構造が、ダスト保持容量に寄与しているものと推定される。FN1/FN2の比率が2.60以上であることがより好ましく、2.70以上であることがさらに好ましい。FN1/FN2の比率の上限は、特に制限はないが、3.50であることが好ましい。 The inventors have found that the dust retention capacity of a filter medium is increased by adjusting the fiber diameter and blending ratio of the glass fibers in the filter medium so that the FN1/FN2 ratio is 2.50 or more. This means that the difference in fiber diameter of the fibers contained in the filter medium is large and/or the relative blending ratio of large-diameter fibers is high. Although the detailed mechanism is unclear, it is presumed that the coarse fiber network structure formed by the large-diameter fibers contributes to the dust retention capacity. It is more preferable that the FN1/FN2 ratio is 2.60 or more, and even more preferable that it is 2.70 or more. There is no particular limit to the upper limit of the FN1/FN2 ratio, but it is preferably 3.50.

本実施形態における濾材の密度は、0.17~0.20g/cmの範囲であり、より好ましくは0.17~0.19g/cmである。濾材の密度が0.20g/cmを超えると、高いダスト保持量を得るために必要な濾材中の空隙の大きさが十分でなくなる。0.17g/cm未満であると濾材の均一性が低くなり、捕集効率が低くなるおそれがある。 The density of the filter medium in this embodiment is in the range of 0.17 to 0.20 g/cm 3 , more preferably 0.17 to 0.19 g/cm 3. If the density of the filter medium exceeds 0.20 g/cm 3 , the size of the voids in the filter medium required to obtain a high dust retention amount is not sufficient. If the density is less than 0.17 g/cm 3 , the uniformity of the filter medium is low, and the collection efficiency may be low.

本実施形態のエアフィルタ用濾材は、ガラスウール繊維とチョップドガラス繊維を含む。ここで言うガラスウール繊維は、火焔延伸法又はロータリー法により延伸されて製造される、繊維径がある程度の分布幅を有する不定形で不連続なウール状のガラス繊維である。繊維径の範囲は一般的に約0.2~約10μmであり、ある程度の分布幅を有することから繊維径の値は一般的に平均繊維径として表される。平均繊維径の値によってガラスウールの繊維のグレードが異なっている。一方で、チョップドガラス繊維は、所定の直径を有する口金から紡糸された連続したガラス繊維を所定の繊維長に切断した定形で直線状のガラス繊維であり、繊維径の範囲は一般的に約4~約30μm、繊維長の範囲は一般的に約1.5~約25mmである。本実施形態の濾材において、繊維径が細く不定形のガラスウール繊維は、捕集効率を高くするとともに濾材中の空隙を保持する効果を有する。繊維径が太く直線状のチョップドガラス繊維は、フィルタユニットの加工時及び使用時に必要とされる強度及び剛度を付与する効果を有するが、一方で、濾材の製造中にウェブ平面方向に配向した状態で堆積しやすいため、チョップドガラス繊維の配合比率が高いと、濾材の密度を高くする。 The air filter medium of this embodiment includes glass wool fibers and chopped glass fibers. The glass wool fibers referred to here are irregular, discontinuous wool-like glass fibers with a certain distribution width of fiber diameters, which are produced by drawing using a flame drawing method or a rotary method. The fiber diameter range is generally about 0.2 to about 10 μm, and since it has a certain distribution width, the fiber diameter value is generally expressed as the average fiber diameter. The grade of glass wool fibers varies depending on the value of the average fiber diameter. On the other hand, chopped glass fibers are regular, linear glass fibers obtained by cutting continuous glass fibers spun from a nozzle having a certain diameter to a certain fiber length, and the fiber diameter range is generally about 4 to about 30 μm, and the fiber length range is generally about 1.5 to about 25 mm. In the filter medium of this embodiment, the glass wool fibers with a small fiber diameter and irregular shape have the effect of increasing the collection efficiency and maintaining voids in the filter medium. Chopped glass fibers, which have a large fiber diameter and are straight, have the effect of imparting the strength and stiffness required during processing and use of the filter unit, but on the other hand, they tend to accumulate in a state oriented in the web plane direction during the production of the filter medium, so a high blend ratio of chopped glass fibers increases the density of the filter medium.

本実施形態に使用する5.5μm未満の平均繊維径を有するガラスウール繊維とは、1.0μm未満の平均繊維径を有する極細のガラスウール繊維と2.0μm以上5.5μm未満の平均繊維径を有する細いガラスウール繊維との両方を含むことが好ましく、0.3μm以上1.0μm未満の平均繊維径を有する極細のガラスウール繊維と2.0μm以上5.5μm未満の平均繊維径を有する細いガラスウール繊維との両方を含むことがより好ましく、0.3μm以上0.7μm未満の平均繊維径を有する極細のガラスウール繊維と3.0μm以上5.5μm未満の平均繊維径を有する細いガラスウール繊維との両方を含むことがさらに好ましく、0.3μm以上0.6μm未満の平均繊維径を有する極細のガラスウール繊維と3.0μm以上5.5μm未満の平均繊維径を有する細いガラスウール繊維との両方を含むことが最も好ましい。配合するガラスウール繊維の平均繊維径の差が大きい方が比率FN1/FN2が大きくなるが、ガラスウール繊維の平均繊維径の差が大きくなりすぎる、言い換えれば極細のガラスウール繊維が細くなりすぎると所定の圧力損失とするための該繊維の配合比率が低くなりすぎて濾材の均一性を損なう。 The glass wool fibers having an average fiber diameter of less than 5.5 μm used in this embodiment preferably include both ultrafine glass wool fibers having an average fiber diameter of less than 1.0 μm and thin glass wool fibers having an average fiber diameter of 2.0 μm or more and less than 5.5 μm, more preferably include both ultrafine glass wool fibers having an average fiber diameter of 0.3 μm or more and less than 1.0 μm and thin glass wool fibers having an average fiber diameter of 2.0 μm or more and less than 5.5 μm, even more preferably include both ultrafine glass wool fibers having an average fiber diameter of 0.3 μm or more and less than 0.7 μm and thin glass wool fibers having an average fiber diameter of 3.0 μm or more and less than 5.5 μm, and most preferably include both ultrafine glass wool fibers having an average fiber diameter of 0.3 μm or more and less than 0.6 μm and thin glass wool fibers having an average fiber diameter of 3.0 μm or more and less than 5.5 μm. The greater the difference in the average fiber diameters of the glass wool fibers used, the greater the ratio FN1/FN2; however, if the difference in the average fiber diameters of the glass wool fibers becomes too large, in other words, if the ultra-fine glass wool fibers become too thin, the blending ratio of the fibers to achieve a specified pressure loss becomes too low, impairing the uniformity of the filter medium.

濾材中のガラスウール繊維の配合比率は60~95質量%であることが好ましく、より好ましくは70~90質量%である。配合比率が60質量%未満と低すぎると、必要とする捕集効率が得られなくなる場合がある。配合比率が95質量%超と高すぎると、チョップドガラス繊維の配合比率が相対的に低くなり必要とする強度及び剛度が得られなくなる場合がある。 The blending ratio of glass wool fibers in the filter medium is preferably 60 to 95% by mass, and more preferably 70 to 90% by mass. If the blending ratio is too low, less than 60% by mass, the required collection efficiency may not be obtained. If the blending ratio is too high, more than 95% by mass, the blending ratio of chopped glass fibers becomes relatively low, and the required strength and stiffness may not be obtained.

本実施形態に使用するチョップドガラス繊維の平均繊維径は、5.5μm以上であることが好ましく、より好ましくは5.5~11μm、更に好ましくは6~9μmの範囲である。繊維径が5.5μm未満と細すぎると、強度及び剛度に対する効果が十分でなくなる。繊維径が太すぎると、フィルタユニットのプリーツ加工において割れを生じるので、チョップドガラス繊維の平均繊維径の上限は例えば13μmである。又、チョップドガラス繊維の繊維長は3~10mmが好ましい。繊維長が3mm未満と短すぎると、強度及び剛度に対する効果が十分でなくなる場合がある。繊維長が10mm超と長すぎると、湿式抄紙工程において水中に分散してスラリーを形成させる際の分散性が悪くなり濾材の均一性を損なう場合がある。 The average fiber diameter of the chopped glass fiber used in this embodiment is preferably 5.5 μm or more, more preferably 5.5 to 11 μm, and even more preferably 6 to 9 μm. If the fiber diameter is too small, less than 5.5 μm, the effect on strength and stiffness will be insufficient. If the fiber diameter is too large, cracks will occur during pleating of the filter unit, so the upper limit of the average fiber diameter of the chopped glass fiber is, for example, 13 μm. In addition, the fiber length of the chopped glass fiber is preferably 3 to 10 mm. If the fiber length is too short, less than 3 mm, the effect on strength and stiffness may be insufficient. If the fiber length is too long, more than 10 mm, the dispersibility when dispersing in water to form a slurry in the wet papermaking process may be poor, and the uniformity of the filter medium may be impaired.

濾材中のチョップドガラス繊維の配合比率は5~40質量%であることが好ましく、より好ましくは10~30質量%である。配合比率が5質量%未満と低すぎると、必要とする強度及び剛度が得られなくなる場合がある。配合比率が40質量%超と高すぎると、濾材の密度が高くなりダスト保持容量を低くするとともに、ガラスウール繊維の配合比率が相対的に低くなり必要とする捕集効率が得られなくなる場合がある。 The blending ratio of chopped glass fiber in the filter medium is preferably 5 to 40% by mass, and more preferably 10 to 30% by mass. If the blending ratio is too low, less than 5% by mass, the required strength and stiffness may not be obtained. If the blending ratio is too high, more than 40% by mass, the density of the filter medium increases, lowering the dust retention capacity, and the blending ratio of glass wool fiber becomes relatively low, making it difficult to obtain the required collection efficiency.

本実施形態のエアフィルタ用濾材は、ガラスウール繊維が、各々が異なる平均繊維径を有するガラスウール繊維を2種類以上含むことが好ましい。これは、本実施形態の濾材を設計する際に、先ず用途に応じて必要とされる強度及び剛度に合わせてチョップドガラス繊維の配合比率を固定し、その後で2種類以上からなるガラスウール繊維の平均繊維径及び/又は配合比率を変化させることで、FN1/FN2の比率を調整することが好ましいためである。ガラスウール繊維とチョップドガラス繊維が各々1種類のみの場合、各繊維の配合比率を変化させた時に複数の物性が同時に影響を受けるためバランスを取りにくい場合がある。 In the air filter medium of this embodiment, the glass wool fibers preferably contain two or more types of glass wool fibers each having a different average fiber diameter. This is because, when designing the filter medium of this embodiment, it is preferable to first fix the blending ratio of the chopped glass fibers according to the strength and stiffness required for the application, and then adjust the FN1/FN2 ratio by changing the average fiber diameter and/or blending ratio of the two or more types of glass wool fibers. When there is only one type of glass wool fiber and one type of chopped glass fiber, changing the blending ratio of each fiber affects multiple physical properties simultaneously, making it difficult to achieve a balance.

本実施形態のエアフィルタ用濾材を設計するにあたり、ガラスウール繊維の平均繊維径は、製造元の公称値を用いることができるが、この他にも、電子顕微鏡等を用いて実測した値や、BET法により測定した比表面積の値より数7の式より計算した値を用いることもできる。 When designing the air filter medium of this embodiment, the average fiber diameter of the glass wool fibers can be the manufacturer's nominal value, but it is also possible to use values actually measured using an electron microscope or values calculated from the specific surface area measured by the BET method using formula 7.

Figure 0007508387000009
ここで、
d : 繊維径[μm]
S : 繊維の比表面積[m/g]
ρ : ガラスの密度 2.49[g/cm
Figure 0007508387000009
here,
d: fiber diameter [μm]
S: specific surface area of fiber [ m2 /g]
ρ: glass density 2.49 [g/cm 3 ]

本実施形態において定義されたFN1/FN2の計算に用いるdおよびxは、以下の方法により決定される。まず、CD方向(濾材ロールの幅方向)に沿って切断した濾材断面の電子顕微鏡等の画像を撮影し、繊維径の測定を行う。その時の倍率については特に限定はしないが、3000倍以上が望ましく、同じ濾材中に使用されている全繊維の繊維径は同じ倍率で撮影する。前記の濾材断面の画像で確認できるガラス繊維の断面が楕円の場合はその短径を繊維径とする。前記の濾材断面の厚さ方向において、濾材の表面から裏面まで厚さ全体にわたるように必要に応じて複数枚の電子顕微鏡写真を撮影し、これら1組の写真を最低単位として各繊維の繊維径を測定する。繊維径の測定点数は400点以上とし、全測定点数が400点未満の場合は、厚さ全体にわたる複数組の写真より測定する。前記の方法により計測した繊維径を0μmから0.1μm刻みで階級分けして、1番目の階級を0μm以上~0.1μm未満、2番目の階級を0.1μm以上~0.2μm未満、最後のn番目の階級を0.1(n-1)μm以上~0.1nμm未満とする。ここで、i番目の階級の繊維径は、数8の式により計算される各階級の中央値とする。次に、電子顕微鏡写真より各階級の繊維の本数を計数し、i番目の階級の繊維の本数をNとして、i番目の階級の繊維の配合比率xを数9の式により計算する。 The d i and xi used in the calculation of FN1/FN2 defined in this embodiment are determined by the following method. First, an image of the cross section of the filter material cut along the CD direction (width direction of the filter material roll) is taken with an electron microscope or the like, and the fiber diameter is measured. The magnification at this time is not particularly limited, but 3000 times or more is preferable, and the fiber diameter of all fibers used in the same filter material is taken with the same magnification. When the cross section of the glass fiber that can be confirmed in the image of the cross section of the filter material is an ellipse, its short diameter is taken as the fiber diameter. In the thickness direction of the cross section of the filter material, a plurality of electron microscope photographs are taken as necessary so as to cover the entire thickness from the front surface to the back surface of the filter material, and the fiber diameter of each fiber is measured with a set of these photographs as the minimum unit. The number of measurement points of the fiber diameter is 400 or more, and when the total number of measurement points is less than 400, it is measured from a plurality of sets of photographs covering the entire thickness. The fiber diameters measured by the above method are classified into classes in increments of 0.1 μm starting from 0 μm, with the first class being 0 μm or more and less than 0.1 μm, the second class being 0.1 μm or more and less than 0.2 μm, and the last n-th class being 0.1(n-1) μm or more and less than 0.1 n μm. Here, the fiber diameter of the i-th class is the median of each class calculated by the formula 8. Next, the number of fibers in each class is counted from the electron microscope photograph, and the number of fibers in the i-th class is designated as Ni , and the blending ratio x i of the fibers in the i-th class is calculated by the formula 9.

Figure 0007508387000010
ここで、
: i番目の階級の繊維の繊維径[μm]
Figure 0007508387000010
here,
d i : Fiber diameter of the i-th class fiber [μm]

Figure 0007508387000011
ここで、
: i番目の階級の繊維の配合比率[質量%]
: i番目の階級の繊維の本数
Figure 0007508387000011
here,
x i : Blend ratio of fiber of the i-th class [mass%]
N i : Number of fibers in the i-th class

本実施形態のエアフィルタ用濾材の坪量は、10~100g/mの範囲であることが好ましく、より好ましくは50~90g/mである。坪量が10g/m未満と低すぎると、濾材の強度及び剛度が不足して、フィルタユニットの加工時又は使用時に裂けや割れを発生したり、通風時に変形して圧力損失の上昇を引き起こしたりする場合がある。坪量が100g/m超と高すぎると、フィルタユニット中の濾材面積が小さくなり、圧力損失が高くなる場合がある。なお、坪量は求められる規格により適宜変更されうる。 The basis weight of the filter material for air filters of the present embodiment is preferably in the range of 10 to 100 g/m 2 , more preferably 50 to 90 g/m 2. If the basis weight is too low, such as less than 10 g/m 2 , the strength and rigidity of the filter material may be insufficient, and the filter unit may tear or crack during processing or use, or may deform during ventilation, causing an increase in pressure loss. If the basis weight is too high, such as more than 100 g/m 2 , the filter material area in the filter unit may become small, and pressure loss may become high. The basis weight can be appropriately changed according to the required standard.

圧力損失は小さい方が好ましいが、一般に圧力損失が小さいとPAO透過率が上昇するため、求められるPAO透過率に応じて圧力損失も適宜変更される。 Small pressure loss is preferable, but generally, small pressure loss leads to high PAO permeability, so pressure loss is adjusted appropriately depending on the desired PAO permeability.

本実施形態においては、エアフィルタ用濾材に必要とされる物性を持たせるために、ガラス繊維以外の副資材を含有させることができる。このような副資材としては、強度及び剛度を持たせるためのバインダー及び撥水性を持たせるための撥水剤等が挙げられる。これらの副資材は、本発明の効果を阻害しない範囲で資材の種類及びその含有率を適宜選択できる。バインダーとしては、バインダー繊維及び非繊維状のバインダー樹脂を用いることができ、主にはバインダー樹脂が用いられる。バインダー樹脂としては、例えば、ポリアクリル酸エステル樹脂、ポリビニルアルコール樹脂、ポリスチレンブタジエン樹脂、ポリ酢酸ビニル樹脂、ポリウレタン樹脂等が用いられる。撥水剤としては、例えば、フルオロアルキル樹脂、シリコーン樹脂、パラフィンワックス等が用いられる。これらの副資材は、ガラス繊維とともに水中に分散されるか、又は湿式抄紙された湿潤状態のシートに対して水性分散液の状態で含浸することにより付与される。バインダーと撥水剤との固形分質量比は100/0~80/20であることが好ましい。また、バインダー及び撥水剤の濾材中の含有率は2.0~10.0質量%であることが好ましい。 In this embodiment, in order to provide the air filter medium with the required physical properties, secondary materials other than glass fiber can be included. Examples of such secondary materials include binders for providing strength and rigidity, and water repellents for providing water repellency. The type and content of these secondary materials can be appropriately selected within a range that does not impair the effects of the present invention. As the binder, binder fibers and non-fibrous binder resins can be used, and binder resins are mainly used. As the binder resin, for example, polyacrylic ester resins, polyvinyl alcohol resins, polystyrene butadiene resins, polyvinyl acetate resins, polyurethane resins, etc. are used. As the water repellent agent, for example, fluoroalkyl resins, silicone resins, paraffin wax, etc. are used. These secondary materials are dispersed in water together with glass fibers, or are impregnated in the form of an aqueous dispersion onto a wet sheet obtained by wet papermaking. The solid mass ratio of the binder to the water repellent is preferably 100/0 to 80/20. In addition, the content of the binder and water repellent in the filter medium is preferably 2.0 to 10.0% by mass.

本実施形態において、濾材はガラス繊維を主体とする湿式不織布からなるが、濾材中の全繊維分におけるガラス繊維の割合は50質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 In this embodiment, the filter medium is made of a wet nonwoven fabric mainly composed of glass fibers, and the proportion of glass fibers in the total fiber content of the filter medium is preferably 50% by mass or more, more preferably 90% by mass or more, and even more preferably 100% by mass.

本実施形態のエアフィルタ用濾材の製造方法は湿式抄紙法である。ここでは、ガラス繊維及び必要に応じて副資材を水中で分散して原料スラリーを得て、これを湿式抄紙によりシート化して湿潤状態のシートを得て、ここに必要に応じて副資材を含浸することにより付与し、その後乾燥して、目的とするエアフィルタ用濾材を得る。 The method for producing the air filter medium in this embodiment is a wet papermaking method. Here, glass fibers and, if necessary, auxiliary materials are dispersed in water to obtain a raw material slurry, which is then formed into a sheet by wet papermaking to obtain a wet sheet, which is impregnated with auxiliary materials if necessary, and then dried to obtain the desired air filter medium.

次に、実施例及び比較例によって本発明を更に詳しく説明する。ただし、本発明はこれら実施例により何ら限定されるものではない。また、例中の「部」、「%」は、特に断らない限りそれぞれ固形分換算での「質量部」、「質量%」を示す。 Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples. In the examples, "parts" and "%" respectively refer to "parts by mass" and "% by mass" calculated on a solid content basis, unless otherwise specified.

ガラスウール繊維とチョップドガラス繊維を表1~表4に示した配合比率で混合し、パルパーにおいてpH3.0の硫酸酸性の水を用いて、スラリー濃度0.5質量%で離解した後、得られたスラリーを手抄装置において抄紙して湿紙を得た。次に、アクリル樹脂バインダー(商品名:ボンコートAN-155-E、製造元:DIC(株))及びフッ素系撥水剤(商品名:NKガードS-07、製造元:日華化学(株))を固形分比率95/5となる様に混合した含浸液を湿紙に含浸することで付与して、130℃のロータリードライヤーにおいて乾燥して、各実施例及び比較例のエアフィルタ用濾材を得た。尚、含浸液の固形分濃度は、濾材中の含浸成分の含有率が6質量%となる様に調整した。 Glass wool fibers and chopped glass fibers were mixed in the ratios shown in Tables 1 to 4, and the mixture was disintegrated in a pulper using sulfuric acid acid water with a pH of 3.0 to a slurry concentration of 0.5% by mass. The resulting slurry was then paper-made in a hand-sheeting machine to obtain wet paper. Next, the wet paper was impregnated with an impregnation liquid in which an acrylic resin binder (product name: Boncoat AN-155-E, manufacturer: DIC Corporation) and a fluorine-based water repellent (product name: NK Guard S-07, manufacturer: Nicca Chemical Co., Ltd.) were mixed to a solid content ratio of 95/5, and the wet paper was dried in a rotary dryer at 130°C to obtain air filter media for each Example and Comparative Example. The solid content concentration of the impregnation liquid was adjusted so that the content of the impregnated components in the filter media was 6% by mass.

本実施例において用いたガラスウール繊維B-04-F、B-06-F、B-08-F、B-15-F、B-26-R、B-39-R、B-50-R及びチョップドガラス繊維EC6-6SPは、全てUnifrax社製であり、これらの繊維の平均繊維径の値は、製造元の公称値を用いた。 The glass wool fibers B-04-F, B-06-F, B-08-F, B-15-F, B-26-R, B-39-R, and B-50-R and chopped glass fiber EC6-6SP used in this example were all manufactured by Unifrax, and the average fiber diameter values of these fibers were the nominal values published by the manufacturers.

実施例及び比較例における繊維配合比率及び物性測定結果を、表1~表8に示した。表5において、実施例14は、参考例14に変更された。 The fiber blend ratios and the physical property measurement results in the examples and comparative examples are shown in Tables 1 to 8. In Table 5, Example 14 was changed to Reference Example 14.

Figure 0007508387000012
Figure 0007508387000012

Figure 0007508387000013
Figure 0007508387000013

Figure 0007508387000014
Figure 0007508387000014

Figure 0007508387000015
Figure 0007508387000015

Figure 0007508387000016
Figure 0007508387000016

Figure 0007508387000017
Figure 0007508387000017

Figure 0007508387000018
Figure 0007508387000018

Figure 0007508387000019
Figure 0007508387000019

実施例及び比較例において得られたエアフィルタ用濾材の評価は、以下に示す方法を用いて行った。 The air filter media obtained in the examples and comparative examples were evaluated using the methods described below.

(1)圧力損失[Pa]
有効面積100cmのエアフィルタ用濾材に5.3cm/秒で通風した時の差圧を微差圧計で測定した。
(1) Pressure loss [Pa]
The differential pressure when air was passed through an air filter medium having an effective area of 100 cm 2 at 5.3 cm/sec was measured with a micro-differential pressure gauge.

(2)PAO透過率[%]
ラスキンノズルで発生させた多分散ポリアルファオレフィン(以下、PAOと略す)粒子を含む空気を、有効面積0.01mのエアフィルタ用濾材に、面風速5.3cm/秒で通風した時の濾材の上流及び下流におけるPAO粒子の個数を、レーザーパーティクルカウンターKC-18(リオン社製)を使用して測定し、下流個数/上流個数×100の式より透過率を計算した。尚、対象粒子径は0.3~0.4μmとした。
(2) PAO transmittance [%]
Air containing polydisperse polyalphaolefin (hereinafter abbreviated as PAO) particles generated by a Ruskin nozzle was passed through an air filter medium with an effective area of 0.01 m2 at a surface velocity of 5.3 cm/sec. The number of PAO particles upstream and downstream of the filter medium was measured using a laser particle counter KC-18 (manufactured by Rion Co., Ltd.), and the transmittance was calculated by the formula: downstream number/upstream number x 100. The target particle diameter was 0.3 to 0.4 μm.

(3)PF値
PF値は、圧力損失とPAO透過率の測定値より、数10の式より求めた。PF値が高いほど、低い圧力損失で高い捕集効率(すなわち低い透過率)を有する濾材であることを意味する。
(3) PF value The PF value was calculated from the measured values of pressure loss and PAO permeability using the formula 10. A higher PF value means that the filter medium has a higher collection efficiency (i.e., a lower permeability) with a lower pressure loss.

Figure 0007508387000020
Figure 0007508387000020

(4)坪量[g/m
JIS P 8124:2011にしたがって測定した。
(4) Basis weight [g/ m2 ]
Measurement was performed in accordance with JIS P 8124:2011.

(5)厚さ[mm]
JIS P 8118;1998にしたがって測定した。なお、測定圧力は50kPaとした。
(5) Thickness [mm]
The measurement was performed in accordance with JIS P 8118; 1998. The measurement pressure was 50 kPa.

(6)密度[g/cm
JIS P 8118;1998にしたがって測定した。
(6) Density [g/cm 3 ]
Measurement was carried out in accordance with JIS P 8118;1998.

(7)ダスト保持容量[g/m
ダスト保持容量は、エアロゾルジェネレーターRBG-1000(PALAS社製)で発生させた試験ダストを含む空気を、荷電粒子中和装置CD2000(PALAS社製)を用いて試験ダストの電荷を中和した後、有効面積0.01mのエアフィルタ用濾材に、面風速10cm/秒で通風し続け、10cm/秒における圧力損失が250Paに到達した時に濾材に付着した粒子の質量をダスト付着前後の濾材の質量の差より求め、これを有効面積で除してダスト保持容量を求めた。なお、試験ダストにはJIS11種関東ローム層粉体を用い、試験ダストの発生濃度は14.5mg/mとした。
(7) Dust retention capacity [g/m 2 ]
The dust retention capacity is obtained by neutralizing the charge of the test dust by using the charged particle neutralizer CD2000 (manufactured by PALAS) with the air containing the test dust generated by aerosol generator RBG-1000, and then passing the air through the filter material for air filter with an effective area of 0.01 m2 at a surface wind speed of 10 cm/sec. When the pressure loss at 10 cm/sec reaches 250 Pa, the mass of the particles attached to the filter material is obtained from the difference in the mass of the filter material before and after the dust is attached, and this is divided by the effective area to obtain the dust retention capacity. Note that the test dust is made of JIS 11 type Kanto loam layer powder, and the generation concentration of the test dust is set to 14.5 mg/ m3 .

表1及び表2に示した実施例1~6及び比較例1~4は、坪量が約85g/mで、圧力損失が約40Paとなるように、チョップドガラス繊維の配合比率を30質量%一定として、ガラスウール繊維の繊維径及び配合比率を変化させた。全ての実施例及び比較例において、濾材の密度は0.20g/cmよりも低かったが、FN1/FN2が2.50以上である実施例は、ダスト保持容量が9g/m以上であるのに対して、FN1/FN2が2.50未満である比較例は、ダスト保持容量が8.00g/m未満であり、実施例に比べて低かった。 In Examples 1 to 6 and Comparative Examples 1 to 4 shown in Tables 1 and 2, the fiber diameter and blending ratio of the glass wool fiber were changed while the blending ratio of the chopped glass fiber was constant at 30 mass% so that the basis weight was about 85 g/m 2 and the pressure loss was about 40 Pa. In all Examples and Comparative Examples, the density of the filter medium was lower than 0.20 g/cm 3 , but the Examples with FN1/FN2 of 2.50 or more had a dust retention capacity of 9 g/m 2 or more, while the Comparative Examples with FN1/FN2 of less than 2.50 had a dust retention capacity of less than 8.00 g/m 2 , which was lower than the Examples.

表3及び表4に示した実施例2、5、7~13及び比較例5、6は、坪量が約85g/mで圧力損失が約40Paとなるように、チョップドガラス繊維とガラスウール繊維の配合比率を変化させた。全ての実施例及び比較例において、FN1/FN2は2.50以上であったが、濾材の密度が0.20g/cm未満である実施例は、ダスト保持容量が9g/m以上であるのに対して、濾材の密度が0.20g/cmを超えている比較例は、ダスト保持容量が8.15g/m未満であり、実施例に比べて低かった。 In Examples 2, 5, 7 to 13 and Comparative Examples 5 and 6 shown in Tables 3 and 4, the blending ratio of chopped glass fiber and glass wool fiber was changed so that the basis weight was about 85 g/m 2 and the pressure loss was about 40 Pa. In all Examples and Comparative Examples, FN1/FN2 was 2.50 or more, but the Examples in which the density of the filter medium was less than 0.20 g/cm 3 had a dust retention capacity of 9 g/m 2 or more, while the Comparative Examples in which the density of the filter medium was more than 0.20 g/cm 3 had a dust retention capacity of less than 8.15 g/m 2 , which was lower than the Examples.

表5に示した実施例14及び比較例7は、坪量が約30g/mで、圧力損失が約40Paとなるように、各々の坪量においてガラスウール繊維の繊維径及び配合比率を変化させた。また、表6に示した実施例15及び比較例8は、坪量が約100g/mで、圧力損失が約40Paとなるように、各々の坪量においてガラスウール繊維の繊維径及び配合比率を変化させた。実施例14と比較例7、又は実施例15と比較例8を比較すると、FN1/FN2が2.50以上で且つ濾材の密度が0.20g/cm以下である実施例は、比較例に比べてダスト保持容量が高かった。 In Example 14 and Comparative Example 7 shown in Table 5, the fiber diameter and blending ratio of glass wool fiber are changed in each basis weight so that the basis weight is about 30 g/m 2 and the pressure loss is about 40 Pa. In addition, in Example 15 and Comparative Example 8 shown in Table 6, the fiber diameter and blending ratio of glass wool fiber are changed in each basis weight so that the basis weight is about 100 g/m 2 and the pressure loss is about 40 Pa. When comparing Example 14 and Comparative Example 7, or Example 15 and Comparative Example 8, the example in which FN1/FN2 is 2.50 or more and the density of the filter medium is 0.20 g/cm 3 or less has a higher dust retention capacity than the comparative example.

表7に示した実施例16及び比較例9は、坪量が約85g/mで、圧力損失が約25Paとなるようにガラスウール繊維の平均繊維径及びガラスウール繊維とチョップドガラス繊維の配合比率を変化させた。また、表8に示した実施例17~19及び比較例10は、坪量が約85g/mで、圧力損失が約75Paとなるようにガラスウール繊維の平均繊維径及びガラスウール繊維とチョップドガラス繊維の配合比率を変化させた。実施例16と比較例9、又は実施例17~19と比較例9を比較すると、FN1/FN2が2.50以上で且つ濾材の密度が0.20g/cm以下である実施例は、比較例に比べてダスト保持容量が高かった。 In Example 16 and Comparative Example 9 shown in Table 7, the average fiber diameter of the glass wool fiber and the blending ratio of the glass wool fiber and the chopped glass fiber were changed so that the basis weight was about 85 g/m 2 and the pressure loss was about 25 Pa. In addition, in Examples 17 to 19 and Comparative Example 10 shown in Table 8, the average fiber diameter of the glass wool fiber and the blending ratio of the glass wool fiber and the chopped glass fiber were changed so that the basis weight was about 85 g/m 2 and the pressure loss was about 75 Pa. When comparing Example 16 with Comparative Example 9, or Examples 17 to 19 with Comparative Example 9, the examples in which FN1/FN2 was 2.50 or more and the density of the filter medium was 0.20 g/cm 3 or less had a higher dust retention capacity than the comparative examples.

実施例及び比較例における圧力損失とダスト保持容量の関係を図1に示す。 The relationship between pressure loss and dust retention capacity in the examples and comparative examples is shown in Figure 1.

図1に示す通り、同じ坪量で比較した場合、FN1/FN2が2.50以上で且つ濾材の密度が0.20g/cm以下である実施例は、比較例に比べてダスト保持容量が高かった。 As shown in FIG. 1, when compared at the same basis weight, the examples in which the FN1/FN2 was 2.50 or more and the density of the filter medium was 0.20 g/cm 3 or less had a higher dust retention capacity than the comparative examples.

更に、全ての実施例において、PF値は12以上であり、低い圧力損失と低い透過率、すなわち高い捕集効率を合わせ持つ濾材を得ることができた。 Furthermore, in all examples, the PF value was 12 or more, and a filter medium was obtained that combined low pressure loss and low permeability, i.e., high collection efficiency.

本発明は、気体、特には空気中のダストを濾過するための除塵エアフィルタ用濾材に関して、低い圧力損失及び高い捕集効率を有するとともに、高いダスト保持容量すなわち高寿命を有することから、ビル又は工場等のシステム空調、空気清浄機、エアコン等に利用可能である。

The present invention relates to a filter material for dust-removing air filters for filtering gas, particularly dust in the air, which has low pressure loss and high collection efficiency, as well as high dust retention capacity, i.e., long life, and can therefore be used in system air conditioning, air purifiers, air conditioners, etc. in buildings or factories.

Claims (5)

ガラス繊維を主体とする湿式不織布からなるエアフィルタ用濾材において、
FN1は数1により定義され、
FN2は数2~数5により定義され、
FN1を基準とするFN2の割合であるFN1/FN2が2.50以上であり、且つ、
前記濾材の密度が0.17~0.20g/cmの範囲にあり、
前記濾材中に含まれる前記ガラス繊維のうち、5.5μm未満の平均繊維径を有するガラスウール繊維が、1.0μm未満の平均繊維径を有する極細のガラスウール繊維と2.0μm以上5.5μm未満の平均繊維径を有する太径のガラスウール繊維とを含み、
前記エアフィルタ用濾材の坪量は、84.6~100.4g/m の範囲であることを特徴とするエアフィルタ用濾材。
Figure 0007508387000021
ここで、
: i番目の階級の繊維の繊維径[μm]
: i番目の階級の繊維の配合比率[質量%]
Figure 0007508387000022
ここで、
total : 濾材全体の比表面積より計算した濾材全体の平均繊維径[μm]
Figure 0007508387000023
ここで、
total : 各繊維の比表面積より計算した濾材全体の比表面積[m/g]
Figure 0007508387000024
ここで、
: i番目の繊維の繊維径より計算した比表面積[m/g]
Figure 0007508387000025
ここで、
ρ : ガラスの密度 2.49[g/cm
ただし、数1及び数5のdは数8によって定義され、数1及び数4のxは数9によって定義される。
Figure 0007508387000026
Figure 0007508387000027
ここで、
: i番目の階級の繊維の本数
ただし、数8のおよび数9のxは、以下の方法により決定される。まず、CD方向(濾材ロールの幅方向)に沿って切断した濾材断面の電子顕微鏡等の画像を撮影し、繊維径の測定を行う。その時の倍率については特に限定はしないが、3000倍以上が望ましく、同じ濾材中に使用されている全繊維の繊維径は同じ倍率で撮影する。前記の濾材断面の画像で確認できるガラス繊維の断面が楕円の場合はその短径を繊維径とする。前記の濾材断面の厚さ方向において、濾材の表面から裏面まで厚さ全体にわたるように必要に応じて複数枚の電子顕微鏡写真を撮影し、これら1組の写真を最低単位として各繊維の繊維径を測定する。繊維径の測定点数は400点以上とし、全測定点数が400点未満の場合は、厚さ全体にわたる複数組の写真より測定する。前記の方法により計測した繊維径を0μmから0.1μm刻みで階級分けして、1番目の階級を0μm以上~0.1μm未満、2番目の階級を0.1μm以上~0.2μm未満、最後のn番目の階級を0.1(n-1)μm以上~0.1nμm未満とする。ここで、i番目の階級の繊維径は、数8の式により計算される各階級の中央値とする。次に、電子顕微鏡写真より各階級の繊維の本数を計数し、i番目の階級の繊維の本数をNとして、i番目の階級の繊維の配合比率xを数9の式により計算する。
In an air filter material made of a wet nonwoven fabric mainly composed of glass fibers,
FN1 is defined by the following equation:
FN2 is defined by numbers 2 to 5,
FN1/FN2, which is the ratio of FN2 to FN1, is 2.50 or more, and
The density of the filter medium is in the range of 0.17 to 0.20 g/ cm3 ;
Among the glass fibers contained in the filter medium, the glass wool fibers having an average fiber diameter of less than 5.5 μm include ultrafine glass wool fibers having an average fiber diameter of less than 1.0 μm and thick glass wool fibers having an average fiber diameter of 2.0 μm or more and less than 5.5 μm;
The filter material for air filters has a basis weight in the range of 84.6 to 100.4 g/ m2 .
Figure 0007508387000021
here,
d i : Fiber diameter of the i-th class fiber [μm]
x i : Blend ratio of fiber of the i-th class [mass%]
Figure 0007508387000022
here,
d total : average fiber diameter of the entire filter medium [μm] calculated from the specific surface area of the entire filter medium
Figure 0007508387000023
here,
S total : Specific surface area of the entire filter medium calculated from the specific surface area of each fiber [m 2 /g]
Figure 0007508387000024
here,
S i : Specific surface area calculated from the fiber diameter of the i-th fiber [m 2 /g]
Figure 0007508387000025
here,
ρ: glass density 2.49 [g/cm 3 ]
Here, d i in Equations 1 and 5 is defined by Equation 8, and x i in Equations 1 and 4 is defined by Equation 9.
Figure 0007508387000026
Figure 0007508387000027
here,
N i : the number of fibers in the i-th class Where, i in number 8 and x i in number 9 are determined by the following method. First, the image of the cross section of the filter material cut along the CD direction (width direction of the filter material roll) is taken with an electron microscope or the like, and the fiber diameter is measured. The magnification at this time is not particularly limited, but 3000 times or more is preferable, and the fiber diameter of all fibers used in the same filter material is taken with the same magnification. If the cross section of the glass fiber that can be confirmed in the image of the cross section of the filter material is elliptical, its short diameter is taken as the fiber diameter. In the thickness direction of the cross section of the filter material, multiple electron microscope photographs are taken as necessary so that the entire thickness is covered from the front surface to the back surface of the filter material, and the fiber diameter of each fiber is measured with a set of these photographs as the minimum unit. The number of measurement points of fiber diameter is 400 or more, and if the total number of measurement points is less than 400, it is measured from multiple sets of photographs covering the entire thickness. The fiber diameters measured by the above method are classified in increments of 0.1 μm starting from 0 μm, with the first class being 0 μm or more and less than 0.1 μm, the second class being 0.1 μm or more and less than 0.2 μm, and the last n-th class being 0.1(n-1) μm or more and less than 0.1 n μm. Here, the fiber diameter of the i-th class is the median of each class calculated by the formula 8. Next, the number of fibers in each class is counted from the electron microscope photograph, and the number of fibers in the i-th class is designated as Ni , and the blending ratio x i of the fibers in the i-th class is calculated by the formula 9.
前記濾材中に含まれるガラス繊維は、ガラスウール繊維及びチョップドガラス繊維を含み、前記ガラスウール繊維は、各々が異なる平均繊維径を有する少なくとも2種のガラスウール繊維を含むことを特徴とする請求項1に記載のエアフィルタ用濾材。 The filter medium for air filters according to claim 1, characterized in that the glass fibers contained in the filter medium include glass wool fibers and chopped glass fibers, and the glass wool fibers include at least two types of glass wool fibers each having a different average fiber diameter. 前記濾材中に含まれる全ガラス繊維のうち、5.5μm未満の平均繊維径を有するガラスウール繊維の比率が60~95質量%であり、5.5μm以上の平均繊維径を有するチョップドガラス繊維の配合比率が5~40質量%であることを特徴とする請求項1又は2に記載のエアフィルタ用濾材。 The filter medium for air filters according to claim 1 or 2, characterized in that, of all the glass fibers contained in the filter medium, the ratio of glass wool fibers having an average fiber diameter of less than 5.5 μm is 60 to 95 mass %, and the blending ratio of chopped glass fibers having an average fiber diameter of 5.5 μm or more is 5 to 40 mass %. 前記濾材は、副資材としてバインダー及び撥水剤を含有することを特徴とする請求項1~のいずれか一つに記載のエアフィルタ用濾材。 The filter medium for air filters according to any one of claims 1 to 3 , characterized in that the filter medium contains a binder and a water repellent as auxiliary materials. 前記濾材中に含まれる全ガラス繊維中の前記太径のガラスウール繊維の配合比率は、少なくとも70%であることを特徴とする請求項1~4のいずれか一つに記載のエアフィルタ用濾材。5. The filter material for air filters according to claim 1, wherein the blending ratio of the large diameter glass wool fibers to the total glass fibers contained in the filter material is at least 70%.
JP2021021825A 2021-02-15 2021-02-15 Air filter media Active JP7508387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021021825A JP7508387B2 (en) 2021-02-15 2021-02-15 Air filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021021825A JP7508387B2 (en) 2021-02-15 2021-02-15 Air filter media

Publications (2)

Publication Number Publication Date
JP2022124201A JP2022124201A (en) 2022-08-25
JP7508387B2 true JP7508387B2 (en) 2024-07-01

Family

ID=82941480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021021825A Active JP7508387B2 (en) 2021-02-15 2021-02-15 Air filter media

Country Status (1)

Country Link
JP (1) JP7508387B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224594A1 (en) 2003-04-18 2004-11-11 Choi Wai Ming Low density nonwoven glass fiber web
JP2019177331A (en) 2018-03-30 2019-10-17 北越コーポレーション株式会社 Filter medium for air filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624418A (en) * 1985-06-29 1987-01-10 Nippon Muki Kk Glass fiber filter paper for air filter having ultrahigh performance
DE4017184A1 (en) * 1989-06-01 1990-12-06 Hollingsworth & Vose Co PRESERVABLE FILTER FABRIC
JPH06285314A (en) * 1993-04-06 1994-10-11 Nippon Sheet Glass Co Ltd Antibacterial filter paper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040224594A1 (en) 2003-04-18 2004-11-11 Choi Wai Ming Low density nonwoven glass fiber web
JP2019177331A (en) 2018-03-30 2019-10-17 北越コーポレーション株式会社 Filter medium for air filter

Also Published As

Publication number Publication date
JP2022124201A (en) 2022-08-25

Similar Documents

Publication Publication Date Title
JP6212619B2 (en) Air filter medium and air filter including the same
JP5319380B2 (en) Low basis weight air filter media
EP2401146B1 (en) Filter media suitable for ashrae applications
JP5600397B2 (en) Filter medium for air filter having electrospun nanofiber layer
JP5052935B2 (en) Filter medium for dust removal air filter and manufacturing method thereof
CN103492625A (en) High temperature treated media
JP2018038983A (en) Production method of filtering medium for air filter
JP2018526189A (en) Composite media for fuel flow
JP7508387B2 (en) Air filter media
JP7055261B1 (en) Filter media for air filters and their manufacturing methods
JP6270971B2 (en) Filter material for air filter and method for producing the same
JP6964033B2 (en) Filter material for air filter
JP5536537B2 (en) Air filter media
JP2006136809A (en) Non-halogen, non-phosphorus flame-retardant filter medium for air filter, and its production method
JP5290507B2 (en) Air filter medium and air filter including the same
JP7281419B2 (en) Filter material for filter and manufacturing method thereof
JP6276044B2 (en) Gas turbine intake air filter
JP7157270B1 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP7453375B2 (en) Filter medium for air filter and its manufacturing method
EP4417291A1 (en) Filter medium for high-performance air filter, and method for manufacturing same
JP7349414B2 (en) Filter medium for air filter and its manufacturing method
JP6579876B2 (en) Filter medium and filter unit using the same
JP2019051481A (en) Filter medium for air filter and method for manufacturing the same
JP2015085250A (en) Filter medium for air filter and production method of the same
JPH09141023A (en) Filter paper of filter excellent in dust holding capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240619

R150 Certificate of patent or registration of utility model

Ref document number: 7508387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150