JP2019177331A - Filter medium for air filter - Google Patents
Filter medium for air filter Download PDFInfo
- Publication number
- JP2019177331A JP2019177331A JP2018067456A JP2018067456A JP2019177331A JP 2019177331 A JP2019177331 A JP 2019177331A JP 2018067456 A JP2018067456 A JP 2018067456A JP 2018067456 A JP2018067456 A JP 2018067456A JP 2019177331 A JP2019177331 A JP 2019177331A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- filter medium
- fiber
- filter
- fiber diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 104
- 239000003365 glass fiber Substances 0.000 claims abstract description 94
- 238000009826 distribution Methods 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 abstract description 14
- 238000000034 method Methods 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229920013639 polyalphaolefin Polymers 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000000428 dust Substances 0.000 description 7
- 229920000126 latex Polymers 0.000 description 7
- 239000004816 latex Substances 0.000 description 7
- 230000002940 repellent Effects 0.000 description 7
- 239000005871 repellent Substances 0.000 description 7
- 239000000057 synthetic resin Substances 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は空気中の不純物を濾過するために使用される除塵エアフィルタ用濾材に関し、より詳細には、塵埃などの捕集性能に優れており、かつ、低圧力損失であるエアフィルタ用濾材に関する。 The present invention relates to a filter material for a dust removal air filter used for filtering impurities in the air, and more particularly to a filter medium for an air filter that has excellent dust collection performance and low pressure loss. .
近年、生活環境の変化や個人レベルでの室内環境に対する関心の高まりと共に、オフィスや居住空間の空気の清浄化が求められている。空気中の浮遊塵を除去する方法として、除塵フィルタを用いる方法が一般的であり、種々の除塵エアフィルタ用濾材が存在している。それらは大きいものではビルや工場などのシステム空調に使用され、小さいものでは空気清浄機やエアコンなどで広く使用されており、それに伴いよりエネルギー消費の少ない高効率かつ低圧力損失である高フィルタ性能を有するエアフィルタ用濾材が求められている。 In recent years, along with changes in living environment and increasing interest in the indoor environment at the individual level, there is a need to clean the air in offices and living spaces. As a method for removing airborne dust, a method using a dust removal filter is generally used, and various filter media for dust removal air filters exist. They are widely used for system air conditioning in buildings and factories at large ones, and are widely used for air purifiers and air conditioners at small ones. Accordingly, high filter performance with low energy consumption and high efficiency and low pressure loss. There is a need for air filter media having the following characteristics.
エアフィルタ用濾材としてはその対象とする粒子径や除塵効率の違いにより粗塵用フィルタ、中性能フィルタ、HEPAフィルタ、ULPAフィルタなどに大別される。これらエアフィルタの多くは不織布状、織布状、マット状などの繊維層エアフィルタ用濾材が使用され、特に、中性能フィルタ、HEPAフィルタ、ULPAフィルタには不織布状のガラス繊維製エアフィルタ用濾材が広く用いられている。 Air filter media are roughly classified into coarse dust filters, medium performance filters, HEPA filters, ULPA filters, etc., depending on the target particle size and dust removal efficiency. Most of these air filters use non-woven fabric, woven fabric, mat-like fiber layer air filter media, especially non-woven glass fiber air filter media for medium performance filters, HEPA filters, and ULPA filters. Is widely used.
エアフィルタ用濾材の製造方法としては、短繊維であるガラス繊維や有機繊維を湿式抄紙方法においてシート化した後、バインダー及び撥水剤を付与することによってエアフィルタ用濾材を得る方法や、溶融繊維を用いたメルトブローン法に代表される乾式方法などがある。一般的にガラス繊維は湿式抄紙法によりシート化され、濾材として形成される。 As a method for producing a filter medium for an air filter, a glass fiber or organic fiber, which is a short fiber, is formed into a sheet in a wet papermaking method, and then a binder and a water repellent are added to obtain a filter medium for an air filter, or a molten fiber There are dry methods such as the melt blown method using Generally, glass fiber is formed into a sheet by a wet papermaking method and formed as a filter medium.
ガラス繊維を用いたエアフィルタ用濾材は、ガラス繊維特有の剛性の高さと1μm以下の細い繊維径を有する特徴から他の繊維を使用したエアフィルタと比べて、低圧力損失、高捕集効率とフィルタ性能が高い。しかし、環境負荷への低減とよりクリーンな環境空間への要求が高くなっており、さらなるエネルギー消費の少ない高効率低圧力損失である高フィルタ性能を有するエアフィルタ用濾材が求められている。 The filter medium for air filters using glass fibers has low pressure loss and high collection efficiency compared to air filters using other fibers because of the high rigidity specific to glass fibers and the thin fiber diameter of 1 μm or less. High filter performance. However, there is a growing demand for a reduction in environmental load and a cleaner environmental space, and there is a need for air filter media having high filter performance with high efficiency and low pressure loss with less energy consumption.
このようなエアフィルタ用濾材として、チョップドストランドガラス繊維を55質量%未満、平均繊維径1μm未満のガラス繊維が25質量%未満、平均繊維径1μm以上のガラス繊維を40〜90質量%を配合してなるエアフィルタ用濾材が提案されている(特許文献1)。 As such a filter medium for an air filter, less than 55% by weight of chopped strand glass fibers, less than 25% by weight of glass fibers having an average fiber diameter of less than 1 μm, and 40 to 90% by weight of glass fibers having an average fiber diameter of 1 μm or more. A filter medium for air filters is proposed (Patent Document 1).
また、1.0μm未満の小繊維径の繊維の平均繊維径が0.1μm以上0.8μm未満であり、1.0μm以上の大繊維径の繊維の平均繊維径が1.2μm以上3.0μm未満であり、前記小繊維径の繊維と大繊維径の繊維の体積比が30:70〜80:20である主捕集層を有するエアフィルタ用濾材が提案されている(特許文献2参照)。しかしながら、これらのエアフィルタ用濾材はエネルギー効率が十分でなく、捕集効率も十分ではなく、よりエネルギー消費が少なく、より高効率で低圧力損失であるエアフィルタ用濾材への需要は依然として存在する。 Further, the average fiber diameter of the fibers having a small fiber diameter of less than 1.0 μm is 0.1 μm or more and less than 0.8 μm, and the average fiber diameter of the fibers having a large fiber diameter of 1.0 μm or more is 1.2 μm or more and 3.0 μm. The filter medium for air filters which has the main collection layer whose volume ratio of the fiber of the said small fiber diameter and the fiber of a large fiber diameter is less than 30: 70-80: 20 is proposed (refer patent document 2). . However, these air filter media are not energy efficient, collection efficiency is not sufficient, energy consumption is less, there is still a demand for air filter media with higher efficiency and lower pressure loss. .
本発明は、よりエネルギー消費が少なく、高効率で低圧力損失であるエアフィルタ用濾材を提供する。 The present invention provides an air filter medium that consumes less energy, has high efficiency, and has low pressure loss.
上記課題を解決するため鋭意検討した結果、チョップドストランドガラス繊維と、極細ガラス繊維からなるエアフィルタ濾材であり、前記ガラス繊維の繊維径分布を規定されたエアフィルタ濾材により上記課題を解決できることが判明した。 As a result of intensive studies to solve the above-mentioned problems, it is found that the air filter medium is composed of chopped strand glass fibers and ultrafine glass fibers, and that the above problems can be solved by the air filter medium that defines the fiber diameter distribution of the glass fibers. did.
すなわち、本発明のエアフィルタ用濾材は、ガラス繊維を主体とするエアフィルタ用濾材であり、前記ガラス繊維が、チョップドストランドガラス繊維および極細ガラス繊維を含有しており、前記エアフィルタ用濾材の繊維径分布において、1.5μmより大きく2.9μm以下の範囲の累積頻度が2〜15%であることを特徴とする。 That is, the air filter medium of the present invention is an air filter medium mainly composed of glass fibers, and the glass fibers contain chopped strand glass fibers and ultrafine glass fibers, and the fibers of the air filter medium In the diameter distribution, the cumulative frequency in the range from 1.5 μm to 2.9 μm is 2 to 15%.
また、本発明のエアフィルタ用濾材は、対象粒子径0.3μm、面風速5.3cm/sec(秒)における、数1の式により示されるPF値が13.5以上であってもよい。本発明におけるPF値は、0.3μm単分散のPAO(ポリアルファオレフィン)透過率を測定し、下記の式に基づいて算出する。 In addition, the filter material for an air filter of the present invention may have a PF value represented by the formula 1 of 13.5 or more at a target particle diameter of 0.3 μm and a surface wind speed of 5.3 cm / sec (seconds). The PF value in the present invention is calculated based on the following formula by measuring a 0.3 μm monodispersed PAO (polyalphaolefin) transmittance.
本発明によれば、エネルギー消費が少なく、高効率で低圧力損失であるエアフィルタ用濾材を提供することが可能となる。 According to the present invention, it is possible to provide an air filter medium that consumes less energy, has high efficiency, and has low pressure loss.
本発明のエアフィルタ用濾材には、ガラス繊維として、チョップドストランドガラス繊維と、極細ガラス繊維とを含有させる。チョップドストランドガラス繊維とは、紡糸ノズルから引き出された平均繊維径数μmから数十μmのガラス短繊維を束にした繊維束を、1.5mmから25mm程度の長さに揃えたガラス繊維をいう。また、極細ガラス繊維とは、火焔延伸法やロータリー法で製造される平均繊維径6.0μm以下のウール状のガラス繊維をいう。チョップドストランドガラス繊維と、極細ガラス繊維とを併用することによって粒子捕集に必要な細い繊維と空隙を維持し、また、ユニット加工時に必要な濾材の剛性を有することができる。チョップドストランドガラス繊維と、極細ガラス繊維との配合比率は特に限定するものではないが、質量(重量)比率で、チョップドストランドガラス繊維:極細ガラス繊維=10:90〜50:50とすることが好ましい。チョプドストランドガラス繊維の質量比が50より多くなると繊維どうしの絡みが少なくなるため強度の低下を起こしやすくなる。例えば、全ガラス繊維に対して、極細ガラス繊維を50〜90質量%、好ましくは、50〜80質量%含み、チョップドストランドガラス繊維を10〜50質量%、好ましくは20〜50質量%含むガラス繊維を原材料のガラス繊維として使用することが好ましい。 The filter medium for an air filter of the present invention contains chopped strand glass fibers and ultrafine glass fibers as glass fibers. The chopped strand glass fiber refers to a glass fiber in which a fiber bundle obtained by bundling short glass fibers having an average fiber diameter of several μm to several tens of μm drawn from a spinning nozzle is arranged to a length of about 1.5 mm to 25 mm. . The ultrafine glass fiber refers to a wool-like glass fiber having an average fiber diameter of 6.0 μm or less manufactured by a flame stretching method or a rotary method. By using the chopped strand glass fiber and the ultrafine glass fiber in combination, it is possible to maintain fine fibers and voids necessary for particle collection, and to have the rigidity of the filter medium necessary for unit processing. The blending ratio of the chopped strand glass fiber and the ultrafine glass fiber is not particularly limited, but is preferably a chopped strand glass fiber: extrafine glass fiber = 10: 90 to 50:50 in mass (weight) ratio. . When the mass ratio of the chopped strand glass fibers is more than 50, the entanglement between the fibers is reduced, so that the strength is easily lowered. For example, the glass fiber containing 50 to 90% by mass, preferably 50 to 80% by mass of ultrafine glass fiber, and 10 to 50% by mass, preferably 20 to 50% by mass of chopped strand glass fiber, based on the total glass fiber. Is preferably used as a raw material glass fiber.
ガラス繊維の種類としては、特に限定はしないがボロンを嫌う半導体工場用途などではボロン含有量の少ないローボロンガラス繊維使用しても差し支えない。 The type of glass fiber is not particularly limited, but low boron glass fiber having a low boron content may be used for semiconductor factory applications that do not like boron.
本発明のエアフィルタ用濾材には、ガラス繊維以外の副資材を含有させることができる。このような副資材としては、天然繊維や合成樹脂からなるバインダー繊維がある。また、合成樹脂を含有させてもよい。特に、濾材への強度付与のために、バインダー繊維や非繊維状の合成樹脂バインダーを含有させることが好ましい。バインダー繊維とは、例えば、ポリエチレン繊維、変性ポリエステル繊維、芯鞘合成繊維、ポリビニルアルコール繊維などであり、これらを単独又は2種以上併用できる。バインダー繊維の含有量は、特に限定するものではないが、ガラス繊維100質量部に対して0〜20部とすることが好ましい。また、非繊維状の合成樹脂バインダーとしては、例えば、アクリル系ラテックス、NBR系ラテックス、酢ビ系ラテックス、オレフィン系ラテックス、ポリビニルアルコール系ラテックスであり、単独又は2種類以上を併用できる。合成樹脂バインダーの含有量は、特に限定するものではないが、ガラス繊維100質量部に対して2〜10部とすることが好ましい。本発明で使用される非繊維状のバインダー樹脂は、ガラス繊維同士を接着し、強度を付与することのできるポリマーから選択されればよく、水又は有機溶媒に溶解又は分散された状態で、ガラス繊維に付与されても良い。また、製造工程において、ガラス繊維を離解させる際に混合してもよい。または、合成樹脂バインダーは、濾材(湿紙シート)に対して塗布や噴霧することで付与することができる。また、必要に応じて、十分な強度が得られる範囲内で、耐水化剤、界面活性剤、消泡剤、pH調整剤等の薬剤を添加することができる。 The filter medium for an air filter of the present invention can contain auxiliary materials other than glass fibers. As such an auxiliary material, there are binder fibers made of natural fibers or synthetic resins. Moreover, you may contain a synthetic resin. In particular, it is preferable to contain a binder fiber or a non-fibrous synthetic resin binder for imparting strength to the filter medium. Examples of the binder fiber include polyethylene fiber, modified polyester fiber, core-sheath synthetic fiber, and polyvinyl alcohol fiber, and these can be used alone or in combination of two or more. Although content of a binder fiber is not specifically limited, It is preferable to set it as 0-20 parts with respect to 100 mass parts of glass fibers. Examples of the non-fibrous synthetic resin binder include acrylic latex, NBR latex, vinyl acetate latex, olefin latex, and polyvinyl alcohol latex, which can be used alone or in combination of two or more. Although content of a synthetic resin binder is not specifically limited, It is preferable to set it as 2-10 parts with respect to 100 mass parts of glass fibers. The non-fibrous binder resin used in the present invention may be selected from polymers capable of adhering glass fibers and imparting strength, and is dissolved or dispersed in water or an organic solvent. It may be applied to the fiber. Moreover, you may mix in the manufacturing process, when glass fiber is disaggregated. Alternatively, the synthetic resin binder can be applied by applying or spraying the filter medium (wet paper sheet). Moreover, chemicals such as water-proofing agents, surfactants, antifoaming agents, pH adjusting agents and the like can be added as necessary within a range where sufficient strength can be obtained.
本発明のエアフィルタ用濾材には、更に、撥水剤を含有させてもよい。撥水剤としては、特に限定するものではないが、例えば、シリコン系、フッ素系、パラフィンワックス系などの撥水剤が挙げられる。 The filter medium for an air filter of the present invention may further contain a water repellent. The water repellent is not particularly limited, and examples thereof include silicon-based, fluorine-based, and paraffin wax-based water repellents.
本発明のエアフィルタ用濾材の製造方法は、特に限定するものではないが、ガラス繊維を水中に分散したスラリーを用いて湿式抄紙法によりシート化し、乾燥させることで得ることができる。湿式抄紙法に用いる抄紙機は、特に限定するものではなく、長網式抄紙機、短網式抄紙機、円網式抄紙機、傾斜ワイヤ式抄紙機、ギャップフォーマ、デルタフォーマを用いることができる。乾燥方法についても特に限定するものではなく、熱風方式、赤外線方式、ヤンキードライヤーや多筒式ドライヤーなど様々な方法が利用できる。 Although the manufacturing method of the filter material for air filters of this invention is not specifically limited, It can obtain by making into a sheet | seat by the wet paper-making method using the slurry which disperse | distributed glass fiber in water, and drying. The paper machine used in the wet paper making method is not particularly limited, and a long net paper machine, a short net paper machine, a circular net paper machine, an inclined wire paper machine, a gap former, and a delta former can be used. . The drying method is not particularly limited, and various methods such as a hot air method, an infrared method, a Yankee dryer, and a multi-cylinder dryer can be used.
本発明のエアフィルタ用濾材は、ガラス繊維の繊維径分布において、1.5μm〜2.9μmの範囲内での累積頻度が2〜15%である。より好ましくは3〜12%である。ここでエアフィルタ用濾材の繊維径分布とは、エアフィルタ用濾材において、抄紙流れ方向(以降MD方向と表記する)に対して垂直方向(以下CD方向と表記する)に切断した際の濾材断面から算出した繊維径についての個数基準での頻度分布いう。 The filter medium for an air filter of the present invention has a cumulative frequency of 2 to 15% in the range of 1.5 μm to 2.9 μm in the fiber diameter distribution of glass fibers. More preferably, it is 3 to 12%. Here, the fiber diameter distribution of the filter medium for the air filter is the cross section of the filter medium when cut in the direction perpendicular to the papermaking flow direction (hereinafter referred to as the MD direction) (hereinafter referred to as the CD direction) in the filter medium for the air filter. The frequency distribution on the basis of the number of fiber diameters calculated from the above.
エアフィルタ用濾材の繊維径分布の測定方法としては、CD方向に切断した濾材断面の電子顕微鏡写真等を用いて計測を行う。その時の倍率については特に限定はしないが、3000倍以上が望ましく、また、エアフィルタ用濾材に使用されている全繊維の繊維径が同じ倍率で計測できることが望ましい。 As a method for measuring the fiber diameter distribution of the filter medium for air filter, measurement is performed using an electron micrograph of a cross section of the filter medium cut in the CD direction. The magnification at that time is not particularly limited, but is preferably 3000 times or more, and it is desirable that the fiber diameters of all the fibers used in the air filter medium can be measured at the same magnification.
上記濾材断面から確認できるガラス繊維の断面が楕円の場合はその短径を繊維径とする。上記濾材断面の厚さ方向は濾材表面から濾材裏面までの全濾材厚さの電子顕微鏡写真を撮影し、そのときの繊維径(Di)を測定する。また、全測定繊維径数は400以上とする。全測定繊維径が400未満の場合は、さらに一列全濾材厚さの電子顕微鏡写真を撮影し繊維径を測定する。上記方法により計測した繊維径を0.1μmから階級を0.2μm刻みとして各繊維径の本数(Ni)を算出し以下の計算方法により繊維径分布率を算出する。
繊維径:Di(μm)
繊維本数:Ni(本)
When the cross section of the glass fiber that can be confirmed from the cross section of the filter medium is an ellipse, the short diameter is taken as the fiber diameter. In the thickness direction of the filter medium cross section, an electron micrograph of the total filter medium thickness from the filter medium surface to the filter medium back surface is taken, and the fiber diameter (Di) at that time is measured. The total number of measured fiber diameters is 400 or more. When the total measured fiber diameter is less than 400, an electron micrograph of the total thickness of the filter media is further taken to measure the fiber diameter. From the fiber diameter measured by the above method, the number (Ni) of each fiber diameter is calculated from 0.1 μm in steps of 0.2 μm, and the fiber diameter distribution ratio is calculated by the following calculation method.
Fiber diameter: Di (μm)
Number of fibers: Ni (book)
上記計算方法による繊維径分布において1.5μmより大きく2.9μm以下の範囲の累積頻度が2〜15%の範囲であるとフィルタ性能の指標であるPF値が向上することが判明した。理由については定かではないが、繊維径分布における1.5μmより大きく2.9μm以下の範囲の累積頻度が15%より大きくなると捕集効率に有効とはならないアスペクト比が小さい超微細な繊維が濾材中に留まり易くなり、濾材中の空隙を塞ぎ、圧力損失をだけを高くしてしまうと推定している。また、1.5μmより大きく2.9μm以下の範囲の累積頻度が2%未満であると捕集効率に有効となる極細ガラス繊維が濾材中への留まり難くなり、捕集効率を下げてしまうと推定する。さらに、好ましくは本発明のエアフィルタ用濾材は、対象粒子径0.3μm、面風速5.3cm/sec(秒)における、数1の式により示されるPF値が13.5以上、好ましくは14.0以上であってもよい。PF値が高いほど、同一圧力損失で高捕集効率を示す。 It was found that the PF value, which is an index of filter performance, is improved when the cumulative frequency in the range of greater than 1.5 μm and less than or equal to 2.9 μm is 2 to 15% in the fiber diameter distribution by the above calculation method. The reason is not clear, but if the cumulative frequency in the fiber diameter distribution in the range from 1.5 μm to 2.9 μm is greater than 15%, the ultrafine fiber with a small aspect ratio that is not effective for the collection efficiency is filtered. It is presumed that it tends to stay inside, closing the voids in the filter medium and increasing only the pressure loss. In addition, if the cumulative frequency in the range greater than 1.5 μm and less than or equal to 2.9 μm is less than 2%, it becomes difficult for the ultrafine glass fibers that are effective for the collection efficiency to stay in the filter medium, and the collection efficiency is lowered. presume. Furthermore, the air filter medium of the present invention preferably has a PF value of 13.5 or more, preferably 14 when the target particle diameter is 0.3 μm and the surface wind speed is 5.3 cm / sec (seconds). It may be 0 or more. The higher the PF value, the higher the collection efficiency with the same pressure loss.
エアフィルタ用濾材の繊維径分布における1.5μmより大きく2.9μm以下の範囲の累積頻度を2〜15%の範囲とするためには、原材料として、平均繊維径が1.5〜2.9μmのガラス繊維の配合率を小さくすることが好ましい。具体的には、原料に使用するガラス繊維として、平均繊維径が1.5〜2.9μmのガラス繊維の添加量を、全ガラス繊維のうち10質量%未満、好ましくは5質量%未満とすることが好ましい。ただし、本発明のエアフィルタ用濾材は、太径のチョップドストランドガラス繊維と、細径の極細ガラス繊維との両方を用いるため、特に湿式抄紙では太径のチョップドストランドガラス繊維に比べて細径の極細ガラス繊維の歩留まりが悪い。そして、配合する極細ガラス繊維の歩留りは配合する繊維径と配合率により変化するため、原材料段階での混合比率と、エアフィルタ用濾材段階での繊維径分布率とは一致しない。また、極細ガラス繊維は製造方法由来によりブロードな繊維径分布を持つため、平均繊維径が1.5〜2.9μmのガラス繊維を混合しなくとも1.5〜2.9μmの範囲に含まれる階級の累積頻度が15%以上となることもある。また、平均繊維径が1.0μ未満の極細ガラス繊維と平均繊維径が6.0μm以上のチョップドストランドガラス繊維のように極端な繊維径を組み合わせた場合は1.5μmより大きく2.9μm以下の範囲の累積頻度が2.0%未満となることもある。エアフィルタ用濾材のPF値を高くするためにはエアフィルタ用濾材中の繊維径分布が重要となる。このような特定の繊維径分布を有するエアフィルタ用濾材を得るためには、上記に加えて、原材料として使用するガラス繊維の平均繊維径を特定のものとすれば良い。例えば、1.5μm〜2.9μmの平均繊維径を有するガラス繊維の使用を一定の範囲に抑えればよい。例えば、1.5μm〜2.9μmの平均繊維径を有するガラス繊維を濾材中において、5〜15質量%、5〜12質量%、さらに、0〜15質量%未満、0〜12質量%、さらに0〜5質量%、0質量%とすることが好ましい。さらに、例えば、2.9μmより大きく6.0μm以下の平均繊維径を有するガラス繊維を一定量使用すればよい。例えば2.9μより大きく6.0μm以下の平均繊維径を有するガラス繊維を濾材中において、20〜70質量%、さらに、50〜70質量%とすることが好ましい。さらに、6.0μmより大きい平均繊維径を有するガラス繊維を一定量使用すればよい。例えば、6.0μmより大きい平均繊維径を有するガラス繊維を濾材中において、20〜50質量%とすることが好ましい。さらに、例えば、6.0μmより大きい平均繊維径を有するチョップドストランドガラス繊維を濾材中において、20〜40質量%とすることが好ましい。また、1.5μm未満の平均繊維径を有するガラス繊維を一定量使用すればよい。例えば1.5μm未満の平均繊維径を有するガラス繊維を濾材中において、3〜50質量%、さらに、4〜30質量%とすることが好ましい。したがって、本発明のエアフィルタ用濾材の製造方法においては、上記組成を有するガラス繊維を原材料として使用することが好ましい。例えば、本発明のエアフィルタ用濾材の製造方法においては、特定の平均繊維径を有する少なくとも一種以上のチョップドストランドガラス繊維と特定の平均繊維径を有する少なくとも一種以上の極細ガラス繊維とを上記に示す割合で配合し、パルパーにてpH2〜4の硫酸などを含む酸性の水を用いて、離解後、抄紙し、手抄装置にて抄紙し湿紙を得る。その後、次に、例えば、アクリル系ラテックスなどの非繊維状の合成樹脂バインダー、とフッ素系撥水剤などの撥水剤、アセチレン系界面活性剤などの界面活性剤を含むバインダー液を用いて湿紙をバインダー液に含浸してエアフィルタ用濾材を作製すればよい。 In order to make the cumulative frequency in the range of more than 1.5 μm and less than or equal to 2.9 μm in the fiber diameter distribution of the filter medium for air filter to be in the range of 2 to 15%, the average fiber diameter is 1.5 to 2.9 μm as a raw material. It is preferable to reduce the blending ratio of the glass fibers. Specifically, as the glass fiber used for the raw material, the addition amount of the glass fiber having an average fiber diameter of 1.5 to 2.9 μm is less than 10% by mass, preferably less than 5% by mass of the total glass fiber. It is preferable. However, the air filter medium of the present invention uses both a large-diameter chopped strand glass fiber and a small-diameter ultrafine glass fiber. The yield of extra fine glass fiber is poor. And since the yield of the ultrafine glass fiber to mix | blend changes with the fiber diameter and mixture ratio to mix | blend, the mixing ratio in a raw material stage and the fiber diameter distribution rate in the filter medium stage for air filters do not correspond. Further, since the ultrafine glass fiber has a broad fiber diameter distribution due to the production method, the average fiber diameter is included in the range of 1.5 to 2.9 μm even without mixing glass fibers having an average fiber diameter of 1.5 to 2.9 μm. The cumulative frequency of the class may be 15% or more. In addition, when an extreme fiber diameter is combined such as an ultrafine glass fiber having an average fiber diameter of less than 1.0 μm and a chopped strand glass fiber having an average fiber diameter of 6.0 μm or more, it is greater than 1.5 μm and 2.9 μm or less. The cumulative frequency of the range may be less than 2.0%. In order to increase the PF value of the air filter medium, the fiber diameter distribution in the air filter medium is important. In order to obtain a filter medium for air filters having such a specific fiber diameter distribution, in addition to the above, the average fiber diameter of glass fibers used as raw materials may be specified. For example, the use of glass fibers having an average fiber diameter of 1.5 μm to 2.9 μm may be suppressed within a certain range. For example, glass fiber having an average fiber diameter of 1.5 μm to 2.9 μm in the filter medium is 5 to 15% by mass, 5 to 12% by mass, furthermore 0 to less than 15% by mass, 0 to 12% by mass, It is preferable to set it as 0-5 mass% and 0 mass%. Furthermore, for example, a certain amount of glass fiber having an average fiber diameter of more than 2.9 μm and not more than 6.0 μm may be used. For example, the glass fiber having an average fiber diameter of more than 2.9 μm and not more than 6.0 μm is preferably 20 to 70% by mass, and more preferably 50 to 70% by mass in the filter medium. Furthermore, a certain amount of glass fiber having an average fiber diameter greater than 6.0 μm may be used. For example, it is preferable to make glass fiber which has an average fiber diameter larger than 6.0 micrometers into 20-50 mass% in a filter medium. Furthermore, for example, it is preferable that the chopped strand glass fiber having an average fiber diameter larger than 6.0 μm is 20 to 40% by mass in the filter medium. A certain amount of glass fiber having an average fiber diameter of less than 1.5 μm may be used. For example, the glass fiber having an average fiber diameter of less than 1.5 μm is preferably 3 to 50% by mass, and more preferably 4 to 30% by mass in the filter medium. Therefore, in the manufacturing method of the filter material for air filters of this invention, it is preferable to use the glass fiber which has the said composition as a raw material. For example, in the method for producing a filter medium for an air filter of the present invention, at least one or more chopped strand glass fibers having a specific average fiber diameter and at least one ultrafine glass fiber having a specific average fiber diameter are shown above. It mix | blends in a ratio, uses acidic water containing sulfuric acid of pH 2-4 etc. with a pulper, makes paper after disaggregation, and makes paper with a hand-drawing apparatus, and obtains wet paper. After that, for example, a non-fibrous synthetic resin binder such as acrylic latex, a water repellent such as a fluorine-based water repellent, and a binder liquid containing a surfactant such as an acetylene surfactant are used. What is necessary is just to produce the filter material for air filters by impregnating paper with a binder liquid.
以下に、実施例、比較例によって本発明をさらに詳しく説明する。ただし、本発明はこれら実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
チョップドストランドガラス繊維と極細ガラス繊維とを表1に示す割合で配合し、パルパーにてpH3.0の硫酸酸性の水を用いて、濃度0.5質量%で離解後、抄紙し、手抄装置にて抄紙し湿紙を得た。次に、バインダー液組成がアクリル系ラテックス(商品名:ボンコートAN−155、製造元:大日本インキ化学工業(株))とフッ素系撥水剤(商品名:NK−ガードN−07、製造元:日華化学(株))とアセチレン系界面活性剤(商品名:ダイノール604 製造会社:日信化学工業(株))を固形分比100/20/2となる様に混合したバインダー液を用いて湿紙をバインダー液に含浸し、130℃のロータリードライヤーにて乾燥して各実施例及び比較例のエアフィルタ用濾材を作製した。全バインダー分の濾材中の含有量が実施例3、9及び12を除き5.0質量%であり、実施例3、9及び12においては6.0質量%であった。なお、チョップドストランドガラス繊維と極細ガラス繊維との配合割合は、例えば、実施例1であれば、極細ガラス繊維として、平均繊維径が0.59μmのものを11部、平均繊維径が2.3μmのものを10部、平均繊維径が4.0μmのものを54部と、チョップドストランドガラス繊維として平均繊維径が6.3μmのものを25部配合したことを示している。また、実施例3、9及び12については、チョップドストランドガラス繊維と極細ガラス繊維とをパルパーで離解する際に、PVAバインダー(粒子状)1部を配合した。尚、PVAバインダーは、エアフィルタ用濾材を作製する経過で溶ける(水分を含んだ後、加熱により溶融する)ため、繊維径分布の算出において、エアフィルタ用濾材を構成する繊維としてはカウントされない。 Chopped strand glass fiber and ultrafine glass fiber are blended in the proportions shown in Table 1, and after pulping at a concentration of 0.5% by mass with sulfuric acid having a pH of 3.0 using a pulper, paper is made, The paper was made with a wet paper. Next, the binder liquid composition is acrylic latex (trade name: Boncoat AN-155, manufacturer: Dainippon Ink & Chemicals, Inc.) and fluorine-based water repellent (trade name: NK-Guard N-07, manufacturer: Japan) Hua Chemical Co., Ltd.) and an acetylenic surfactant (trade name: DYNOL 604, manufacturing company: Nissin Chemical Industry Co., Ltd.) are mixed with a binder solution so that the solid content ratio is 100/20/2. The paper was impregnated with a binder solution and dried with a rotary dryer at 130 ° C. to prepare air filter media of Examples and Comparative Examples. The content of the total binder content in the filter medium was 5.0% by mass except in Examples 3, 9 and 12, and in Examples 3, 9 and 12, it was 6.0% by mass. In addition, if the mixing ratio of chopped strand glass fiber and ultrafine glass fiber is, for example, Example 1, 11 parts having an average fiber diameter of 0.59 μm and an average fiber diameter of 2.3 μm are used as the ultrafine glass fiber. 10 parts, 54 parts having an average fiber diameter of 4.0 μm, and 25 parts having an average fiber diameter of 6.3 μm as chopped strand glass fibers. Moreover, about Example 3, 9 and 12, 1 part of PVA binder (particulate form) was mix | blended when the chopped strand glass fiber and the ultrafine glass fiber were disaggregated with a pulper. In addition, since PVA binder melts in the process of producing the filter medium for air filter (it contains water and melts by heating), it is not counted as a fiber constituting the filter medium for air filter in the calculation of the fiber diameter distribution.
(試験方法)
(1)圧力損失
有効面積100cm2のエアフィルタ用濾材、空気を面風速5.3cm/secで通風した時の差圧を微差圧計で測定した。
(Test method)
(1) Pressure loss effective area 100 cm 2 filter medium for air filter, differential pressure when air was ventilated at a surface wind speed of 5.3 cm / sec was measured with a fine differential pressure gauge.
(2)PAO透過率
ラスキンノズルで発生させた多分散PAO(ポリアルファオレフィン)粒子を含む空気を、有効面積100cm2のエアフィルタ用濾材に、面風速5.3cm/secで通風した時のPAOの捕集効率を、リオン社製レーザーパーティクルカウンターを使用し測定した。なお、測定対象粒子径0.3μm単分散は粒子径0.2〜0.3μmと0.3〜0.4μmのPAO透過率の幾何平均を0.3μm単分散の透過率とした。PAO捕集効率は、100−(PAO透過率)の式から求めた。また、上流側のPAO発生濃度は、0.1μm以下で約1×109個/ft3とした。
(2) PAO transmittance PAO when air containing polydispersed PAO (polyalphaolefin) particles generated by a Ruskin nozzle is passed through an air filter medium having an effective area of 100 cm 2 at a surface air velocity of 5.3 cm / sec. The collection efficiency was measured using a laser particle counter manufactured by Rion. In addition, the monodispersion of the particle diameter of 0.3 μm to be measured was defined as the transmittance of 0.3 μm monodisperse with the geometric average of the PAO transmittances of the particle diameters of 0.2 to 0.3 μm and 0.3 to 0.4 μm. The PAO collection efficiency was determined from the equation 100- (PAO transmittance). Further, the upstream PAO generation concentration was about 1 × 10 9 / ft 3 at 0.1 μm or less.
(3)PF値
濾紙のフィルタ性能の指標となるPF値は、(1)と(2)の測定に基づき、次式より求めた。PF値が高いほど、同一圧力損失で高捕集効率を示す。
(3) PF value The PF value serving as an index of the filter performance of the filter paper was obtained from the following equation based on the measurements of (1) and (2). The higher the PF value, the higher the collection efficiency with the same pressure loss.
(濾材における繊維径分布)
電界放出型走査電子顕微鏡写真よりエアフィルタ用濾材をCD方向に切断した濾材断面写真から像解析ソフト(A像くん;旭化成エンジニアリング(株))「粒子解析」の手法を用いて繊維径を測定した。繊維断面の径は短径を繊維径(Di)とした。上記方法により計測した繊維径を0.1μmから階級を0.2μm刻みとして各繊維径の本数(Ni)を算出し以下の計算方法により繊維径頻度分布率を算出し、表2に示した。(表1中左端欄、例えば「0.1」の記載は「0.1μmより大きく0.3μm以下」を意味する。「0.3」以降も同様である。)また、1.5μmより大きく2.9μm以下の範囲の累積頻度(表2中1.5−2.9累積と示す)を算出し、表2に示した。
繊維径:Di(μm)
繊維本数:Ni(本)
(Fiber diameter distribution in filter media)
Fiber diameter was measured using a method of "particle analysis" of image analysis software (A Image-kun; Asahi Kasei Engineering Co., Ltd.) from a cross-sectional photograph of the filter medium cut in the CD direction from a field emission scanning electron micrograph. . As for the diameter of the fiber cross section, the short diameter was taken as the fiber diameter (Di). The fiber diameter measured by the above method was calculated from 0.1 μm in increments of 0.2 μm, and the number (Ni) of each fiber diameter was calculated, and the fiber diameter frequency distribution rate was calculated by the following calculation method. (The leftmost column in Table 1, for example, “0.1” means “greater than 0.1 μm and less than or equal to 0.3 μm”. The same applies to “0.3” and later.) Also, greater than 1.5 μm The cumulative frequency in the range of 2.9 μm or less (shown as 1.5-2.9 cumulative in Table 2) was calculated and shown in Table 2.
Fiber diameter: Di (μm)
Number of fibers: Ni (book)
(ガラス繊維の平均繊維径)
電界放出型走査電子顕微鏡写真よりガラス繊維をCD方向に切断した断面写真から像解析ソフト(A像くん;旭化成エンジニアリング(株))「粒子解析」の手法を用いて原材料のガラス繊維の平均繊維径を測定した。繊維断面の径は短径を繊維径(Dgi)とした。上記方法により計測した繊維径を以下の計算方法によりガラス繊維の平均繊維径を算出した。計測する繊維本数(Ng)は200本以上とした。
繊維径:Dgi(μm)
繊維本数:Ng(本)
(Average fiber diameter of glass fiber)
The average fiber diameter of the glass fiber as the raw material using the method of image analysis software (A Image-kun; Asahi Kasei Engineering Co., Ltd.) “Particle Analysis” Was measured. As for the diameter of the fiber cross section, the short diameter was defined as the fiber diameter (Dgi). The fiber diameter measured by the above method was used to calculate the average fiber diameter of the glass fibers by the following calculation method. The number of fibers to be measured (Ng) was 200 or more.
Fiber diameter: Dgi (μm)
Number of fibers: Ng (book)
実施例1〜13と比較例1〜4のPF値を比較すると繊維径分布において1.5μmより大きく2.9μm以下の範囲の累積頻度が2〜15%である実施例1〜13ではPF値が13.5以上と高い結果であった。それに対し同範囲の累積頻度が15%より多い比較例1〜3と、同範囲の累積頻度が2%未満である比較例4ではPF値が12.2〜13.0と低い結果であった。 When the PF values of Examples 1 to 13 and Comparative Examples 1 to 4 are compared, in Examples 1 to 13 in which the cumulative frequency in the fiber diameter distribution in the range of 1.5 μm to 2.9 μm is 2 to 15%. Was as high as 13.5 or more. On the other hand, Comparative Examples 1 to 3 having a cumulative frequency of more than 15% in the same range and Comparative Example 4 having a cumulative frequency of less than 2% in the same range had a low PF value of 12.2 to 13.0. .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067456A JP6964033B2 (en) | 2018-03-30 | 2018-03-30 | Filter material for air filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067456A JP6964033B2 (en) | 2018-03-30 | 2018-03-30 | Filter material for air filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019177331A true JP2019177331A (en) | 2019-10-17 |
JP6964033B2 JP6964033B2 (en) | 2021-11-10 |
Family
ID=68277345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018067456A Active JP6964033B2 (en) | 2018-03-30 | 2018-03-30 | Filter material for air filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6964033B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022124201A (en) * | 2021-02-15 | 2022-08-25 | 北越コーポレーション株式会社 | Filter medium for air filters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04284803A (en) * | 1991-03-13 | 1992-10-09 | Hokuetsu Paper Mills Ltd | Glass fiber filter sheet for use in air filter of high performance |
US20120152859A1 (en) * | 2010-12-17 | 2012-06-21 | Hollingsworth & Vose Company | Filter media with fibrillated fibers |
JP2012518527A (en) * | 2009-02-24 | 2012-08-16 | ホリングワース・アンド・ボーズ・カンパニー | Filter material suitable for ASHRAE |
JP2014221456A (en) * | 2013-05-13 | 2014-11-27 | 北越紀州製紙株式会社 | Filter medium for air filter, and method of manufacturing the same |
-
2018
- 2018-03-30 JP JP2018067456A patent/JP6964033B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04284803A (en) * | 1991-03-13 | 1992-10-09 | Hokuetsu Paper Mills Ltd | Glass fiber filter sheet for use in air filter of high performance |
JP2012518527A (en) * | 2009-02-24 | 2012-08-16 | ホリングワース・アンド・ボーズ・カンパニー | Filter material suitable for ASHRAE |
US20120152859A1 (en) * | 2010-12-17 | 2012-06-21 | Hollingsworth & Vose Company | Filter media with fibrillated fibers |
JP2014221456A (en) * | 2013-05-13 | 2014-11-27 | 北越紀州製紙株式会社 | Filter medium for air filter, and method of manufacturing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022124201A (en) * | 2021-02-15 | 2022-08-25 | 北越コーポレーション株式会社 | Filter medium for air filters |
JP7508387B2 (en) | 2021-02-15 | 2024-07-01 | 北越コーポレーション株式会社 | Air filter media |
Also Published As
Publication number | Publication date |
---|---|
JP6964033B2 (en) | 2021-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6212619B2 (en) | Air filter medium and air filter including the same | |
JP5319380B2 (en) | Low basis weight air filter media | |
JP2010253449A (en) | Filter medium for air filter having electrostatic spinning nanofiber layer, and method of manufacturing the same | |
JP5579055B2 (en) | Air filter media | |
JP2018038983A (en) | Production method of filtering medium for air filter | |
Dong et al. | Fabrication of superhydrophobic PET filter material with fluorinated SiO 2 nanoparticles via simple sol–gel process | |
JP6527800B2 (en) | Filter paper for filter and manufacturing method thereof | |
JP5148888B2 (en) | Filter material for air filter and method for producing the same | |
JP6087207B2 (en) | Filter material for air filter and method for producing the same | |
JP6964033B2 (en) | Filter material for air filter | |
JP3874038B2 (en) | Filter material for air filter and manufacturing method thereof | |
JP5536537B2 (en) | Air filter media | |
JP6270971B2 (en) | Filter material for air filter and method for producing the same | |
JP5173969B2 (en) | Air filter media | |
Zhao et al. | Filtration performance of novel microfibrous media embedded with nanofiber flocs for aerosol particle removal | |
JP4891498B2 (en) | Filter material for air filter and method for producing the same | |
JP5797175B2 (en) | Air filter media | |
JP2016176173A (en) | Ultrafine fiber sheet | |
CN107869092B (en) | A kind of filter composite filter paper and preparation method thereof | |
JP5290507B2 (en) | Air filter medium and air filter including the same | |
JP7508387B2 (en) | Air filter media | |
JP7215871B2 (en) | AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF | |
JP2015085250A (en) | Filter medium for air filter and production method of the same | |
JP4639419B2 (en) | Filter paper for high-temperature air filter and manufacturing method thereof | |
JP2021110055A (en) | Filter medium for filter and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6964033 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |