[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7581100B2 - Vibration actuator, camera head, and electronic device - Google Patents

Vibration actuator, camera head, and electronic device Download PDF

Info

Publication number
JP7581100B2
JP7581100B2 JP2021047085A JP2021047085A JP7581100B2 JP 7581100 B2 JP7581100 B2 JP 7581100B2 JP 2021047085 A JP2021047085 A JP 2021047085A JP 2021047085 A JP2021047085 A JP 2021047085A JP 7581100 B2 JP7581100 B2 JP 7581100B2
Authority
JP
Japan
Prior art keywords
contact
vibration actuator
friction
actuator according
friction portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021047085A
Other languages
Japanese (ja)
Other versions
JP2022146230A (en
Inventor
暁 北島
聡司 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021047085A priority Critical patent/JP7581100B2/en
Publication of JP2022146230A publication Critical patent/JP2022146230A/en
Application granted granted Critical
Publication of JP7581100B2 publication Critical patent/JP7581100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、振動体と接触体を備えた、振動型アクチュエータに関するものである。 The present invention relates to a vibration actuator having a vibrating body and a contact body.

振動型アクチュエータは低速・大トルクなどの特徴から、例えば一眼レフカメラの撮影レンズにおけるオートフォーカスの駆動用モータとして実用化されており、近年はカメラ以外のさまざまな電子機器への適用も期待されている。例えば、ロボットアームの関節駆動やロボットハンドの回転駆動、監視カメラ等の撮像装置の雲台の回転駆動、画像形成装置の感光体ドラムの回転駆動への振動型アクチュエータの適用が期待されている。 Because of their characteristics of low speed and high torque, vibration actuators have been put to practical use, for example as drive motors for autofocus in the photographic lenses of single-lens reflex cameras, and in recent years they are expected to be used in a variety of electronic devices other than cameras. For example, vibration actuators are expected to be used to drive the joints of robot arms and the rotation of robot hands, to drive the rotation of the pan heads of imaging devices such as surveillance cameras, and to drive the rotation of photosensitive drums in image forming devices.

このような他用途への適用に向けて、振動型アクチュエータの生産性の向上とローコスト化、これらの要求に対して、振動体が備える摩擦摺動部材を別部材で構成する技術が提案されている。(特許文献1参照)。これは、振動体の本体部とは別に摩擦摺動部材を製造し、のちに両者を接着させるものである。また同様に移動体(接触体)が備える摩擦摺動部材を別部材で構成する技術も提案されている。 In order to meet the demands of improving the productivity and reducing the cost of vibration actuators for such applications, a technology has been proposed in which the friction sliding member of the vibrating body is made of a separate material (see Patent Document 1). This involves manufacturing the friction sliding member separately from the main body of the vibrating body, and then bonding the two together. Similarly, a technology has also been proposed in which the friction sliding member of the moving body (contact body) is made of a separate material.

特許文献1に記載された技術では、振動体と接触体共に別部材を接合後、摩擦摺動部をラップなどの後工程で加工を行い平滑化することを提案している。近年求められている静粛性におけるより低い音圧レベル基準を達成することを振動型アクチュエータに求められており、また、雲台やロボットハンドの回転駆動など高い位置制御性基準の観点においては、スムーズな動作を行うためである。 The technology described in Patent Document 1 proposes joining the vibrating body and the contact body as separate members, and then processing the friction sliding parts in a post-process such as lapping to smooth them out. This is because vibration actuators are required to achieve lower sound pressure level standards for quietness, which have been required in recent years, and also to perform smooth operation from the perspective of high position controllability standards such as the rotational drive of camera platform and robotic hands.

しかしながら、摩擦摺動部を平滑化させるためのラップなどは、加工時間がかかりコストが高くなる原因となっている。 However, processes such as lapping to smooth out frictional sliding parts take time and are a cause of high costs.

特許第3450524号公報Patent No. 3450524

そこで本発明は、大きなコストをはらうことなく静音でムラがすくなくスムーズな回転動作を実現する振動型アクチュエータを提供する。 Therefore, the present invention provides a vibration actuator that achieves quiet, uniform and smooth rotational operation without incurring large costs.

環状の弾性体及び電気-機械エネルギー変換素子を有する振動体と、前記振動体と接する環状の接触体を備え、前記接触体は、前記振動体と接する第1摩擦部と、前記第1摩擦部と隣接し前記振動体と接触していない第1非接触部を有し、前記弾性体は、前記第1摩擦部と接する第2摩擦部と、前記第2摩擦部と隣接し前記接触体と接触していない第2非接触部を有し、前記第1摩擦部は、前記第2摩擦部よりも硬度が低く、前記第1非接触部は前記第2非接触部よりも二乗平均粗さが小さい振動型アクチュエータを提供する。 A vibration actuator is provided, comprising a vibrating body having a ring-shaped elastic body and an electromechanical energy conversion element, and a ring-shaped contact body in contact with the vibrating body, the contact body having a first friction part in contact with the vibrating body and a first non-contact part adjacent to the first friction part and not in contact with the vibrating body, the elastic body having a second friction part in contact with the first friction part and a second non-contact part adjacent to the second friction part and not in contact with the contact body, the first friction part has a lower hardness than the second friction part, and the first non-contact part has a smaller root mean square roughness than the second non-contact part.

上記発明により、低コストで、異音の発生を抑制しスムーズな回転動作を実現する、振動型アクチュエータを提供することができる。 The above invention makes it possible to provide a vibration actuator that is low-cost, suppresses the generation of abnormal noise, and achieves smooth rotational operation.

本発明の第1実施形態に係る振動型アクチュエータの構成を概略的に示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a vibration actuator according to a first embodiment of the present invention. 図1における振動体に励起される駆動振動の変形の様態を説明するための図である。2 is a diagram for explaining a state of deformation of a driving vibration excited in the vibrator in FIG. 1 . FIG. 図1における接触体と振動体の構成を概略的に示す図及び詳細図である。2A and 2B are a schematic view and a detailed view showing the configuration of a contact body and a vibrating body in FIG. 1 . 図1における摩擦部材と弾性体の摩耗状態を概略的に示す図である。2 is a diagram showing a schematic diagram of a wear state of the friction member and the elastic body in FIG. 1 . FIG. 図1における接触体の第1の変形例の構成を概略的に示す図である。2 is a diagram illustrating a configuration of a first modified example of the contact body in FIG. 1. FIG. 図1における接触体の第2の変形例の構成を概略的に示す図である。1. FIG. 4 is a diagram illustrating a configuration of a second modified example of the contact body in FIG. 図1における接触体の第3の変形例の構成を概略的に示す図である。1. FIG. 4 is a diagram illustrating a configuration of a third modified example of the contact body in FIG. 図1における接触体の第4の変形例の構成を概略的に示す図である。1. FIG. 4 is a diagram illustrating a configuration of a fourth modified example of the contact body in FIG. 図1における接触体の第5の変形例の構成を概略的に示す図である。1. FIG. 9 is a diagram illustrating a configuration of a fifth modified example of the contact body in FIG. 図1における接触体の第6の変形例の構成を概略的に示す図である。1. FIG. 9 is a diagram illustrating a configuration of a sixth modified example of the contact body in FIG. 本発明の実施形態に係る振動型アクチュエータを搭載した雲台と、雲台に搭載された撮像装置の構成を概略的に示す図である。1 is a diagram showing a schematic configuration of a camera platform on which a vibration actuator according to an embodiment of the present invention is mounted, and an imaging device mounted on the camera platform;

[実施例1]
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
[Example 1]
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<第1実施形態>
図1は、本発明の第1の実施形態に係る振動型アクチュエータ10の構成を概略的に示す断面図である。振動型アクチュエータ10における振動体20および接触体300(移動体、被駆動体)および加圧機構40等の機械的構成は、例えば特開2017-108615号公報に記載の振動型アクチュエータと機能的には同等である。
First Embodiment
1 is a cross-sectional view showing a schematic configuration of a vibration actuator 10 according to a first embodiment of the present invention. The mechanical configuration of the vibration actuator 10, including a vibrating body 20, a contact body 300 (moving body, driven body), and a pressure mechanism 40, is functionally equivalent to that of the vibration actuator described in, for example, JP 2017-108615 A.

本実施形態の振動型アクチュエータは、弾性体および電気-機械エネルギー変換素子を有する振動体と、振動体と接する接触体を備えている。加えて、電気-機械エネルギー変換素子に給電する給電部材(フレキシブルプリント基板)を備えている。 The vibration actuator of this embodiment includes a vibrating body having an elastic body and an electromechanical energy conversion element, and a contact body that contacts the vibrating body. In addition, it includes a power supply member (flexible printed circuit board) that supplies power to the electromechanical energy conversion element.

図1において、振動型アクチュエータ10は、円環状に形成された振動体20、円環状に形成された接触体300、および加圧機構40を備える。また、振動型アクチュエータ10は、シャフト、ハウジング、ベアリングを備える。 In FIG. 1, the vibration actuator 10 includes a vibrating body 20 formed in a circular ring shape, a contact body 300 formed in a circular ring shape, and a pressure mechanism 40. The vibration actuator 10 also includes a shaft, a housing, and a bearing.

振動体20は、弾性体21と、弾性体21に接合された電気-機械エネルギー変換素子である圧電素子22と、圧電素子22に接合されて圧電素子22に交流電圧である駆動電圧を印加するための給電部材100を有する。 The vibrating body 20 has an elastic body 21, a piezoelectric element 22 which is an electrical-mechanical energy conversion element bonded to the elastic body 21, and a power supply member 100 which is bonded to the piezoelectric element 22 and applies a driving voltage which is an AC voltage to the piezoelectric element 22.

加圧機構40は制振ゴム41、加圧ばね受け部材42、加圧ばね受けゴム43、加圧ばね44及び加圧ばね固定部材45を有する。振動体20及び接触体300はシャフトを中心軸として同心円状に配置され、シャフトに固定された加圧機構40によってシャフトのスラスト方向に関して互いに加圧接触(摩擦接触)する。具体的には、シャフトに固定された加圧ばね固定部材45によって移動を規制された加圧ばね44が、制振ゴム41、加圧ばね受け部材42及び加圧ばね受けゴム43を介して接触体300をスラスト方向に押圧する。このように構成されることにより、接触体300と振動体20は安定的に接触する。 The pressure mechanism 40 has a vibration-damping rubber 41, a pressure spring receiving member 42, a pressure spring receiving rubber 43, a pressure spring 44, and a pressure spring fixing member 45. The vibrating body 20 and the contact body 300 are arranged concentrically with the shaft as the central axis, and are in pressure contact (frictional contact) with each other in the thrust direction of the shaft by the pressure mechanism 40 fixed to the shaft. Specifically, the pressure spring 44, whose movement is restricted by the pressure spring fixing member 45 fixed to the shaft, presses the contact body 300 in the thrust direction via the vibration-damping rubber 41, the pressure spring receiving member 42, and the pressure spring receiving rubber 43. This configuration ensures stable contact between the contact body 300 and the vibrating body 20.

振動型アクチュエータ10では、給電部材100を通して圧電素子22へ交流電圧である駆動電圧を印加することにより、振動体20に駆動振動を励起させる。駆動振動の態様は圧電素子22が有する複数の電極の数や配置形態に依存するが、励起される駆動振動が振動体10の周方向に進むn次(本実施形態ではn=9)の進行波となるように、圧電素子22が設計される。なお、n次の駆動振動とは振動体20の周方向における波数がn個となる曲げ振動である。圧電素子22に発生した駆動振動は振動体20の接触部25に生じた進行波によって、接触体300をシャフト回りの周方向へ駆動する。すなわち、接触体300は振動体20と同心を保ったまま、相対的に回転運動する。接触体300に発生した回転力は加圧機構40とシャフトを通して外部へ出力される。 In the vibration actuator 10, a driving voltage, which is an AC voltage, is applied to the piezoelectric element 22 through the power supply member 100 to excite the vibration body 20 to drive vibration. The form of the driving vibration depends on the number and arrangement of the electrodes of the piezoelectric element 22, but the piezoelectric element 22 is designed so that the excited driving vibration becomes an n-th order (n=9 in this embodiment) traveling wave that advances in the circumferential direction of the vibration body 10. Note that the n-th order driving vibration is a bending vibration with n waves in the circumferential direction of the vibration body 20. The driving vibration generated in the piezoelectric element 22 drives the contact body 300 in the circumferential direction around the shaft by the traveling wave generated in the contact portion 25 of the vibration body 20. In other words, the contact body 300 rotates relatively to the vibration body 20 while maintaining its concentricity. The rotational force generated in the contact body 300 is output to the outside through the pressure mechanism 40 and the shaft.

図1に描かれている本実施形態の振動型アクチュエータ10は、例えばハウジングを所望の部材に固定し、シャフトの下方に末広がりに構成されているフランジ面にカメラ等の可動対象を固定することで、可動対象を自由に回転駆動させることができる。他方で、シャフトを固定してハウジングを回転駆動させることも可能である。 The vibration actuator 10 of this embodiment shown in Figure 1 can freely rotate a movable object by, for example, fixing the housing to a desired member and fixing the movable object, such as a camera, to a flange surface that is configured to diverge downward from the shaft. On the other hand, it is also possible to fix the shaft and rotate the housing.

図2は、振動体20に励起される駆動振動の変形の様態を説明するための図である。なお、図2では、振動体20において励起される駆動振動の変位に対する理解を容易にするために、変位を実際よりも誇張している。 Figure 2 is a diagram for explaining the state of deformation of the driving vibration excited in the vibrating body 20. Note that in Figure 2, the displacement is exaggerated to make it easier to understand the displacement of the driving vibration excited in the vibrating body 20.

図3(a)は、接触体300の構成と前出の振動体と異なる形態の振動体20の構成を概略的に示す断面図であり、本実施形態の振動体20は断面が台形形状である弾性体21を備えている。弾性体21には電気-機械エネルギー変換素子である圧電素子22が接合させている。なお、駆動電圧を圧電素子22に印加するための給電部材をはじめとするその他の部材は前出の振動アクチュエータと同等であるため、不図示とする。接触体300は、本体部材301と、本体部材301と別の部材である摩擦部材302を有する。本体部材301と摩擦部材302は接着又は接合により連結されている。 Figure 3(a) is a cross-sectional view that shows the configuration of the contact body 300 and the configuration of the vibrating body 20, which has a different form from the vibrating body described above. The vibrating body 20 of this embodiment has an elastic body 21 with a trapezoidal cross section. A piezoelectric element 22, which is an electromechanical energy conversion element, is bonded to the elastic body 21. Note that other members, including a power supply member for applying a drive voltage to the piezoelectric element 22, are the same as those in the vibration actuator described above and are not shown. The contact body 300 has a main body member 301 and a friction member 302 that is a separate member from the main body member 301. The main body member 301 and the friction member 302 are connected by adhesion or bonding.

本体部材301は、基底部301aと、接触体300の径方向に延出した支持部301bを有する。支持部301bは断面がL字形状をしており、端部に摩擦部材302が連結している。本体部材301は円環状に構成される。 The main body member 301 has a base portion 301a and a support portion 301b extending in the radial direction of the contact body 300. The support portion 301b has an L-shaped cross section, and a friction member 302 is connected to the end portion. The main body member 301 is configured in a circular ring shape.

図3(b)は接触体300と、弾性体21が接触する摩擦接触部の詳細断面図である。摩擦部材302には弾性体21と接触する第1接触部302a、第1摩擦部302aと隣接し弾性体21と接触していない第1非接触部302bを有する。弾性体21は、第1摩擦部302aと接する第2摩擦部21aと、第2摩擦部21aと隣接し摩擦部材302と接触していない第2非接触部21bを有する。つまり、第1摩擦部は支持部に保持されるとともに、第1摩擦部の環状の接触体の径方向に対する両端部は、接触体および前記振動体のいずれにも接触しない部位を有するように構成されている。 Figure 3(b) is a detailed cross-sectional view of the frictional contact portion where the contact body 300 and the elastic body 21 come into contact. The friction member 302 has a first contact portion 302a that comes into contact with the elastic body 21, and a first non-contact portion 302b that is adjacent to the first friction portion 302a and does not come into contact with the elastic body 21. The elastic body 21 has a second friction portion 21a that comes into contact with the first friction portion 302a, and a second non-contact portion 21b that is adjacent to the second friction portion 21a and does not come into contact with the friction member 302. In other words, the first friction portion is held by the support portion, and both ends of the ring-shaped contact body of the first friction portion in the radial direction are configured to have portions that do not come into contact with either the contact body or the vibrating body.

摩擦部材302は弾性体21に対し硬度が低く、第2摩擦部20bは弾性体の第2摩擦部21bよりも二乗平均粗さが小さい。簡単に表現すると摩擦部材302は弾性体21に対し柔らかく滑らかな表面性状であり、弾性体21は摩擦部材302に対し硬く粗い表面性状を有している。 The friction member 302 has a lower hardness than the elastic body 21, and the second friction portion 20b has a smaller root-mean-square roughness than the second friction portion 21b of the elastic body. In simple terms, the friction member 302 has a soft and smooth surface property compared to the elastic body 21, and the elastic body 21 has a hard and rough surface property compared to the friction member 302.

摩擦部材302は弾性体21に対し断面形状が曲率を有する凸形状をしており、円環状に構成される。本実施形態での曲率の大きさはR0.6であり凸形状全域で同一の曲率であるが、位置により曲率が変化する可変曲率でも良く、使用する環境や製品寿命により、曲率を選択しても良い。摩耗していない初期状態の摩擦部材302の凸形状先端は、弾性体21の粗い面に点接触するが、摩擦摺動をすることにより摩擦部材302の凸形状先端の摩耗が進み且つ弾性体21の粗い面も摩耗し、共に平坦な部分が形成される。また摩擦部材302は円環状に構成されるため初期状態の周上では線接触であり、摩耗が進むと平面接触となる。 The friction member 302 has a convex shape with a curvature in cross section relative to the elastic body 21, and is configured in a circular ring shape. In this embodiment, the magnitude of the curvature is R0.6, and the curvature is the same over the entire convex shape, but it may have a variable curvature in which the curvature changes depending on the position, and the curvature may be selected depending on the usage environment and product life. The convex tip of the friction member 302 in the initial state, when it is not worn, is in point contact with the rough surface of the elastic body 21, but as frictional sliding occurs, the convex tip of the friction member 302 wears and the rough surface of the elastic body 21 also wears, and both form flat parts. In addition, since the friction member 302 is configured in a circular ring shape, it is in line contact around the circumference in the initial state, and as wear progresses, it becomes flat contact.

図4は摩擦部材302と弾性体21の摩擦接触状態を模式的に示した断面図であり、図4aは摩耗していない摩擦摺動部の初期状態、図4bは初期摩耗が進み定常状態になった摩擦摺動部を示している。図4aに示すように初期状態では、摩擦部材302、弾性体21共に摩耗していないため摩擦部材302の凸形状先端と弾性体21の粗い面の突出した部分が点で接触した面圧の高い状態である。図4bに示すように複数回動作させると、摩擦材302の凸形状先端が摩耗し、弾性体21の硬い粗い面も摩耗して平坦な部分が形成され、面圧が低下している状態になる。摩擦材302は径方向に曲率を有しており、摩耗が徐々に進行していっても滑らかな表面性状をしているため常に平滑な面が弾性体21と接触し、スムーズな回転と静粛さを維持することが可能となる。 Figure 4 is a cross-sectional view showing the frictional contact state between the friction member 302 and the elastic body 21. Figure 4a shows the initial state of the friction sliding part that is not worn, and Figure 4b shows the friction sliding part that has reached a steady state after initial wear. As shown in Figure 4a, in the initial state, neither the friction member 302 nor the elastic body 21 is worn, so the convex tip of the friction member 302 and the protruding part of the rough surface of the elastic body 21 are in point contact, resulting in a high surface pressure. As shown in Figure 4b, when the friction member 302 is operated multiple times, the convex tip of the friction member 302 is worn, and the hard rough surface of the elastic body 21 is also worn to form a flat part, resulting in a state where the surface pressure is reduced. The friction material 302 has a curvature in the radial direction, and even if wear gradually progresses, the friction material 302 has a smooth surface property, so the smooth surface always comes into contact with the elastic body 21, making it possible to maintain smooth rotation and quietness.

また製造工程における出荷検査の動作確認時に、定常使用する回転数や負荷よりも大きい回転と負荷を与えるため、振動体に大きな振幅が発生し定常使用時の接触領域よりも広い範囲で接触、初期摩耗し、それに応じた弾性体21の硬い粗い面が平坦になる。そのため摩擦材302の摩耗が進んでも弾性体21の初期摩耗が終了した平坦な部分と接触するためスムーズな回転と静粛さを維持することが出来る。弾性体21が摩擦部材302より柔らかく摩耗し易いと、溝状に摩耗し摩擦部材302がその溝に嵌ってしまうためスムーズな回転を阻害する原因となる。本実施形態における摩擦部材302はSUS420j2の板材をプレスにより所望の形状に成形した後、焼入れ処理を行う。硬度はビッカース硬さで580Hv程であり、初期摩耗が起こる前の第1接触部302a及び第1非接触部302bの二乗平均粗さRqは0.213μmであった。また、弾性体21は鉄鋼系の材料に窒化処理が施してあり、コストアップに繋がるラップなど滑らかな表面性状へ改質する処理は施されていない。弾性体の表層硬度はビッカース硬さで1100Hv程であり、初期摩耗が起こる前の第2接触部21a及び第2非接触部21bの二乗平均粗さRqは0.461μmであった。複数台のモータの観察をしたところ初期摩耗が起こる前の第1接触部302a及び第1非接触部と初期摩耗が起こる前の第2接触部及び第2非接触部の硬度は4<=5、二乗平均粗さは2<=2.5の関係であることが良好であることが分かった。窒化処理は塩浴窒化、ガス窒化、イオン窒化などが挙げられいずれの処理でも良い。窒化処理は部品表層に窒素を侵入拡散させ硬化させるため表層と母材との間に硬度差が生じる。そのため硬化層以上に摩耗すると加速的に摩耗が進行するため摩擦部材302の方の硬度が低く相対的に摩耗し易いことが好ましいのである。 In addition, during the operation check of the shipping inspection in the manufacturing process, a rotation speed and load greater than those in normal use are applied, so that a large amplitude occurs in the vibrator, and contact and initial wear occur over a wider range than the contact area during normal use, and the hard, rough surface of the elastic body 21 becomes flat accordingly. Therefore, even if the friction material 302 wears, it contacts the flat part of the elastic body 21 where the initial wear has ended, so smooth rotation and quietness can be maintained. If the elastic body 21 is softer and more likely to wear than the friction member 302, it will wear into a groove and the friction member 302 will get stuck in the groove, causing an obstruction to smooth rotation. In this embodiment, the friction member 302 is formed into a desired shape by pressing a plate material of SUS420j2, and then hardened. The hardness is about 580 Hv in Vickers hardness, and the root mean square roughness Rq of the first contact part 302a and the first non-contact part 302b before the initial wear occurs was 0.213 μm. In addition, the elastic body 21 is made of a steel-based material and has been subjected to nitriding treatment, and no treatment to improve the surface quality to a smooth state, such as lapping, which leads to increased costs, has been performed. The surface hardness of the elastic body is about 1100 Hv in Vickers hardness, and the root mean square roughness Rq of the second contact portion 21a and the second non-contact portion 21b before the occurrence of initial wear is 0.461 μm. When observing several motors, it was found that the hardness of the first contact portion 302a and the first non-contact portion before the occurrence of initial wear and the root mean square roughness of the second contact portion and the second non-contact portion before the occurrence of initial wear are in a good relationship of 4 <= 5, and the root mean square roughness is 2 <= 2.5. The nitriding treatment may be salt bath nitriding, gas nitriding, ion nitriding, or any other treatment. The nitriding treatment causes nitrogen to penetrate and diffuse into the surface layer of the part to harden it, so a hardness difference occurs between the surface layer and the base material. Therefore, if it wears beyond the hardened layer, the wear progresses at an accelerated rate, so it is preferable that the friction member 302 has a low hardness and is relatively easy to wear.

なお前記摩擦部については、第1摩擦部は、支持部に対して環状の接触体の径方向に対して、内嵌合および/または外嵌合するように構成してもよい。第1摩擦部は、環状の線材を用いてよい。 The first friction part may be configured to fit inside and/or outside the support part in the radial direction of the annular contact body. The first friction part may be made of an annular wire.

接触体300は、摩擦面302aで振動体20と接触し、支持部301bが接触ばねの機能を持つ。接触ばねのばね剛性のバラツキは振動アクチュエータの異音(鳴き)に原因となる。そのため、接触ばねである支持部301bは、加工誤差があってもばね剛性にバラツキが発生しないように、アルミニウム合金や真鍮等の低ヤング率の材料で構成することが好ましい。一方、摩擦部材302は振動体20と摩擦接触するため弾性体21よりも硬度が低いものの耐摩耗性の高い鉄鋼等の材料が好ましい。一般的に、鉄鋼等の耐摩耗性の高い材料は、アルミニウム合金や真鍮等の材料と比較し、硬くてヤング率が高い。つまり、支持部301bを構成する材料のヤング率は、摩擦部材302を構成する材料よりもヤング率が低いことが好ましい。 The contact body 300 contacts the vibrating body 20 at the friction surface 302a, and the support part 301b functions as a contact spring. Variations in the spring stiffness of the contact spring cause abnormal noise (ringing) of the vibration actuator. Therefore, it is preferable that the support part 301b, which is a contact spring, is made of a material with a low Young's modulus, such as aluminum alloy or brass, so that variations in spring stiffness do not occur even if there is a processing error. On the other hand, since the friction member 302 is in frictional contact with the vibrating body 20, it is preferable that the material be steel or the like, which has a lower hardness than the elastic body 21 but is highly wear-resistant. Generally, highly wear-resistant materials such as steel are harder and have a higher Young's modulus than materials such as aluminum alloy or brass. In other words, it is preferable that the Young's modulus of the material constituting the support part 301b is lower than that of the material constituting the friction member 302.

また、基底部301aは、制振ゴム41と接触し、減衰効果により振動アクチュエータの異音を抑制する。 In addition, the base portion 301a comes into contact with the vibration-damping rubber 41, which has a damping effect to suppress abnormal noise from the vibration actuator.

本体部材301と摩擦部材302の材料と加工方法について説明する。摩擦部材302は、耐摩耗性の高い材料が好ましく、ステンレス等の鉄鋼材料の板材を用いて、プレス加工と焼入れ処理で製造することができる。一方、本体部材301は、振動減衰の機能が求められるため、減衰性が高い材料であり、さらに、高精度に加工できる快削材料が好ましく、摩擦部材302よりも快削性の高いアルミニウム合金や真鍮等を用いて、切削加工で製造することができる。本体部材301は表面処理されていても良く、例えば、アルミニウム合金であれば、アルマイト処理されていても良い。なお、摩擦部材302と本体部材301の製造方法は上記挙げた方法に限らない。摩擦部材302の加工方法としては、レーザー加工、放電加工、切削、エッチング等、又はそれらを複合した方法が考えられる。また、摩擦部材302の熱処理としては、窒化、浸炭等でもよく、熱処理以外にもメッキなどの硬化処理でもよい。また、本体部材301の加工方法としては、ダイキャスト、鍛造等、又はそれらを複合した方法が考えられる。 The materials and processing methods of the main body member 301 and the friction member 302 will be described. The friction member 302 is preferably made of a material with high wear resistance, and can be manufactured by pressing and hardening using a plate material of a steel material such as stainless steel. On the other hand, the main body member 301 is required to have a vibration damping function, so it is preferably made of a material with high damping properties and a free-cutting material that can be processed with high precision, and can be manufactured by cutting using an aluminum alloy or brass that is more free-cutting than the friction member 302. The main body member 301 may be surface-treated, and if it is an aluminum alloy, it may be anodized. The manufacturing method of the friction member 302 and the main body member 301 is not limited to the above-mentioned methods. The processing method of the friction member 302 may be laser processing, electric discharge processing, cutting, etching, or a combination of these. In addition, the heat treatment of the friction member 302 may be nitriding, carburizing, or the like, or a hardening treatment such as plating other than heat treatment. Possible methods for processing the main body member 301 include die casting, forging, or a combination of these.

本体部材301と摩擦部材302の組立について説明する。本体部材301は部品の剛性が高いため、摩擦部材302よりも高精度に製造することができる。特に高い位置決め精度を求められる雲台やロボットハンドにおいては、スムーズな動作を行うために接触体と振動体との接触する面の高い平面度が求められる。本体部材301は部品の剛性が高いため、振動体20と接触する側の面301cが高い平面度を得ることが出来る。 The assembly of the main body member 301 and the friction member 302 will be described. The main body member 301 has high component rigidity and can therefore be manufactured with higher precision than the friction member 302. In particular, in a camera head or robot hand that requires high positioning precision, a high degree of flatness is required for the contact surface between the contact body and the vibrating body to ensure smooth operation. The main body member 301 has high component rigidity and therefore the surface 301c that comes into contact with the vibrating body 20 can have a high degree of flatness.

一方、摩擦部材302は、プレス加工や焼入れ処理などの製造過程で大きな歪みが発生する。しかし摩擦部材302は部品としての剛性が低いため、容易に弾性変形させることができる。したがって、高精度な本体部材301を基準として、摩擦部材302を弾性変形させながら、摩擦面302aが高い平面度の状態になる。 On the other hand, the friction member 302 is subject to large distortion during manufacturing processes such as press working and hardening. However, since the friction member 302 has low rigidity as a component, it can be easily deformed elastically. Therefore, the friction surface 302a becomes highly flat as the friction member 302 is elastically deformed using the highly accurate main body member 301 as a reference.

本実施形態では摩擦部材302は焼入れ処理後化学研磨処理を施しており、ラップなどの平滑化処理は行っていない。摩擦部材302の製造方法を上記に挙げているが、切削痕やプレス時に発生するバリなどを除去するためにラップなどの平滑化処理を行いスムーズな回転や静粛さを得ており、この工程に時間がかかることがコストアップに繋がっている。化学研磨処理は短時間で切削痕、バリなどを除去することができ、平滑な表面性状を得ることによりスムーズな回転や静粛さを得ることが可能となる。また化学研磨処理に限らず、電解研磨でも良い。化学研磨及び電解研磨はリン酸系または硫酸系の溶液にて表面改質を施すものであってよい。これら以外の表面性状を平滑にする方法として、バフ研磨が挙げられる。布状の柔らかい素材で磨くため曲率を有する部品でも平滑な表面性状を得ることが可能である。このように振動体20と接触する側の面301cが高い平面度であることにより、それに倣った摩擦部材302は、加工時間がかかるラップなどの処理を行うことなく、曲率を有したまま平滑な表面性状と高い平面度を得ることが出来る。 In this embodiment, the friction member 302 is subjected to a chemical polishing process after hardening, and no smoothing process such as lapping is performed. The manufacturing method of the friction member 302 is described above, but smoothing processes such as lapping are performed to remove cutting marks and burrs generated during pressing, and smooth rotation and quietness are obtained, and the fact that this process takes time leads to increased costs. Chemical polishing can remove cutting marks and burrs in a short time, and smooth rotation and quietness can be obtained by obtaining a smooth surface texture. In addition, it is not limited to chemical polishing, and electrolytic polishing may be used. Chemical polishing and electrolytic polishing may be performed by modifying the surface with a phosphoric acid or sulfuric acid solution. Another method for smoothing the surface texture is buff polishing. Since it is polished with a soft cloth-like material, it is possible to obtain a smooth surface texture even for parts with curvature. Since the surface 301c on the side that contacts the vibration body 20 has a high flatness in this way, the friction member 302 that follows it can obtain a smooth surface texture and high flatness while maintaining the curvature without performing a process such as lapping, which takes a long time to process.

また、本体部材301と摩擦部材302は金属同士の摩擦を避けるため、接着、接合により連結させることが好ましい。これにより、振動型アクチュエータに異音(鳴き)を抑制することができる。 In addition, it is preferable to connect the main body member 301 and the friction member 302 by gluing or bonding to avoid friction between metals. This makes it possible to suppress abnormal noise (ringing) from the vibration actuator.

図5は、本実施形態の変形例の一例を示す図である。接触体310は、本体部材311と、本体部材311とは別部材の摩擦部材312を有する。本体部材311は、基底部311aと、接触体310の径方向に延在した端部断面形状がL字の支持部311bを有し、円環状に構成される。摩擦部材312は、弾性体21(図示せず)の接触する第1摩擦部312a、第1摩擦部312aと隣接し弾性体21と接触していない第1非接触部312b、接触体310の中心軸に沿う方向に延在し、支持部311bと嵌合する篏合部312cを有している。なお、第1摩擦部と前記第1非接触部は連続した一つの部材で構成されていてもよい。また前記第1摩擦部と前記第1非接触部は前記環状の接触体の径方向に沿って曲面を形成していてもよい。 5 is a diagram showing an example of a modified example of this embodiment. The contact body 310 has a main body member 311 and a friction member 312 that is a separate member from the main body member 311. The main body member 311 has a base portion 311a and a support portion 311b that has an L-shaped end cross section extending in the radial direction of the contact body 310, and is configured in an annular shape. The friction member 312 has a first friction portion 312a that contacts the elastic body 21 (not shown), a first non-contact portion 312b that is adjacent to the first friction portion 312a and does not contact the elastic body 21, and a fitting portion 312c that extends in a direction along the central axis of the contact body 310 and fits into the support portion 311b. The first friction portion and the first non-contact portion may be configured as a single continuous member. The first friction portion and the first non-contact portion may also form a curved surface along the radial direction of the annular contact body.

摩擦部材312は、プレス加工や焼入れ処理等の製造過程で大きな歪みが発生することがある。しかし摩擦部材312は部品としての剛性が低いため、容易に弾性変形させることが可能である。したがって、高精度な本体部材311の支持部311bを基準として、摩擦部材312を弾性変形させながら、篏合部312cを内径嵌合させる。そのことで、摩擦面312aが高い平面度の状態で、かつ摩擦部材312の貼りずれを抑制し、摩擦面312aの真円度を向上させることが可能である。図6のように外径篏合でも同様の効果が得られる。 The friction member 312 may be significantly distorted during manufacturing processes such as press working and hardening. However, since the friction member 312 has low rigidity as a part, it can be easily elastically deformed. Therefore, the friction member 312 is elastically deformed using the support portion 311b of the highly accurate main body member 311 as a reference while the fitting portion 312c is fitted to the inner diameter. This makes it possible to maintain a high degree of flatness of the friction surface 312a, suppress misalignment of the friction member 312, and improve the roundness of the friction surface 312a. The same effect can be obtained with an outer diameter fitting as shown in Figure 6.

図7は、本実施形態の変形例の一例を示す図である。接触体320は、本体部材321と、本体部材とは別部材の摩擦部材322を有する。本体部材321は、弾性体21(図示せず)側の面に溝321cが設けられており、溝321cの両側に保持部321dが設けられている。摩擦部材322が保持部321dに両持梁状に配置されることにより、摩擦部材322が接触ばねの機能を持つ。摩擦部材322に接触ばねの機能を持たせているため、摩擦部材322の板厚と溝321cを変えることにより、接触ばねの剛性を調整することができる。摩擦部材322は第2摩擦部と接触する第1摩擦部と第1非接触部を有する湾曲部を備えており、化学研磨などにより平滑な表面性状を得ることにより、スムーズな回転と静粛性を実現することが出来る。 Figure 7 is a diagram showing an example of a modified example of this embodiment. The contact body 320 has a main body member 321 and a friction member 322 that is a separate member from the main body member. The main body member 321 has a groove 321c on the surface facing the elastic body 21 (not shown), and a holding portion 321d is provided on both sides of the groove 321c. The friction member 322 is arranged on the holding portion 321d in a double-supported beam shape, so that the friction member 322 has the function of a contact spring. Since the friction member 322 has the function of a contact spring, the stiffness of the contact spring can be adjusted by changing the plate thickness of the friction member 322 and the groove 321c. The friction member 322 has a curved portion having a first friction portion that contacts the second friction portion and a first non-contact portion, and by obtaining a smooth surface property by chemical polishing or the like, smooth rotation and quietness can be realized.

図8は、本実施形態の変形例の一例を示す図である。本体部材331は、基底部331aと、接触体330の径方向に延在した支持部331bを有する。支持部331b先端の弾性体21(図示せず)と接触する面にはV状の溝331eが形成されており、線状の摩擦部材332がV状の溝331eに嵌め込まれ接合されている。本実施形態ではSUS420j2のワイヤ両端を溶接し環状にした摩擦部材332を使用しているが、接着、拡散接合などでワイヤ両端を接合しても良い。またワイヤ両端を接合せずV溝331cに嵌め込んでも良い。溝はV状以外にも矩形状、U字溝状でも良いが位置決めが容易であるV状が好ましい。このように化学研磨などにより平滑な表面性状を得たワイヤの側面を摩擦部材として使用してもスムーズな回転と静粛性を実現することが出来る。図9は支持部331bの先端の断面がL字形状をしており、その外径側に線状の摩擦部材332が嵌合されている。このような形態でも同様な効果が得られる。 Figure 8 is a diagram showing an example of a modified example of this embodiment. The main body member 331 has a base portion 331a and a support portion 331b extending in the radial direction of the contact body 330. A V-shaped groove 331e is formed on the surface of the support portion 331b that contacts the elastic body 21 (not shown) at the tip of the support portion 331b, and a linear friction member 332 is fitted and joined into the V-shaped groove 331e. In this embodiment, a friction member 332 made of SUS420j2 wire is used, which is made into a ring by welding both ends of the wire, but the wire may be joined by adhesion, diffusion bonding, etc. Also, the wire may be fitted into the V-groove 331c without being joined at both ends. The groove may be rectangular or U-shaped other than V-shaped, but a V-shape is preferable because it is easy to position. In this way, smooth rotation and quietness can be achieved even if the side of the wire that has been given a smooth surface property by chemical polishing or the like is used as a friction member. In Figure 9, the cross section of the tip of the support portion 331b is L-shaped, and a linear friction member 332 is fitted into the outer diameter side of the L-shaped tip. A similar effect can be achieved in this form.

図10は、本実施形態の変形例の一例を示す図である。本実施形態では本体部材341と摩擦部材342を一体としている。そのため接触体340全体が耐摩耗性の高いSUS420j2を焼入れした材料を使用している。切削加工により製造されているため第1摩擦部に切削痕が残るが、後工程にて化学研磨などを施すことにより表面性状が平滑となりスムーズな回転と静粛性を実現することが出来る。 Figure 10 shows an example of a modified version of this embodiment. In this embodiment, the main body member 341 and the friction member 342 are integrated. Therefore, the entire contact body 340 is made of hardened SUS420j2, which has high wear resistance. Since it is manufactured by cutting, cutting marks remain on the first friction part, but by performing chemical polishing in a later process, the surface properties become smooth, making it possible to achieve smooth rotation and quiet operation.

<第2実施形態>
第2実施形態では、第1実施形態で説明した振動型アクチュエータ10を備える装置の一例としての監視カメラ等の撮像装置の雲台の構成について説明する。
Second Embodiment
In the second embodiment, a configuration of a camera platform for an imaging device such as a surveillance camera will be described as an example of a device including the vibration actuator 10 described in the first embodiment.

本実施形態では、回転台と、回転台に設けられた振動型アクチュエータを備える雲台を以下説明する。 In this embodiment, a pan head equipped with a rotating table and a vibration actuator provided on the rotating table is described below.

図6は、雲台800と、雲台800に搭載された撮像装置840の構成を概略的に示す図である。雲台800は、ベース820と、2つの振動型アクチュエータ870、880を備えるヘッド810と、撮像装置840を固定するためのLアングル830を備える。パン軸に設けられた振動型アクチュエータ880は、ヘッド810とLアングル830と撮像装置840を、ベース820に対してパン軸まわりに回転させるためのアクチュエータである。また、チルト軸に設けられた振動型アクチュエータ870は、Lアングル830と撮像装置840を、ヘッド810に対してチルト軸まわりに回転させるためのアクチュエータである。 Figure 6 is a diagram showing the schematic configuration of a pan head 800 and an imaging device 840 mounted on the pan head 800. The pan head 800 includes a base 820, a head 810 equipped with two vibration actuators 870 and 880, and an L-angle 830 for fixing the imaging device 840. The vibration actuator 880 provided on the pan axis is an actuator for rotating the head 810, the L-angle 830, and the imaging device 840 around the pan axis relative to the base 820. The vibration actuator 870 provided on the tilt axis is an actuator for rotating the L-angle 830 and the imaging device 840 around the tilt axis relative to the head 810.

雲台800に2つの振動型アクチュエータ870、880を用いることにより、撮像装置840の向きを高速、高応答、静粛、高精度に変える事が可能となる。また、振動型アクチュエータは無通電時でも高い保持トルクを持つため、撮像装置840のチルト軸まわりの重心ずれがあっても振動型アクチュエータの電力を消費することなく撮像装置40の向きを維持することができる。 By using two vibration actuators 870, 880 in the camera head 800, it is possible to change the orientation of the imaging device 840 quickly, with high response, quietly, and with high precision. In addition, since the vibration actuator has a high holding torque even when not energized, the orientation of the imaging device 40 can be maintained without consuming power from the vibration actuator even if the center of gravity of the imaging device 840 shifts around the tilt axis.

その他、本発明の利用者が所望する部材と、その部材に設けられた振動型アクチュエータを備える電子機器を提供することができる。 In addition, it is possible to provide an electronic device that includes a component desired by a user of the present invention and a vibration actuator attached to that component.

10 振動型アクチュエータ
20 振動体
21 弾性体
21a 第2接触部
21b 第2非接触部
22 圧電素子
100 給電部材
300,310,320,330,340 接触体
301,311,321,331,341 本体部材
301a,311a,331a,341a 基底部
301b,311b,331b,341b 支持部
321c 溝
321d 保持部
331e V状の溝
302,312,322,332,342 摩擦部材
302a,312a,322a,332a,342a 第1接触部
302b,312b,322b,332b,342b 第1非接触部
312c 嵌合部
REFERENCE SIGNS LIST 10 vibration type actuator 20 vibrating body 21 elastic body 21a second contact portion 21b second non-contact portion 22 piezoelectric element 100 power supply member 300, 310, 320, 330, 340 contact body 301, 311, 321, 331, 341 main body member 301a, 311a, 331a, 341a base portion 301b, 311b, 331b, 341b support portion 321c groove 321d holding portion 331e V-shaped groove 302, 312, 322, 332, 342 friction member 302a, 312a, 322a, 332a, 342a first contact portion 302b, 312b, 322b, 332b, 342b First non-contact part 312c fitting part

Claims (18)

環状の弾性体及び電気-機械エネルギー変換素子を有する振動体と、
前記振動体と接する環状の接触体を備え、
前記接触体は、前記振動体と接する第1摩擦部と、前記第1摩擦部と隣接し前記振動体と接触していない第1非接触部を有し、
前記弾性体は、前記第1摩擦部と接する第2摩擦部と、前記第2摩擦部と隣接し前記接触体と接触していない第2非接触部を有し、
前記第1摩擦部は、前記第2摩擦部よりも硬度が低く、前記第1非接触部は前記第2非接触部よりも二乗平均粗さが小さい振動型アクチュエータ。
A vibrating body having an annular elastic body and an electromechanical energy conversion element;
a ring-shaped contact body that contacts the vibrating body,
the contact body has a first friction portion in contact with the vibration body and a first non-contact portion adjacent to the first friction portion and not in contact with the vibration body,
the elastic body has a second friction portion in contact with the first friction portion and a second non-contact portion adjacent to the second friction portion and not in contact with the contact body,
The first friction portion has a lower hardness than the second friction portion, and the first non-contact portion has a smaller root mean square roughness than the second non-contact portion.
前記接触体は、基底部と、前記基底部と前記第1摩擦部を結ぶ前記環状の接触体の径方向に沿って環状に延出した支持部を有し、
前記第1摩擦部は前記支持部の端部に設けられている請求項1に記載の振動型アクチュエータ。
the contact body has a base portion and a support portion extending annularly along a radial direction of the annular contact body connecting the base portion and the first friction portion,
2. The vibration actuator according to claim 1, wherein the first friction portion is provided at an end of the support portion.
前記第1摩擦部は、前記基底部および前記支持部とは別部材である請求項2に記載の振動型アクチュエータ。 The vibration actuator according to claim 2, wherein the first friction portion is a separate member from the base portion and the support portion. 前記第1摩擦部と前記第1非接触部は連続した一つの部材である請求項1乃至3のいずれか1項に記載の振動型アクチュエータ。 The vibration actuator according to any one of claims 1 to 3, wherein the first friction portion and the first non-contact portion are a single continuous member. 前記第1摩擦部と前記第1非接触部は前記環状の接触体の径方向に曲率を有する、請求項4に記載の振動型アクチュエータ。 The vibration actuator according to claim 4, wherein the first friction portion and the first non-contact portion have a curvature in the radial direction of the annular contact body. 前記第1摩擦部と前記第1非接触部は前記環状の接触体の径方向に沿って曲面を形成する請求項5に記載の振動型アクチュエータ。 The vibration actuator according to claim 5, wherein the first friction portion and the first non-contact portion form a curved surface along the radial direction of the annular contact body. 前記環状の弾性体は、前記第2摩擦部を含む表層と、前記表層と隣接する母材を備え、
前記表層の硬度は前記母材の硬度より高い請求項1乃至6のいずれか1項に記載の振動型アクチュエータ。
the annular elastic body includes a surface layer including the second friction portion and a base material adjacent to the surface layer,
7. The vibration actuator according to claim 1, wherein the surface layer has a hardness higher than a hardness of the base material.
前記第1摩擦部は前記支持部に保持されるとともに、前記第1摩擦部の前記環状の接触体の径方向に対する両端部は、
前記接触体および前記振動体のいずれにも接触しない部位を有する請求項3に記載の振動型アクチュエータ。
The first friction portion is held by the support portion, and both ends of the first friction portion in the radial direction of the annular contact body are
4. The vibration actuator according to claim 3, further comprising a portion that is not in contact with either the contact body or the vibrating body.
前記第1摩擦部は、前記支持部に対して前記環状の接触体の径方向に対して、
内嵌合および/または外嵌合する請求項3に記載の振動型アクチュエータ。
The first friction portion is disposed relative to the support portion in a radial direction of the annular contact body.
4. The vibration actuator according to claim 3, which is internally fitted and/or externally fitted.
前記第1摩擦部は、前記第2摩擦部と接する湾曲部を備える請求項3に記載の振動型アクチュエータ。 The vibration actuator according to claim 3, wherein the first friction portion has a curved portion that contacts the second friction portion. 前記接触体は前記径方向に対して断面がV状の溝を有し、前記溝に前記前記第1摩擦部が収まる請求項2、請求項5、および請求項6のいずれか1項に記載の振動型アクチュエータ。 7. The vibration actuator according to claim 2, wherein the contact body has a groove having a V-shaped cross section in the radial direction, and the first friction portion is received in the groove. 前記第1摩擦部は、環状の線材である請求項3に記載の振動型アクチュエータ。 The vibration actuator according to claim 3, wherein the first friction part is a ring-shaped wire. 前記第1摩擦部は、前記接触体の基底部と一体である請求項4に記載の振動型アクチュエータ。 The vibration actuator according to claim 4, wherein the first friction portion is integral with the base portion of the contact body. 環状の弾性体及び電気-機械エネルギー変換素子を用いて振動体を得る工程と、
環状の部材に対して化学研磨、電解研磨、またはバフ研磨を施し環状の接触体を得る工程と、
前記振動体および前記接触体を用いて請求項1乃至13のいずれか1項に記載の振動型アクチュエータを得る工程を備える振動型アクチュエータの製造方法。
A step of obtaining a vibrating body using an annular elastic body and an electromechanical energy conversion element;
a step of subjecting the annular member to chemical polishing, electrolytic polishing, or buff polishing to obtain an annular contact body;
A method for producing a vibration actuator, comprising the steps of obtaining the vibration actuator according to claim 1 by using the vibrating body and the contact body.
前記化学研磨及び前記電解研磨はリン酸系または硫酸系の溶液にて表面改質を施す請求項14に記載の振動型アクチュエータの製造方法。 The method for manufacturing a vibration actuator according to claim 14, wherein the chemical polishing and electrolytic polishing are performed by surface modification using a phosphoric acid or sulfuric acid solution. 回転台と、前記回転台に設けられた請求項1乃至13のいずれか1項に記載の振動型アクチュエータを備える雲台。 A pan head comprising a rotating table and a vibration actuator according to any one of claims 1 to 13 provided on the rotating table. 部材と、前記部材に設けられた請求項1乃至13のいずれか1項に記載の振動型アクチュエータを備える電子機器。 An electronic device comprising a member and a vibration actuator according to any one of claims 1 to 13 provided on the member. レンズと、前記レンズを移動させる請求項1乃至13のいずれか1項に記載の振動型アクチュエータを備える装置。An apparatus comprising: a lens; and the vibration actuator according to claim 1 for moving the lens.
JP2021047085A 2021-03-22 Vibration actuator, camera head, and electronic device Active JP7581100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021047085A JP7581100B2 (en) 2021-03-22 Vibration actuator, camera head, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021047085A JP7581100B2 (en) 2021-03-22 Vibration actuator, camera head, and electronic device

Publications (2)

Publication Number Publication Date
JP2022146230A JP2022146230A (en) 2022-10-05
JP7581100B2 true JP7581100B2 (en) 2024-11-12

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450524B2 (en) 1994-08-04 2003-09-29 キヤノン株式会社 Vibration actuator
JP2005086887A (en) 2003-09-08 2005-03-31 Minolta Co Ltd Drive unit
JP2009201319A (en) 2008-02-25 2009-09-03 Canon Inc Oscillatory-wave actuating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450524B2 (en) 1994-08-04 2003-09-29 キヤノン株式会社 Vibration actuator
JP2005086887A (en) 2003-09-08 2005-03-31 Minolta Co Ltd Drive unit
JP2009201319A (en) 2008-02-25 2009-09-03 Canon Inc Oscillatory-wave actuating apparatus

Similar Documents

Publication Publication Date Title
JP5631018B2 (en) Rotational vibration wave drive
EP0696073B1 (en) Vibration actuator
US10527815B2 (en) Vibration actuator, and lens barrel and camera provided with same
KR20100089334A (en) Piezoelectric ultrasonic motor and method for fabricating the same
US11515811B2 (en) Vibration-type actuator, pan head, and electronic apparatus
JPH1146486A (en) Vibration actuator and manufacture of vibration-body tightening member in the actuator
JP7581100B2 (en) Vibration actuator, camera head, and electronic device
JP7476021B2 (en) Vibration actuator, head, and electronic device
JP2012125070A (en) Vibration-type drive device
US11165370B2 (en) Vibration actuator
JP2022146230A (en) Vibration actuator, pan head, and electronic device
JP7483547B2 (en) Vibration actuator, head, and electronic device
JP2022136602A (en) Vibration type actuator, universal head having the same, and electronic apparatus
JP2015107001A (en) Vibration actuator, control device of vibration actuator, lens barrel, and electronic device
KR20110092224A (en) Vibrational wave motor, lens barrel and camera
JP2021126041A (en) Vibration type actuator, universal head and electronic apparatus
JP5453781B2 (en) Vibration wave actuator, lens barrel and camera including the same
JP7541897B2 (en) Vibration actuator and method for manufacturing same
JP6589960B2 (en) Vibration actuator, vibration actuator control device, lens barrel and electronic device
US8531086B2 (en) Vibration actuator, lens barrel, and camera
JP2016063712A (en) Vibrator, vibration type actuator, imaging apparatus, and stage device
JP2016027780A (en) Vibration type actuator, lens barrel, imaging device, and automatic stage
JP2023020141A (en) Vibration actuator and electronic apparatus
JP7512103B2 (en) Vibration actuator and device
CN109698637A (en) Oscillation actuator and electronic equipment including the oscillation actuator