JP2023096076A - Container for ammunition - Google Patents
Container for ammunition Download PDFInfo
- Publication number
- JP2023096076A JP2023096076A JP2023081506A JP2023081506A JP2023096076A JP 2023096076 A JP2023096076 A JP 2023096076A JP 2023081506 A JP2023081506 A JP 2023081506A JP 2023081506 A JP2023081506 A JP 2023081506A JP 2023096076 A JP2023096076 A JP 2023096076A
- Authority
- JP
- Japan
- Prior art keywords
- container
- evaluation
- fiber
- ammunition
- safety
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 claims abstract description 86
- 230000003068 static effect Effects 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims description 42
- 239000011347 resin Substances 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000003566 sealing material Substances 0.000 claims description 23
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 22
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 22
- 239000003822 epoxy resin Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 229920006324 polyoxymethylene Polymers 0.000 claims description 7
- 239000003365 glass fiber Substances 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 5
- 229930182556 Polyacetal Natural products 0.000 claims description 5
- 239000004917 carbon fiber Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 4
- 229920000178 Acrylic resin Polymers 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- 229920002522 Wood fibre Polymers 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- 239000002025 wood fiber Substances 0.000 claims description 4
- 230000000670 limiting effect Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002360 explosive Substances 0.000 abstract description 35
- 230000006378 damage Effects 0.000 abstract description 15
- 229920003023 plastic Polymers 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 230000000903 blocking effect Effects 0.000 abstract 2
- 230000002787 reinforcement Effects 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 147
- 239000012634 fragment Substances 0.000 description 51
- 238000012360 testing method Methods 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 34
- 239000000463 material Substances 0.000 description 28
- 239000003380 propellant Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 239000000567 combustion gas Substances 0.000 description 13
- 238000004804 winding Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000009954 braiding Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000005474 detonation Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000035939 shock Effects 0.000 description 7
- 238000004880 explosion Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 238000005303 weighing Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000009730 filament winding Methods 0.000 description 5
- 238000009863 impact test Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000011076 safety test Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013467 fragmentation Methods 0.000 description 3
- 238000006062 fragmentation reaction Methods 0.000 description 3
- 239000003562 lightweight material Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012945 sealing adhesive Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Abstract
Description
本発明は、りゅう弾砲用発射装薬や火砲用弾薬の梱包容器として使用する筒状の弾薬用容器に関する。
BACKGROUND OF THE
以下の特許文献1に記載されるように、りゅう弾砲用発射装薬等に使用される弾薬用容器とは、細かい粒状の発射薬を装填した複数個の発射装薬を梱包し、運搬し、弾薬庫に保管したりする際に一時的に使用する金属容器のことである。発射装薬をりゅう弾砲等の薬室に挿入する際には、弾薬用容器は発射装薬から取り除かれる。一般に、りゅう弾砲用発射装薬や火砲用弾薬等に使用される梱包容器としての弾薬用容器は、運用面を配慮して一定以上の落下強度と気密性を有する構造となっている。
As described in
近年、りゅう弾砲用発射装薬やその他火砲用の弾薬は、その貯蔵、運搬及び使用中における火災、被弾等を受けた際に、我の被害を最小限にする目的で、弾薬の不感化・低感度化(以下、IM(Insensitive Munition)化という)の開発、装備化が進められている。また、これらの弾薬のIM性や取り扱い評価方法として、米国のITOP(International Test Operations Procedure)やSTANAG(Standardization Agreement、NATO規格)などで試験方法が規格化されている。これらの規格の中で運用面での取り扱い性を評価する試験項目としては、落下試験、クックオフ試験、殉爆試験及び銃撃感度試験、フラグメントインパクト試験などが規定されている。このような規定は、弾薬単体だけではなく弾薬用容器を含めた状態でも満足する必要があるため、りゅう弾砲用発射装薬や火砲用弾薬用の弾薬用容器にも高いIM性や強固な落下強度や高い気密性が要求されている。 In recent years, propellants for howitzers and other artillery ammunition have been desensitized for the purpose of minimizing damage in the event of fire, bullets, etc. during storage, transportation, or use.・Development and equipment of low sensitivity (hereinafter referred to as IM (Insensitive Munition)) are underway. In addition, test methods are standardized by US ITOP (International Test Operations Procedure), STANAG (Standardization Agreement, NATO standard), etc. as methods for evaluating the IM properties and handling of these ammunition. Among these standards, drop test, cook-off test, martyrdom test, gunshot sensitivity test, fragment impact test, etc. are stipulated as test items for evaluating operational handling. Such regulations must be satisfied not only for ammunition itself, but also for ammunition containers. Drop strength and high airtightness are required.
以下の特許文献2には、強度を保持しつつ、弾薬の燃焼反応を緩和することができる円筒状の弾薬用容器を提供することを目的に、螺旋状の接合部を有する金属製の円筒状弾薬用容器において、円筒体の外周面と内周面の少なくとも一方の面に接合部と干渉しない位置に切り込み部が設けられ、円筒体の肉厚に対する切り込み部の深さの比率が0.10~0.95であることを特徴とする円筒状弾薬用容器が開示されている。
また、以下の特許文献3には、弾薬が燃焼する不所望の刺激を受けたときに、開放する弾薬収納容器であって、頂部、底部、及びその間の少なくとも1の側面を有する容器、ここで、該容器は、その内に爆薬を収納し、該爆薬はエネルギー材料を含み、その側面に接合部分と非接合部分を有する少なくとも1つの繋ぎ目を有し;並びに該繋ぎ目の非接合部分をシールするための接着剤等からなるシール、ここで該シールは、該容器の残部が破壊される前に、内圧が外圧よりも少なくとも3psi高いとき、破壊されるよう作用する;を含み、それにより該容器を開放し、収納されたエネルギー材料の燃焼速度を制御して、激しい反応を回避する上記弾薬収納容器が開示されている。 Also, U.S. Pat. No. 5,300,001 discloses an ammunition storage container that opens when subjected to an undesirable stimulus to burn the ammunition, the container having a top, a bottom, and at least one side therebetween, wherein: , the container contains an explosive within it, the explosive comprising an energetic material, and having at least one seam on a side thereof having a bonded portion and a non-bonded portion; and a non-bonded portion of the seam. a seal comprising a sealing adhesive or the like, wherein the seal acts to fail when the internal pressure is at least 3 psi greater than the external pressure before the rest of the container fails; The ammunition container is disclosed for opening the container and controlling the rate of burning of the contained energetic material to avoid a violent reaction.
以下の特許文献4には、通常時における落下強度及び気密性を保持しながらも、容器内部において火薬類が発火した非常時には容器の爆発を避けられ、周囲の被害を抑制できる弾薬用容器を提供することを目的として、有底円筒状の容器本体と、該容器本体の開口を塞ぐ蓋体とを有する弾薬用容器であって、上記容器本体の筒部は、金属長板が螺旋状に巻回されてその両側縁同士を接合することで、螺旋状に延在する接合部を有する円筒状に形成されており、上記筒部には、軸方向に延びる貫通孔が内外貫通状に穿設されており、上記貫通孔は、封止材によって封止され、該貫通孔及び該封止材の外面は金属製のカバー部材によって覆われていることを特徴とする弾薬用容器が開示されている。 The following patent document 4 provides an ammunition container that can prevent the explosion of the container in an emergency when explosives ignite inside the container while maintaining the drop strength and airtightness in normal times, and can suppress the damage to the surroundings. An ammunition container having a bottomed cylindrical container body and a lid closing an opening of the container body, wherein the cylindrical portion of the container body is spirally wound with a long metal plate. By turning and joining both side edges, it is formed into a cylindrical shape having a joining portion extending spirally, and a through hole extending in the axial direction is bored in the cylindrical portion so as to penetrate inside and outside. The ammunition container is disclosed, wherein the through hole is sealed with a sealing material, and the through hole and the outer surface of the sealing material are covered with a metallic cover member. there is
以下の特許文献5には、通常時における落下強度及び気密性を保持しながらも、容器内部において火薬類が発火した非常時には容器の爆発を避けられ、周囲の被害を抑制できる弾薬用容器を提供することを目的として、有底円筒状の容器本体と、該容器本体の開口を塞ぐ蓋体とを有する弾薬用容器であって、該容器本体の筒部に、所定形状及び所定長さの貫通孔が所定隙間をもって内外貫通状に穿設され、該貫通孔は所定長さの接合部と交互に並び少なくとも1つのスティッチ状脆弱部として軸方向に延びており、そして該軸方向に延びるスティッチ状脆弱部内の全貫通孔の隙間に、封止手段を設けることで、該容器が封止されている、ことを特徴とする上記弾薬用容器が開示されている。
The following
以上、従来技術として特許文献2、3、4、5には金属の円筒体に種々の形状の脆弱部や開口部に封止材を設けることが提案されている。
As described above,
上記したように、従来技術の金属製の弾薬用容器では、容器内部に収容された弾薬や発射装薬を構成する火薬類が、被弾や弾丸破片等により、部分爆轟や爆轟した場合、衝撃波が生じて上記記載の脆弱部が開口し燃焼ガスを開放する前に、あるいは蓋部が開放し燃焼ガスを開放する前に、容器本体の円筒体が破片となり飛散するため、周囲の人員や機材に多大な影響や損失を与える事態が発生する。この問題を解決しようとした場合、蓋の構造に因らず、容器本体の円筒体の厚みを略3倍に増やす必要があるが、容器本体の重量が重くなり、人力での運搬が困難となり実用性がない。 As described above, in conventional metal ammunition containers, if the explosives that make up the ammunition or propellant contained in the container are hit by a bullet or a fragment of a bullet, the partial detonation or detonation occurs. Before the shock wave is generated and the fragile portion described above opens and the combustion gas is released, or before the lid opens and the combustion gas is released, the cylindrical body of the container body breaks into fragments and scatters. A situation occurs that causes a great deal of damage or loss to the equipment. In order to solve this problem, it is necessary to increase the thickness of the cylindrical body of the container by approximately three times regardless of the structure of the lid. Not practical.
軽量化するため、繊維を含まない若しくは短繊維で繊維の方向がランダムな軽量な素材を選定すると、容器本体が不均一に破壊され、大小様々な破片が飛散し周囲に影響を及ぼす可能性がある。
また、容器本体の素材を円筒の周方向に強い繊維強化樹脂にした場合には、火薬類が部分爆轟や爆轟した際に、容器本体が2分されてロケット状に飛散し、若しくは、蓋体や底部が飛散し、同様に周囲に影響を及ぼす可能性がある。
In order to reduce the weight, if a lightweight material that does not contain fibers or short fibers with random fiber directions is selected, the container body will be broken unevenly, and various large and small fragments will scatter and affect the surroundings. be.
In addition, when the material of the container body is a fiber-reinforced resin that is strong in the circumferential direction of the cylinder, when the explosive is partially detonated or detonated, the container body is divided into two and scattered like a rocket, or The lid and bottom may scatter and similarly affect the surroundings.
また、容器に内装する火薬類が高温環境に置かれ発火した場合には、火薬類の燃焼により発生した燃焼ガスにより容器内の圧力が急激に上昇し容器が爆発し、周囲に影響を及ぼす可能性がある。
さらに、上記の特許文献には、繊維強化複合材の繊維の方向と、強度の関係と、少なくとも1個の脆弱部の設置方法、及び、脆弱部を塞ぐ封止手段を設けることは、開示も教示もされていない。
In addition, if the explosives contained in the container are placed in a high-temperature environment and ignite, the combustion gas generated by the combustion of the explosives will cause the pressure inside the container to rise rapidly, causing the container to explode and possibly affecting the surroundings. have a nature.
Furthermore, the above patent documents disclose the relationship between the direction of the fibers of the fiber reinforced composite material and the strength, the method of installing at least one weak portion, and the provision of a sealing means for closing the weak portion. not even taught.
したがって、本発明の目的は、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる弾薬用容器を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an ammunition container that has high airtightness and operability and that can reduce damage to the surroundings when explosives detonate.
本発明者らは、上記課題を解決すべく各種金属や樹脂を用いて鋭意検討し実験を重ねた結果、容器本体の筒部を筒軸方向に強く、周方向に割れやすい繊維強化樹脂材(繊維強化プラスチック)とし、容器本体が所定の圧力で破壊を開始する様、最適な容器本体の構造若しくは容器本体に脆弱部を設け、任意選択的に脆弱部の隙間に封止材を設けることで、容器に内装する火薬類が被弾や被弾破片等により部分爆轟や爆轟した場合には、容器本体が周方向に割れやすく、軸方向に強いことで含まれる繊維が含浸している樹脂を粉砕しながら破断するため、飛散物が確実に軽量となることを確認した。
また、内装する火薬類が高温環境下に置かれ発火した場合には、脆弱部を素早く破断させることで、より確実に燃焼ガスを開放し、周囲の安全が確保できることを確認した。
容器の気密性を保つことで、内装する弾薬類を容器のまま長期保管できることを確認した。
更に、金属や樹脂単体よりも頑丈で軽量な素材を選定できることで運搬時の実運用性を高めることができることを該容器本体で確認し、本発明を完成するに至ったものである。
In order to solve the above problems, the inventors of the present invention conducted intensive studies and repeated experiments using various metals and resins. Fiber reinforced plastic), and an optimum container body structure or a fragile portion is provided in the container body so that the container body starts breaking at a predetermined pressure, and optionally a sealing material is provided in the gap between the fragile portions. When the explosives contained in the container are partially detonated or detonated by a bullet or a fragment of the bomb, the container body is easily cracked in the circumferential direction and is strong in the axial direction. It was confirmed that the scattered material is surely lightweight because it breaks while pulverizing.
In addition, it was confirmed that if the internal explosives were placed in a high-temperature environment and ignited, by quickly breaking the fragile part, the combustion gas could be released more reliably and the safety of the surroundings could be ensured.
By keeping the container airtight, it was confirmed that the ammunition inside the container can be stored for a long period of time.
Furthermore, the inventors have confirmed with the container body that practical operability during transportation can be improved by selecting a material that is stronger and lighter than metal or resin alone, and have completed the present invention.
すなわち、本発明は以下のとおりのものである。
[1]
筒部及び当該筒部の両端のうち一方を塞ぐ底部を有する容器本体と、上記筒部の両端のうち他方の開口部を塞ぐ蓋体と、を有する弾薬用容器であって、
上記筒部が、繊維強化プラスチックを含み、かつ当該筒部の限界静的内圧が、0.2~2.0MPaであることを特徴とする、弾薬用容器。
[2]
上記筒部に、少なくとも1つの脆弱部を備える、[1]に記載の弾薬用容器。
[3]
上記筒部の軸方向に対する周方向の引張強度の比が2~250%である、[1]又は[2]に記載の弾薬用容器。
[4]
上記脆弱部が、封止材によって封止されている、[2]又は[3]に記載の弾薬用容器。
[5]
上記脆弱部が、線状構造、溝状構造、薄肉状構造、繊維を含有しない部分又はこれらの組み合わせの構造を有する、[2]~[4]のいずれかに記載の弾薬用容器。
[6]
上記繊維強化プラスチックの繊維が、ガラス繊維、金属繊維、パルプ繊維、ケラミック繊維、樹脂繊維、炭素繊維、及び木質繊維からなる群から選択される少なくとも一種を含む、[1]~[5]のいずれかに記載の弾薬用容器。
[7]
上記繊維強化プラスチックのプラスチックが、エポキシ樹脂、ポリアセタール樹脂、塩化ビニル、不飽和ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、及びフェノール樹脂からなる群から選択される少なくとも一種を含む、[1]~[6]のいずれかに記載の弾薬用容器。
[8]
少なくとも一つの上記脆弱部が、上記筒部の軸方向、又はらせん方向に設けられている、[2]~[7]のいずれかに記載の弾薬用容器。
That is, the present invention is as follows.
[1]
An ammunition container comprising: a container body having a tubular portion and a bottom portion that closes one of both ends of the tubular portion; and a lid that closes an opening of the other of both ends of the tubular portion,
An ammunition container, wherein the tubular portion contains fiber-reinforced plastic, and the limiting static internal pressure of the tubular portion is 0.2 to 2.0 MPa.
[2]
Ammunition container according to [1], wherein the barrel comprises at least one weakened portion.
[3]
The ammunition container according to [1] or [2], wherein the ratio of tensile strength in the circumferential direction to the axial direction of the tubular portion is 2 to 250%.
[4]
The ammunition container of [2] or [3], wherein the weakened portion is sealed with a sealing material.
[5]
The ammunition container according to any one of [2] to [4], wherein the weakened portion has a linear structure, a grooved structure, a thin-walled structure, a fiber-free portion, or a combination thereof.
[6]
Any of [1] to [5], wherein the fibers of the fiber-reinforced plastic include at least one selected from the group consisting of glass fibers, metal fibers, pulp fibers, ceramic fibers, resin fibers, carbon fibers, and wood fibers. Ammunition container according to
[7]
The fiber-reinforced plastic includes at least one selected from the group consisting of epoxy resin, polyacetal resin, vinyl chloride, unsaturated polyester resin, acrylic resin, polycarbonate resin, and phenol resin [1] to [6]. A container for ammunition according to any of
[8]
The ammunition container according to any one of [2] to [7], wherein at least one weakened portion is provided in the axial direction or the spiral direction of the tubular portion.
本発明によれば、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる弾薬用容器を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the container for ammunition which has high airtightness and operability, and can reduce the damage given to the surroundings when explosives explode etc. can be provided.
以下、本発明の実施形態を詳細に説明する。
図1及び図2は、本実施形態に係る弾薬用容器の一構成例を示す斜視図である。また後掲する図3は、本実施形態に係る弾薬用容器が有する脆弱部の各種構造を示す図である。
Hereinafter, embodiments of the present invention will be described in detail.
1 and 2 are perspective views showing one configuration example of the ammunition container according to the present embodiment. FIG. 3, which will be described later, is a diagram showing various structures of the fragile portion of the ammunition container according to the present embodiment.
本発明者は、容器に内装する火薬の反応形態に応じた、容器の破壊形態を解析し、剛性や物性の違う供試体を製作し、更に実検証した。その結果、従来技術の脆弱部と容器の厚みでは、火薬類が部分爆轟や爆轟反応した場合には、発生する衝撃波に耐えきれず、容器が破片化し安全性が確保できないか、衝撃波に耐える容器の剛性を追求すると容器が重く、例えば10kg以上重くなり、人力で運搬することが多い弾薬用容器の運用性は維持できないことが分かった。そこで、従来の容器構造に代えて、容器本体、例えば筒部の材質を繊維強化樹脂にし、繊維の方向性と線状の脆弱部の形状を検討したところ、周囲の安全性を確保しながらも、軽量な素材の組み合わせとすることにより、弾薬用容器全体の重さが従来よりも軽減になるため、運搬性を維持若しくは改善できることを確認した。 The present inventor analyzed the destruction mode of the container according to the reaction mode of the explosive contained in the container, produced specimens with different rigidity and physical properties, and conducted actual verification. As a result, when explosives undergo a partial detonation or a detonation reaction, the fragile portion and the thickness of the container of the conventional technology cannot withstand the generated shock wave, and the container is fragmented and safety cannot be ensured. It has been found that if the rigidity of the container to withstand is pursued, the container becomes heavy, for example, 10 kg or more, and the operability of the ammunition container, which is often transported manually, cannot be maintained. Therefore, instead of the conventional container structure, the material of the container body, for example, the cylindrical part, is made of fiber reinforced resin, and the direction of the fiber and the shape of the linear weak part are examined. , By combining lightweight materials, the weight of the entire ammunition container is reduced compared to the conventional case, so it was confirmed that the portability can be maintained or improved.
すなわち、本発明の一実施形態を示す図1では、弾薬用容器1は、筒部2及び当該筒部の両端のうち一方を塞ぐ底部3を有する容器本体4と、上記筒部2の両端のうち他方の開口部を塞ぐ蓋体5と、を有する弾薬用容器であって、上記筒部2が、繊維強化プラスチックを含み、かつ当該筒部2の限界静的内圧が、0.2~2.0MPaであることを特徴とする。
本発明の弾薬用容器では、筒部が繊維強化プラスチックを含み、かつ筒部の限界静的内圧(破断し、開口を生じる静的内圧)が上記範囲であることで、従来の、脆弱部を有する金属製の弾薬用容器、及び繊維強化プラスチック単独の弾薬用容器に比較して、以下の点で優れている。
That is, in FIG. 1 showing one embodiment of the present invention, an
In the ammunition container of the present invention, the tubular portion contains the fiber-reinforced plastic, and the limit static internal pressure of the tubular portion (the static internal pressure that breaks and causes the opening) is within the above range, thereby eliminating the conventional fragile portion. It is superior in the following points compared to a metal ammunition container with a fiber-reinforced plastic ammunition container.
すなわち、本発明の弾薬用容器では、通常時における落下強度、気密性及び運用性を保持しながらも、容器内部において火薬類が部分爆轟した非常時には、筒部に含まれる繊維によって筒部の飛散破片が軽量化されることで、周囲への影響を抑制することができる。また、容器内部において火薬類が爆轟する場合は、筒部に含まれる繊維の方向を筒部の軸方向に近づけ配置することで、容器本体の筒部が先に周方向に割れ衝撃を緩和することで、蓋部、底部が2分されて飛散することが防止される。 That is, the ammunition container of the present invention maintains drop strength, airtightness, and operability in normal times, but in the event of an emergency caused by partial detonation of explosives inside the container, the fiber contained in the cylindrical portion prevents the cylindrical portion from detonating. By reducing the weight of the scattered fragments, it is possible to suppress the impact on the surroundings. Also, when explosives detonate inside the container, by arranging the direction of the fibers contained in the cylinder closer to the axial direction of the cylinder, the cylinder of the container body first cracks in the circumferential direction to mitigate the impact. By doing so, it is possible to prevent the lid and the bottom from being split into two and scattering.
このため、より確実に周囲への影響を抑制することができ、容器内部において火薬類が発火した非常時には、筒部の軸方向、若しくは線状の脆弱部から素早く開口を確保することで爆発圧を低下させ、金属よりも軽量な素材を選定できることで実運用性を高めることができる。
なお、筒部の限界静的内圧が小さすぎると運用性、気密性等が低下する。一方、大きすぎると爆発時のエネルギーを溜め込んで衝撃波が発生し、破片飛散する。限界静的内圧が上記範囲であることで、運用性、気密性を維持しつつ、爆破した際の破片飛散を抑えて周囲に与える損壊を低減することができる。
For this reason, it is possible to more reliably suppress the impact on the surroundings. Practical operability can be improved by reducing the weight loss and selecting materials that are lighter than metal.
If the limit static internal pressure of the cylindrical portion is too small, operability, airtightness, etc. will be deteriorated. On the other hand, if it is too large, it accumulates the energy of the explosion and generates a shock wave, scattering fragments. When the limit static internal pressure is within the above range, it is possible to reduce the damage to the surroundings by suppressing the scattering of fragments when blasting, while maintaining the operability and airtightness.
このように、本発明に係る弾薬用容器においては、内装する火薬類の組成と形状、反応形態、弾薬用容器の形状や質量、運用方法に応じて、容器本体部の繊維と樹脂の種類や繊維の方向(組角度)や繊維の量、線状の脆弱部の強度や形状を変更し、通常取扱い時の気密性や落下強度を保ち、異常時の飛散破片の質量を確実に軽量化することができる。 As described above, in the ammunition container according to the present invention, the composition and shape of the explosives to be contained therein, the reaction mode, the shape and mass of the ammunition container, and the types and sizes of the fibers and resins of the container main body, and By changing the direction (braiding angle) of fibers, the amount of fibers, and the strength and shape of linear weak points, we maintain airtightness and drop strength during normal handling, and reliably reduce the mass of scattered fragments in the event of an emergency. be able to.
本発明の弾薬用容器は、特に、(1)筒部が繊維強化プラスチックを含むこと、及び限界静的内圧の規定、(2)筒部が脆弱部を有する、さらに(3)筒部の軸方向と周方向との引張強度比の規定、を満たすことで、容器の分離、落下強度を調整しつつ、特に高い落下強度を達成することができる。この高い落下強度は、脆弱部単独、又は引張強度比単独の構成では達成できず、これら(1)~(3)を組み合わせることで、初めて達成できる。 The ammunition container of the present invention is particularly characterized by: (1) the tubular portion containing fiber-reinforced plastic and defining a limit static internal pressure; (2) the tubular portion having a weakened portion; By satisfying the stipulation of the tensile strength ratio between the direction and the circumferential direction, particularly high drop strength can be achieved while adjusting separation and drop strength of the container. This high drop strength cannot be achieved by using the weak portion alone or the tensile strength ratio alone, and can be achieved only by combining these (1) to (3).
図11に、従来技術の弾薬用容器を示す。図中、容器本体の脆弱部の貫通孔の隙間を示す。図中、A:脆弱部の長さ、B:貫通孔の隙間、C:貫通孔1個当たりの長さ、D:貫通孔間の接合部長さ、E:容器本体、F:蓋体を示す。
蓋体はネジ式であり、直線状の貫通した貫通孔が容器本体のスリットを構成し、貫通孔は所定の隙間を有している。
FIG. 11 shows a prior art ammunition container. In the figure, the clearance of the through-hole of the fragile portion of the container body is shown. In the figure, A: Length of fragile portion, B: Gap between through-holes, C: Length per through-hole, D: Joint length between through-holes, E: Container body, F: Lid body .
The lid body is of a screw type, and a straight through-hole constitutes a slit of the container body, and the through-hole has a predetermined gap.
本発明における貫通孔の隙間も、図11に図示されるものと同様に規定されるが、図2にBとして規定する。弾薬用容器(単に容器ともいう。)は、筒部及び当該筒部の両端のうち一方を塞ぐ底部を有する容器本体と、筒部の両端のうち他方の開口部を塞ぐ蓋体とを有し、内部に複数個の弾薬(図示せず)が直列に並べて装填されるようになっている。弾薬としては、シングルベース発射薬、ダブルベース発射薬、トリプルベース発射薬、マルチベース発射薬、推進薬、爆薬、炸薬等の火薬類が用いられている。 The gap of the through hole in the present invention is also defined in the same manner as that shown in FIG. 11, but is defined as B in FIG. An ammunition container (also simply referred to as a container) has a container body having a cylindrical portion and a bottom portion that closes one of both ends of the cylindrical portion, and a lid that closes the opening of the other of both ends of the cylindrical portion. , and a plurality of ammunition (not shown) are loaded in series. As ammunition, explosives such as single-base propellants, double-base propellants, triple-base propellants, multi-base propellants, propellants, explosives, and explosives are used.
<容器本体>
本実施形態に係る容器本体4は、筒部2及び当該筒部2の両端のうち一方を塞ぐ底部3を有する。
容器本体の形状は多角形から円形、楕円形で任意であるが、機械的強度(断面2次モーメント)が高い円筒状であれば、厚みを薄くでき軽量となるため、尚よく使用できる。
<Container body>
The container body 4 according to this embodiment has a
The shape of the container body may be polygonal, circular, or elliptical, but a cylindrical shape with high mechanical strength (geometrical moment of inertia) is more suitable for use because it can be thin and lightweight.
筒部の長さは、10mm以上、100mm以上、又は1000mm以上でよく、内装する火薬の量と保管スペース、形状の観点から、適宜設定することが望ましい。
筒部の厚みは、0.6mm以上、1.0mm以上、又は2mm以上でよく、取り扱い時に変形しない様、適宜設定することが望ましい。
筒部の内径は、4mm以上、10mm以上、又は160mm以上でよく、内容物のサイズや用途や使用環境によって、適宜設定できる。例えば、筒部の長さや直径が4~5mmと小さいものは、筒部の厚みを薄くしても容器本体が破壊する静的内圧(MPa)強度は確保できる。逆に筒部の長さが10mや幅(径等)が1mと大きい場合は、容器本体が破壊する静的内圧(MPa)強度を保つため筒部の厚みを厚くし、脆弱部の強度や容器本体の引張強度を上げる必要がある。
The length of the cylindrical portion may be 10 mm or more, 100 mm or more, or 1000 mm or more, and is preferably set as appropriate from the viewpoint of the amount of explosives to be contained, the storage space, and the shape.
The thickness of the cylindrical portion may be 0.6 mm or more, 1.0 mm or more, or 2 mm or more, and is preferably set appropriately so as not to deform during handling.
The inner diameter of the cylindrical portion may be 4 mm or more, 10 mm or more, or 160 mm or more, and can be appropriately set depending on the size of the content, application, and usage environment. For example, when the cylindrical portion has a small length and diameter of 4 to 5 mm, even if the thickness of the cylindrical portion is reduced, the static internal pressure (MPa) strength at which the container body breaks can be secured. Conversely, if the length of the cylinder is 10 m and the width (diameter, etc.) is as large as 1 m, the thickness of the cylinder should be increased in order to maintain the static internal pressure (MPa) strength at which the container body breaks. It is necessary to increase the tensile strength of the container body.
例えば、円筒体が破壊する静的内圧(MPa)(限界静的内圧)の計算式は、「2×容器円筒体の厚み(mm)×円筒体の周方向引張強度(MPa)÷円筒の内直径(mm)」、若しくは、「2×容器円筒体の厚みmm×脆弱部を入れた円筒体の周方向引張強度(MPa)÷円筒の内直径(mm)」を適用している。上記計算式に用途に合わせた安全率や加工公差を追加し容器の厚みや構造を設計する。容器本体が円筒体以外の容器の形状を適用する場合も、同様に、容器本体が破壊する静的内圧を適宜計算し、容器の厚みや構造を設計する。総じて、容器本体の一部が破断する静的内圧(MPa)の計算を行うことで本実施形態に係る効果を予測することができる。 For example, the static internal pressure (MPa) at which the cylindrical body breaks (limit static internal pressure) is calculated as follows: 2 × container cylindrical body thickness (mm) × cylindrical body circumferential tensile strength (MPa) ÷ inner cylinder diameter (mm)”, or “2×thickness mm of container cylinder×circumferential tensile strength (MPa) of cylinder containing fragile portion/inner diameter of cylinder (mm)” is applied. Design the thickness and structure of the container by adding the safety factor and processing tolerance according to the application to the above formula. Similarly, when applying a container shape other than a cylindrical container body, the static internal pressure at which the container body breaks is appropriately calculated, and the thickness and structure of the container are designed. In general, the effects of this embodiment can be predicted by calculating the static internal pressure (MPa) at which a portion of the container body breaks.
本発明の弾薬用容器の筒部は、繊維強化プラスチックを含むことで、金属を用いる場合よりも軽量化でき、運用性を高めることができる。
また、本発明の弾薬用容器では、任意選択的に、底部及び/又は蓋部も、繊維強化プラスチックを含んでよい。
By containing the fiber-reinforced plastic, the cylindrical portion of the ammunition container of the present invention can be made lighter than when metal is used, and the operability can be improved.
Optionally, in the ammunition container of the present invention, the bottom and/or lid may also comprise fibre-reinforced plastic.
繊維強化プラスチックの繊維としては、特に限定されるものではなく、火薬類が反応する異常時には樹脂を粉砕しながら破断させる引張強度と通常時は気密性を確保するため、繊維に含浸若しくは塗布する樹脂と接着するものであれば使用できる。
このような繊維としては、ガラス繊維、金属繊維、パルプ繊維、ケラミック繊維、樹脂繊維、炭素繊維、及び木質繊維からなる群から選択される少なくとも一種を含むことが好ましい。
The fiber of the fiber-reinforced plastic is not particularly limited, and the resin impregnated or applied to the fiber in order to secure the tensile strength that breaks the resin while pulverizing it in the event of an abnormality where explosives react, and the airtightness in normal times. Anything that can be adhered to can be used.
Such fibers preferably include at least one selected from the group consisting of glass fibers, metal fibers, pulp fibers, ceramic fibers, resin fibers, carbon fibers, and wood fibers.
繊維強化プラスチックのプラスチックとしては、特に限定されるものではなく、火薬類が反応する異常時には繊維により粉砕され、通常時は気密性を確保するため、繊維に含浸若しくは塗布し接着するものであれば使用できる。
このようなプラスチックとしては、エポキシ樹脂、POM(ポリアセタール)樹脂、塩化ビニル、不飽和ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、及びフェノール樹脂からなる群から選択される少なくとも一種を含むことが好ましい。
Fiber-reinforced plastics are not particularly limited, as long as they are pulverized by the fibers in the event of an abnormal reaction with explosives, and are impregnated or coated and adhered to the fibers in order to ensure airtightness in normal times. Available.
Such plastic preferably contains at least one selected from the group consisting of epoxy resin, POM (polyacetal) resin, vinyl chloride, unsaturated polyester resin, acrylic resin, polycarbonate resin, and phenol resin.
本発明の弾薬用容器は、筒部の軸方向に対して筒部の周方向の引張強度の比(周方向/軸方向)は、2%以上、3%以上、5%以上、8%以上、10%以上、15%以上、20%以上、又は27%以上でよく、250%以下、242%以下、240%以下、230%以下、200%以下、199%以下、150%以下、又は100%以下でよい。特に、この比は2~250%であることが好ましく、3~100%であることがより好ましい。なお、筒部についての引張強度の比は、脆弱部の無い筒体単独についての値である。
引張強度の比が小さすぎると容器が変形し易くなり、大きすぎると爆発時に分離してロケットのように飛散してしまう。引張強度の比を上記範囲とすることで、容器の分離を調整することができる。
In the ammunition container of the present invention, the ratio of tensile strength in the circumferential direction of the cylindrical portion to the axial direction of the cylindrical portion (circumferential direction/axial direction) is 2% or more, 3% or more, 5% or more, 8% or more. , 10% or more, 15% or more, 20% or more, or 27% or more; % or less. In particular, this ratio is preferably 2-250%, more preferably 3-100%. Note that the tensile strength ratio for the cylindrical portion is the value for the cylindrical body alone without the fragile portion.
If the tensile strength ratio is too small, the container will easily deform, and if it is too large, the container will separate and fly like a rocket when it explodes. Separation of the container can be adjusted by setting the tensile strength ratio within the above range.
特に、引張強度の比を3~100%とすることにより、容器の分離をより調整し易くなる。すなわち、軸方向の強度を強化することにより、軸方向の接合部の割合を多く調整することが可能となり、気密性の確保と、火薬類が爆轟等したときの周囲に与える損壊の低減とが向上する。 In particular, by setting the tensile strength ratio to 3 to 100%, it becomes easier to adjust the separation of the container. In other words, by strengthening the strength in the axial direction, it becomes possible to adjust the ratio of joints in the axial direction to a large extent, ensuring airtightness and reducing damage to the surroundings when explosives detonate. improves.
上記軸方向の引張強度は、JIS K 7033の(C法)に記載するサンプル(板状試験片)を筒部から切出し23℃±2℃、相対湿度50%の環境下で5±1mm/minの速度で引張試験することで求められる。上記円周方向の引張強度は、JIS K 7037の板状試験片(C法)に記載するサンプル(板状試験片)を円筒体から切出し上記同様に引張試験することで求められる。 The tensile strength in the axial direction is 5 ± 1 mm / min in an environment of 23 ° C ± 2 ° C and a relative humidity of 50% by cutting out a sample (plate-shaped test piece) described in JIS K 7033 (C method) from the cylindrical part. It is obtained by performing a tensile test at a speed of The tensile strength in the circumferential direction is determined by cutting out a sample (plate-shaped test piece) described in JIS K 7037 plate-shaped test piece (method C) from a cylindrical body and subjecting it to a tensile test in the same manner as described above.
後述する脆弱部の引張強度は、脆弱部から破断する様にサンプルをセットし、その時の破断荷重Nを、脆弱部を設けていない部分の面積(mm2)で割り、求めることができる。一般的にフィラメントワインディング製法で容器本体の円筒を製造し、組角度を25.8度にした場合の、円筒の軸方向に対して円筒の円周方向の引張強度の比[%]は、略9%(略30/340MPa)、組角度を54.7度にした場合は略370%(略185/50MPa)、プリプレグを用いた製法とし組角度を0度にした場合の軸方向と円周方向の引張強度の比は略2%(略30/1600MPa)となる。また、容器本体の円筒の組角度を巻層毎に変えた場合の円筒の周方向の引張強度は、各層毎の引張強度の合計に比例する。さらに、巻層毎に組角度を変え円筒に脆弱部を設けた場合は、接合している部分の層毎の破断荷重の合計が、その円筒の周方向の破断荷重と比例する。
繊維の組角度や層毎の繊維の方向・繊維の量、繊維の種類や太さを代える等の手法で、円筒体の軸の方向の強度を高め、周方向の強度を弱める様に繊維又は脆弱部またはその両方を配置すれば、内部圧力の上昇により容器が2分されて飛散することをより確実に防止して、周囲に与える損壊を低減することができる。
The tensile strength of the weakened portion, which will be described later, can be obtained by setting the sample so that it breaks from the weakened portion and dividing the breaking load N at that time by the area (mm 2 ) of the portion where the weakened portion is not provided. In general, when the cylinder of the container body is manufactured by the filament winding method and the braiding angle is set to 25.8 degrees, the ratio [%] of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is approximately 9% (approximately 30/340 MPa), approx. The ratio of tensile strength in the direction is approximately 2% (approximately 30/1600 MPa). Further, the tensile strength of the cylinder in the circumferential direction when the braiding angle of the cylinder of the container body is changed for each winding layer is proportional to the total tensile strength of each layer. Furthermore, when the braiding angle is changed for each winding layer and a weak portion is provided in the cylinder, the total breaking load of each layer of the joined portion is proportional to the breaking load in the circumferential direction of the cylinder.
By changing the braiding angle of the fibers, the direction and amount of fibers in each layer, the type and thickness of the fibers, etc., the strength in the axial direction of the cylindrical body is increased, and the strength in the circumferential direction is weakened. By arranging the fragile portion or both, it is possible to more reliably prevent the container from being split into two pieces and scattered due to an increase in internal pressure, thereby reducing damage to the surroundings.
容器本体の筒部は、繊維長10mm以上、好ましくは24mm以上の繊維を用い、樹脂と混合した筒部(図4(1))、若しくは上記と同じ繊維を樹脂と混合しシート状にしたものから作られる筒部(図4(2))としてもよい。この場合、繊維の方向はランダムになり、筒部の軸方向に対して筒部の周方向の引張強度の比が略100%(略150/150MPa)になるが、容器内部において火薬類が部分爆轟した非常時には、筒部に含まれる繊維より筒体の破片が崩れて軽量化されるため、これを用いてもよい。 The cylindrical portion of the container body uses fibers having a fiber length of 10 mm or more, preferably 24 mm or more, and is mixed with resin (Fig. 4 (1)), or the same fibers as above are mixed with resin and formed into a sheet. It is good also as a cylindrical part (FIG. 4 (2)) made from. In this case, the direction of the fibers is random, and the ratio of the tensile strength in the circumferential direction of the cylindrical portion to the axial direction of the cylindrical portion is approximately 100% (approximately 150/150 MPa). In the event of an emergency such as detonation, the fibers contained in the cylindrical portion crumble into pieces of the cylindrical body to reduce the weight, so this may be used.
たとえば、図5に示すようにフィラメントワインディング製法で容器本体の円筒体に含まれる繊維の方向を45度にすると、円筒の軸方向に対して円筒の円周方向の引張強度の比が略100%(略150/150MPa)になる。 For example, as shown in FIG. 5, when the direction of the fibers contained in the cylindrical body of the container body is set at 45 degrees by the filament winding manufacturing method, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is approximately 100%. (approximately 150/150 MPa).
また、フィラメントワインディング製法により配置された繊維は、容器本体円筒の軸の方向に対し30度になる様に1層巻いた後、次の層では、上記容器本体円筒の上記と同じ軸の方向に対し150度で更巻かれるが、これは、繊維の方向としては、容器本体円筒の軸の方向に対し同じ30度とする。すなわち、フィラメントワインディング製法により配置される容器本体円筒の軸の方向に対し30度の繊維が100%になる。この時円筒の軸方向引張強度は略300MPaに対して円筒の円周方向の引張強度は略54MPaとなり、その比は略18%になる。若しくは巻層ごとに巻き角度(組角度)を変更するか、任意の方向に強化繊維を追加し円筒軸方向と円周方向の強度を変更してもよい。 In addition, the fibers arranged by the filament winding manufacturing method are wound in one layer so that the direction of the axis of the cylinder of the container body is 30 degrees, and then the next layer is wound in the direction of the same axis of the cylinder of the container body. On the other hand, it is wound again at 150 degrees, which means that the direction of the fibers is the same 30 degrees with respect to the direction of the axis of the cylinder of the container body. That is, 100% of the fibers are arranged at 30 degrees to the direction of the axis of the cylinder of the container main body arranged by the filament winding manufacturing method. At this time, the tensile strength in the axial direction of the cylinder is approximately 300 MPa, while the tensile strength in the circumferential direction of the cylinder is approximately 54 MPa, a ratio of approximately 18%. Alternatively, the winding angle (braiding angle) may be changed for each wound layer, or reinforcing fibers may be added in an arbitrary direction to change the strength in the cylinder axial direction and the circumferential direction.
これに対し、図6に示すように、横糸・縦糸がある布や織物に樹脂を浸漬させた板(プリプレグ等)をロール状に巻いて製管した場合は、縦糸・横糸の強度や量を任意に変更したプリプレグや積層方法を変更することで、容器本体の円筒の軸方向に対して円筒の円周方向の引張強度の比を、任意に設定することができる。 On the other hand, as shown in Fig. 6, when a plate (such as prepreg) impregnated with resin in a cloth or fabric with weft and warp is wound into a roll to make a pipe, the strength and amount of warp and weft are reduced. By arbitrarily changing the prepreg and the lamination method, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder of the container body can be arbitrarily set.
<蓋体>
蓋体5は、容器本体4において筒部2の他方の開口部を塞ぐ。
蓋体は、弾薬用容器内を密閉できるものであれば、その材料や形状は、特に制限されない。例えば、金属製とするほか、プラスチック製、繊維入りプラスチック製、紙製、樹脂含浸紙製、又はゴム製とすることも可能である。ただし、容器本体が破壊する前に蓋体が飛散することを防ぐため、蓋体と容器本体の接合強度は、蓋体に加わる内部から衝撃や圧力よりも高くすることが望ましい。蓋体の強度が確保できない場合は、飛散防止のため、蓋体に脆弱部等を設け圧力を開放し、蓋体の飛散を防止する機構を設けてもよい。鎖繊維より筒部の破片が崩れ軽量化されるため、これを用いてもよい。
<Lid body>
The
The material and shape of the lid are not particularly limited as long as it can seal the inside of the ammunition container. For example, in addition to being made of metal, it can be made of plastic, fiber-filled plastic, paper, resin-impregnated paper, or rubber. However, in order to prevent the lid from scattering before the container body is destroyed, it is desirable that the bonding strength between the lid and the container body is higher than the impact and pressure applied to the lid from the inside. If the strength of the lid cannot be ensured, a fragile portion or the like may be provided in the lid to prevent the lid from scattering and the pressure may be released to prevent the lid from scattering. Fragments of the tubular portion crumble from the chain fibers to reduce the weight, so this may be used.
蓋体は本体の上記の筒部と十分な強度(ネジ構造等)で接合されていれば、金属、樹脂、複合材、蓋部への脆弱部の有無は問わず蓋部の飛散を防止できる。蓋体の接着強度は、通常の取り扱い強度や異常時の内部圧力に応じて、選定できる。 As long as the lid is joined to the above-mentioned cylindrical portion of the main body with sufficient strength (screw structure, etc.), the lid can be prevented from scattering regardless of the presence or absence of fragile parts on the lid, such as metal, resin, composite material. . The adhesive strength of the lid can be selected according to the normal handling strength and the internal pressure in the event of an abnormality.
<脆弱部>
本実施形態に係る弾薬用容器1は、筒部2に、少なくとも1つの脆弱部10を備えることが好ましい。弾薬用容器1が、筒部2に脆弱部10を有することで、燃焼ガスの圧力開放開始秒時を調整することができる。
<Weak part>
The
脆弱部は、線状構造、溝状構造、薄肉状構造、繊維を含有しない部分又はこれらの組み合わせの構造を有することが好ましい。
少なくとも一つの脆弱部が、筒部の軸方向、又はらせん方向に設けられていることが好ましい。
The weakened portion preferably has a linear structure, a groove-like structure, a thin-walled structure, a portion containing no fibers, or a combination thereof.
Preferably, at least one weakened portion is provided in the axial or spiral direction of the tubular portion.
脆弱部、例えば線状構造の脆弱部の長さは、筒部の長さの1割以上、5割以上、又は8割以上でよく、内装する火薬の燃焼性能、容器の形状維持に合わせ適宜設定することが望ましい。
脆弱部1個当りの長さは、1mm以下、90mm以下、又は800mm以下でよく、取り扱い時に形状維持できる様、素材に合わせ適宜設定することが望ましい。
脆弱部の幅は、0.1mm以上、2.0mm以上、又は5.0mm以上でよく、脆弱部が加工可能な幅で適宜設定することが望ましい。
The length of the weakened portion, for example, the weakened portion of the linear structure, may be 10% or more, 50% or more, or 80% or more of the length of the cylindrical portion. It is desirable to set
The length of each fragile portion may be 1 mm or less, 90 mm or less, or 800 mm or less, and is preferably set appropriately according to the material so that the shape can be maintained during handling.
The width of the fragile portion may be 0.1 mm or more, 2.0 mm or more, or 5.0 mm or more, and it is desirable to set the width appropriately so that the fragile portion can be processed.
脆弱部は、容器本体筒部に対しての穿設本数は1本でもよいが、容器強度が維持される限り、図1に示すように複数本(例えば、2~15本程度)設けてもよい。脆弱部の長さも、穿設本数に応じて適宜設定すればよい。例えば、脆弱部の穿設本数が比較的少ない(例えば、1~3本程度)場合は長寸にし、脆弱部の穿設本数が比較的多い(例えば、4本以上)場合は短寸にすることもできる。また、脆弱部を複数本穿設する場合は、容器本体の軸方向に等間隔で設けることが好ましい。開口孔を形成しやすく燃焼ガスを効率良く外部へ放出できるからである。 The fragile portion may be formed in one piece in the cylindrical portion of the container main body, but as long as the strength of the container is maintained, a plurality of pieces (for example, about 2 to 15 pieces) may be provided as shown in FIG. good. The length of the weakened portion may also be appropriately set according to the number of drilled holes. For example, if the number of holes in the weak part is relatively small (for example, about 1 to 3), the length should be long, and if the number of holes in the weak part is relatively large (for example, 4 or more), the length should be short. can also Moreover, when a plurality of fragile portions are bored, they are preferably provided at equal intervals in the axial direction of the container body. This is because the opening holes can be easily formed and the combustion gas can be efficiently discharged to the outside.
また、脆弱部は基本的に線状または破線状、好ましくは直線状であるが、容器の形状や内装する火薬類に応じて、湾曲状や螺旋状若しくは両端にYやH字状の切れ込みを形成し、圧力を逃がしやすくこともできる。また、脆弱部は容器本体の軸方向(中心軸)と平行に設けてもよいし、容器本体の軸方向(中心軸)に対し斜め(らせん状)に設けることもでき、容器本体の軸方向に対し、直交方向に脆弱部を設けることもできる。この中でも、脆弱部は、容器本体の軸方向(中心軸)と平行に設けるか、容器本体の軸方向(中心軸)に対し斜め(らせん状)に設けることが、容器本体が分断され、内部に残存した火薬類が燃焼することによって、ロケット状に飛散する可能性を低下させるので好ましい。 The weakened portion is basically linear or broken, preferably linear, but may be curved, spiral, or Y- or H-shaped cuts at both ends depending on the shape of the container and the explosives to be contained inside. It can also be shaped to facilitate pressure relief. In addition, the fragile portion may be provided parallel to the axial direction (central axis) of the container body, or may be provided obliquely (spirally) with respect to the axial direction (central axis) of the container body. However, it is also possible to provide weakened portions in the orthogonal direction. Among these, the fragile portion may be provided parallel to the axial direction (central axis) of the container body, or may be provided diagonally (spirally) with respect to the axial direction (central axis) of the container body. It is preferable because the possibility of scattering like a rocket is reduced by burning the explosives remaining in the container.
本実施形態では、図1、図2に示すように、脆弱部として、容器本体の軸方向両端部に亘る長寸な破線直線状の貫通孔を、容器本体の軸方向(中心軸)と平行に形成して、筒部へ1、2本設けている。少なくとも1本の、上記脆弱部の長さは、筒部の長さに対し、0.2以上、0.5以上でよく0.8以下、0.6以下であればよい、発火時の燃焼ガスを効率良く外部へ放出することができる。 In this embodiment, as shown in FIGS. 1 and 2, as the fragile portion, a long broken-line linear through-hole extending to both ends in the axial direction of the container body is formed parallel to the axial direction (central axis) of the container body. 1 or 2 are provided on the cylindrical portion. The length of at least one of the fragile portions may be 0.2 or more and 0.5 or more and may be 0.8 or less and 0.6 or less with respect to the length of the cylindrical portion. Gas can be efficiently released to the outside.
図12に示すように、従来技術の容器本体の筒部には、軸方向に延びる脆弱部は貫通孔と接合部が線状となる様に穿設されており、上記貫通孔は内外貫通状に穿設されている。当該脆弱部を有することにより、弾薬用容器内において弾薬が発火したときに脆弱部が開放され弾薬用容器の内部から燃焼ガスを放出することで内圧上昇を抑制でき、弾薬用容器の破裂を回避することができるとされてきた。 As shown in FIG. 12, in the cylindrical portion of the container body of the prior art, the fragile portion extending in the axial direction is formed such that the through hole and the joint portion form a linear shape, and the through hole extends through the inside and outside. perforated in the By having the fragile part, when the ammunition ignites in the ammunition container, the fragile part is opened and combustion gas is released from the inside of the ammunition container, suppressing the increase in internal pressure and preventing the ammunition container from bursting. It has been said that it can be done.
しかしながら、上記したように、本発明者は、容器に内装する火薬の反応形態に応じた、容器の破壊形態を解析し、剛性や物性の違う供試体を製作し、更に実検証した結果、従来技術のスリット構造では、内装する火薬が爆轟反応を起し、衝撃波が発生した場合には、脆弱部が開放する前に容器が破片化し、周囲へ影響を及ぼすほか、衝撃波に耐えるために容器の剛性(厚み)を上げると、弾薬用容器全体の重量が重くなり運搬性が損なわれることを見出し、筒部の繊維強化樹脂材の構造に合わせた脆弱部設置に変更したものを新たに提供するものである。 However, as described above, the present inventor analyzed the destruction mode of the container according to the reaction form of the explosive contained in the container, produced test specimens with different rigidity and physical properties, and conducted actual verification. In the slit structure of the technology, when the explosive reaction inside the container causes a detonation reaction and a shock wave is generated, the container breaks into pieces before the fragile part opens, affecting the surroundings. When the rigidity (thickness) of the ammunition container is increased, the weight of the entire ammunition container becomes heavy, impairing its portability. It is something to do.
図3に、本実施形態に係る弾薬用容器が有する脆弱部の構造の例を示す。図3(1)に示すように脆弱部を貫通孔とする場合は、図2に示す貫通孔の長さと接合部の長さの比を、母材の引張強度に掛けたものと比例した脆弱部の強度が実現される。 FIG. 3 shows an example of the structure of the fragile portion of the ammunition container according to this embodiment. When the weakened portion is a through hole as shown in Fig. 3 (1), the ratio of the length of the through hole to the length of the joint shown in Fig. 2 is multiplied by the tensile strength of the base material. Part strength is achieved.
脆弱部を図3(2)に示すように溝状(薄肉状)、あるいは、図3(3)に示すように積層構造による薄肉構造とする場合は、加工前の引張強度と、溝加工後の非貫通部分の引張強度の比と比例した脆弱部の強度が実現される。また、図3(4)に示すように、脆弱部を非貫通孔として繊維が分断され引張強度が一部弱くなる構造とする場合は、脆弱部と非脆弱部の引張(接着)強度の比と比例した脆弱部の強度が実現される。また、図3(5)に示すように、筒体を角筒状(多角形)とした場合、容器本体の角部は、内部圧力が発生した場合に応力が集中した脆弱部の強度が実現される。 In the case where the weakened portion has a groove shape (thin wall shape) as shown in FIG. 3(2), or a thin structure with a laminated structure as shown in FIG. A strength of the weakened portion proportional to the ratio of the tensile strength of the non-penetrating portion is achieved. In addition, as shown in FIG. 3 (4), when the weak part is a non-through hole and the fiber is divided and the tensile strength is partially weakened, the ratio of the tensile (adhesion) strength of the weak part and the non-weak part A strength of the weakened portion proportional to is achieved. In addition, as shown in FIG. 3(5), when the cylindrical body is in the shape of a square (polygon), the corners of the container body realize the strength of fragile portions where stress concentrates when internal pressure is generated. be done.
<封止材>
弾薬用容器において、当該脆弱部が、封止材によって封止されていることが好ましい。
従来技術の弾薬用容器の筒部外周面には、貫通孔を外面から封止するように板状の封止材が接合される場合がある。封止材は、典型的には、貫通孔の開口面積より大寸であり、貫通孔の外周部において容器本体へ接着ないし溶接等によって接合されている。封止材は、典型的には、容器本体よりも引張強度が低い素材からなる。弾薬用容器内において弾薬が発火した際に、内圧上昇に伴って他の部位よりも優先的に破損されなければならないためである。すなわち、貫通孔及び封止材は、脆弱部に含まれる。
<Sealant>
Preferably, in the ammunition container, the weakened portion is sealed with a sealing material.
A plate-shaped sealing material may be joined to the outer peripheral surface of the cylindrical portion of the conventional ammunition container so as to seal the through hole from the outer surface. The sealing material typically has a size larger than the opening area of the through hole, and is joined to the container body at the outer peripheral portion of the through hole by adhesion, welding, or the like. The sealing material is typically made of a material having a lower tensile strength than the container body. This is because when the ammunition is ignited in the ammunition container, it must be damaged preferentially over other parts as the internal pressure rises. That is, the through hole and the sealing material are included in the weak portion.
これに対し、本実施形態に係る繊維強化樹脂製の弾薬用容器では、図3(6)に示すように、貫通孔の隙間に、封止材を充填することで、容器を封止してもよい。また、脆弱部を図3の様な溝状とし、接合された構造で容器を封止してもよい。更に、上記溝部に封止材を塗布し容器を封止してもよい。もしくは、繊維強化されない部分を設け、脆弱部とすることもできる。 On the other hand, in the fiber-reinforced resin ammunition container according to the present embodiment, as shown in FIG. good too. Alternatively, the fragile portion may be groove-shaped as shown in FIG. 3, and the container may be sealed with a bonded structure. Furthermore, a sealing material may be applied to the groove to seal the container. Alternatively, a portion that is not fiber-reinforced can be provided to serve as a weak portion.
脆弱部からの気密を保つための封止材の材料は、アルミニウムや銅などの金属製、又は充填剤、塗装剤、接着剤、コーキング剤などの合成樹脂製又はFRPなどの複合材でよく、これを用いて容器を封止してもよい。また、図3(7)に示すように、上記封止材をテープ状や板状にしたもので貫通孔を覆い容器を封止してもよい。 The material of the sealing material for keeping airtightness from the fragile part may be metal such as aluminum or copper, synthetic resin such as filler, coating agent, adhesive, caulking agent, or composite material such as FRP. This may be used to seal the container. Further, as shown in FIG. 3(7), the sealing material may be tape-shaped or plate-shaped to cover the through hole and seal the container.
封止材として外部からの衝突等に弱いテープ等を用いる場合は、運用方法に応じて、封止部を保護する機構を設けるのが好ましい。例えば図3(8)に示すように、テープの上にさらに保護板が配されていてもよい。
また、繊維が分断され繊維で強化されていない接合部や溶接部等で容器を封止してもよい。
When using a tape or the like that is vulnerable to impact from the outside as the sealing material, it is preferable to provide a mechanism for protecting the sealing portion according to the operation method. For example, as shown in FIG. 3(8), a protection plate may be further arranged on the tape.
Alternatively, the container may be sealed at a joint portion or a welded portion where the fibers are cut and not reinforced with the fibers.
封止材を設ける場合、その材料としては、好ましくは熱により分解燃焼する接着剤、充填剤であり、最も好ましくは塗装剤である。燃焼ガスで容器内の圧力上昇が発生すると、封止材が燃焼ガス(の熱)で破壊され、脆弱部が開口し、燃焼ガスが開放されやすくなる。 When a sealing material is provided, the material is preferably an adhesive or a filler that decomposes and burns by heat, and most preferably a coating agent. When the pressure inside the container increases due to the combustion gas, the sealing material is destroyed by (the heat of) the combustion gas, the fragile portion opens, and the combustion gas is easily released.
以下、本実施形態に係る繊維強化樹脂製の弾薬用容器の作用について説明する。
図1に示す本発明の一実施形態である弾薬用容器1は、容器本体4若しくは容器本体4に設けた脆弱部10が0.2~2.0MPaの静的内圧で破断し、開口を生じることを特徴とする。
The operation of the fiber-reinforced resin ammunition container according to the present embodiment will be described below.
In the
弾薬用容器の運搬時や一時保管時等の取扱時において、衝撃や温度上昇等の原因により弾薬用容器内の弾薬が燃焼反応を引き起こした場合、発生する燃焼ガスによって弾薬用容器内の圧力が上昇する。次いで、燃焼ガスにより容器本体又は容器本体に設けられた脆弱部が、0.2MPa以上、好ましくは0.4MPa以上、より好ましくは0.6MPa以上、そして2.0MPa以下、好ましくは1.5MPa以下、より好ましくは1.0MPa以下で、破断を開始し、脆弱部を設けた場合には脆弱部の方向や強度が弱い方向に所定の大きさで開口を生じ、燃焼ガスが容器安全内圧以下で外部に放出される。 When the ammunition container is transported or temporarily stored, if the ammunition inside the ammunition container undergoes a combustion reaction due to impact or temperature rise, the generated combustion gas will increase the pressure inside the ammunition container. Rise. Then, the weakened portion provided on the container body or the container body by the combustion gas is 0.2 MPa or more, preferably 0.4 MPa or more, more preferably 0.6 MPa or more, and 2.0 MPa or less, preferably 1.5 MPa or less. , more preferably at 1.0 MPa or less, when the fragile portion is provided, an opening of a predetermined size is generated in the direction of the fragile portion or in the direction of weak strength, and the combustion gas is below the safe internal pressure of the container. released to the outside.
破断する静的内圧が0.2MPa未満であると、落下強度が不十分となり、気密性が失われ、通常の取り扱いができない。これにより、弾薬用容器の内圧上昇が抑制されるので、弾薬用容器の爆発、すなわち、破片の飛散が抑制され、安全性が高まる。逆に2.0MPaを超えると、エネルギーを溜め込んで衝撃波が発生し、容器の耐圧を超え任意の場所から破壊され破片や爆風を生じ、破片飛散する。これにより周囲に影響を及ぼす可能性が高まる。破断し、開口を生じる静的内圧が上記範囲であることで、運用性、気密性を維持しつつ、爆破した際の破片飛散を抑えて周囲に与える損壊を低減することができる。 If the static internal pressure at breakage is less than 0.2 MPa, the drop strength will be insufficient, the airtightness will be lost, and normal handling will not be possible. This suppresses an increase in the internal pressure of the ammunition container, thereby suppressing the explosion of the ammunition container, that is, the scattering of fragments, thereby enhancing safety. Conversely, if the pressure exceeds 2.0 MPa, energy is accumulated and a shock wave is generated. This increases the possibility of affecting the surroundings. When the static internal pressure that causes the rupture and opening is within the above range, it is possible to reduce the damage to the surroundings by suppressing the scattering of fragments when blasting, while maintaining the operability and airtightness.
上記に加え、所定の速度を超えた金属片が弾薬用容器に貫入した場合、弾薬用容器内の弾薬が部分爆轟し、発生する衝撃波によって圧力が急上昇し、該弾薬用容器は、容器や蓋に設けられた脆弱部の有無に因らず破片化する。
この時、筒部が繊維と樹脂の繊維強化樹脂製であれば、繊維が樹脂を粉砕し、飛散する破片が軽量化され、若しくは、破片が発生せず、周囲へ与える影響をより小さく抑えることができる。また、繊維の方向を筒部の軸に近い角度に配置していれば、更に大きな衝撃波が発生した場合でも容器本体が2分されロケット状に飛散することを防止するため、周囲への安全性が高まる。
In addition to the above, if a piece of metal in excess of a predetermined velocity penetrates the munitions container, the munitions in the munitions container will partially detonate and the resulting shock wave will cause a pressure surge that will cause the munitions container to rupture into the container and Fragments regardless of the presence or absence of fragile parts provided on the lid.
At this time, if the cylindrical portion is made of fiber-reinforced resin, the fiber crushes the resin, and the scattered fragments are lightened, or the fragments are not generated, and the impact on the surroundings is suppressed to a smaller extent. can be done. In addition, if the direction of the fibers is arranged at an angle close to the axis of the cylinder, even if a larger shock wave is generated, the container body will not be split into two pieces and scattered like a rocket, thus ensuring safety to the surroundings. increases.
また、蓋体は本体の上記の筒部と十分な強度(ネジ構造等)で接合されていれば、金属、樹脂、複合材、蓋部への脆弱部の有無は問わず蓋部の飛散を防止できる。蓋体の接着強度は、通常の取り扱い強度や異常時の内部圧力に応じて、選定できる。 In addition, if the lid is joined to the above-mentioned cylindrical portion of the main body with sufficient strength (screw structure, etc.), the lid will not scatter regardless of whether it is metal, resin, composite material, or whether there is a vulnerable part to the lid. can be prevented. The adhesive strength of the lid can be selected according to the normal handling strength and the internal pressure in the event of an abnormality.
さらに、従来の弾薬用容器では、内装する弾薬が爆轟反応した場合、金属容器の厚みを数倍、例えば、略3倍に増加させることで、飛散する破片を抑えることが出来るが、容器が重くなり運搬性が悪化してしまう。
これに対し、繊維と樹脂の軽量素材を選択した本実施形態に係る弾薬用容器であれば、容器が重くなることを防ぎ、運搬性を保つことができる。
Furthermore, in conventional ammunition containers, when the ammunition contained therein undergoes a detonation reaction, the thickness of the metal container can be increased several times, for example, by increasing the thickness of the metal container by approximately three times to suppress scattering of fragments. It becomes heavy and difficult to transport.
On the other hand, if the ammunition container according to the present embodiment, in which lightweight materials such as fiber and resin are selected, the weight of the container can be prevented and transportability can be maintained.
以下の実施例等により本発明を具体的に説明する。 The present invention will be specifically described with reference to the following examples and the like.
実施例で使用した評価方法を以下に説明する。 Evaluation methods used in the examples are described below.
[運搬性の評価]
弾薬等の内容物が入った場合は、重量物となるため、有事の際、総重量が重要となる。
今回は、弾薬等の内容物がない全長1100mm弾薬用容器のみの重量を評価した。
筒部の材質を樹脂や複合材とし、蓋部と底部は金属製として評価した。
◎:既存模擬品(金属製)より軽い(10.9kg以下)
○:既存模擬品(金属製)と略同重量(略11.0kg)
×:既存模擬品(金属製)より重い(11.5kg以上)
[Evaluation of transportability]
When contents such as ammunition enter, it becomes a heavy object, so the total weight is important in an emergency.
This time, the weight of only the full length 1100 mm ammunition container without contents such as ammunition was evaluated.
Resin or composite material was used for the cylindrical portion, and the cover and bottom were made of metal.
◎: Lighter than the existing simulated product (made of metal) (10.9 kg or less)
○: About the same weight as the existing simulated product (made of metal) (about 11.0 kg)
×: Heavier than the existing simulated product (made of metal) (11.5 kg or more)
(安全性評価の試験手順)
安全性評価試験は、安全性1の評価(フラグメントインパクト試験)と安全性2の評価(スロークックオフ試験)の2つを実施した。ただし、評価を一部クリアしなかったものは、その他の評価を省略した。
(Test procedure for safety evaluation)
Two safety evaluation tests were performed,
[安全性1の評価]
安全性1の評価では、図7に示すように、装薬に高温の金属片が当たったときの反応性評価であるフラグメントインパクト試験を使用した。
容器が外部から衝撃を受けて爆発する際の破片数を測定する。脆弱部からの破損(影響)は実質的に関係なく、容器全体の破片飛び散りを測定した。スリット以外の部分から破壊が生じる場合、繊維があるために、細かい破片になって安全である。繊維が小さいと、長い繊維が入っていないものと似てくる。
[Evaluation of Safety 1]
In the evaluation of
Measures the number of fragments when the container explodes due to external impact. Fragmentation (impact) from the weak point was virtually irrelevant and the overall container shrapnel was measured. If breakage occurs from a portion other than the slit, it is safe because of the presence of fibers as fine fragments. If the fibers are small, it will resemble something that does not contain long fibers.
図8に示すように、発射装薬入りの弾薬用容器に所定の金属片を1830m/秒の速度で衝突させ、そのときの反応を確認する試験を実施した。かかるフラグメントインパクト試験及び評価は、STANAGに準拠した条件で実施した。 As shown in FIG. 8, a test was conducted to confirm the reaction at that time by colliding a predetermined metal piece into an ammunition container containing a projectile charge at a speed of 1830 m/sec. Such fragment impact test and evaluation were carried out under STANAG-compliant conditions.
(安全性1の評価)
重量が150gを超える破片の内、15m以上飛散した破片の数と容器本体の分裂状態から、下記の評価基準で安全性を評価した。
○:15m以上飛散した150g以上の破片数が0個
×:15m以上飛散した150g以上の破片数が1個以上発生した。
フラグメントインパクト試験の結果の一例を図7に示す。
(Evaluation of safety 1)
Safety was evaluated according to the following evaluation criteria based on the number of fragments that were scattered over 15 m and the fragmentation state of the container body among the fragments weighing more than 150 g.
○: 0 pieces of 150 g or more scattered over 15 m x: 1 or more pieces of 150 g or more scattered over 15 m.
An example of the results of the fragment impact test is shown in FIG.
[安全性2の評価]
安全性2の評価では、図7に示すように、装薬が高温状態で保持された場合の反応性評価であるスロークックオフ試験を使用した。
内部爆発による容器の破損の仕方を評価する。容器が内部から爆発する際の破片数を測定した。この試験は火災等を想定した試験であり、脆弱部等の特定部分から破損が発生し、脆弱部が無いと爆発してしまう。
[Evaluation of safety 2]
In the evaluation of
Evaluate how the container is damaged by an internal explosion. The number of fragments was measured when the container exploded from inside. This test is a test that assumes a fire or the like, and damage occurs from a specific portion such as a weak portion, and if there is no weak portion, an explosion will occur.
図7に示すように、発射装薬入りの弾薬用容器をリボンヒーターで巻き更に断熱材で包み、内装する火薬が発火するまで1時間毎に3.3度の速度で昇温させ、反応状態を確認する試験を実施した。かかるスロークックオフ試験及び評価は、STANAGに準拠した条件で実施した。 As shown in FIG. 7, the ammunition container containing the propellant charge was wrapped with a ribbon heater and then wrapped with a heat insulating material, and the temperature was raised at a rate of 3.3 degrees every hour until the explosive inside was ignited, and the reaction state was reached. A test was conducted to confirm the Such slow cook-off tests and evaluations were carried out under STANAG-compliant conditions.
(安全性2の評価)
重量が150gを超える破片の内、15m以上飛散した破片の数と容器本体の分裂状態から、下記の評価基準で安全性を評価した。
<全体>
○:15m以上飛散した150g以上の破片数が0個
×:15m以上飛散した150g以上の破片数が1個以上
<容器本体の分裂状態>
○:容器本体が脆弱部に沿って割れ、容器がその場に留まる。
×:容器本体が周方向に割れ、容器が2分され飛散する。
(Evaluation of safety 2)
Safety was evaluated according to the following evaluation criteria based on the number of fragments that were scattered over 15 m and the fragmentation state of the container body among the fragments weighing more than 150 g.
<Overall>
○: The number of fragments of 150 g or more scattered over 15 m is 0 ×: The number of fragments of 150 g or more scattered over 15 m is 1 or more <Split state of container body>
◯: The container main body cracked along the fragile portion, and the container remained in place.
x: The container main body cracked in the circumferential direction, and the container was divided into two parts and scattered.
[容器落下強度の評価]
(落下試験)
内容物の入った包装容器を規定の高さから自然落下させる試験を実施した。具体的には、包装容器の中に発射装薬を入れ、I-TOPによる既定の高さ(12m、2.1m、1.5m)と規定の角度(水平、垂直、斜め)になるように包装容器をセットし、落下する地面はコンクリートに厚さ20mmの鉄板を敷いて自然落下させ、落下後の状況を判断した。例えば、貫通孔が長い包装容器は、変形し装薬が破壊され変形した箇所から内容物(火薬)が放出されるため輸送上問題となる。弾薬用包装容器は、様々な条件下でも、安全に装薬を運搬でき、その後保管できる構造でなければならない。落下後の状況を下記の評価指標で判断した。
12m落下によって、包装容器から内容物が飛散しないこと
2.1m落下後も、発射装薬を取りだすことができ、かつ安全に射撃ができること
1.5m落下後も、包装容器に所定の気密性(0.02MPaで空気リークがないこと)を有すること
[Evaluation of container drop strength]
(Drop test)
A test was conducted in which the packaging container containing the contents was allowed to fall naturally from a specified height. Specifically, put the propellant in the packaging container and place it at the prescribed height (12m, 2.1m, 1.5m) and prescribed angle (horizontal, vertical, diagonal) by I-TOP. The packaging container was set, and a steel plate with a thickness of 20 mm was laid on the ground where it would fall, and it was allowed to fall naturally. For example, a packaging container with a long through-hole deforms, destroys the charge, and releases the contents (explosive) from the deformed portion, which poses a problem in transportation. Ammunition packs must be constructed so that the charge can be safely transported and subsequently stored under a variety of conditions. The situation after the fall was judged by the following evaluation index.
The contents of the packaging container shall not scatter when dropped from 12 m. The propellant charge shall be able to be taken out even after dropping from 2.1 m, and shooting shall be possible safely. No air leak at 0.02 MPa)
(容器落下強度の評価)
以下の評価基準に従い、容器落下強度を評価した:
◎:上記3つ全ての基準を十分に満足する
○:上記3つの内2つの基準を十分に満足する
△:上記3つの内1つの基準を十分に満足する
×:上記3つの基準を全て満足しない。
(Evaluation of container drop strength)
Container drop strength was evaluated according to the following criteria:
◎: Fully satisfies all the above three criteria ○: Fully satisfies two of the above three criteria △: Fully satisfies one of the above three criteria ×: Satisfies all of the above three criteria do not.
[気密性評価]
(気密性試験)
以下の各種封止材はガラスエポキシ製に脆弱部を設けた筒部を準備し、気密性能を事前検討した。上記気密性試験(0.02MPaで空気リークなし)を実施し、気密性を有することを確認した。 また、実運用時に弾薬用容器同士が衝突することを想定し、一方の弾薬用容器を50mmの高さから弾薬用容器の封止部に落下させ、上記同様の気密性試験を実施し、気密性が確保されているか確認する実運用気密試験も実施した。
[Airtightness evaluation]
(Airtightness test)
For the various encapsulating materials described below, glass epoxy cylinders with fragile portions were prepared, and airtight performance was examined in advance. The airtightness test (no air leak at 0.02 MPa) was carried out to confirm airtightness. In addition, assuming that the ammunition containers collide with each other during actual operation, one ammunition container was dropped from a height of 50 mm into the sealed portion of the ammunition container, and the airtightness test was conducted in the same manner as above. We also conducted an airtightness test in actual operation to confirm that the airtightness is ensured.
(気密性の評価)
○:気密性試験、実運用気密試験共に気密性がある。
△:気密性試験時のみに気密性がある。
×:気密性試験、実運用気密試験共に気密性がない。
(Evaluation of airtightness)
◯: Airtightness is observed in both the airtightness test and the airtightness test in actual operation.
Δ: Airtight only during the airtightness test.
x: There is no airtightness in both the airtightness test and the actual airtightness test.
気密性試験の結果を表1に示す。 Table 1 shows the results of the airtightness test.
[比較例1]
容器本体の材質1をSPCC鋼板とし、製管方法を図11に示すようならせん状とし、円筒の軸方向に対して円筒の円周方向の引張強度の比[%]100%にし、容器本体の筒部に、破線状の脆弱部(A:脆弱部の長さ900mm、B:貫通孔の隙間0.1mm、C:貫通孔1個当たりの長さ50mm、D:貫通孔間の接合部長さ3mmピッチ)を円筒の軸と同じ方向に1つ設け塗装剤で封止し、トリプルベースの発射装薬装填し、更に、両端を蓋で封止して弾薬用容器を作製した。
得られた容器の運搬性、安全性1、安全性2、落下強度を上記評価試験により評価した。容器質量が略11kgであるため運搬性は○、結果を以下の表2に示す。安全性1の評価では、15m以上飛散した150g以上の破片数が3個発生したため安全性は×であった。安全性2の評価は、○であった。落下強度は◎であった。
比較例1における安全性の試験結果を、図10(1)に模式的に示す。
[Comparative Example 1]
The
The transportability,
The results of the safety test in Comparative Example 1 are schematically shown in FIG. 10(1).
[比較例2]
比較例1の容器の脆弱部の方向をらせん状にしたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
結果は比較例1同様、容器質量が略11kgであるため運搬性は○、安全性1の評価では、15m以上飛散した150g以上の破片数が3個発生したため安全性は×であった。安全性2の評価は、○であった。落下強度は◎であった。
[Comparative Example 2]
The same test as in Comparative Example 1 was performed, except that the direction of the weakened portion of the Comparative Example 1 container was helical. The results are shown in Table 2 below.
As in Comparative Example 1, the weight of the container was about 11 kg, so the transportability was ◯. In the evaluation of
[比較例3]
比較例1の容器に破片の貫入速度の緩和を目的としてポリウレア樹脂を5mm塗布したことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×で、安全性1の評価では、15m以上飛散した150g以上の破片数が4個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 3]
The test was conducted in the same manner as in Comparative Example 1, except that the container of Comparative Example 1 was coated with 5 mm of polyurea resin for the purpose of slowing the penetration rate of fragments. The results are shown in Table 2 below.
Since the mass of the container was approximately 12 kg, the transportability was rated as x. In the evaluation of
[比較例4]
容器本体の材質1をSPHC鋼板(比較例1と同等)とし、厚み、製管方法を図6に示すような平板ロール状に代えたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×で、安全性1の評価では、150g以上の金属破片が2個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 4]
The test was carried out in the same manner as in Comparative Example 1, except that the
Since the mass of the container was about 12 kg, the transportability was rated as x. In the evaluation of
[比較例5]
容器本体の材質1をSPHC鋼板(比較例1と同等)とし、厚み、製管方法を代えたことを除き、比較例1と同様に試験した。結果を以下の表2に示す。
容器質量が略14kgであるため運搬性は×であった。安全性の評価1と2で容器は破片化せず安全性は共に○であった。また、落下強度も◎であった。
比較例5における安全性の試験結果を、図10(2)に模式的に示す。
[Comparative Example 5]
A test was conducted in the same manner as in Comparative Example 1, except that the
Since the mass of the container was approximately 14 kg, the transportability was rated as x. In
The safety test results in Comparative Example 5 are schematically shown in FIG. 10(2).
[比較例6]
容器本体の材質1をポリカーボネートにし、筒部厚みを5mmに代え、脆弱部の溝の幅を2mm、溝の深さを3.25mmに代え封止材を無くしたことを除き、比較例5と同様に評価した。結果を以下の表2に示す。
容器質量が略10.5kgであるため運搬性は◎であった。容器本体を樹脂とした場合、安全性1の評価で樹脂部はほぼ変形せずに割れ、鋭利な大小の破片を生じて飛散した。15m以上飛散した150g以上の破片数が5個発生しため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 6]
Compared to Comparative Example 5, except that the
Since the mass of the container was approximately 10.5 kg, the transportability was evaluated as ⊚. When the main body of the container was made of resin, the resin part was almost not deformed and cracked in the evaluation of
[比較例7]
容器本体の材質1をエポキシ樹脂に代えたことを除き、比較例6と同様に、評価した。結果を以下の表2に示す。
容器を全て樹脂とした場合、容器質量が略10.5kgであるため運搬性は◎であった。安全性1の評価で樹脂部はほぼ変形せずに破片化し、破片の形状及び大きさを制御できず、15m以上飛散した150g以上の破片数が10個発生したため安全性は×であった。安全性1の評価が×であったため、安全性2の評価及び落下強度の評価は実施しなかった。
[Comparative Example 7]
Evaluation was performed in the same manner as in Comparative Example 6, except that the
When the entire container was made of resin, the container mass was approximately 10.5 kg, so the transportability was evaluated as ⊚. In the evaluation of
[比較例8]
容器本体の材質1を厚紙とし、厚みを10mmに代え、脆弱部の溝の幅を2mm、溝の深さを7.5mmに代え、製管方法を図9の様に代えたことを除き、比較例7と同様に評価した。結果を以下の表2に示す。
容器質量が略12kgであるため運搬性は×であった。安全性1、2の評価で5g~50gの軽量な破片が飛散したため安全性は共に○であった。しかし、繊維自体に空隙があり、気密が保てないため、落下強度の評価は△であった。
[Comparative Example 8]
Except that the
Since the mass of the container was approximately 12 kg, the transportability was rated as x. In the evaluation of
[比較例9]
容器の材質をガラス繊維とエポキシ樹脂にし、製管方法を図5に示すようなワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側0.5mmの巻角は75度、その外側1.5mmは35度とし、円筒の厚みを2mmにし、脆弱部の形状を溝状にし、円筒の外側から幅2mmの溝を深さ1.5mm長さ900mmに渡り1本穿設し、円筒の軸方向に対して円筒の円周方向の引張強度の比を89%にし、容器本体が破壊する静的内圧(限界静的内圧)を略6.5MPaに代え、封止材を用いなかったことを除き、比較例8と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価は、○であったが、安全性2の評価では蓋部が飛散し、15m以上飛散した150g以上の破片数が2個発生したため×であった。安全性2の評価が×であったため、落下強度の評価は実施しなかった。
[Comparative Example 9]
Glass fiber and epoxy resin were used for the material of the container, winding was used for the pipe manufacturing method as shown in FIG. The outside 1.5 mm is 35 degrees, the thickness of the cylinder is 2 mm, the shape of the weakened part is a groove, and a groove with a width of 2 mm is drilled from the outside of the cylinder over a depth of 1.5 mm and a length of 900 mm, The ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is set to 89%, the static internal pressure at which the container body breaks (limit static internal pressure) is changed to about 6.5 MPa, and no sealing material is used. Evaluation was performed in the same manner as in Comparative Example 8, except that The results are shown in Table 2 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. The evaluation of
[比較例10]
繊維の組角度を円筒の軸に対し35度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部の引張強度に対し、母材の周方向の引張強度を60%にし、容器本体が破壊する静的内圧を略2.2MPaに代えたことを除き、比較例9と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価では、15m以上飛散した150g以上の破片数は発生しなかったため○であった。安全性2の評価では、破片が15m以上飛散したため全体としては×であった。容器本体の分裂状況は、容器本体が2分されなかったため○であった。容器の落下強度の評価は、◎であった。
[Comparative Example 10]
The fiber braiding angle is 35 degrees with respect to the axis of the cylinder, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is 27%, and the tensile strength in the circumferential direction of the base material is Evaluation was performed in the same manner as in Comparative Example 9, except that the tensile strength was changed to 60% and the static internal pressure at which the container body broke was changed to approximately 2.2 MPa. The results are shown in Table 2 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. In the evaluation of
[比較例11]
脆弱部を設けず、容器本体が破壊する静的内圧を略3.7MPaに代えたことを除き、比較例10と同様に評価した。結果を以下の表2に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価では、15m以上飛散した150g以上の破片数は発生しなかったため○であった。安全性2の評価では、破片が15m以上飛散したため全体としては×であった。容器本体の分裂状況は、容器本体が2分されなかったため○であった。容器の落下強度の評価は、◎であった。
[Comparative Example 11]
Evaluation was performed in the same manner as in Comparative Example 10, except that no weakened portion was provided and the static internal pressure at which the container body was destroyed was changed to approximately 3.7 MPa. The results are shown in Table 2 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. In the evaluation of
[実施例1]
円筒体の厚みを0.5mmにし、円筒の軸方向に対して円筒の円周方向の引張強度の比を2%になる様に繊維を配置したプリプレグ(繊維入り樹脂板)を用いて製管方法を図6の様に平板ロールに代え、脆弱部を設けず、容器本体が破壊する静的内圧を略0.2MPaに代えたことを除き、比較例11と同様に評価した。結果を以下の表3に示す。
容器質量が略9.6kgであるため運搬性は◎であった。安全性1、2の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は両方とも○であった。しかし、容器落下強度の評価の落下後に容器本体の一部から空気漏れが発生したため△であった。繊維強化樹脂は、繊維の方向と違う方向に対しては弱く、落下衝撃に耐えられなかった。
[Example 1]
The thickness of the cylindrical body is 0.5 mm, and a prepreg (fiber-filled resin plate) in which fibers are arranged so that the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is 2% is used to make a pipe. Evaluation was carried out in the same manner as in Comparative Example 11, except that flat rolls were used as shown in FIG. The results are shown in Table 3 below.
Since the container mass was about 9.6 kg, the transportability was evaluated as ⊚. In the evaluation of
[実施例2]
円筒体の厚みを2.0mmに代え、容器本体が破壊する静的内圧を略0.8MPaに代えたことを除き、実施例1と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1、2の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は両方とも○であった。しかし、容器落下強度の評価は、△であった。繊維強化樹脂は、繊維の方向と違う方向に対しては弱く、厚みを上げても、落下衝撃に耐えられなかった。
[Example 2]
Evaluation was carried out in the same manner as in Example 1, except that the thickness of the cylindrical body was changed to 2.0 mm and the static internal pressure at which the container body broke was changed to approximately 0.8 MPa. The results are shown in Table 3 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. In the evaluation of
[実施例3]
円筒の軸方向に対して円筒の円周方向の引張強度の比を1965%になる様に繊維を配置したプリプレグ(繊維入り樹脂板)を用いて製管方法を図6の様に平板ロールに代え、容器本体の円筒の軸方向に切断部97mm、接合部3mmの間隔で900mmに渡り破線スリットを1本穿設し、脆弱部の貫通孔の隙間に塗装剤を入れ封止し、容器本体が破壊する静的内圧を略1.2MPaに代えたことを除き、実施例2と同様に評価した。結果を以下の表3に示す。
安全性1の評価で15m以上飛散した150g以上の破片数は発生しなかったため、安全性は○であった。安全性2の評価は15m以上飛散した150g以上の破片数は発生しなかったが、容器本体が円周方向に割れ、容器が2分し飛散したため、全体評価は○で、容器本体の分裂状態は×であった。安全性2の評価が×であった。落下強度の評価は、高さ12mからの落下で容器が割れ、内装物が容器外に放出されたため、〇であった。繊維の方向を変え、周方向の強度を高め過ぎると、安全性や落下衝撃に対し、弱いことが分かった。
[Example 3]
Using a prepreg (fiber-filled resin plate) in which fibers are arranged so that the ratio of tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is 1965%, the pipe manufacturing method is performed on a flat roll as shown in FIG. Instead, a broken-line slit is drilled over 900 mm at intervals of 97 mm at the cut portion and 3 mm at the joint portion in the axial direction of the cylinder of the container body, and a coating agent is put into the gap of the through hole of the fragile portion and sealed, and the container body is Evaluation was carried out in the same manner as in Example 2, except that the static internal pressure at which the was destroyed was changed to approximately 1.2 MPa. The results are shown in Table 3 below.
In the evaluation of
[実施例4]
容器の材質をガラス繊維とエポキシ樹脂にし、製管方法をワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側0.5mmの巻角は30度、その外側1.5mmは65度とし、円筒の厚みを2mmにし、脆弱部の形状を溝状にし、円筒の外側から幅2mmの溝を深さ1.7mm長さ900mmに渡り1本穿設し、円筒の軸方向に対して円筒の円周方向の引張強度の比を242%にし、容器本体が破壊する静的内圧を略0.7MPaに代え、封止材を用いなかったことを除き、比較例9と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価は、○であったが、安全性2の評価では、15m以上飛散した150g以上の破片が発生しなかったため〇であった。落下強度の評価は、1.5m落下後に容器本体の一部から空気漏れが発生しため、〇であった。
繊維の方向を変え、周方向の強度を高め過ぎると、安全性や落下衝撃に対し、弱いことが分かった。
[Example 4]
The material of the container is glass fiber and epoxy resin, the tube manufacturing method is winding, the direction of the fiber during winding is changed for each winding layer, the winding angle of the inner 0.5 mm is 30 degrees, and the outer 1.5 mm is 65. The thickness of the cylinder is 2 mm, the shape of the weak part is a groove, and a groove with a width of 2 mm is drilled from the outside of the cylinder with a depth of 1.7 mm and a length of 900 mm. Evaluation was made in the same manner as in Comparative Example 9 except that the tensile strength ratio in the circumferential direction of the cylinder was set to 242%, the static internal pressure at which the container body broke was changed to about 0.7 MPa, and the sealing material was not used. bottom. The results are shown in Table 3 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. The evaluation of
It was found that if the direction of the fibers is changed and the strength in the circumferential direction is increased too much, it becomes weak against safety and drop impact.
[実施例5]
容器本体の円筒の軸方向に切断部90mm、接合部10mmの間隔で900mmに渡り破線スリットを1本穿設し、脆弱部の貫通孔の隙間に塗装剤を入れ封止し、容器本体が破壊する静的内圧を略0.4MPaに代えたことを除き、比較例10と同様に評価した。結果を以下の表3に示す。
容器質量が略10.1kgであるため運搬性は◎であった。安全性1の評価で15m以上飛散した150g以上の破片数は発生しせず、容器本体も2分されなかったため、安全性は○で、安全性2の評価で脆弱部から大きく開口し、蓋部が飛散せず、容器本体も2分されなかったため安全性は○であった。容器落下強度の評価は◎であった。
[Example 5]
A dashed line slit is drilled over 900 mm at intervals of 90 mm at the cut part and 10 mm at the joint part in the axial direction of the cylinder of the container body. Evaluation was performed in the same manner as in Comparative Example 10, except that the static internal pressure was changed to approximately 0.4 MPa. The results are shown in Table 3 below.
Since the mass of the container was approximately 10.1 kg, the transportability was evaluated as ⊚. In the evaluation of
[実施例6]
脆弱部の貫通孔の隙間に接着剤を入れ封止したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例1同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 6]
Evaluation was performed in the same manner as in Example 5, except that an adhesive was put into the clearance of the through-hole of the fragile portion for sealing. The results are shown in Table 3 below.
As in Example 1, the transportability was evaluated as ⊚, the
[実施例7]
脆弱部の貫通孔の隙間をアルミテープで封止したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例1同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 7]
Evaluation was performed in the same manner as in Example 5, except that the gap in the through hole of the fragile portion was sealed with an aluminum tape. The results are shown in Table 3 below.
As in Example 1, the transportability was evaluated as ⊚, the
[実施例8]
脆弱部の形状を溝状にし、円筒の外側から幅2mm深さ1.5mmの溝を設け、容器本体が破壊する静的内圧を略0.9MPaに代え、封止材を用いないことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 8]
Except that the shape of the fragile part is a groove, a groove with a width of 2 mm and a depth of 1.5 mm is provided from the outside of the cylinder, the static internal pressure at which the container body breaks is changed to about 0.9 MPa, and no sealing material is used. , was evaluated in the same manner as in Example 5. The results are shown in Table 3 below.
As in Example 5, the transportability was evaluated as ⊚, the
[実施例9]
脆弱部の形状を破線にし、加工箇所を貫通孔とせず溝状にしたことを除き、実施例8と同様に評価した。結果を以下の表3に示す。
実施例8同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 9]
Evaluation was performed in the same manner as in Example 8, except that the shape of the fragile portion was a broken line, and the processed portion was not a through hole but a groove. The results are shown in Table 3 below.
As in Example 8, the transportability was evaluated as ⊚, the
[実施例10]
製管方法を平板ロールにし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部は溶接に代え脆弱部の引張強度に対し母材の周方向の引張強度を12%にし、容器本体が破壊する静的内圧を略0.4MPaに代え、封止材を塗装剤に代えたことを除き、実施例9と同様に評価した。結果を以下の表3に示す。
実施例9同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 10]
Flat rolls are used as the pipe manufacturing method, the ratio of tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is set to 27%, and the weak part is replaced by welding, and the tensile strength in the circumferential direction of the base material is applied to the tensile strength of the weak part. Evaluation was carried out in the same manner as in Example 9, except that the strength was set to 12%, the static internal pressure at which the container body broke was changed to about 0.4 MPa, and the sealant was changed to a coating agent. The results are shown in Table 3 below.
As in Example 9, the transportability was evaluated as ⊚, the
[実施例11]
製管方法をスパイラルシーム溶接にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を27%にし、脆弱部をらせん状の溶接に代えたことを除き、実施例9と同様に評価した。結果を以下の表3に示す。
実施例9同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 11]
Same as Example 9 except that the pipe manufacturing method was spiral seam welding, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was 27%, and the weakened portion was replaced with spiral welding. evaluated to The results are shown in Table 3 below.
As in Example 9, the transportability was evaluated as ⊚, the
[実施例12]
容器本体に含まれる繊維を24mmにし、脆弱部の引張強度に対し母材の周方向の引張強度を6%に代えたことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 12]
Evaluation was performed in the same manner as in Example 5, except that the fiber contained in the container body was 24 mm, and the tensile strength in the circumferential direction of the base material was changed to 6% with respect to the tensile strength of the fragile portion. The results are shown in Table 3 below.
As in Example 5, the transportability was evaluated as ⊚, the
[実施例13]
脆弱部をらせん状に設置したことを除き、実施例5と同様に評価した。結果を以下の表3に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 13]
Evaluation was performed in the same manner as in Example 5, except that the weakened portion was arranged in a spiral shape. The results are shown in Table 3 below.
As in Example 5, the transportability was ⊚, the
[実施例14]
繊維をパルプ繊維に代えたことを除き、実施例8と同様に評価した。結果を以下の表4に示す。
実施例8同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 14]
Evaluation was performed in the same manner as in Example 8, except that the fibers were replaced with pulp fibers. The results are shown in Table 4 below.
As in Example 8, the transportability was evaluated as ⊚, the
[実施例15]
容器本体筒部の形状を四角に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。容器質量が略10kgであるため運搬性は◎であった。安全性1の評価は○、安全性2の評価は容器本体の角部及び脆弱部が割れ開口を生じたため15m以上飛散した150g以上の破片数は発生しなかったため○であった。落下強度の評価は◎であった。
[Example 15]
Evaluation was performed in the same manner as in Example 5, except that the shape of the tubular portion of the container body was changed to a square shape. The results are shown in Table 4 below. Since the mass of the container was approximately 10 kg, the transportability was evaluated as ⊚. The evaluation of
[実施例16]
繊維をステンレス繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、落下強度の評価は◎であった。
[Example 16]
Evaluation was performed in the same manner as in Example 5, except that the fibers were replaced with stainless steel fibers. The results are shown in Table 4 below. As in Example 5, the transportability was evaluated as ⊚, the
[実施例17]
繊維をセラミック繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 17]
Evaluation was performed in the same manner as in Example 5, except that the fibers were replaced with ceramic fibers. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例18]
繊維を樹脂(アラミド)繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 18]
Evaluation was performed in the same manner as in Example 5, except that the fibers were replaced with resin (aramid) fibers. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例19]
繊維を炭素繊維に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 19]
Evaluation was performed in the same manner as in Example 5, except that the fiber was replaced with carbon fiber. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例20]
含浸する樹脂をPOM(ポリアセタール)樹脂に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 20]
Evaluation was performed in the same manner as in Example 5, except that the impregnating resin was replaced with POM (polyacetal) resin. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例21]
含浸する樹脂を不飽和ポリエステル樹脂に代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 21]
Evaluation was performed in the same manner as in Example 5, except that the impregnating resin was replaced with an unsaturated polyester resin. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例22]
脆弱部の形状を破線状にし、脆弱部引張強度に対し母材の引張強度が6%になるように貫通孔を設け、貫通孔の隙間に塗装剤を入れ封止したことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は、塗装剤に歪が発生し変色したが空気漏れが発生しなかったため◎であった。
[Example 22]
Example except that the shape of the weakened portion is a broken line, a through-hole is provided so that the tensile strength of the base material is 6% with respect to the tensile strength of the weakened portion, and the gap between the through-holes is filled with a coating agent and sealed. It was evaluated in the same manner as 5. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the evaluation of
[実施例23]
製管方法をワインディングにし、上記ワインディング時の繊維の方向を巻層毎に変え、内側1.0mmの巻角は35度、その外側1.0mmは75度とし、円筒の軸方向に対して円筒の円周方向の引張強度の比を200%にし、容器本体が破壊する静的内圧を略1.8MPaに代えたことを除き比較例9と同様に評価した。結果を以下の表4に示す。
運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 23]
Winding is used as the pipe-making method, and the direction of the fibers during the winding is changed for each winding layer, and the winding angle of the inner 1.0 mm is 35 degrees, and the outer 1.0 mm is 75 degrees. Evaluation was carried out in the same manner as in Comparative Example 9, except that the tensile strength ratio in the circumferential direction was set to 200%, and the static internal pressure at which the container body broke was changed to approximately 1.8 MPa. The results are shown in Table 4 below.
The transportability was ⊚,
[実施例24]
繊維の組角度を27度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を10%にし、脆弱部及び塗装剤を設けず、容器本体が破壊する静的内圧を略1.9MPaに代えたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
実施例5同様、運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 24]
The fiber braiding angle is set to 27 degrees, the ratio of tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder is set to 10%, no fragile parts and coating agents are provided, and the static internal pressure at which the container body breaks is approximately Evaluation was performed in the same manner as in Example 5, except that the pressure was changed to 1.9 MPa. The results are shown in Table 4 below.
As in Example 5, the transportability was ⊚, the
[実施例25]
繊維の組角度を53度にし、円筒の軸方向に対して円筒の円周方向の引張強度の比を199%にし、容器本体が破壊する静的内圧を略1.1MPaに代えたことを除き、実施例8と同様に評価した。結果を以下の表4に示す。
運搬性は◎、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
[Example 25]
Except that the fiber braiding angle was set to 53 degrees, the ratio of the tensile strength in the circumferential direction of the cylinder to the axial direction of the cylinder was set to 199%, and the static internal pressure at which the container body broke was changed to about 1.1 MPa. , was evaluated in the same manner as in Example 8. The results are shown in Table 4 below.
The transportability was ⊚,
[実施例26]
筒部の厚みを3.0mmにしたことを除き、実施例5と同様に評価した。結果を以下の表4に示す。
容器質量が略11.4kgとなったため運搬性は○、安全性1の評価は○、安全性2の評価は○、容器落下強度の評価は◎であった。
実施例26における安全性の試験結果を、図10(3)に模式的に示す。
[Example 26]
Evaluation was performed in the same manner as in Example 5, except that the thickness of the cylindrical portion was 3.0 mm. The results are shown in Table 4 below.
Since the mass of the container was about 11.4 kg, the transportability was evaluated as ◯, the evaluation of
The safety test results in Example 26 are schematically shown in FIG. 10(3).
上記の結果から、容器本体が金属製でありさらに脆弱部を含む比較例、及び容器本体が繊維強化プラスチックを含むことを単独で規定した場合の比較例に比べて、容器本体が繊維強化プラスチックを含み、さらに限界静的内圧を規定した実施例では、高い気密性及び運用性を有し、かつ火薬類が爆轟等したときの周囲に与える損壊を低減できる点で優れていることがわかる。
さらに、容器本体が脆弱部を有するものとすることで、落下強度を調整できる。また筒部の軸方向と周方向との引張強度比を調整することで、容器の分離を調整できる。
このように、繊維強化プラスチック+限界静的内圧+脆弱部+引張強度比の条件をすべて満たすことで、容器の分離、落下強度を調整しつつ、特に高い落下強度を達成できる。特に、このような高い落下強度は、脆弱部又は引張強度比を単独で満たす構成のみでは達成できず、これらを組み合わせることで達成できる。
From the above results, compared to the comparative example in which the container body is made of metal and further includes a fragile portion, and the comparative example in which it is solely specified that the container body contains fiber-reinforced plastic, the container body contains fiber-reinforced plastic. It can be seen that the examples in which the limit static internal pressure is specified are excellent in that they have high airtightness and operability, and can reduce damage to the surroundings when explosives detonate.
Furthermore, the drop strength can be adjusted by providing the container body with a fragile portion. In addition, separation of the container can be adjusted by adjusting the tensile strength ratio between the axial direction and the circumferential direction of the cylindrical portion.
Thus, by satisfying all the conditions of fiber reinforced plastic + limit static internal pressure + fragile portion + tensile strength ratio, separation of the container and drop strength can be adjusted, and particularly high drop strength can be achieved. In particular, such a high drop strength cannot be achieved by a structure that satisfies the weak portion or the tensile strength ratio alone, but can be achieved by combining them.
以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the present invention has been described above, the present invention is not limited to this, and can be modified as appropriate without departing from the gist of the invention.
本発明に係る容器本体の筒部を筒部の軸方向に強く、周方向に割れやすい繊維強化樹脂材とし、容器本体が所定の圧力で破壊を開始する様、最適な容器本体の構造若しくは容器本体に脆弱部を設け、脆弱部の隙間に封止材を設けた、繊維強化樹脂製の弾薬用容器を用いれば、通常時における落下強度、気密性を保持しながらも、容器内部において火薬類が発火した非常時には低い圧力で開口を生じ、容器内に発生する最大圧力低下させることができる。それによって、容器が爆発するリスクをより確実に低減でき、結果、周囲への影響をより低減することができる。また、容器外部からの被弾等で火薬類が爆轟した非常時には飛散する破片の形状を小さく、軽量にすることで、飛散する破片の殺傷エネルギーを低減でき、繊維を筒部の軸に近い方向とすることで容器本体の飛翔も防止することができる。結果、周囲への影響をより低減することができる。すなわち、本発明に係る弾薬用容器においては、内装する火薬類が発火した場合や爆轟した場合でも、周囲への影響をより確実に低減することができる。さらに、金属素材を選択するよりも軽量化できるため、運搬性を向上させることができる。よって、本発明は、弾薬用容器として好適に利用可能である。 The cylindrical portion of the container body according to the present invention is made of a fiber-reinforced resin material that is strong in the axial direction of the cylindrical portion and easily cracked in the circumferential direction, and the container body has an optimum structure or container so that the container body starts breaking at a predetermined pressure. By using a fiber-reinforced resin ammunition container with a fragile part in the main body and a sealing material in the gap of the fragile part, explosives can be stored inside the container while maintaining the drop strength and airtightness in normal times. In the event of a fire, the opening will occur at a lower pressure, reducing the maximum pressure generated within the vessel. Thereby, the risk of the container exploding can be more reliably reduced, and as a result, the impact on the surroundings can be further reduced. In addition, by making the shape of the scattered fragments smaller and lighter in the event of an emergency when explosives detonate due to being hit from the outside of the container, the killing energy of the scattered fragments can be reduced, and the fibers are oriented in a direction close to the axis of the cylinder. By doing so, it is possible to prevent the container body from flying. As a result, the influence on surroundings can be further reduced. That is, in the ammunition container according to the present invention, even if the explosives contained therein ignite or detonate, the impact on the surroundings can be more reliably reduced. Furthermore, since the weight can be reduced compared to selecting a metal material, the portability can be improved. Therefore, the present invention can be suitably used as an ammunition container.
1 弾薬用容器
2 筒部
3 底部
4 容器本体
5 蓋体
10 脆弱部
A 脆弱部長さ
B 貫通孔の隙間
C 貫通孔1個当たりの長さ
D 貫通孔間の接合部長さ
E 繊維
F 樹脂
G 蓋
1
すなわち、本発明は以下のとおりのものである。
[1]筒部及び当該筒部の両端のうち一方を塞ぐ底部を有する容器本体と、前記筒部の両端のうち他方の開口部を塞ぐ蓋体と、を有する弾薬用容器であって、
前記筒部が、繊維強化プラスチックを含み、かつ当該筒部の限界静的内圧が、0.2~2.0MPaであり、
前記筒部に、少なくとも1つの脆弱部を備え、
前記繊維強化プラスチックの繊維がフィラメントワインディング製法により配置され、かつ、
前記筒部の軸方向に対する周方向の引張強度の比が2~250%である、
ことを特徴とする、弾薬用容器。
[2]前記脆弱部が、封止材によって封止されている、前記[1]に記載の弾薬用容器。
[3]前記脆弱部が、線状構造、溝状構造、薄肉状構造、繊維を含有しない部分又はこれらの組み合わせの構造を有する、前記[1]又は[2]に記載の弾薬用容器。
[4]前記繊維強化プラスチックの繊維が、ガラス繊維、金属繊維、パルプ繊維、ケラミック繊維、樹脂繊維、炭素繊維、及び木質繊維からなる群から選択される少なくとも一種を含む、前記[1]~[3]のいずれかに記載の弾薬用容器。
[5]前記繊維強化プラスチックのプラスチックが、エポキシ樹脂、ポリアセタール樹脂、塩化ビニル、不飽和ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、及びフェノール樹脂からなる群から選択される少なくとも一種を含む、前記[1]~[4]のいずれかに記載の弾薬用容器。
That is, the present invention is as follows.
[1] An ammunition container comprising: a container body having a tubular portion and a bottom portion that closes one of both ends of the tubular portion; and a lid that closes the other opening of both ends of the tubular portion,
The tubular portion contains fiber-reinforced plastic, and the limiting static internal pressure of the tubular portion is 0.2 to 2.0 MPa,
comprising at least one weakened portion in the tubular portion;
The fibers of the fiber-reinforced plastic are arranged by a filament winding method, and
A ratio of tensile strength in the circumferential direction to the axial direction of the tubular portion is 2 to 250%,
An ammunition container characterized by:
[ 2 ] The ammunition container according to [ 1 ], wherein the fragile portion is sealed with a sealing material.
[ 3 ] The ammunition container according to [ 1 ] or [ 2 ] above , wherein the weakened portion has a linear structure, a groove-like structure, a thin-walled structure, a fiber-free portion, or a combination thereof.
[ 4 ] The fibers of the fiber-reinforced plastic include at least one selected from the group consisting of glass fibers, metal fibers, pulp fibers, ceramic fibers, resin fibers, carbon fibers, and wood fibers. The ammunition container according to any one of [ 3 ].
[ 5 ] The fiber-reinforced plastic includes at least one selected from the group consisting of epoxy resins, polyacetal resins, vinyl chloride, unsaturated polyester resins, acrylic resins, polycarbonate resins, and phenolic resins. ] to [ 4 ].
Claims (8)
前記筒部が、繊維強化プラスチックを含み、かつ当該筒部の限界静的内圧が、0.2~2.0MPaであることを特徴とする、弾薬用容器。 An ammunition container comprising: a container body having a tubular portion and a bottom portion that closes one of both ends of the tubular portion; and a lid that closes an opening of the other of both ends of the tubular portion,
An ammunition container, wherein the tubular portion comprises fiber-reinforced plastic, and the limiting static internal pressure of the tubular portion is 0.2 to 2.0 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023081506A JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018214172A JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
JP2023081506A JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Division JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023096076A true JP2023096076A (en) | 2023-07-06 |
JP7504260B2 JP7504260B2 (en) | 2024-06-21 |
Family
ID=70907470
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Active JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
JP2023081506A Active JP7504260B2 (en) | 2018-11-14 | 2023-05-17 | Ammunition container |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214172A Active JP7335691B2 (en) | 2018-11-14 | 2018-11-14 | ammunition container |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7335691B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114199092B (en) * | 2021-12-13 | 2023-10-17 | 北京中科宇航技术有限公司 | Rocket initiating explosive device ignition experimental container and design method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3853201B2 (en) | 2001-11-14 | 2006-12-06 | 日鉄コンポジット株式会社 | Explosives storage container |
JP2004226031A (en) | 2003-01-24 | 2004-08-12 | Asahi Kasei Chemicals Corp | Pallet for ammunition case |
US6889464B2 (en) * | 2003-06-04 | 2005-05-10 | Michael K. Degerness | Composite structural member |
EP2113733A1 (en) * | 2008-04-30 | 2009-11-04 | Saab Ab | Weapon with IM-characteristics |
JP5504902B2 (en) | 2010-01-14 | 2014-05-28 | 日油株式会社 | Packing container for cylindrical ammunition |
JP5577854B2 (en) * | 2010-06-01 | 2014-08-27 | 日油株式会社 | Cylindrical ammunition container |
JP5577870B2 (en) | 2010-06-14 | 2014-08-27 | 日油株式会社 | Cylindrical ammunition container |
US8561543B2 (en) * | 2010-11-10 | 2013-10-22 | True Velocity, Inc. | Lightweight polymer ammunition cartridge casings |
EP2749838B1 (en) * | 2011-01-14 | 2015-06-17 | PCP Tactical, LLC | High strength polymer-based cartridge casing for blank and subsonic ammunition |
JP2013011365A (en) | 2011-06-28 | 2013-01-17 | Nof Corp | Container for ammunition |
JP5875800B2 (en) * | 2011-08-23 | 2016-03-02 | 日油株式会社 | Ammunition container |
JP6399811B2 (en) * | 2014-06-02 | 2018-10-03 | 旭化成株式会社 | Ammunition container having a stitch-like fragile portion |
US10330433B2 (en) * | 2014-06-23 | 2019-06-25 | Troy Industries, Inc. | Composite handguard for a firearm and mounting/attachment apparatus therefor |
JP6623722B2 (en) | 2015-09-03 | 2019-12-25 | 日本製鉄株式会社 | High pressure tank |
JP2018144273A (en) * | 2017-03-02 | 2018-09-20 | 三菱ケミカル株式会社 | Manufacturing method of layered sheet |
-
2018
- 2018-11-14 JP JP2018214172A patent/JP7335691B2/en active Active
-
2023
- 2023-05-17 JP JP2023081506A patent/JP7504260B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7335691B2 (en) | 2023-08-30 |
JP2020085249A (en) | 2020-06-04 |
JP7504260B2 (en) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9816793B2 (en) | Shock-resistant fuzewell for munition | |
EP0559436A1 (en) | Solid propellant rocket motor case, comprising a material which melts down at undesirable temperatures above normal storage temperatures | |
US7025000B1 (en) | Mechanism for reducing the vulnerability of high explosive loaded munitions to unplanned thermal stimuli | |
JP7108685B2 (en) | Fully armored safety bullet especially for multi-purpose use | |
JP2023096076A (en) | Container for ammunition | |
JP2006526758A (en) | Kinetic energy rod-type warhead with reduced emission angle | |
JP5774843B2 (en) | Cylindrical ammunition container | |
JP6399812B2 (en) | Ammunition container with Y-shaped weak part | |
JP2008512642A (en) | Kinetic energy rod warhead with narrow open angle | |
US20230132848A1 (en) | Casing for a fragmentation weapon, fragmentation weapon, and method of manufacture | |
US7913608B1 (en) | Weapon with IM-characteristics | |
RU2625056C1 (en) | Invisible projectile | |
JP6399811B2 (en) | Ammunition container having a stitch-like fragile portion | |
JP2012017935A (en) | Storage container of firing charge | |
Baker et al. | Insensitive munitions technology development | |
US10571234B1 (en) | Venting lifting plug for munitions | |
JP6399815B2 (en) | Ammunition container having a weak part in the main body cylindrical part and a lock spider in the lid | |
RU2789489C1 (en) | Container for transportation of explosive objects and emergency ammunition | |
US8943972B1 (en) | Liner release mechanism for anti-armor munitions | |
JP5577870B2 (en) | Cylindrical ammunition container | |
US9618293B1 (en) | Munitions storage container with disabling device for single-use weapon stored therein | |
JP6707965B2 (en) | Ammunition container | |
Wiśniewski | Possibility of the Use of Different Types of Materials in Passive Ventilation Systems of Munitions | |
WIŚNIEWSKI | Different Types of Ventilation Systems of Munitions | |
Čabarkapa et al. | Solving technical problems while working with ordnance using innovation principles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7504260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |