JP7504260B2 - Ammunition container - Google Patents
Ammunition container Download PDFInfo
- Publication number
- JP7504260B2 JP7504260B2 JP2023081506A JP2023081506A JP7504260B2 JP 7504260 B2 JP7504260 B2 JP 7504260B2 JP 2023081506 A JP2023081506 A JP 2023081506A JP 2023081506 A JP2023081506 A JP 2023081506A JP 7504260 B2 JP7504260 B2 JP 7504260B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- fibers
- safety
- ammunition
- container body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 claims description 83
- 229920005989 resin Polymers 0.000 claims description 42
- 239000011347 resin Substances 0.000 claims description 42
- 230000003068 static effect Effects 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 239000000565 sealant Substances 0.000 claims description 22
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 21
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000009730 filament winding Methods 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 229920006324 polyoxymethylene Polymers 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 229930182556 Polyacetal Natural products 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 3
- 229920002522 Wood fibre Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920005668 polycarbonate resin Polymers 0.000 claims description 3
- 239000004431 polycarbonate resin Substances 0.000 claims description 3
- 239000012783 reinforcing fiber Substances 0.000 claims description 3
- 239000002025 wood fiber Substances 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- 229920001568 phenolic resin Polymers 0.000 claims 1
- 238000011156 evaluation Methods 0.000 description 88
- 239000012634 fragment Substances 0.000 description 54
- 239000002360 explosive Substances 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 34
- 238000012360 testing method Methods 0.000 description 32
- 239000000463 material Substances 0.000 description 30
- 239000003380 propellant Substances 0.000 description 20
- 238000005303 weighing Methods 0.000 description 16
- 238000004804 winding Methods 0.000 description 16
- 230000006378 damage Effects 0.000 description 15
- 239000000567 combustion gas Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000035939 shock Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000009954 braiding Methods 0.000 description 7
- 238000004880 explosion Methods 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000013467 fragmentation Methods 0.000 description 6
- 238000006062 fragmentation reaction Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000003566 sealing material Substances 0.000 description 6
- 238000009863 impact test Methods 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 238000011076 safety test Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000003562 lightweight material Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005474 detonation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003721 gunpowder Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Description
本発明は、りゅう弾砲用発射装薬や火砲用弾薬の梱包容器として使用する筒状の弾薬用容器に関する。 The present invention relates to a cylindrical ammunition container used as a packaging container for howitzer propellants and artillery ammunition.
以下の特許文献1に記載されるように、りゅう弾砲用発射装薬等に使用される弾薬用容器とは、細かい粒状の発射薬を装填した複数個の発射装薬を梱包し、運搬し、弾薬庫に保管したりする際に一時的に使用する金属容器のことである。発射装薬をりゅう弾砲等の薬室に挿入する際には、弾薬用容器は発射装薬から取り除かれる。一般に、りゅう弾砲用発射装薬や火砲用弾薬等に使用される梱包容器としての弾薬用容器は、運用面を配慮して一定以上の落下強度と気密性を有する構造となっている。
As described in the following
近年、りゅう弾砲用発射装薬やその他火砲用の弾薬は、その貯蔵、運搬及び使用中における火災、被弾等を受けた際に、我の被害を最小限にする目的で、弾薬の不感化・低感度化(以下、IM(Insensitive Munition)化という)の開発、装備化が進められている。また、これらの弾薬のIM性や取り扱い評価方法として、米国のITOP(International Test Operations Procedure)やSTANAG(Standardization Agreement、NATO規格)などで試験方法が規格化されている。これらの規格の中で運用面での取り扱い性を評価する試験項目としては、落下試験、クックオフ試験、殉爆試験及び銃撃感度試験、フラグメントインパクト試験などが規定されている。このような規定は、弾薬単体だけではなく弾薬用容器を含めた状態でも満足する必要があるため、りゅう弾砲用発射装薬や火砲用弾薬用の弾薬用容器にも高いIM性や強固な落下強度や高い気密性が要求されている。 In recent years, in order to minimize damage to the user when a fire or bullet strikes during storage, transportation, or use, ammunition for howitzers and other artillery ammunition is damaged, development and installation of insensitive or low-sensitivity ammunition (hereinafter referred to as IM (Insensitive Munition)) has been promoted. In addition, test methods for evaluating the IM properties and handling of these ammunition have been standardized in the United States' ITOP (International Test Operations Procedure) and STANAG (Standardization Agreement, NATO standard). Test items for evaluating operational handling in these standards include drop tests, cook-off tests, sympathetic detonation tests, gunfire sensitivity tests, and fragmentation impact tests. These regulations must be satisfied not only for the ammunition itself but also for the ammunition container, so high IM properties, strong drop strength, and high airtightness are required for howitzer launch charges and artillery ammunition containers.
以下の特許文献2には、強度を保持しつつ、弾薬の燃焼反応を緩和することができる円筒状の弾薬用容器を提供することを目的に、螺旋状の接合部を有する金属製の円筒状弾薬用容器において、円筒体の外周面と内周面の少なくとも一方の面に接合部と干渉しない位置に切り込み部が設けられ、円筒体の肉厚に対する切り込み部の深さの比率が0.10~0.95であることを特徴とする円筒状弾薬用容器が開示されている。
The following
また、以下の特許文献3には、弾薬が燃焼する不所望の刺激を受けたときに、開放する弾薬収納容器であって、頂部、底部、及びその間の少なくとも1の側面を有する容器、ここで、該容器は、その内に爆薬を収納し、該爆薬はエネルギー材料を含み、その側面に接合部分と非接合部分を有する少なくとも1つの繋ぎ目を有し;並びに該繋ぎ目の非接合部分をシールするための接着剤等からなるシール、ここで該シールは、該容器の残部が破壊される前に、内圧が外圧よりも少なくとも3psi高いとき、破壊されるよう作用する;を含み、それにより該容器を開放し、収納されたエネルギー材料の燃焼速度を制御して、激しい反応を回避する上記弾薬収納容器が開示されている。
The following
以下の特許文献4には、通常時における落下強度及び気密性を保持しながらも、容器内部において火薬類が発火した非常時には容器の爆発を避けられ、周囲の被害を抑制できる弾薬用容器を提供することを目的として、有底円筒状の容器本体と、該容器本体の開口を塞ぐ蓋体とを有する弾薬用容器であって、上記容器本体の筒部は、金属長板が螺旋状に巻回されてその両側縁同士を接合することで、螺旋状に延在する接合部を有する円筒状に形成されており、上記筒部には、軸方向に延びる貫通孔が内外貫通状に穿設されており、上記貫通孔は、封止材によって封止され、該貫通孔及び該封止材の外面は金属製のカバー部材によって覆われていることを特徴とする弾薬用容器が開示されている。 The following Patent Document 4 discloses an ammunition container that has a cylindrical container body with a bottom and a lid that covers the opening of the container body, with the aim of providing an ammunition container that maintains drop strength and airtightness under normal conditions, but can avoid the container exploding in an emergency when explosives ignite inside the container and limit damage to the surrounding area. The tubular part of the container body is formed into a cylindrical shape with a joint that extends in a spiral shape by spirally winding a metal elongated plate and joining both side edges of the plate, and the tubular part has a through hole that extends in the axial direction and penetrates from the inside to the outside, the through hole is sealed with a sealing material, and the through hole and the outer surface of the sealing material are covered with a metal cover member.
以下の特許文献5には、通常時における落下強度及び気密性を保持しながらも、容器内部において火薬類が発火した非常時には容器の爆発を避けられ、周囲の被害を抑制できる弾薬用容器を提供することを目的として、有底円筒状の容器本体と、該容器本体の開口を塞ぐ蓋体とを有する弾薬用容器であって、該容器本体の筒部に、所定形状及び所定長さの貫通孔が所定隙間をもって内外貫通状に穿設され、該貫通孔は所定長さの接合部と交互に並び少なくとも1つのスティッチ状脆弱部として軸方向に延びており、そして該軸方向に延びるスティッチ状脆弱部内の全貫通孔の隙間に、封止手段を設けることで、該容器が封止されている、ことを特徴とする上記弾薬用容器が開示されている。
The following
以上、従来技術として特許文献2、3、4、5には金属の円筒体に種々の形状の脆弱部や開口部に封止材を設けることが提案されている。
As mentioned above,
上記したように、従来技術の金属製の弾薬用容器では、容器内部に収容された弾薬や発射装薬を構成する火薬類が、被弾や弾丸破片等により、部分爆轟や爆轟した場合、衝撃波が生じて上記記載の脆弱部が開口し燃焼ガスを開放する前に、あるいは蓋部が開放し燃焼ガスを開放する前に、容器本体の円筒体が破片となり飛散するため、周囲の人員や機材に多大な影響や損失を与える事態が発生する。この問題を解決しようとした場合、蓋の構造に因らず、容器本体の円筒体の厚みを略3倍に増やす必要があるが、容器本体の重量が重くなり、人力での運搬が困難となり実用性がない。 As described above, in conventional metal ammunition containers, if the explosives that make up the ammunition or propellant charge contained inside the container are partially detonated or explode due to being hit by a bullet or bullet fragments, the cylindrical body of the container will shatter into pieces before the shock waves cause the vulnerable part described above to open and release the combustion gas, or before the lid opens and releases the combustion gas, causing a situation that causes great damage and loss to surrounding personnel and equipment. To solve this problem, it would be necessary to increase the thickness of the cylindrical body of the container by approximately three times, regardless of the lid structure, but this would make the container body heavy, making it difficult to transport by hand and impractical.
軽量化するため、繊維を含まない若しくは短繊維で繊維の方向がランダムな軽量な素材を選定すると、容器本体が不均一に破壊され、大小様々な破片が飛散し周囲に影響を及ぼす可能性がある。
また、容器本体の素材を円筒の周方向に強い繊維強化樹脂にした場合には、火薬類が部分爆轟や爆轟した際に、容器本体が2分されてロケット状に飛散し、若しくは、蓋体や底部が飛散し、同様に周囲に影響を及ぼす可能性がある。
If a lightweight material that does not contain fibers or has short fibers with random fiber orientation is selected in order to reduce weight, the container body may be destroyed unevenly, and various pieces of different sizes may fly off and affect the surrounding area.
Furthermore, if the material of the container body is made of fiber-reinforced resin that is strong in the circumferential direction of the cylinder, when the explosives partially detonate or explode, the container body may break into two and scatter like a rocket, or the lid or bottom may scatter, similarly affecting the surrounding area.
また、容器に内装する火薬類が高温環境に置かれ発火した場合には、火薬類の燃焼により発生した燃焼ガスにより容器内の圧力が急激に上昇し容器が爆発し、周囲に影響を及ぼす可能性がある。
さらに、上記の特許文献には、繊維強化複合材の繊維の方向と、強度の関係と、少なくとも1個の脆弱部の設置方法、及び、脆弱部を塞ぐ封止手段を設けることは、開示も教示もされていない。
In addition, if the explosives contained in the container are placed in a high-temperature environment and ignite, the combustion gases generated by the burning of the explosives will cause the pressure inside the container to rise suddenly, causing the container to explode and affecting the surrounding area.
Furthermore, the above patent documents do not disclose or teach the relationship between the fiber direction and strength of the fiber-reinforced composite material, the method of installing at least one weak portion, or the provision of a sealing means for closing the weak portion.
したがって、本発明の目的は、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる弾薬用容器を提供することにある。 The object of the present invention is therefore to provide an ammunition container that has high airtightness and operability, and can reduce damage to the surrounding area when explosives explode, etc.
本発明者らは、上記課題を解決すべく各種金属や樹脂を用いて鋭意検討し実験を重ねた結果、容器本体の筒部を筒軸方向に強く、周方向に割れやすい繊維強化樹脂材(繊維強化プラスチック)とし、容器本体が所定の圧力で破壊を開始する様、最適な容器本体の構造若しくは容器本体に脆弱部を設け、任意選択的に脆弱部の隙間に封止材を設けることで、容器に内装する火薬類が被弾や被弾破片等により部分爆轟や爆轟した場合には、容器本体が周方向に割れやすく、軸方向に強いことで含まれる繊維が含浸している樹脂を粉砕しながら破断するため、飛散物が確実に軽量となることを確認した。
また、内装する火薬類が高温環境下に置かれ発火した場合には、脆弱部を素早く破断させることで、より確実に燃焼ガスを開放し、周囲の安全が確保できることを確認した。
容器の気密性を保つことで、内装する弾薬類を容器のまま長期保管できることを確認した。
更に、金属や樹脂単体よりも頑丈で軽量な素材を選定できることで運搬時の実運用性を高めることができることを該容器本体で確認し、本発明を完成するに至ったものである。
The inventors conducted extensive research and experiments using various metals and resins in order to solve the above problems, and as a result, they confirmed that by making the cylindrical portion of the container body out of a fiber reinforced resin material (fiber reinforced plastic) that is strong in the axial direction and prone to cracking in the circumferential direction, and by providing an optimal container body structure or a weak portion in the container body so that the container body will begin to break at a specified pressure, and optionally providing a sealant in the gaps in the weak portion, if the explosives contained in the container partially detonate or explode due to being hit by a bullet or bullet fragments, etc., the container body will be prone to crack in the circumferential direction, and because it is strong in the axial direction, the resin impregnated with the fibers will break as it is crushed, thereby ensuring that the scattered debris will be lightweight.
In addition, it was confirmed that in the event that the internal explosives are placed in a high-temperature environment and ignite, the vulnerable parts can be quickly broken, more reliably releasing the combustion gases and ensuring the safety of the surrounding area.
It was confirmed that by maintaining the airtightness of the container, the ammunition contained therein can be stored for long periods of time in the container.
Furthermore, it was confirmed with the container body that by being able to select a material that is stronger and lighter than metal or resin alone, practical usability during transportation can be improved, which led to the completion of the present invention.
すなわち、本発明は以下のとおりのものである。
[1]筒部及び当該筒部の両端のうち一方を塞ぐ底部を有する容器本体と、前記筒部の両端のうち他方の開口部を塞ぐ蓋体と、を有する弾薬用容器であって、
前記筒部が、繊維強化プラスチックを含み、かつ当該筒部の限界静的内圧が、0.2~2.0MPaであり、
前記筒部に、少なくとも1つの脆弱部を備え、
前記繊維強化プラスチックの繊維がフィラメントワインディング製法により配置され、かつ、
前記筒部の軸方向に対する周方向の引張強度の比が2~250%である、
ことを特徴とする、弾薬用容器。
[2]前記脆弱部が、封止材によって封止されている、前記[1]に記載の弾薬用容器。
[3]前記脆弱部が、線状構造、溝状構造、薄肉状構造、繊維を含有しない部分又はこれらの組み合わせの構造を有する、前記[1]又は[2]に記載の弾薬用容器。
[4]前記繊維強化プラスチックの繊維が、ガラス繊維、金属繊維、パルプ繊維、ケラミック繊維、樹脂繊維、炭素繊維、及び木質繊維からなる群から選択される少なくとも一種を含む、前記[1]~[3]のいずれかに記載の弾薬用容器。
[5]前記繊維強化プラスチックのプラスチックが、エポキシ樹脂、ポリアセタール樹脂、塩化ビニル、不飽和ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、及びフェノール樹脂からなる群から選択される少なくとも一種を含む、前記[1]~[4]のいずれかに記載の弾薬用容器。
[6]以下の工程:
フィラメントワインディング製法により強化繊維が配置されたプラスチック製筒部を形成する工程;
得られた筒部に、少なくとも1つの脆弱部を形成する工程;及び
得られた筒部の両端のうち一方を底部で塞ぎ、かつ、他方の開口部を蓋体で塞ぐ工程;
を含む弾薬用容器の製造方法であって、
得られた筒部の限界静的内圧が、0.2~2.0MPaであり、かつ、該筒部の軸方向に対する周方向の引張強度の比が2~250%である、ことを特徴とする、弾薬用容器の製造方法。
That is, the present invention is as follows.
[1] An ammunition container having a container body having a cylindrical portion and a bottom portion closing one of both ends of the cylindrical portion, and a lid body closing the other opening of both ends of the cylindrical portion,
The cylindrical portion includes a fiber-reinforced plastic, and the limit static internal pressure of the cylindrical portion is 0.2 to 2.0 MPa;
The tubular portion includes at least one weakened portion,
The fibers of the fiber-reinforced plastic are arranged by a filament winding method, and
The ratio of the tensile strength in the circumferential direction to the axial direction of the cylindrical portion is 2 to 250%.
An ammunition container comprising:
[2] The ammunition container described in [1], wherein the fragile portion is sealed with a sealant.
[3] The ammunition container according to [1] or [2], wherein the fragile portion has a linear structure, a groove structure, a thin-walled structure, a portion not containing fibers, or a combination thereof.
[4] An ammunition container according to any one of [1] to [3], wherein the fiber of the fiber-reinforced plastic includes at least one selected from the group consisting of glass fiber, metal fiber, pulp fiber, ceramic fiber, resin fiber, carbon fiber, and wood fiber.
[5] The ammunition container according to any one of [1] to [4], wherein the plastic of the fiber-reinforced plastic comprises at least one selected from the group consisting of epoxy resin, polyacetal resin, vinyl chloride, unsaturated polyester resin, acrylic resin, polycarbonate resin, and phenol resin.
[6] the steps of:
forming a plastic tube having reinforcing fibers disposed therein by a filament winding process;
forming at least one weakened portion in the obtained tubular portion; and
a step of closing one of both ends of the obtained cylindrical portion with a bottom portion and closing the other opening with a lid;
1. A method of making an ammunition container comprising:
A method for manufacturing an ammunition container, characterized in that the resulting cylindrical portion has a limit static internal pressure of 0.2 to 2.0 MPa and a ratio of the tensile strength in the circumferential direction to the axial direction of the cylindrical portion is 2 to 250%.
本発明によれば、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる弾薬用容器を提供することができる。 The present invention provides an ammunition container that has high airtightness and operability, and can reduce damage to the surrounding area when explosives explode.
以下、本発明の実施形態を詳細に説明する。
図1及び図2は、本実施形態に係る弾薬用容器の一構成例を示す斜視図である。また後掲する図3は、本実施形態に係る弾薬用容器が有する脆弱部の各種構造を示す図である。
Hereinafter, an embodiment of the present invention will be described in detail.
1 and 2 are perspective views showing an example of the configuration of an ammunition container according to the present embodiment. Also, Fig. 3 shown later is a view showing various structures of fragile parts of the ammunition container according to the present embodiment.
本発明者は、容器に内装する火薬の反応形態に応じた、容器の破壊形態を解析し、剛性や物性の違う供試体を製作し、更に実検証した。その結果、従来技術の脆弱部と容器の厚みでは、火薬類が部分爆轟や爆轟反応した場合には、発生する衝撃波に耐えきれず、容器が破片化し安全性が確保できないか、衝撃波に耐える容器の剛性を追求すると容器が重く、例えば10kg以上重くなり、人力で運搬することが多い弾薬用容器の運用性は維持できないことが分かった。そこで、従来の容器構造に代えて、容器本体、例えば筒部の材質を繊維強化樹脂にし、繊維の方向性と線状の脆弱部の形状を検討したところ、周囲の安全性を確保しながらも、軽量な素材の組み合わせとすることにより、弾薬用容器全体の重さが従来よりも軽減になるため、運搬性を維持若しくは改善できることを確認した。 The inventor analyzed the destruction mode of the container according to the reaction mode of the explosives placed inside the container, produced test specimens with different rigidity and physical properties, and further verified them. As a result, it was found that with the weak parts and thickness of the container of the conventional technology, when the explosives partially detonate or detonate, they cannot withstand the shock waves generated, causing the container to fragment and making it impossible to ensure safety, or that if the rigidity of the container is pursued to withstand the shock waves, the container becomes heavy, for example, by 10 kg or more, and the operability of the ammunition container, which is often transported by hand, cannot be maintained. Therefore, instead of the conventional container structure, the material of the container body, for example the cylindrical part, is made of fiber-reinforced resin, and the directionality of the fibers and the shape of the linear weak parts were examined, and it was confirmed that the weight of the entire ammunition container can be reduced compared to the conventional method by using a combination of lightweight materials while ensuring the safety of the surroundings, and therefore transportability can be maintained or improved.
すなわち、本発明の一実施形態を示す図1では、弾薬用容器1は、筒部2及び当該筒部の両端のうち一方を塞ぐ底部3を有する容器本体4と、上記筒部2の両端のうち他方の開口部を塞ぐ蓋体5と、を有する弾薬用容器であって、上記筒部2が、繊維強化プラスチックを含み、かつ当該筒部2の限界静的内圧が、0.2~2.0MPaであることを特徴とする。
本発明の弾薬用容器では、筒部が繊維強化プラスチックを含み、かつ筒部の限界静的内圧(破断し、開口を生じる静的内圧)が上記範囲であることで、従来の、脆弱部を有する金属製の弾薬用容器、及び繊維強化プラスチック単独の弾薬用容器に比較して、以下の点で優れている。
That is, in FIG. 1 showing one embodiment of the present invention, an
In the ammunition container of the present invention, the cylindrical portion contains fiber-reinforced plastic, and the limiting static internal pressure of the cylindrical portion (the static internal pressure at which it breaks and opens) is within the above-mentioned range, and therefore the ammunition container is superior to conventional metal ammunition containers having fragile portions and ammunition containers made solely of fiber-reinforced plastic in the following respects:
すなわち、本発明の弾薬用容器では、通常時における落下強度、気密性及び運用性を保持しながらも、容器内部において火薬類が部分爆轟した非常時には、筒部に含まれる繊維によって筒部の飛散破片が軽量化されることで、周囲への影響を抑制することができる。また、容器内部において火薬類が爆轟する場合は、筒部に含まれる繊維の方向を筒部の軸方向に近づけ配置することで、容器本体の筒部が先に周方向に割れ衝撃を緩和することで、蓋部、底部が2分されて飛散することが防止される。 In other words, the ammunition container of the present invention maintains drop strength, airtightness, and operability under normal circumstances, but in the event of an emergency in which explosives partially detonate inside the container, the fibers contained in the tube reduce the weight of the flying fragments of the tube, thereby suppressing the impact on the surrounding area. Also, when explosives detonate inside the container, by arranging the direction of the fibers contained in the tube close to the axial direction of the tube, the tube of the container body will first crack in the circumferential direction, mitigating the impact, and preventing the lid and bottom from splitting into two and flying off.
このため、より確実に周囲への影響を抑制することができ、容器内部において火薬類が発火した非常時には、筒部の軸方向、若しくは線状の脆弱部から素早く開口を確保することで爆発圧を低下させ、金属よりも軽量な素材を選定できることで実運用性を高めることができる。
なお、筒部の限界静的内圧が小さすぎると運用性、気密性等が低下する。一方、大きすぎると爆発時のエネルギーを溜め込んで衝撃波が発生し、破片飛散する。限界静的内圧が上記範囲であることで、運用性、気密性を維持しつつ、爆破した際の破片飛散を抑えて周囲に与える損壊を低減することができる。
This makes it possible to more reliably suppress the impact on the surrounding area, and in the event of an emergency such as an ignition of explosives inside the container, the explosion pressure can be reduced by quickly securing an opening in the axial direction of the tube or through the linear weak part, and the ability to select a material that is lighter than metal increases practical usability.
If the limit static internal pressure of the cylinder is too low, the operability, airtightness, etc. will decrease. On the other hand, if it is too high, the energy of the explosion will be accumulated, generating shock waves and causing fragments to fly. By keeping the limit static internal pressure within the above range, it is possible to suppress the scattering of fragments at the time of explosion and reduce damage to the surrounding area while maintaining operability and airtightness.
このように、本発明に係る弾薬用容器においては、内装する火薬類の組成と形状、反応形態、弾薬用容器の形状や質量、運用方法に応じて、容器本体部の繊維と樹脂の種類や繊維の方向(組角度)や繊維の量、線状の脆弱部の強度や形状を変更し、通常取扱い時の気密性や落下強度を保ち、異常時の飛散破片の質量を確実に軽量化することができる。 In this way, in the ammunition container of the present invention, the type of fiber and resin in the container body, the fiber direction (braiding angle), the amount of fiber, and the strength and shape of the linear weak part can be changed depending on the composition and shape of the explosives contained inside, the reaction form, the shape and mass of the ammunition container, and the operation method, thereby maintaining airtightness and drop strength during normal handling and reliably reducing the mass of flying fragments in the event of an abnormality.
本発明の弾薬用容器は、特に、(1)筒部が繊維強化プラスチックを含むこと、及び限界静的内圧の規定、(2)筒部が脆弱部を有する、さらに(3)筒部の軸方向と周方向との引張強度比の規定、を満たすことで、容器の分離、落下強度を調整しつつ、特に高い落下強度を達成することができる。この高い落下強度は、脆弱部単独、又は引張強度比単独の構成では達成できず、これら(1)~(3)を組み合わせることで、初めて達成できる。 The ammunition container of the present invention satisfies the following requirements: (1) the cylindrical portion contains fiber-reinforced plastic, and the limiting static internal pressure is regulated; (2) the cylindrical portion has a weak portion; and (3) the axial and circumferential tensile strength ratio is regulated. This allows the container to achieve a particularly high drop strength while adjusting separation and drop strength. This high drop strength cannot be achieved by the weak portion alone or the tensile strength ratio alone, but can only be achieved by combining (1) to (3).
図11に、従来技術の弾薬用容器を示す。図中、容器本体の脆弱部の貫通孔の隙間を示す。図中、A:脆弱部の長さ、B:貫通孔の隙間、C:貫通孔1個当たりの長さ、D:貫通孔間の接合部長さ、E:容器本体、F:蓋体を示す。
蓋体はネジ式であり、直線状の貫通した貫通孔が容器本体のスリットを構成し、貫通孔は所定の隙間を有している。
Fig. 11 shows a conventional ammunition container. In the figure, the gap of the through hole of the weak part of the container body is shown. In the figure, A: length of the weak part, B: gap of the through hole, C: length per through hole, D: joint length between the through holes, E: container body, F: lid.
The lid is screw-type, and a linear through hole constitutes a slit in the container body, and the through hole has a predetermined gap.
本発明における貫通孔の隙間も、図11に図示されるものと同様に規定されるが、図2にBとして規定する。弾薬用容器(単に容器ともいう。)は、筒部及び当該筒部の両端のうち一方を塞ぐ底部を有する容器本体と、筒部の両端のうち他方の開口部を塞ぐ蓋体とを有し、内部に複数個の弾薬(図示せず)が直列に並べて装填されるようになっている。弾薬としては、シングルベース発射薬、ダブルベース発射薬、トリプルベース発射薬、マルチベース発射薬、推進薬、爆薬、炸薬等の火薬類が用いられている。 The gap of the through hole in the present invention is defined in the same way as that shown in FIG. 11, but is defined as B in FIG. 2. The ammunition container (also simply called the container) has a container body having a cylindrical portion and a bottom portion that closes one of the ends of the cylindrical portion, and a lid that closes the opening of the other of the ends of the cylindrical portion, and is designed to load multiple ammunition (not shown) in series inside. As ammunition, explosives such as single base propellant, double base propellant, triple base propellant, multi-base propellant, propellant, explosive, and explosive are used.
<容器本体>
本実施形態に係る容器本体4は、筒部2及び当該筒部2の両端のうち一方を塞ぐ底部3を有する。
容器本体の形状は多角形から円形、楕円形で任意であるが、機械的強度(断面2次モーメント)が高い円筒状であれば、厚みを薄くでき軽量となるため、尚よく使用できる。
<Container body>
The container body 4 according to this embodiment has a
The shape of the container body may be any shape, from polygonal to circular or elliptical, but a cylindrical shape with high mechanical strength (second moment of area) is even more usable because it can be made thin and lightweight.
筒部の長さは、10mm以上、100mm以上、又は1000mm以上でよく、内装する火薬の量と保管スペース、形状の観点から、適宜設定することが望ましい。
筒部の厚みは、0.6mm以上、1.0mm以上、又は2mm以上でよく、取り扱い時に変形しない様、適宜設定することが望ましい。
筒部の内径は、4mm以上、10mm以上、又は160mm以上でよく、内容物のサイズや用途や使用環境によって、適宜設定できる。例えば、筒部の長さや直径が4~5mmと小さいものは、筒部の厚みを薄くしても容器本体が破壊する静的内圧(MPa)強度は確保できる。逆に筒部の長さが10mや幅(径等)が1mと大きい場合は、容器本体が破壊する静的内圧(MPa)強度を保つため筒部の厚みを厚くし、脆弱部の強度や容器本体の引張強度を上げる必要がある。
The length of the cylindrical portion may be 10 mm or more, 100 mm or more, or 1000 mm or more, and it is desirable to set it appropriately taking into consideration the amount of explosive to be contained, the storage space, and the shape.
The thickness of the cylindrical portion may be 0.6 mm or more, 1.0 mm or more, or 2 mm or more, and is desirably set appropriately so as not to be deformed during handling.
The inner diameter of the cylindrical portion may be 4 mm or more, 10 mm or more, or 160 mm or more, and can be appropriately set depending on the size of the contents, the purpose, and the usage environment. For example, when the length or diameter of the cylindrical portion is small, such as 4 to 5 mm, the static internal pressure (MPa) strength at which the container body breaks can be ensured even if the thickness of the cylindrical portion is thinned. Conversely, when the length of the cylindrical portion is large, such as 10 m or the width (diameter, etc.) is large, such as 1 m, it is necessary to increase the thickness of the cylindrical portion and increase the strength of the fragile portion and the tensile strength of the container body in order to maintain the static internal pressure (MPa) strength at which the container body breaks.
例えば、円筒体が破壊する静的内圧(MPa)(限界静的内圧)の計算式は、「2×容器円筒体の厚み(mm)×円筒体の周方向引張強度(MPa)÷円筒の内直径(mm)」、若しくは、「2×容器円筒体の厚みmm×脆弱部を入れた円筒体の周方向引張強度(MPa)÷円筒の内直径(mm)」を適用している。上記計算式に用途に合わせた安全率や加工公差を追加し容器の厚みや構造を設計する。容器本体が円筒体以外の容器の形状を適用する場合も、同様に、容器本体が破壊する静的内圧を適宜計算し、容器の厚みや構造を設計する。総じて、容器本体の一部が破断する静的内圧(MPa)の計算を行うことで本実施形態に係る効果を予測することができる。 For example, the formula for calculating the static internal pressure (MPa) at which the cylinder breaks (limit static internal pressure) is "2 x thickness of the cylindrical container body (mm) x circumferential tensile strength of the cylinder (MPa) ÷ inner diameter of the cylinder (mm)" or "2 x thickness of the cylindrical container body mm x circumferential tensile strength of the cylinder with the fragile part (MPa) ÷ inner diameter of the cylinder (mm)". The thickness and structure of the container are designed by adding a safety factor and processing tolerance according to the application to the above formula. Similarly, when the container body is a container shape other than a cylinder, the static internal pressure at which the container body breaks is appropriately calculated, and the thickness and structure of the container are designed. In general, the effect of this embodiment can be predicted by calculating the static internal pressure (MPa) at which part of the container body breaks.
本発明の弾薬用容器の筒部は、繊維強化プラスチックを含むことで、金属を用いる場合よりも軽量化でき、運用性を高めることができる。
また、本発明の弾薬用容器では、任意選択的に、底部及び/又は蓋部も、繊維強化プラスチックを含んでよい。
The barrel of the ammunition container of the present invention contains fiber-reinforced plastic, which makes it lighter than a metal barrel and improves operability.
In ammunition containers of the present invention, the base and/or lid may also optionally comprise fiber reinforced plastic.
繊維強化プラスチックの繊維としては、特に限定されるものではなく、火薬類が反応する異常時には樹脂を粉砕しながら破断させる引張強度と通常時は気密性を確保するため、繊維に含浸若しくは塗布する樹脂と接着するものであれば使用できる。
このような繊維としては、ガラス繊維、金属繊維、パルプ繊維、ケラミック繊維、樹脂繊維、炭素繊維、及び木質繊維からなる群から選択される少なくとも一種を含むことが好ましい。
There are no particular limitations on the fibers of the fiber-reinforced plastic, and any fibers that can adhere to the resin impregnated or applied to the fibers can be used, in order to ensure the tensile strength required to break the resin while pulverizing it in the event of an abnormal reaction of explosives, and to ensure airtightness under normal conditions.
Such fibers preferably include at least one selected from the group consisting of glass fibers, metal fibers, pulp fibers, ceramic fibers, resin fibers, carbon fibers, and wood fibers.
繊維強化プラスチックのプラスチックとしては、特に限定されるものではなく、火薬類が反応する異常時には繊維により粉砕され、通常時は気密性を確保するため、繊維に含浸若しくは塗布し接着するものであれば使用できる。
このようなプラスチックとしては、エポキシ樹脂、POM(ポリアセタール)樹脂、塩化ビニル、不飽和ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、及びフェノール樹脂からなる群から選択される少なくとも一種を含むことが好ましい。
The plastic used for the fiber reinforced plastic is not particularly limited, and any plastic can be used as long as it is capable of being impregnated or coated on the fibers and adhered thereto in order to ensure airtightness under normal circumstances while being crushed by the fibers in the event of an abnormal reaction of explosives.
Such plastics preferably include at least one selected from the group consisting of epoxy resin, POM (polyacetal) resin, vinyl chloride, unsaturated polyester resin, acrylic resin, polycarbonate resin, and phenol resin.
本発明の弾薬用容器は、筒部の軸方向に対して筒部の周方向の引張強度の比(周方向/軸方向)は、2%以上、3%以上、5%以上、8%以上、10%以上、15%以上、20%以上、又は27%以上でよく、250%以下、242%以下、240%以下、230%以下、200%以下、199%以下、150%以下、又は100%以下でよい。特に、この比は2~250%であることが好ましく、3~100%であることがより好ましい。なお、筒部についての引張強度の比は、脆弱部の無い筒体単独についての値である。
引張強度の比が小さすぎると容器が変形し易くなり、大きすぎると爆発時に分離してロケットのように飛散してしまう。引張強度の比を上記範囲とすることで、容器の分離を調整することができる。
In the ammunition container of the present invention, the ratio of the tensile strength in the circumferential direction of the tube to the axial direction of the tube (circumferential direction/axial direction) may be 2% or more, 3% or more, 5% or more, 8% or more, 10% or more, 15% or more, 20% or more, or 27% or more, and may be 250% or less, 242% or less, 240% or less, 230% or less, 200% or less, 199% or less, 150% or less, or 100% or less. In particular, this ratio is preferably 2 to 250%, and more preferably 3 to 100%. The tensile strength ratio for the tube is a value for the tube alone without a weak portion.
If the tensile strength ratio is too small, the container will be easily deformed, and if it is too large, it will separate during an explosion and fly apart like a rocket. By setting the tensile strength ratio within the above range, the separation of the container can be adjusted.
特に、引張強度の比を3~100%とすることにより、容器の分離をより調整し易くなる。すなわち、軸方向の強度を強化することにより、軸方向の接合部の割合を多く調整することが可能となり、気密性の確保と、火薬類が爆轟等したときの周囲に与える損壊の低減とが向上する。 In particular, by setting the tensile strength ratio at 3-100%, it becomes easier to adjust the separation of the containers. In other words, by strengthening the axial strength, it becomes possible to adjust the proportion of the axial joint to a larger extent, ensuring airtightness and reducing damage to the surrounding area when explosives explode, etc.
上記軸方向の引張強度は、JIS K 7033の(C法)に記載するサンプル(板状試験片)を筒部から切出し23℃±2℃、相対湿度50%の環境下で5±1mm/minの速度で引張試験することで求められる。上記円周方向の引張強度は、JIS K 7037の板状試験片(C法)に記載するサンプル(板状試験片)を円筒体から切出し上記同様に引張試験することで求められる。 The axial tensile strength is determined by cutting a sample (plate-shaped test piece) as described in JIS K 7033 (Method C) from the cylinder and conducting a tensile test at a speed of 5±1 mm/min in an environment of 23°C±2°C and relative humidity of 50%. The circumferential tensile strength is determined by cutting a sample (plate-shaped test piece) as described in JIS K 7037 (Method C) from the cylinder and conducting a tensile test in the same manner as above.
後述する脆弱部の引張強度は、脆弱部から破断する様にサンプルをセットし、その時の破断荷重Nを、脆弱部を設けていない部分の面積(mm2)で割り、求めることができる。一般的にフィラメントワインディング製法で容器本体の円筒を製造し、組角度を25.8度にした場合の、円筒の軸方向に対して円筒の円周方向の引張強度の比[%]は、略9%(略30/340MPa)、組角度を54.7度にした場合は略370%(略185/50MPa)、プリプレグを用いた製法とし組角度を0度にした場合の軸方向と円周方向の引張強度の比は略2%(略30/1600MPa)となる。また、容器本体の円筒の組角度を巻層毎に変えた場合の円筒の周方向の引張強度は、各層毎の引張強度の合計に比例する。さらに、巻層毎に組角度を変え円筒に脆弱部を設けた場合は、接合している部分の層毎の破断荷重の合計が、その円筒の周方向の破断荷重と比例する。
繊維の組角度や層毎の繊維の方向・繊維の量、繊維の種類や太さを代える等の手法で、円筒体の軸の方向の強度を高め、周方向の強度を弱める様に繊維又は脆弱部またはその両方を配置すれば、内部圧力の上昇により容器が2分されて飛散することをより確実に防止して、周囲に与える損壊を低減することができる。
The tensile strength of the fragile part described later can be obtained by setting the sample so that it breaks from the fragile part and dividing the breaking load N at that time by the area ( mm2 ) of the part where the fragile part is not provided. In general, when the cylinder of the container body is manufactured by the filament winding method and the braiding angle is 25.8 degrees, the ratio [%] of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is approximately 9% (approximately 30/340 MPa), when the braiding angle is 54.7 degrees, it is approximately 370% (approximately 185/50 MPa), and when the manufacturing method using prepreg is used and the braiding angle is 0 degrees, the ratio of the tensile strength in the axial direction to the circumferential direction is approximately 2% (approximately 30/1600 MPa). In addition, when the braiding angle of the cylinder of the container body is changed for each winding layer, the tensile strength in the circumferential direction of the cylinder is proportional to the sum of the tensile strengths of each layer. Furthermore, when the braiding angle is changed for each winding layer to provide a weakened portion in the cylinder, the sum of the breaking loads for each layer in the joined portion is proportional to the breaking load in the circumferential direction of the cylinder.
By increasing the strength in the axial direction of the cylinder and weakening the strength in the circumferential direction by changing the fiber weave angle, the direction and amount of fiber in each layer, or the type and thickness of fiber, or by arranging the fibers or weak parts, or both, it is possible to more reliably prevent the container from breaking into two and shattering due to an increase in internal pressure, and reduce damage to the surrounding area.
容器本体の筒部は、繊維長10mm以上、好ましくは24mm以上の繊維を用い、樹脂と混合した筒部(図4(1))、若しくは上記と同じ繊維を樹脂と混合しシート状にしたものから作られる筒部(図4(2))としてもよい。この場合、繊維の方向はランダムになり、筒部の軸方向に対して筒部の周方向の引張強度の比が略100%(略150/150MPa)になるが、容器内部において火薬類が部分爆轟した非常時には、筒部に含まれる繊維より筒体の破片が崩れて軽量化されるため、これを用いてもよい。 The cylindrical portion of the container body may be made of fibers having a fiber length of 10 mm or more, preferably 24 mm or more, mixed with resin (Fig. 4 (1)), or made of the same fibers as above mixed with resin and formed into a sheet (Fig. 4 (2)). In this case, the fiber direction is random, and the ratio of the tensile strength in the circumferential direction of the cylindrical portion to the axial direction of the cylindrical portion is approximately 100% (approximately 150/150 MPa), but in the event of an emergency in which the explosives inside the container partially detonate, the fibers contained in the cylindrical portion will cause the cylindrical portion to break into pieces, reducing the weight, so this may be used.
たとえば、図5に示すようにフィラメントワインディング製法で容器本体の円筒体に含まれる繊維の方向を45度にすると、円筒の軸方向に対して円筒の円周方向の引張強度の比が略100%(略150/150MPa)になる。 For example, as shown in Figure 5, when the direction of the fibers contained in the cylindrical container body is set at 45 degrees using the filament winding method, the ratio of tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is approximately 100% (approximately 150/150 MPa).
また、フィラメントワインディング製法により配置された繊維は、容器本体円筒の軸の方向に対し30度になる様に1層巻いた後、次の層では、上記容器本体円筒の上記と同じ軸の方向に対し150度で更巻かれるが、これは、繊維の方向としては、容器本体円筒の軸の方向に対し同じ30度とする。すなわち、フィラメントワインディング製法により配置される容器本体円筒の軸の方向に対し30度の繊維が100%になる。この時円筒の軸方向引張強度は略300MPaに対して円筒の円周方向の引張強度は略54MPaとなり、その比は略18%になる。若しくは巻層ごとに巻き角度(組角度)を変更するか、任意の方向に強化繊維を追加し円筒軸方向と円周方向の強度を変更してもよい。 Fibers arranged by the filament winding method are wound in one layer at 30 degrees to the axial direction of the cylindrical container body, and then in the next layer, they are wound at 150 degrees to the same axial direction of the cylindrical container body, so that the fiber direction is the same 30 degrees to the axial direction of the cylindrical container body. In other words, 100% of the fibers are arranged by the filament winding method at 30 degrees to the axial direction of the cylindrical container body. At this time, the axial tensile strength of the cylinder is approximately 300 MPa, while the circumferential tensile strength of the cylinder is approximately 54 MPa, and the ratio is approximately 18%. Alternatively, the winding angle (braiding angle) can be changed for each winding layer, or reinforcing fibers can be added in any direction to change the strength in the axial and circumferential directions of the cylinder.
これに対し、図6に示すように、横糸・縦糸がある布や織物に樹脂を浸漬させた板(プリプレグ等)をロール状に巻いて製管した場合は、縦糸・横糸の強度や量を任意に変更したプリプレグや積層方法を変更することで、容器本体の円筒の軸方向に対して円筒の円周方向の引張強度の比を、任意に設定することができる。 In contrast, as shown in Figure 6, if a sheet (such as a prepreg) made of cloth or fabric with warp and weft threads soaked in resin is wound into a roll to produce a pipe, the ratio of the tensile strength in the axial direction of the cylinder of the container body to the circumferential direction of the cylinder can be set as desired by changing the prepreg or lamination method to change the strength and amount of the warp and weft threads as desired.
<蓋体>
蓋体5は、容器本体4において筒部2の他方の開口部を塞ぐ。
蓋体は、弾薬用容器内を密閉できるものであれば、その材料や形状は、特に制限されない。例えば、金属製とするほか、プラスチック製、繊維入りプラスチック製、紙製、樹脂含浸紙製、又はゴム製とすることも可能である。ただし、容器本体が破壊する前に蓋体が飛散することを防ぐため、蓋体と容器本体の接合強度は、蓋体に加わる内部から衝撃や圧力よりも高くすることが望ましい。蓋体の強度が確保できない場合は、飛散防止のため、蓋体に脆弱部等を設け圧力を開放し、蓋体の飛散を防止する機構を設けてもよい。鎖繊維より筒部の破片が崩れ軽量化されるため、これを用いてもよい。
<Lid>
The
The material and shape of the lid are not particularly limited as long as it can seal the inside of the ammunition container. For example, in addition to metal, it can be made of plastic, fiber-reinforced plastic, paper, resin-impregnated paper, or rubber. However, in order to prevent the lid from scattering before the container body is destroyed, it is desirable that the bonding strength between the lid and the container body is higher than the impact or pressure applied to the lid from the inside. If the strength of the lid cannot be ensured, a mechanism may be provided in which a fragile part or the like is provided in the lid to release pressure and prevent the lid from scattering. Chain fibers may be used because they break down the fragments of the tube and reduce the weight.
蓋体は本体の上記の筒部と十分な強度(ネジ構造等)で接合されていれば、金属、樹脂、複合材、蓋部への脆弱部の有無は問わず蓋部の飛散を防止できる。蓋体の接着強度は、通常の取り扱い強度や異常時の内部圧力に応じて、選定できる。 If the lid is attached to the above-mentioned tubular part of the main body with sufficient strength (screw structure, etc.), it can prevent the lid from flying off regardless of whether the lid is made of metal, resin, composite material, or has a weak part. The adhesive strength of the lid can be selected according to the normal handling strength and internal pressure during abnormal conditions.
<脆弱部>
本実施形態に係る弾薬用容器1は、筒部2に、少なくとも1つの脆弱部10を備えることが好ましい。弾薬用容器1が、筒部2に脆弱部10を有することで、燃焼ガスの圧力開放開始秒時を調整することができる。
<Weakened Parts>
The
脆弱部は、線状構造、溝状構造、薄肉状構造、繊維を含有しない部分又はこれらの組み合わせの構造を有することが好ましい。
少なくとも一つの脆弱部が、筒部の軸方向、又はらせん方向に設けられていることが好ましい。
The fragile portion preferably has a linear structure, a groove structure, a thin-walled structure, a portion not containing fibers, or a structure of a combination of these.
It is preferable that at least one weakened portion is provided in the axial direction or the helical direction of the cylindrical portion.
脆弱部、例えば線状構造の脆弱部の長さは、筒部の長さの1割以上、5割以上、又は8割以上でよく、内装する火薬の燃焼性能、容器の形状維持に合わせ適宜設定することが望ましい。
脆弱部1個当りの長さは、1mm以下、90mm以下、又は800mm以下でよく、取り扱い時に形状維持できる様、素材に合わせ適宜設定することが望ましい。
脆弱部の幅は、0.1mm以上、2.0mm以上、又は5.0mm以上でよく、脆弱部が加工可能な幅で適宜設定することが望ましい。
The length of the fragile portion, for example a fragile portion having a linear structure, may be at least 10%, at least 50%, or at least 80% of the length of the cylindrical portion, and it is desirable to set the length appropriately in accordance with the combustion performance of the explosive to be placed inside and the maintenance of the shape of the container.
The length of each weakened portion may be 1 mm or less, 90 mm or less, or 800 mm or less, and is desirably set appropriately in accordance with the material so that the shape can be maintained during handling.
The width of the weakened portion may be 0.1 mm or more, 2.0 mm or more, or 5.0 mm or more, and it is desirable to appropriately set the width so that the weakened portion can be processed.
脆弱部は、容器本体筒部に対しての穿設本数は1本でもよいが、容器強度が維持される限り、図1に示すように複数本(例えば、2~15本程度)設けてもよい。脆弱部の長さも、穿設本数に応じて適宜設定すればよい。例えば、脆弱部の穿設本数が比較的少ない(例えば、1~3本程度)場合は長寸にし、脆弱部の穿設本数が比較的多い(例えば、4本以上)場合は短寸にすることもできる。また、脆弱部を複数本穿設する場合は、容器本体の軸方向に等間隔で設けることが好ましい。開口孔を形成しやすく燃焼ガスを効率良く外部へ放出できるからである。 The number of fragile parts perforations in the cylindrical part of the container body may be one, but as long as the container strength is maintained, multiple parts (e.g., 2 to 15 parts) may be provided as shown in Figure 1. The length of the fragile part may be set appropriately according to the number of perforations. For example, if the number of perforations in the fragile part is relatively small (e.g., 1 to 3 parts), the fragile part may be long, and if the number of perforations in the fragile part is relatively large (e.g., 4 or more parts), the fragile part may be short. In addition, if multiple fragile parts are provided, it is preferable to provide them at equal intervals in the axial direction of the container body. This is because it is easier to form opening holes and allows the combustion gas to be released efficiently to the outside.
また、脆弱部は基本的に線状または破線状、好ましくは直線状であるが、容器の形状や内装する火薬類に応じて、湾曲状や螺旋状若しくは両端にYやH字状の切れ込みを形成し、圧力を逃がしやすくこともできる。また、脆弱部は容器本体の軸方向(中心軸)と平行に設けてもよいし、容器本体の軸方向(中心軸)に対し斜め(らせん状)に設けることもでき、容器本体の軸方向に対し、直交方向に脆弱部を設けることもできる。この中でも、脆弱部は、容器本体の軸方向(中心軸)と平行に設けるか、容器本体の軸方向(中心軸)に対し斜め(らせん状)に設けることが、容器本体が分断され、内部に残存した火薬類が燃焼することによって、ロケット状に飛散する可能性を低下させるので好ましい。 The fragile portion is basically linear or broken, preferably linear, but depending on the shape of the container and the explosives contained therein, it can be curved or spiral, or have Y- or H-shaped notches at both ends to facilitate the release of pressure. The fragile portion may be provided parallel to the axial direction (central axis) of the container body, or obliquely (spiral) relative to the axial direction (central axis) of the container body, or the fragile portion can be provided perpendicular to the axial direction of the container body. Of these, it is preferable to provide the fragile portion parallel to the axial direction (central axis) of the container body or obliquely (spiral) relative to the axial direction (central axis) of the container body, since this reduces the possibility of the container body being divided and the explosives remaining inside being burned and scattered like a rocket.
本実施形態では、図1、図2に示すように、脆弱部として、容器本体の軸方向両端部に亘る長寸な破線直線状の貫通孔を、容器本体の軸方向(中心軸)と平行に形成して、筒部へ1、2本設けている。少なくとも1本の、上記脆弱部の長さは、筒部の長さに対し、0.2以上、0.5以上でよく0.8以下、0.6以下であればよい、発火時の燃焼ガスを効率良く外部へ放出することができる。 In this embodiment, as shown in Figures 1 and 2, one or two long, dashed, straight through holes are formed in the tubular portion as fragile portions, extending to both axial ends of the container body and parallel to the axial direction (center axis) of the container body. The length of at least one of the fragile portions is 0.2 or more, preferably 0.5 or more, and may be 0.8 or less, 0.6 or less, relative to the length of the tubular portion, allowing efficient release of combustion gas to the outside upon ignition.
図12に示すように、従来技術の容器本体の筒部には、軸方向に延びる脆弱部は貫通孔と接合部が線状となる様に穿設されており、上記貫通孔は内外貫通状に穿設されている。当該脆弱部を有することにより、弾薬用容器内において弾薬が発火したときに脆弱部が開放され弾薬用容器の内部から燃焼ガスを放出することで内圧上昇を抑制でき、弾薬用容器の破裂を回避することができるとされてきた。 As shown in Figure 12, in the cylindrical part of the container body of the conventional technology, a weak part extending in the axial direction is drilled so that the through hole and the joint are linear, and the through hole is drilled so as to penetrate from the inside to the outside. It has been believed that by having this weak part, when ammunition ignites inside the ammunition container, the weak part opens and releases combustion gas from inside the ammunition container, suppressing the rise in internal pressure and preventing the ammunition container from bursting.
しかしながら、上記したように、本発明者は、容器に内装する火薬の反応形態に応じた、容器の破壊形態を解析し、剛性や物性の違う供試体を製作し、更に実検証した結果、従来技術のスリット構造では、内装する火薬が爆轟反応を起し、衝撃波が発生した場合には、脆弱部が開放する前に容器が破片化し、周囲へ影響を及ぼすほか、衝撃波に耐えるために容器の剛性(厚み)を上げると、弾薬用容器全体の重量が重くなり運搬性が損なわれることを見出し、筒部の繊維強化樹脂材の構造に合わせた脆弱部設置に変更したものを新たに提供するものである。 However, as mentioned above, the inventor analyzed the destruction mode of the container according to the reaction mode of the explosives placed inside the container, produced test specimens with different rigidity and physical properties, and further verified them. As a result, he found that with the slit structure of the conventional technology, when the explosives placed inside cause a detonation reaction and shock waves are generated, the container breaks into fragments before the weak part opens, affecting the surrounding area, and that if the rigidity (thickness) of the container is increased to withstand the shock waves, the weight of the entire ammunition container becomes heavy and portability is impaired. Therefore, he newly provides a modified weak part installation that matches the structure of the fiber-reinforced resin material of the tube.
図3に、本実施形態に係る弾薬用容器が有する脆弱部の構造の例を示す。図3(1)に示すように脆弱部を貫通孔とする場合は、図2に示す貫通孔の長さと接合部の長さの比を、母材の引張強度に掛けたものと比例した脆弱部の強度が実現される。 Figure 3 shows an example of the structure of the weak part of the ammunition container according to this embodiment. When the weak part is a through hole as shown in Figure 3 (1), the strength of the weak part is proportional to the ratio of the length of the through hole to the length of the joint as shown in Figure 2 multiplied by the tensile strength of the base material.
脆弱部を図3(2)に示すように溝状(薄肉状)、あるいは、図3(3)に示すように積層構造による薄肉構造とする場合は、加工前の引張強度と、溝加工後の非貫通部分の引張強度の比と比例した脆弱部の強度が実現される。また、図3(4)に示すように、脆弱部を非貫通孔として繊維が分断され引張強度が一部弱くなる構造とする場合は、脆弱部と非脆弱部の引張(接着)強度の比と比例した脆弱部の強度が実現される。また、図3(5)に示すように、筒体を角筒状(多角形)とした場合、容器本体の角部は、内部圧力が発生した場合に応力が集中した脆弱部の強度が実現される。 When the fragile part is grooved (thin) as shown in Figure 3 (2) or laminated to a thin structure as shown in Figure 3 (3), the strength of the fragile part is proportional to the ratio of the tensile strength before processing to the tensile strength of the non-penetrating part after groove processing. When the fragile part is a non-penetrating hole with the fibers broken and the tensile strength weakened in some parts as shown in Figure 3 (4), the strength of the fragile part is proportional to the ratio of the tensile (bonding) strength of the fragile part to the non-fragile part. When the cylinder is made into a square cylinder (polygon) as shown in Figure 3 (5), the corners of the container body have the strength of the fragile part where stress is concentrated when internal pressure is generated.
<封止材>
弾薬用容器において、当該脆弱部が、封止材によって封止されていることが好ましい。
従来技術の弾薬用容器の筒部外周面には、貫通孔を外面から封止するように板状の封止材が接合される場合がある。封止材は、典型的には、貫通孔の開口面積より大寸であり、貫通孔の外周部において容器本体へ接着ないし溶接等によって接合されている。封止材は、典型的には、容器本体よりも引張強度が低い素材からなる。弾薬用容器内において弾薬が発火した際に、内圧上昇に伴って他の部位よりも優先的に破損されなければならないためである。すなわち、貫通孔及び封止材は、脆弱部に含まれる。
<Sealing material>
In the ammunition container, the fragile portion is preferably sealed with a sealant.
In some cases, a plate-shaped sealant is attached to the outer periphery of the cylindrical part of the ammunition container of the prior art so as to seal the through hole from the outside. The sealant is typically larger than the opening area of the through hole, and is attached to the container body at the outer periphery of the through hole by adhesion, welding, or the like. The sealant is typically made of a material having a lower tensile strength than the container body. This is because when ammunition ignites inside the ammunition container, the sealant must be broken preferentially over other parts as the internal pressure rises. In other words, the through hole and the sealant are included in the fragile part.
これに対し、本実施形態に係る繊維強化樹脂製の弾薬用容器では、図3(6)に示すように、貫通孔の隙間に、封止材を充填することで、容器を封止してもよい。また、脆弱部を図3の様な溝状とし、接合された構造で容器を封止してもよい。更に、上記溝部に封止材を塗布し容器を封止してもよい。もしくは、繊維強化されない部分を設け、脆弱部とすることもできる。 In contrast, in the fiber-reinforced resin ammunition container according to this embodiment, the gap in the through hole may be filled with a sealant to seal the container, as shown in FIG. 3 (6). The fragile portion may be grooved as shown in FIG. 3, and the container may be sealed by joining the grooves. Furthermore, the container may be sealed by applying a sealant to the groove. Alternatively, a portion that is not fiber-reinforced may be provided to serve as the fragile portion.
脆弱部からの気密を保つための封止材の材料は、アルミニウムや銅などの金属製、又は充填剤、塗装剤、接着剤、コーキング剤などの合成樹脂製又はFRPなどの複合材でよく、これを用いて容器を封止してもよい。また、図3(7)に示すように、上記封止材をテープ状や板状にしたもので貫通孔を覆い容器を封止してもよい。 The material of the sealant to keep the weak part airtight may be a metal such as aluminum or copper, or a synthetic resin such as a filler, paint, adhesive, or caulking agent, or a composite material such as FRP, and the container may be sealed using this. Also, as shown in FIG. 3 (7), the container may be sealed by covering the through hole with the above sealant in the form of a tape or plate.
封止材として外部からの衝突等に弱いテープ等を用いる場合は、運用方法に応じて、封止部を保護する機構を設けるのが好ましい。例えば図3(8)に示すように、テープの上にさらに保護板が配されていてもよい。
また、繊維が分断され繊維で強化されていない接合部や溶接部等で容器を封止してもよい。
When using a sealant such as a tape that is vulnerable to external impacts, it is preferable to provide a mechanism for protecting the sealant depending on the method of use. For example, as shown in Fig. 3 (8), a protective plate may be further provided on the tape.
Alternatively, the container may be sealed at a joint or weld where the fibers are interrupted and not reinforced with fibers.
封止材を設ける場合、その材料としては、好ましくは熱により分解燃焼する接着剤、充填剤であり、最も好ましくは塗装剤である。燃焼ガスで容器内の圧力上昇が発生すると、封止材が燃焼ガス(の熱)で破壊され、脆弱部が開口し、燃焼ガスが開放されやすくなる。 When a sealant is used, the material is preferably an adhesive or filler that decomposes and burns when exposed to heat, and most preferably a paint. When the combustion gas causes a rise in pressure inside the container, the sealant is destroyed by the combustion gas (heat), opening the weak parts and making it easier for the combustion gas to be released.
以下、本実施形態に係る繊維強化樹脂製の弾薬用容器の作用について説明する。
図1に示す本発明の一実施形態である弾薬用容器1は、容器本体4若しくは容器本体4に設けた脆弱部10が0.2~2.0MPaの静的内圧で破断し、開口を生じることを特徴とする。
The operation of the fiber-reinforced resin ammunition container according to this embodiment will be described below.
The
弾薬用容器の運搬時や一時保管時等の取扱時において、衝撃や温度上昇等の原因により弾薬用容器内の弾薬が燃焼反応を引き起こした場合、発生する燃焼ガスによって弾薬用容器内の圧力が上昇する。次いで、燃焼ガスにより容器本体又は容器本体に設けられた脆弱部が、0.2MPa以上、好ましくは0.4MPa以上、より好ましくは0.6MPa以上、そして2.0MPa以下、好ましくは1.5MPa以下、より好ましくは1.0MPa以下で、破断を開始し、脆弱部を設けた場合には脆弱部の方向や強度が弱い方向に所定の大きさで開口を生じ、燃焼ガスが容器安全内圧以下で外部に放出される。 When the ammunition container is transported or temporarily stored, if the ammunition in the ammunition container undergoes a combustion reaction due to an impact or temperature rise, the pressure inside the ammunition container will rise due to the combustion gases generated. Next, the container body or a weak part provided in the container body will begin to break due to the combustion gases at 0.2 MPa or more, preferably 0.4 MPa or more, more preferably 0.6 MPa or more, and 2.0 MPa or less, preferably 1.5 MPa or less, more preferably 1.0 MPa or less. If a weak part is provided, an opening of a specified size will be created in the direction of the weak part or in the direction of the weak strength, and the combustion gas will be released to the outside at or below the safe internal pressure of the container.
破断する静的内圧が0.2MPa未満であると、落下強度が不十分となり、気密性が失われ、通常の取り扱いができない。これにより、弾薬用容器の内圧上昇が抑制されるので、弾薬用容器の爆発、すなわち、破片の飛散が抑制され、安全性が高まる。逆に2.0MPaを超えると、エネルギーを溜め込んで衝撃波が発生し、容器の耐圧を超え任意の場所から破壊され破片や爆風を生じ、破片飛散する。これにより周囲に影響を及ぼす可能性が高まる。破断し、開口を生じる静的内圧が上記範囲であることで、運用性、気密性を維持しつつ、爆破した際の破片飛散を抑えて周囲に与える損壊を低減することができる。 If the static internal pressure at which it breaks is less than 0.2 MPa, the drop strength will be insufficient, it will lose its airtightness, and normal handling will be impossible. This will prevent the internal pressure of the ammunition container from increasing, which will prevent the container from exploding, i.e., scattering of fragments, and increase safety. Conversely, if it exceeds 2.0 MPa, energy will be accumulated and shock waves will be generated, exceeding the pressure resistance of the container, causing it to break from any point, generating fragments and blast waves, and fragments will scatter. This increases the possibility of affecting the surrounding area. By keeping the static internal pressure at which it breaks and opens within the above range, it is possible to maintain operability and airtightness while suppressing scattering of fragments in the event of an explosion, thereby reducing damage to the surrounding area.
上記に加え、所定の速度を超えた金属片が弾薬用容器に貫入した場合、弾薬用容器内の弾薬が部分爆轟し、発生する衝撃波によって圧力が急上昇し、該弾薬用容器は、容器や蓋に設けられた脆弱部の有無に因らず破片化する。
この時、筒部が繊維と樹脂の繊維強化樹脂製であれば、繊維が樹脂を粉砕し、飛散する破片が軽量化され、若しくは、破片が発生せず、周囲へ与える影響をより小さく抑えることができる。また、繊維の方向を筒部の軸に近い角度に配置していれば、更に大きな衝撃波が発生した場合でも容器本体が2分されロケット状に飛散することを防止するため、周囲への安全性が高まる。
In addition to the above, if a metal fragment traveling faster than a certain speed penetrates an ammunition container, the ammunition inside the container will partially detonate, generating a shock wave that will cause a sudden rise in pressure and fragment the container, regardless of whether or not there is a weakened portion in the container or lid.
In this case, if the tube is made of fiber-reinforced resin, the fibers will crush the resin, making the flying fragments lighter, or no fragments will be generated, minimizing the impact on the surroundings. Also, if the direction of the fibers is arranged at an angle close to the axis of the tube, even if a larger shock wave occurs, the container body will be divided into two and prevented from flying off like a rocket, increasing safety for the surroundings.
また、蓋体は本体の上記の筒部と十分な強度(ネジ構造等)で接合されていれば、金属、樹脂、複合材、蓋部への脆弱部の有無は問わず蓋部の飛散を防止できる。蓋体の接着強度は、通常の取り扱い強度や異常時の内部圧力に応じて、選定できる。 In addition, if the lid is joined to the above-mentioned tubular portion of the main body with sufficient strength (e.g., a screw structure), it is possible to prevent the lid from scattering regardless of whether the lid is made of metal, resin, composite material, or has a weak portion. The adhesive strength of the lid can be selected according to normal handling strength and internal pressure in the event of an abnormality.
さらに、従来の弾薬用容器では、内装する弾薬が爆轟反応した場合、金属容器の厚みを数倍、例えば、略3倍に増加させることで、飛散する破片を抑えることが出来るが、容器が重くなり運搬性が悪化してしまう。
これに対し、繊維と樹脂の軽量素材を選択した本実施形態に係る弾薬用容器であれば、容器が重くなることを防ぎ、運搬性を保つことができる。
Furthermore, in the case of conventional ammunition containers, if the ammunition contained therein undergoes an explosive reaction, the scattering fragments can be suppressed by increasing the thickness of the metal container by several times, for example by approximately three times, but this makes the container heavy and makes it difficult to transport.
In contrast, the ammunition container according to this embodiment, which uses lightweight materials such as fiber and resin, prevents the container from becoming heavy and maintains portability.
以下の実施例等により本発明を具体的に説明する。 The present invention will be specifically explained with reference to the following examples.
実施例で使用した評価方法を以下に説明する。 The evaluation methods used in the examples are described below.
[運搬性の評価]
弾薬等の内容物が入った場合は、重量物となるため、有事の際、総重量が重要となる。
今回は、弾薬等の内容物がない全長1100mm弾薬用容器のみの重量を評価した。
筒部の材質を樹脂や複合材とし、蓋部と底部は金属製として評価した。
◎:既存模擬品(金属製)より軽い(10.9kg以下)
○:既存模擬品(金属製)と略同重量(略11.0kg)
×:既存模擬品(金属製)より重い(11.5kg以上)
[Portability evaluation]
If the bag contains ammunition or other contents, it will become heavy, so the total weight will be important in the event of an emergency.
This time, the weight of only the 1100 mm long ammunition container, without any contents such as ammunition, was evaluated.
The evaluation was performed with the cylindrical portion made of resin or a composite material, and the lid and bottom made of metal.
◎: Lighter than the existing imitation (made of metal) (10.9 kg or less)
○: Approximately the same weight as the existing imitation (made of metal) (approximately 11.0 kg)
×: Heavier than the existing imitation (made of metal) (11.5 kg or more)
(安全性評価の試験手順)
安全性評価試験は、安全性1の評価(フラグメントインパクト試験)と安全性2の評価(スロークックオフ試験)の2つを実施した。ただし、評価を一部クリアしなかったものは、その他の評価を省略した。
(Safety evaluation test procedures)
The safety evaluation tests included two evaluations: Safety 1 (fragment impact test) and Safety 2 (slow cook-off test). However, if some of the evaluations were not cleared, the other evaluations were omitted.
[安全性1の評価]
安全性1の評価では、図7に示すように、装薬に高温の金属片が当たったときの反応性評価であるフラグメントインパクト試験を使用した。
容器が外部から衝撃を受けて爆発する際の破片数を測定する。脆弱部からの破損(影響)は実質的に関係なく、容器全体の破片飛び散りを測定した。スリット以外の部分から破壊が生じる場合、繊維があるために、細かい破片になって安全である。繊維が小さいと、長い繊維が入っていないものと似てくる。
[
In the evaluation of
Measures the number of fragments that break apart when a container explodes due to an external impact. Damage (impact) from weak parts is virtually irrelevant, and measures the scattering of fragments throughout the container. If destruction occurs from a part other than the slit, the fibers cause the container to break into small fragments, making it safe. If the fibers are small, the container will be similar to one without long fibers.
図8に示すように、発射装薬入りの弾薬用容器に所定の金属片を1830m/秒の速度で衝突させ、そのときの反応を確認する試験を実施した。かかるフラグメントインパクト試験及び評価は、STANAGに準拠した条件で実施した。 As shown in Figure 8, a test was conducted to collide a specified metal fragment with an ammunition container containing a propellant charge at a speed of 1,830 m/s and confirm the reaction at that time. Such fragment impact tests and evaluations were conducted under conditions compliant with STANAG.
(安全性1の評価)
重量が150gを超える破片の内、15m以上飛散した破片の数と容器本体の分裂状態から、下記の評価基準で安全性を評価した。
○:15m以上飛散した150g以上の破片数が0個
×:15m以上飛散した150g以上の破片数が1個以上発生した。
フラグメントインパクト試験の結果の一例を図7に示す。
(Evaluation of Safety 1)
Among the fragments weighing more than 150g, the number of fragments that flew 15m or more and the state of fragmentation of the container body were used to evaluate safety according to the following criteria.
◯: 0 fragments of 150 g or more that were scattered over 15 m or more. ×: 1 or more fragments of 150 g or more that were scattered over 15 m or more were generated.
An example of the results of the fragment impact test is shown in FIG.
[安全性2の評価]
安全性2の評価では、図7に示すように、装薬が高温状態で保持された場合の反応性評価であるスロークックオフ試験を使用した。
内部爆発による容器の破損の仕方を評価する。容器が内部から爆発する際の破片数を測定した。この試験は火災等を想定した試験であり、脆弱部等の特定部分から破損が発生し、脆弱部が無いと爆発してしまう。
[
In the evaluation of
Evaluates how a container breaks down due to an internal explosion. The number of fragments generated when a container explodes from the inside is measured. This test is based on the assumption of a fire, etc., and breakage occurs from specific parts such as weak parts, and an explosion will occur if there are no weak parts.
図7に示すように、発射装薬入りの弾薬用容器をリボンヒーターで巻き更に断熱材で包み、内装する火薬が発火するまで1時間毎に3.3度の速度で昇温させ、反応状態を確認する試験を実施した。かかるスロークックオフ試験及び評価は、STANAGに準拠した条件で実施した。 As shown in Figure 7, a test was conducted to confirm the reaction state by wrapping an ammunition container containing a propellant charge in a ribbon heater and then wrapping it in insulating material, and raising the temperature at a rate of 3.3 degrees per hour until the explosives inside ignite. The slow cook-off test and evaluation were conducted under conditions compliant with STANAG.
(安全性2の評価)
重量が150gを超える破片の内、15m以上飛散した破片の数と容器本体の分裂状態から、下記の評価基準で安全性を評価した。
<全体>
○:15m以上飛散した150g以上の破片数が0個
×:15m以上飛散した150g以上の破片数が1個以上
<容器本体の分裂状態>
○:容器本体が脆弱部に沿って割れ、容器がその場に留まる。
×:容器本体が周方向に割れ、容器が2分され飛散する。
(Evaluation of Safety 2)
Among the fragments weighing more than 150g, the number of fragments that flew 15m or more and the state of fragmentation of the container body were used to evaluate safety according to the following criteria.
<Overall>
○: 0 fragments of 150g or more scattered over 15m ×: 1 or more fragments of 150g or more scattered over 15m <Breakdown state of container body>
◯: The container body cracked along the fragile portion, and the container remained in place.
×: The container body cracks in the circumferential direction, and the container is divided into two and scattered.
[容器落下強度の評価]
(落下試験)
内容物の入った包装容器を規定の高さから自然落下させる試験を実施した。具体的には、包装容器の中に発射装薬を入れ、I-TOPによる既定の高さ(12m、2.1m、1.5m)と規定の角度(水平、垂直、斜め)になるように包装容器をセットし、落下する地面はコンクリートに厚さ20mmの鉄板を敷いて自然落下させ、落下後の状況を判断した。例えば、貫通孔が長い包装容器は、変形し装薬が破壊され変形した箇所から内容物(火薬)が放出されるため輸送上問題となる。弾薬用包装容器は、様々な条件下でも、安全に装薬を運搬でき、その後保管できる構造でなければならない。落下後の状況を下記の評価指標で判断した。
12m落下によって、包装容器から内容物が飛散しないこと
2.1m落下後も、発射装薬を取りだすことができ、かつ安全に射撃ができること
1.5m落下後も、包装容器に所定の気密性(0.02MPaで空気リークがないこと)を有すること
[Evaluation of container drop strength]
(Drop test)
A test was conducted in which a package containing contents was allowed to fall naturally from a specified height. Specifically, a propellant charge was placed in the package, and the package was set to a specified height (12 m, 2.1 m, 1.5 m) and a specified angle (horizontal, vertical, diagonal) according to I-TOP. The ground on which the package fell was concrete with a 20 mm thick iron plate laid on it, and the package was allowed to fall naturally, and the situation after the fall was judged. For example, a package with a long through hole becomes deformed, the propellant is destroyed, and the contents (gunpowder) are released from the deformed part, which causes problems in transportation. Ammunition packages must be structured to be able to safely transport the propellant under various conditions and to store it thereafter. The situation after the fall was judged using the following evaluation indexes.
The contents of the packaging container must not scatter when dropped 12m. 2. Even after a drop of 1m, the propellant charge must be removable and the gun must be able to be fired safely. Even after a drop of 1.5m, the packaging container must have a specified airtightness (no air leaks at 0.02MPa).
(容器落下強度の評価)
以下の評価基準に従い、容器落下強度を評価した:
◎:上記3つ全ての基準を十分に満足する
○:上記3つの内2つの基準を十分に満足する
△:上記3つの内1つの基準を十分に満足する
×:上記3つの基準を全て満足しない。
(Evaluation of container drop strength)
The container drop strength was evaluated according to the following criteria:
⊚: All three of the above criteria are fully satisfied. ◯: Two of the above three criteria are fully satisfied. Δ: One of the above three criteria are fully satisfied. ×: None of the above three criteria are satisfied.
[気密性評価]
(気密性試験)
以下の各種封止材はガラスエポキシ製に脆弱部を設けた筒部を準備し、気密性能を事前検討した。上記気密性試験(0.02MPaで空気リークなし)を実施し、気密性を有することを確認した。 また、実運用時に弾薬用容器同士が衝突することを想定し、一方の弾薬用容器を50mmの高さから弾薬用容器の封止部に落下させ、上記同様の気密性試験を実施し、気密性が確保されているか確認する実運用気密試験も実施した。
[Airtightness evaluation]
(Airtightness test)
For the following sealing materials, a tube made of glass epoxy with a weak part was prepared, and the airtightness was examined in advance. The above airtightness test (no air leak at 0.02 MPa) was conducted, and it was confirmed that the material had airtightness. In addition, assuming that ammunition containers collide with each other during actual operation, one ammunition container was dropped from a height of 50 mm onto the sealing part of the ammunition container, and the same airtightness test as above was conducted to confirm that airtightness was ensured.
(気密性の評価)
○:気密性試験、実運用気密試験共に気密性がある。
△:気密性試験時のみに気密性がある。
×:気密性試験、実運用気密試験共に気密性がない。
(Airtightness evaluation)
○: Airtight in both airtightness tests and practical airtightness tests.
△: Airtight only during airtightness test.
×: No airtightness in both the airtightness test and the practical airtightness test.
気密性試験の結果を表1に示す。 The results of the airtightness test are shown in Table 1.
[比較例1]
容器本体の材質1をSPCC鋼板とし、製管方法を図11に示すようならせん状とし、円筒の軸方向に対して円筒の円周方向の引張強度の比[%]100%にし、容器本体の筒部に、破線状の脆弱部(A:脆弱部の長さ900mm、B:貫通孔の隙間0.1mm、C:貫通孔1個当たりの長さ50mm、D:貫通孔間の接合部長さ3mmピッチ)を円筒の軸と同じ方向に1つ設け塗装剤で封止し、トリプルベースの発射装薬装填し、更に、両端を蓋で封止して弾薬用容器を作製した。
得られた容器の運搬性、安全性1、安全性2、落下強度を上記評価試験により評価した。容器質量が略11kgであるため運搬性は○、結果を以下の表2に示す。安全性1の評価では、15m以上飛散した150g以上の破片数が3個発生したため安全性は×であった。安全性2の評価は、○であった。落下強度は◎であった。
比較例1における安全性の試験結果を、図10(1)に模式的に示す。
[Comparative Example 1]
The
The resulting container was evaluated for transportability,
The results of the safety test in Comparative Example 1 are shown diagrammatically in FIG.
[比較例2]
比較例1の容器の脆弱部の方向をらせん状にしたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
結果は比較例1同様、容器質量が略11kgであるため運搬性は○、安全性1の評価では、15m以上飛散した150g以上の破片数が3個発生したため安全性は×であった。安全性2の評価は、○であった。落下強度は◎であった。
[Comparative Example 2]
The container was tested in the same manner as in Comparative Example 1, except that the direction of the weakened portion of the container in Comparative Example 1 was changed to a spiral shape. The results are shown in Table 2 below.
The results were the same as in Comparative Example 1. Since the container mass was approximately 11 kg, the transportability was rated as ○, and in the evaluation of
[比較例3]
比較例1の容器に破片の貫入速度の緩和を目的としてポリウレア樹脂を5mm塗布したことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×で、安全性1の評価では、15m以上飛散した150g以上の破片数が4個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 3]
The test was carried out in the same manner as in Comparative Example 1, except that a 5 mm layer of polyurea resin was applied to the container of Comparative Example 1 in order to reduce the penetration rate of the fragments. The results are shown in Table 2 below.
The container mass was approximately 12 kg, so the transportability was rated as x, and in the
[比較例4]
容器本体の材質1をSPHC鋼板(比較例1と同等)とし、厚み、製管方法を図6に示すような平板ロール状に代えたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×で、安全性1の評価では、150g以上の金属破片が2個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 4]
The
The container mass was approximately 12 kg, so the transportability was rated as x, and in the
[比較例5]
容器本体の材質1をSPHC鋼板(比較例1と同等)とし、厚み、製管方法を代えたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略14kgであるため運搬性は×であった。安全性の評価1と2で容器は破片化せず安全性は共に○であった。また、落下強度も◎であった。
比較例5における安全性の試験結果を、図10(2)に模式的に示す。
[Comparative Example 5]
The
The container's mass was approximately 14 kg, so the transportability was rated as ×. The container did not break into pieces, and the safety was rated as ○ for both safety ratings of 1 and 2. The drop strength was also rated as ⊚.
The results of the safety test in Comparative Example 5 are shown diagrammatically in FIG.
[比較例6]
容器本体の材質1をポリカーボネートにし、筒部厚みを5mmに代え、脆弱部の溝の幅を2mm、溝の深さを3.25mmに代え封止材を無くしたことを除き、比較例5と同様に評価した。結果を以下の表2に示す。
容器質量が略10.5kgであるため運搬性は◎であった。容器本体を樹脂とした場合、安全性1の評価で樹脂部はほぼ変形せずに割れ、鋭利な大小の破片を生じて飛散した。15m以上飛散した150g以上の破片数が5個発生しため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 6]
The container body was evaluated in the same manner as in Comparative Example 5, except that the
The container mass was approximately 10.5 kg, so transportability was rated as excellent. When the container body was made of resin, the resin part broke with almost no deformation, generating sharp fragments of various sizes that scattered, in the evaluation of
[比較例7]
容器本体の材質1をエポキシ樹脂に代えたことを除き、比較例6と同様に、評価した。結果を以下の表2に示す。
容器を全て樹脂とした場合、容器質量が略10.5kgであるため運搬性は◎であった。安全性1の評価で樹脂部はほぼ変形せずに破片化し、破片の形状及び大きさを制御できず、15m以上飛散した150g以上の破片数が10個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 7]
Except for replacing the
When the container was made entirely of resin, the container mass was approximately 10.5 kg, and so transportability was rated as excellent. In the
[比較例8]
容器本体の材質1を厚紙とし、厚みを10mmに代え、脆弱部の溝の幅を2mm、溝の深さを7.5mmに代え、製管方法を図9の様に代えたことを除き、比較例7と同様に評価した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×であった。安全性1、2の評価で5g~50gの軽量な破片が飛散したため安全性は共に○であった。しかし、繊維自体に空隙があり、気密が保てないため、落下強度の評価は△であった。
[Comparative Example 8]
The evaluation was performed in the same manner as in Comparative Example 7, except that the
The container weighed approximately 12 kg, so portability was rated as x. Safety was rated as 0 for both
[比較例9]
容器の材質をガラス繊維とエポキシ樹脂にし、製管方法を図5に示すようなワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側0.5mmの巻角は75度、その外側1.5mmは35度とし、円筒の厚みを2mmにし、脆弱部の形状を溝状にし、円筒の外側から幅2mmの溝を深さ1.5mm長さ900mmに渡り1本穿設し、円筒の軸方向に対して円筒の円周方向の引張強度の比を89%にし、容器本体が破壊する静的内圧(限界静的内圧)を略6.5MPaに代え、封止材を用いなかったことを除き、比較例8と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価は、○であったが、安全性2の評価では蓋部が飛散し、15m以上飛散した150g以上の破片数が2個発生したため×であった。安全性2の評価が×であったため、落下強度の評価は実施しなかった。
[Comparative Example 9]
The materials of the container were glass fiber and epoxy resin, the tube was wound as shown in Fig. 5, the direction of the fibers during the winding was changed for each winding layer, the winding angle for the inner 0.5 mm was 75 degrees and for the outer 1.5 mm was 35 degrees, the thickness of the cylinder was 2 mm, the shape of the fragile part was grooved, a
The container's mass was approximately 10.1 kg, so its transportability was rated as excellent. The
[比較例10]
繊維の組角度を円筒の軸に対し35度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部の引張強度に対し、母材の周方向の引張強度を60%にし、容器本体が破壊する静的内圧を略2.2MPaに代えたことを除き、比較例9と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価では、15m以上飛散した150g以上の破片数は発生しなかったため○であった。安全性2の評価では、破片が15m以上飛散したため全体としては×であった。容器本体の分裂状況は、容器本体が2分されなかったため○であった。容器の落下強度の評価は、◎であった。
[Comparative Example 10]
The evaluation was the same as in Comparative Example 9, except that the fiber braid angle was set to 35 degrees with respect to the axis of the cylinder, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was set to 27%, the tensile strength in the circumferential direction of the base material was set to 60% of the tensile strength of the brittle portion, and the static internal pressure at which the container body breaks was changed to approximately 2.2 MPa. The results are shown in Table 2 below.
The container's mass was approximately 10.1 kg, so its transportability was rated as excellent. In the
[比較例11]
脆弱部を設けず、容器本体が破壊する静的内圧を略3.7MPaに代えたことを除き、比較例10と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価では、15m以上飛散した150g以上の破片数は発生しなかったため○であった。安全性2の評価では、破片が15m以上飛散したため全体としては×であった。容器本体の分裂状況は、容器本体が2分されなかったため○であった。容器の落下強度の評価は、◎であった。
[Comparative Example 11]
Except for the fact that no fragile portion was provided and the static internal pressure at which the container body breaks was changed to approximately 3.7 MPa, evaluation was performed in the same manner as in Comparative Example 10. The results are shown in Table 2 below.
The container's mass was approximately 10.1 kg, so its transportability was rated as excellent. In the
[実施例1]
円筒体の厚みを0.5mmにし、円筒の軸方向に対して円筒の円周方向の引張強度の比を2%になる様に繊維を配置したプリプレグ(繊維入り樹脂板)を用いて製管方法を図6の様に平板ロールに代え、脆弱部を設けず、容器本体が破壊する静的内圧を略0.2MPaに代えたことを除き、比較例11と同様に評価した。結果を以下の表3に示す。
容器質量が略9.6kgであるため運搬性は◎であった。安全性1、2の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は両方とも○であった。しかし、容器落下強度の評価の落下後に容器本体の一部から空気漏れが発生したため△であった。繊維強化樹脂は、繊維の方向と違う方向に対しては弱く、落下衝撃に耐えられなかった。
[Example 1]
The thickness of the cylinder was 0.5 mm, a prepreg (fiber-reinforced resin plate) was used in which the fibers were arranged so that the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was 2%, the pipe-making method was changed to a flat roll as shown in Figure 6, no fragile portion was provided, and the static internal pressure at which the container body breaks was changed to approximately 0.2 MPa, and evaluation was performed in the same manner as in Comparative Example 11. The results are shown in Table 3 below.
The container's mass was approximately 9.6 kg, so portability was rated as excellent. In the safety ratings of 1 and 2, no fragments weighing more than 150 g were scattered more than 15 m, so safety was rated as good for both. However, in the container drop strength rating, air leakage occurred from part of the container body after the container was dropped, so the rating was fair. Fiber-reinforced resin is weak in directions other than the direction of the fibers, and could not withstand the impact of a drop.
[実施例2]
円筒体の厚みを2.0mmに代え、容器本体が破壊する静的内圧を略0.8MPaに代えたことを除き、実施例1と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1、2の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は両方とも○であった。しかし、容器落下強度の評価は、△であった。繊維強化樹脂は、繊維の方向と違う方向に対しては弱く、厚みを上げても、落下衝撃に耐えられなかった。
[Example 2]
Except for changing the thickness of the cylindrical body to 2.0 mm and changing the static internal pressure at which the container body breaks to about 0.8 MPa, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 3 below.
The container's mass was approximately 10.1 kg, so its transportability was rated as excellent. In the safety ratings of 1 and 2, no fragments weighing more than 150 g were scattered more than 15 m, so the safety ratings were both excellent. However, the container's drop strength was rated as fair. Fiber-reinforced resin is weak in directions other than the direction of the fibers, and even when the thickness was increased, it could not withstand the impact of a drop.
[実施例3]
円筒の軸方向に対して円筒の円周方向の引張強度の比を1965%になる様に繊維を配置したプリプレグ(繊維入り樹脂板)を用いて製管方法を図6の様に平板ロールに代え、容器本体の円筒の軸方向に切断部97mm、接合部3mmの間隔で900mmに渡り破線スリットを1本穿設し、脆弱部の貫通孔の隙間に塗装剤を入れ封止し、容器本体が破壊する静的内圧を略1.2MPaに代えたことを除き、実施例2と同様に評価した。結果を以下の表3に示す。
安全性1の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は○であった。安全性2の評価は15m以上飛散した150g以上の破片数は発生しなかったが、容器本体が円周方向に割れ、容器が2分し飛散したため、全体評価は○で、容器本体の分裂状態は×であった。安全性2の評価が×であった。落下強度の評価は、高さ12mからの落下で容器が割れ、内装物が容器外に放出されたため、〇であった。繊維の方向を変え、周方向の強度を高め過ぎると、安全性や落下衝撃に対し、弱いことが分かった。
[Example 3]
A prepreg (fiber-reinforced resin plate) in which fibers were arranged so that the ratio of tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was 1965% was used, the pipe-making method was changed to a flat roll as shown in Fig. 6, a broken line slit was drilled in the axial direction of the cylinder of the container body over a length of 900 mm with an interval of 97 mm at the cut portion and 3 mm at the joint portion, a coating agent was poured into the gap of the through hole in the weak portion to seal it, and evaluation was performed in the same manner as in Example 2, except that the static internal pressure at which the container body breaks was changed to approximately 1.2 MPa. The results are shown in Table 3 below.
In the evaluation of
[実施例4]
容器の材質をガラス繊維とエポキシ樹脂にし、製管方法をワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側0.5mmの巻角は30度、その外側1.5mmは65度とし、円筒の厚みを2mmにし、脆弱部の形状を溝状にし、円筒の外側から幅2mmの溝を深さ1.7mm長さ900mmに渡り1本穿設し、円筒の軸方向に対して円筒の円周方向の引張強度の比を242%にし、容器本体が破壊する静的内圧を略0.7MPaに代え、封止材を用いなかったことを除き、比較例9と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価は、○であったが、安全性2の評価では、15m以上飛散した150g以上の破片が発生しなかったため〇であった。落下強度の評価は、1.5m落下後に容器本体の一部から空気漏れが発生しため、〇であった。
繊維の方向を変え、周方向の強度を高め過ぎると、安全性や落下衝撃に対し、弱いことが分かった。
[Example 4]
The materials of the container were glass fiber and epoxy resin, the tube-making method was winding, the direction of the fibers during winding was changed for each winding layer, the winding angle for the inner 0.5 mm was 30 degrees and for the outer 1.5 mm was 65 degrees, the thickness of the cylinder was 2 mm, the shape of the fragile part was grooved, a
The container's mass was approximately 10.1 kg, so portability was rated as excellent.
It was found that changing the fiber direction and increasing the circumferential strength too much made the product vulnerable to safety and impact shocks from falling.
[実施例5]
容器本体の円筒の軸方向に切断部90mm、接合部10mmの間隔で900mmに渡り破線スリットを1本穿設し、脆弱部の貫通孔の隙間に塗装剤を入れ封止し、容器本体が破壊する静的内圧を略0.4MPaに代えたことを除き、比較例10と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価で15m以上飛散した150g以上の破片数は発生しせず、容器本体も2分されなかったため、安全性は○で、安全性2の評価で脆弱部から大きく開口し、蓋部が飛散せず、容器本体も2分されなかったため安全性は○であった。容器落下強度の評価は◎であった。
[Example 5]
A single broken line slit was drilled in the axial direction of the cylinder of the container body over a length of 900 mm, with an interval of 90 mm at the cut portion and 10 mm at the joint portion, and a coating agent was poured into the gap of the through hole in the fragile portion to seal it, and evaluation was performed in the same manner as in Comparative Example 10, except that the static internal pressure at which the container body breaks was changed to approximately 0.4 MPa. The results are shown in Table 3 below.
The container's mass was approximately 10.1 kg, so its transportability was rated as excellent. In the
[実施例6]
脆弱部の貫通孔の隙間に接着剤を入れ封止したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例1同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 6]
Except for sealing the gap of the through hole in the fragile portion by filling it with an adhesive, the evaluation was performed in the same manner as in Example 5. The results are shown in Table 3 below.
As in Example 1, the transportability was rated as ⊚, the
[実施例7]
脆弱部の貫通孔の隙間をアルミテープで封止したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例1同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 7]
Except for sealing the gap of the through hole in the weak portion with aluminum tape, the evaluation was performed in the same manner as in Example 5. The results are shown in Table 3 below.
As in Example 1, the transportability was rated as ⊚, the
[実施例8]
脆弱部の形状を溝状にし、円筒の外側から幅2mm深さ1.5mmの溝を設け、容器本体が破壊する静的内圧を略0.9MPaに代え、封止材を用いないことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 8]
The fragile portion was shaped like a groove, with a width of 2 mm and a depth of 1.5 mm provided from the outside of the cylinder, the static internal pressure at which the container body breaks was changed to approximately 0.9 MPa, and evaluation was performed in the same manner as in Example 5, except that no sealing material was used. The results are shown in Table 3 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例9]
脆弱部の形状を破線にし、加工箇所を貫通孔とせず溝状にしたことを除き、実施例8と同様に評価した。結果を以下の表3に示す。
実施例8同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 9]
Except for the fact that the shape of the fragile portion was a broken line and that the processed portion was a groove rather than a through hole, the evaluation was performed in the same manner as in Example 8. The results are shown in Table 3 below.
As in Example 8, the transportability was rated as ⊚, the
[実施例10]
製管方法を平板ロールにし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部は溶接に代え脆弱部の引張強度に対し母材の周方向の引張強度を12%にし、容器本体が破壊する静的内圧を略0.4MPaに代え、封止材を塗装剤に代えたことを除き、実施例9と同様に評価した。結果を以下の表3に示す。
実施例9同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 10]
The evaluation was the same as in Example 9, except that the pipe-making method was flat rolls, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was 27%, the weak parts were not welded but the tensile strength in the circumferential direction of the base material was 12% of the tensile strength of the weak parts, the static internal pressure at which the container body breaks was changed to approximately 0.4 MPa, and the sealant was replaced with a paint. The results are shown in Table 3 below.
As in Example 9, the transportability was rated as ⊚, the
[実施例11]
製管方法をスパイラルシーム溶接にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部をらせん状の溶接に代えたことを除き、実施例9と同様に評価した。結果を以下の表3に示す。
実施例9同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 11]
The evaluation was carried out in the same manner as in Example 9, except that the pipe manufacturing method was changed to spiral seam welding, the ratio of the tensile strength in the circumferential direction of the cylinder to that in the axial direction of the cylinder was changed to 27%, and the weak portion was replaced by a spiral weld. The results are shown in Table 3 below.
As in Example 9, the transportability was rated as ⊚, the
[実施例12]
容器本体に含まれる繊維を24mmにし、脆弱部の引張強度に対し母材の周方向の引張強度を6%に代えたことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 12]
The evaluation was carried out in the same manner as in Example 5, except that the fiber contained in the container body was changed to 24 mm and the tensile strength of the base material in the circumferential direction was changed to 6% of the tensile strength of the fragile portion. The results are shown in Table 3 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例13]
脆弱部をらせん状に設置したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 13]
Except for the fact that the weakened portion was provided in a spiral shape, evaluation was performed in the same manner as in Example 5. The results are shown in Table 3 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例14]
繊維をパルプ繊維に代えたことを除き、実施例8と同様に評価した。結果を以下の表4に示す。
実施例8同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 14]
Except for replacing the fibers with pulp fibers, evaluation was carried out in the same manner as in Example 8. The results are shown in Table 4 below.
As in Example 8, the transportability was rated as ⊚, the
[実施例15]
容器本体筒部の形状を四角に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。容器質量が略10kgであるため運搬性は◎であった。安全性1の評価は○、安全性2の評価は容器本体の角部及び脆弱部が割れ開口を生じたため15m以上飛散した150g以上の破片数は発生しなかったため○であった。落下強度の評価は◎であった。
[Example 15]
Except for changing the shape of the cylindrical portion of the container body to a square, the evaluation was the same as in Example 5. The results are shown in Table 4 below. Since the container mass was approximately 10 kg, the transportability was rated as ⊚.
[実施例16]
繊維をステンレス繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 16]
Except for replacing the fibers with stainless steel fibers, the evaluation was carried out in the same manner as in Example 5. The results are shown in Table 4 below. As in Example 5, the transportability was rated as ⊚, the
[実施例17]
繊維をセラミック繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 17]
Except for replacing the fibers with ceramic fibers, evaluation was carried out in the same manner as in Example 5. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例18]
繊維を樹脂(アラミド)繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 18]
Except for replacing the fibers with resin (aramid) fibers, evaluation was carried out in the same manner as in Example 5. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例19]
繊維を炭素繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 19]
Except for replacing the fibers with carbon fibers, the evaluation was carried out in the same manner as in Example 5. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例20]
含浸する樹脂をPOM(ポリアセタール)樹脂に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 20]
Except for changing the impregnating resin to POM (polyacetal) resin, evaluation was performed in the same manner as in Example 5. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例21]
含浸する樹脂を不飽和ポリエステル樹脂に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 21]
Except for changing the impregnating resin to an unsaturated polyester resin, evaluation was performed in the same manner as in Example 5. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例22]
脆弱部の形状を破線状にし、脆弱部引張強度に対し母材の引張強度が6%になるように貫通孔を設け、貫通孔の隙間に塗装剤を入れ封止したことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は、塗装剤に歪が発生し変色したが空気漏れが発生しなかったため◎であった。
[Example 22]
The evaluation was carried out in the same manner as in Example 5, except that the shape of the fragile portion was a broken line, through holes were provided so that the tensile strength of the base material was 6% of the tensile strength of the fragile portion, and a coating material was filled into the gaps of the through holes to seal them. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ◎, the
[実施例23]
製管方法をワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側1.0mmの巻角は35度、その外側1.0mmは75度とし、円筒の軸方向に対して円筒の円周方向の引張強度の比を200%にし、容器本体が破壊する静的内圧を略1.8MPaに代えたことを除き比較例9と同様に評価した。結果を以下の表4に示す。
運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 23]
The pipe was evaluated in the same manner as in Comparative Example 9, except that the pipe-making method was winding, the fiber direction during winding was changed for each winding layer, the winding angle for the inner 1.0 mm was 35 degrees and for the outer 1.0 mm was 75 degrees, the ratio of tensile strength in the circumferential direction of the cylinder to that in the axial direction of the cylinder was 200%, and the static internal pressure at which the container body breaks was changed to approximately 1.8 MPa. The results are shown in Table 4 below.
The transportability was rated as excellent, the
[実施例24]
繊維の組角度を27度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を10%にし、脆弱部及び塗装剤を設けず、容器本体が破壊する静的内圧を略1.9MPaに代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 24]
The evaluation was carried out in the same manner as in Example 5, except that the fiber braid angle was set to 27 degrees, the ratio of the tensile strength in the circumferential direction of the cylinder to that in the axial direction of the cylinder was set to 10%, no fragile portion or coating agent was provided, and the static internal pressure at which the container body breaks was changed to approximately 1.9 MPa. The results are shown in Table 4 below.
As in Example 5, the transportability was rated as ⊚, the
[実施例25]
繊維の組角度を53度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を199%にし、容器本体が破壊する静的内圧を略1.1MPaに代えたことを除き、実施例8と同様に評価した。結果を以下の表4に示す。
運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 25]
The evaluation was carried out in the same manner as in Example 8, except that the fiber braid angle was set to 53 degrees, the ratio of the tensile strength in the circumferential direction of the cylinder to that in the axial direction of the cylinder was set to 199%, and the static internal pressure at which the container body breaks was changed to approximately 1.1 MPa. The results are shown in Table 4 below.
The transportability was rated as excellent, the
[実施例26]
筒部の厚みを3.0mmにしたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
容器質量が略11.4kgとなったため運搬性は○、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
実施例26における安全性の試験結果を、図10(3)に模式的に示す。
[Example 26]
Except for changing the thickness of the cylindrical portion to 3.0 mm, the evaluation was performed in the same manner as in Example 5. The results are shown in Table 4 below.
Since the container mass was approximately 11.4 kg, the portability was rated as "good", the
The safety test results in Example 26 are shown diagrammatically in FIG. 10 (3).
上記の結果から、容器本体が金属製でありさらに脆弱部を含む比較例、及び容器本体が繊維強化プラスチックを含むことを単独で規定した場合の比較例に比べて、容器本体が繊維強化プラスチックを含み、さらに限界静的内圧を規定した実施例では、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる点で優れていることがわかる。
さらに、容器本体が脆弱部を有するものとすることで、落下強度を調整できる。また筒部の軸方向と周方向との引張強度比を調整することで、容器の分離を調整できる。
このように、繊維強化プラスチック+限界静的内圧+脆弱部+引張強度比の条件をすべて満たすことで、容器の分離、落下強度を調整しつつ、特に高い落下強度を達成できる。特に、このような高い落下強度は、脆弱部又は引張強度比を単独で満たす構成のみでは達成できず、これらを組み合わせることで達成できる。
From the above results, it can be seen that, compared to the comparative example in which the container body is made of metal and further includes a fragile portion, and the comparative example in which it is solely specified that the container body contains fiber-reinforced plastic, the embodiment in which the container body contains fiber-reinforced plastic and further specifies a limit static internal pressure has high airtightness and operability, and is superior in being able to reduce damage to the surrounding area when explosives detonate, etc.
Furthermore, the drop strength can be adjusted by providing a fragile portion to the container body, and the separation of the container can be adjusted by adjusting the ratio of axial and circumferential tensile strengths of the cylindrical portion.
In this way, by satisfying all of the conditions of fiber-reinforced plastic + limit static internal pressure + fragile portion + tensile strength ratio, it is possible to achieve a particularly high drop strength while adjusting the separation and drop strength of the container. In particular, such a high drop strength cannot be achieved by a configuration that satisfies only the fragile portion or the tensile strength ratio, but can be achieved by combining them.
以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。 The above describes an embodiment of the present invention, but the present invention is not limited to this and can be modified as appropriate without departing from the spirit of the invention.
本発明に係る容器本体の筒部を筒部の軸方向に強く、周方向に割れやすい繊維強化樹脂材とし、容器本体が所定の圧力で破壊を開始する様、最適な容器本体の構造若しくは容器本体に脆弱部を設け、脆弱部の隙間に封止材を設けた、繊維強化樹脂製の弾薬用容器を用いれば、通常時における落下強度、気密性を保持しながらも、容器内部において火薬類が発火した非常時には低い圧力で開口を生じ、容器内に発生する最大圧力低下させることができる。それによって、容器が爆発するリスクをより確実に低減でき、結果、周囲への影響をより低減することができる。また、容器外部からの被弾等で火薬類が爆轟した非常時には飛散する破片の形状を小さく、軽量にすることで、飛散する破片の殺傷エネルギーを低減でき、繊維を筒部の軸に近い方向とすることで容器本体の飛翔も防止することができる。結果、周囲への影響をより低減することができる。すなわち、本発明に係る弾薬用容器においては、内装する火薬類が発火した場合や爆轟した場合でも、周囲への影響をより確実に低減することができる。さらに、金属素材を選択するよりも軽量化できるため、運搬性を向上させることができる。よって、本発明は、弾薬用容器として好適に利用可能である。 The tube of the container body according to the present invention is made of a fiber-reinforced resin material that is strong in the axial direction of the tube and easily breaks in the circumferential direction, and the container body is structured optimally or a weak part is provided in the container body, and a sealant is provided in the gap of the weak part so that the container body starts to break at a predetermined pressure. By using a fiber-reinforced resin ammunition container, it is possible to maintain drop strength and airtightness under normal conditions, while opening at a low pressure in an emergency when explosives ignite inside the container, and to reduce the maximum pressure generated inside the container. This makes it possible to more reliably reduce the risk of the container exploding, and as a result, to more reliably reduce the impact on the surroundings. In addition, in an emergency when explosives explode due to being hit from outside the container, the shape of the scattered fragments can be made small and lightweight, thereby reducing the lethal energy of the scattered fragments, and the fibers can be oriented in a direction close to the axis of the tube, which prevents the container body from flying. As a result, the impact on the surroundings can be more reliably reduced. In other words, in the ammunition container according to the present invention, even if the internal explosives ignite or explode, the impact on the surroundings can be more reliably reduced. Furthermore, since it can be made lighter than a metal material, it can be more easily transported. Therefore, the present invention can be suitably used as an ammunition container.
1 弾薬用容器
2 筒部
3 底部
4 容器本体
5 蓋体
10 脆弱部
A 脆弱部長さ
B 貫通孔の隙間
C 貫通孔1個当たりの長さ
D 貫通孔間の接合部長さ
E 繊維
F 樹脂
G 蓋
REFERENCE SIGNS
Claims (6)
前記筒部が、繊維強化プラスチックを含み、かつ当該筒部の限界静的内圧が、0.2~2.0MPaであり、
前記筒部に、少なくとも1つの脆弱部を備え、
前記繊維強化プラスチックの繊維がフィラメントワインディング製法により配置され、かつ、
前記筒部の軸方向に対する周方向の引張強度の比が2~250%である、
ことを特徴とする、弾薬用容器。 A container body having a cylindrical portion and a bottom portion closing one of both ends of the cylindrical portion, and a lid body closing the other opening of both ends of the cylindrical portion,
The cylindrical portion includes a fiber-reinforced plastic, and the limit static internal pressure of the cylindrical portion is 0.2 to 2.0 MPa;
The tubular portion includes at least one weakened portion,
The fibers of the fiber-reinforced plastic are arranged by a filament winding method, and
The ratio of the tensile strength in the circumferential direction to the axial direction of the cylindrical portion is 2 to 250%.
An ammunition container comprising:
フィラメントワインディング製法により強化繊維が配置されたプラスチック製筒部を形成する工程;forming a plastic tube having reinforcing fibers disposed therein by a filament winding process;
得られた筒部に、少なくとも1つの脆弱部を形成する工程;及びforming at least one weakened portion in the obtained tubular portion; and
得られた筒部の両端のうち一方を底部で塞ぎ、かつ、他方の開口部を蓋体で塞ぐ工程;a step of closing one of both ends of the obtained cylindrical portion with a bottom portion and closing the other opening with a lid;
を含む弾薬用容器の製造方法であって、1. A method of making an ammunition container comprising:
得られた筒部の限界静的内圧が、0.2~2.0MPaであり、かつ、該筒部の軸方向に対する周方向の引張強度の比が2~250%である、ことを特徴とする、弾薬用容器の製造方法。A method for manufacturing an ammunition container, characterized in that the resulting cylindrical portion has a limit static internal pressure of 0.2 to 2.0 MPa and a ratio of the tensile strength in the circumferential direction to the axial direction of the cylindrical portion is 2 to 250%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023081506A JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018214172A JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
JP2023081506A JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Division JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023096076A JP2023096076A (en) | 2023-07-06 |
JP7504260B2 true JP7504260B2 (en) | 2024-06-21 |
Family
ID=70907470
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Active JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
JP2023081506A Active JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Active JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7335691B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199092B (en) * | 2021-12-13 | 2023-10-17 | 北京中科宇航技术有限公司 | Rocket initiating explosive device ignition experimental container and design method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003145655A (en) | 2001-11-14 | 2003-05-20 | Nippon Steel Composite Co Ltd | Fiber-reinforced composite material for resisting to impact, and explosive substance holding vessel |
JP2004226031A (en) | 2003-01-24 | 2004-08-12 | Asahi Kasei Chemicals Corp | Pallet for ammunition case |
JP2011145007A (en) | 2010-01-14 | 2011-07-28 | Nof Corp | Cylindrical ammunition container |
JP2011252645A (en) | 2010-06-01 | 2011-12-15 | Nof Corp | Cylindrical ammunition container |
JP2012002381A (en) | 2010-06-14 | 2012-01-05 | Nof Corp | Cylindrical ammunition container |
US20120111219A1 (en) | 2010-11-10 | 2012-05-10 | True Velocity, Inc. | Lightweight polymer ammunition cartridge casings |
JP2013011365A (en) | 2011-06-28 | 2013-01-17 | Nof Corp | Container for ammunition |
JP2013044454A (en) | 2011-08-23 | 2013-03-04 | Nof Corp | Ammunition container |
JP2015227764A (en) | 2014-06-02 | 2015-12-17 | 旭化成ケミカルズ株式会社 | Ammunition container with stitch fragile part |
JP2017048912A (en) | 2015-09-03 | 2017-03-09 | 新日鐵住金株式会社 | High pressure tank |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6889464B2 (en) * | 2003-06-04 | 2005-05-10 | Michael K. Degerness | Composite structural member |
EP2113733A1 (en) * | 2008-04-30 | 2009-11-04 | Saab Ab | Weapon with IM-characteristics |
EP2749838B1 (en) * | 2011-01-14 | 2015-06-17 | PCP Tactical, LLC | High strength polymer-based cartridge casing for blank and subsonic ammunition |
US10330433B2 (en) * | 2014-06-23 | 2019-06-25 | Troy Industries, Inc. | Composite handguard for a firearm and mounting/attachment apparatus therefor |
JP2018144273A (en) * | 2017-03-02 | 2018-09-20 | 三菱ケミカル株式会社 | Manufacturing method of layered sheet |
-
2018
- 2018-11-14 JP JP2018214172A patent/JP7335691B2/en active Active
-
2023
- 2023-05-17 JP JP2023081506A patent/JP7504260B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003145655A (en) | 2001-11-14 | 2003-05-20 | Nippon Steel Composite Co Ltd | Fiber-reinforced composite material for resisting to impact, and explosive substance holding vessel |
JP2004226031A (en) | 2003-01-24 | 2004-08-12 | Asahi Kasei Chemicals Corp | Pallet for ammunition case |
JP2011145007A (en) | 2010-01-14 | 2011-07-28 | Nof Corp | Cylindrical ammunition container |
JP2011252645A (en) | 2010-06-01 | 2011-12-15 | Nof Corp | Cylindrical ammunition container |
JP2012002381A (en) | 2010-06-14 | 2012-01-05 | Nof Corp | Cylindrical ammunition container |
US20120111219A1 (en) | 2010-11-10 | 2012-05-10 | True Velocity, Inc. | Lightweight polymer ammunition cartridge casings |
JP2013011365A (en) | 2011-06-28 | 2013-01-17 | Nof Corp | Container for ammunition |
JP2013044454A (en) | 2011-08-23 | 2013-03-04 | Nof Corp | Ammunition container |
JP2015227764A (en) | 2014-06-02 | 2015-12-17 | 旭化成ケミカルズ株式会社 | Ammunition container with stitch fragile part |
JP2017048912A (en) | 2015-09-03 | 2017-03-09 | 新日鐵住金株式会社 | High pressure tank |
Also Published As
Publication number | Publication date |
---|---|
JP7335691B2 (en) | 2023-08-30 |
JP2023096076A (en) | 2023-07-06 |
JP2020085249A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9816793B2 (en) | Shock-resistant fuzewell for munition | |
EP0559436B1 (en) | Solid propellant rocket motor case, comprising a material which melts down at undesirable temperatures above normal storage temperatures | |
US11421963B2 (en) | Lightweight enhanced ballistic armor system | |
JP7504260B2 (en) | Ammunition container | |
US7025000B1 (en) | Mechanism for reducing the vulnerability of high explosive loaded munitions to unplanned thermal stimuli | |
US2370677A (en) | Container for high-pressure fluids | |
US20050150781A1 (en) | Apparatus and method for packaging and shipping of high explosive content components | |
US4041869A (en) | Cook-off liner component | |
JP6399812B2 (en) | Ammunition container with Y-shaped weak part | |
JP5774843B2 (en) | Cylindrical ammunition container | |
US7913608B1 (en) | Weapon with IM-characteristics | |
JP5584031B2 (en) | Projectile storage container | |
JP6399811B2 (en) | Ammunition container having a stitch-like fragile portion | |
EP1789750B1 (en) | Improvements for safety packaging of munitions | |
US5611424A (en) | Container fuse for enhanced survivability | |
JP6399815B2 (en) | Ammunition container having a weak part in the main body cylindrical part and a lock spider in the lid | |
RU2208759C2 (en) | Fragmentation-cluster projective | |
US10571234B1 (en) | Venting lifting plug for munitions | |
JP6707965B2 (en) | Ammunition container | |
RU2789489C1 (en) | Container for transportation of explosive objects and emergency ammunition | |
JP5577870B2 (en) | Cylindrical ammunition container | |
JP6439426B2 (en) | Propellant container | |
JP2017223385A (en) | Cylindrical metal container for gun ammunition | |
Wiśniewski | Possibility of the Use of Different Types of Materials in Passive Ventilation Systems of Munitions | |
JP2016200379A (en) | Ammunition container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7504260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |