[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7577576B2 - Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank - Google Patents

Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank Download PDF

Info

Publication number
JP7577576B2
JP7577576B2 JP2021039022A JP2021039022A JP7577576B2 JP 7577576 B2 JP7577576 B2 JP 7577576B2 JP 2021039022 A JP2021039022 A JP 2021039022A JP 2021039022 A JP2021039022 A JP 2021039022A JP 7577576 B2 JP7577576 B2 JP 7577576B2
Authority
JP
Japan
Prior art keywords
oxygen
permeable membrane
tank
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021039022A
Other languages
Japanese (ja)
Other versions
JP2022138893A (en
Inventor
忠広 吉田
智之 井尻
明 石山
雅彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2021039022A priority Critical patent/JP7577576B2/en
Publication of JP2022138893A publication Critical patent/JP2022138893A/en
Application granted granted Critical
Publication of JP7577576B2 publication Critical patent/JP7577576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、沈殿池、酸素透過膜ユニット及び沈殿池の運転方法に関する。 The present invention relates to a sedimentation tank, an oxygen permeable membrane unit, and a method for operating the sedimentation tank.

従来、汚濁物を含む濁水(被処理水)を処理する沈殿池が知られている(例えば、特許文献1~2参照)。この沈殿池では、濁水に含まれる汚濁物を自重により沈降させて集積させる。 Conventionally, there is known a settling tank that treats turbid water (water to be treated) that contains pollutants (see, for example, Patent Documents 1 and 2). In this settling tank, the pollutants contained in the turbid water are allowed to settle by their own weight and accumulate.

特許文献1に記載の沈殿池は、水流に対して対向して展張した複数の水中膜を備え、これらシート膜の間を濁水が通過することによって整流されると共に、汚濁物を沈降させる。 The settling tank described in Patent Document 1 is equipped with multiple underwater membranes stretched against the water flow, and as the turbid water passes between these membrane sheets, the flow is rectified and pollutants are allowed to settle.

特許文献2に記載の沈殿池は、沈殿槽の内部に複数の傾斜板を備え、この傾斜板の開口に濁水を濾過するための網状態から成る平膜が固定されている。平膜を透過した透過水が傾斜板の内部空間を通過して外部に排出されると共に汚濁物が沈降し、沈降しなかった汚濁物は、平膜の表面に付着する。この平膜に付着した汚濁物は、エアーにより剥離除去される。 The settling tank described in Patent Document 2 is equipped with multiple inclined plates inside the settling tank, and flat membranes in a mesh-like shape for filtering turbid water are fixed to the openings of the inclined plates. The permeated water that has permeated the flat membranes passes through the internal space of the inclined plates and is discharged to the outside, while the pollutants settle, and the pollutants that do not settle adhere to the surface of the flat membranes. The pollutants that have adhered to the flat membranes are peeled off and removed by air.

特開2014-151297号公報JP 2014-151297 A 特開平7-275610号公報Japanese Patent Application Publication No. 7-275610

特許文献1に記載の沈殿池を、下水処理場において生物処理槽の上流側に設置される最初沈殿池に適用した場合、最初沈殿池では単に汚濁物が沈降除去されるのみであるため、生物処理槽において生物処理する上での負荷が大きい。また、特許文献2に記載の沈殿池を最初沈殿池に適用したとしても、エアーは、平膜に付着した汚濁物を剥離除去することしかできず、好気的な環境を作り出すまでには至らない。 When the sedimentation tank described in Patent Document 1 is applied to a primary sedimentation tank installed upstream of a biological treatment tank in a sewage treatment plant, the pollutants are simply removed by settling in the primary sedimentation tank, which places a heavy burden on the biological treatment tank. Furthermore, even if the sedimentation tank described in Patent Document 2 is applied to a primary sedimentation tank, the air can only peel off and remove the pollutants attached to the flat membrane, and does not go so far as to create an aerobic environment.

そこで、生物処理槽の負荷を低減できる沈殿池、酸素透過膜ユニット及び沈殿池の運転方法が望まれている。 Therefore, there is a demand for a sedimentation tank, an oxygen permeable membrane unit, and an operating method for the sedimentation tank that can reduce the load on the biological treatment tank.

本発明に係る沈殿池の特徴構成は、被処理水を生物処理する生物処理槽の上流側に設置される沈殿池であって、前記被処理水が流入する流入口と前記生物処理槽に前記被処理水を流出させる流出口とを有し、前記被処理水に含まれる汚濁物を沈降させる沈降槽と、前記沈降槽の内部に配置され、前記汚濁物を掻き寄せて集積させる掻寄機と、前記沈降槽の内部のうち少なくとも前記流出口の側に設けられ、酸素を透過する酸素透過膜を含む酸素透過膜ユニットと、を備え、前記酸素透過膜ユニットは、前記汚濁物の沈降方向に向かうほど前記流入口よりも前記流出口に近付くように傾斜しており、前記酸素透過膜ユニットは、前記汚濁物を落下させると共に、前記酸素透過膜の内側から酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う点にある。 A characteristic configuration of the sedimentation tank according to the present invention is a sedimentation tank installed upstream of a biological treatment tank for biologically treating water to be treated, the sedimentation tank having an inlet into which the water to be treated flows and an outlet through which the water to be treated flows into the biological treatment tank, and comprising: a sedimentation tank for settling pollutants contained in the water to be treated; a collector disposed inside the sedimentation tank for scraping up and accumulating the pollutants; and an oxygen-permeable membrane unit disposed inside the sedimentation tank at least on the outlet side and including an oxygen-permeable membrane that allows oxygen to pass through, the oxygen-permeable membrane unit being inclined so as to be closer to the outlet than to the inlet as it moves in the settling direction of the pollutants, and the oxygen-permeable membrane unit performs biological treatment on the water to be treated by dropping the pollutants and supplying an oxygen-containing gas from the inside of the oxygen-permeable membrane.

被処理水を生物処理する生物処理槽の上流側に設置される沈殿池のように、窒素含有化合物や有機物等の処理対象物濃度が高い被処理水が流通する場合、酸素含有気体を供給しても溶存酸素濃度が高まらず、生物処理を行う意味がないと考えられていた。しかしながら、本発明者らは、沈殿池で生物処理を行うという新しい知見に基づき、本発明に至った。 When the water to be treated has a high concentration of substances to be treated, such as nitrogen-containing compounds and organic matter, flowing through it, such as in a settling tank installed upstream of a biological treatment tank that biologically treats the water to be treated, it was thought that supplying an oxygen-containing gas would not increase the dissolved oxygen concentration, making biological treatment meaningless. However, the inventors have arrived at this invention based on their new knowledge that biological treatment can be performed in a settling tank.

本構成における酸素透過膜ユニットでは、酸素透過膜の内側から供給される酸素が酸素透過膜を透過し、酸素透過膜の表面で被処理水中の窒素成分を硝化する硝化菌等の生物膜が形成され、窒素成分の硝化が行われて硝酸態窒素が生成される。この硝酸態窒素は、被処理水中の脱窒菌と脱窒菌の栄養となる有機物とにより還元されて窒素ガスが生成される。このように、酸素透過膜ユニットでは、硝化及び脱窒により、被処理水の窒素含有化合物が分解除去されて浄化される。 In the oxygen-permeable membrane unit of this configuration, oxygen supplied from the inside of the oxygen-permeable membrane permeates the oxygen-permeable membrane, and a biological film of nitrifying bacteria and the like that nitrifies the nitrogen components in the water being treated is formed on the surface of the oxygen-permeable membrane, and the nitrogen components are nitrified to produce nitrate nitrogen. This nitrate nitrogen is reduced by the denitrifying bacteria in the water being treated and the organic matter that serves as nutrition for the denitrifying bacteria to produce nitrogen gas. In this way, in the oxygen-permeable membrane unit, the nitrogen-containing compounds in the water being treated are decomposed and removed through nitrification and denitrification, and the water is purified.

つまり本構成では、酸素含有気体を被処理水内に吹き込む形態ではなく、酸素透過膜の内側に酸素含有気体を供給するため、生物処理槽の上流側に設置される沈殿池のように、窒素含有化合物等の処理対象物濃度が高い被処理水であっても、被処理水に大量の酸素含有気体を吹き込む必要がなく、生物処理を効率よく行うことができる。また、この酸素透過膜ユニットは、沈降槽の内部のうち少なくとも流出口の側に設けられているため、生物処理槽ヘと流出される被処理水の処理対象物濃度を下げることが可能となり、生物処理槽の負荷の低減、消費エネルギー量の削減をすることができる。さらに、被処理水に大量の酸素含有気体を吹き込まずに生物処理を行うため、沈降槽の底に沈降した汚泥を水中にまきあげるおそれもない。
また本構成のように、酸素透過膜ユニットを汚濁物の沈降方向に向かうほど流入口よりも流出口に近付くように傾斜させれば、酸素透過膜ユニットに衝突した汚濁物を円滑に落下させることができる。しかも、酸素透過膜ユニットを傾斜させることにより、被処理水に含まれる浮遊性の汚濁物が酸素透過膜に捕捉されやすくなるため、生物処理を効率的に進行させることができる。
In other words, in this configuration, the oxygen-containing gas is not blown into the water to be treated, but is supplied to the inside of the oxygen-permeable membrane, so that even if the water to be treated has a high concentration of the target substance such as nitrogen-containing compounds, as in the case of a settling tank installed upstream of the biological treatment tank, there is no need to blow a large amount of oxygen-containing gas into the water to be treated, and biological treatment can be performed efficiently. In addition, since this oxygen-permeable membrane unit is installed at least on the outlet side inside the settling tank, it is possible to reduce the concentration of the target substance in the water to be treated that flows out to the biological treatment tank, thereby reducing the load on the biological treatment tank and reducing the amount of energy consumed. Furthermore, since biological treatment is performed without blowing a large amount of oxygen-containing gas into the water to be treated, there is no risk of sludge that has settled to the bottom of the settling tank being stirred up in the water.
In addition, if the oxygen-permeable membrane unit is tilted so that it is closer to the outlet than to the inlet as the pollutants settle, the pollutants that collide with the oxygen-permeable membrane unit can be allowed to fall smoothly. Moreover, tilting the oxygen-permeable membrane unit makes it easier for floating pollutants in the water to be treated to be captured by the oxygen-permeable membranes, allowing biological treatment to proceed efficiently.

他の特徴構成は、前記酸素透過膜ユニットは、内部に前記酸素含有気体を流通させる酸素供給体を含んでおり、前記酸素透過膜は、当該酸素供給体の外面に配置された平膜状に形成されている点にある。 Another characteristic feature is that the oxygen-permeable membrane unit includes an oxygen supplier through which the oxygen-containing gas flows, and the oxygen-permeable membrane is formed as a flat membrane disposed on the outer surface of the oxygen supplier.

本構成のように、平膜状の酸素透過膜を用いれば、酸素透過膜により生物処理を行い、被処理水を浄化することができると共に、沈降せずに下流側まで流通する浮遊性の汚濁物を酸素透過膜に衝突させて沈降させるので、沈降槽の沈降汚泥量が増大し、それをメタン発酵処理等に利用することでバイオガス量の増大効果が期待できる。また、平膜状の酸素透過膜を耐久性の高い酸素供給体の外面に配置すれば、耐久性も高めることができる。 By using a flat oxygen-permeable membrane as in this configuration, biological treatment can be performed using the oxygen-permeable membrane to purify the water being treated, and floating pollutants that do not settle and flow downstream are caused to collide with the oxygen-permeable membrane and settle, increasing the amount of settled sludge in the settling tank, which can be used for methane fermentation treatment, etc., to increase the amount of biogas. Furthermore, by placing a flat oxygen-permeable membrane on the outer surface of a highly durable oxygen supplier, durability can also be increased.

他の特徴構成は、前記酸素透過膜は、前記酸素供給体の表面及び裏面の両方の外面に配置されている点にある。 Another characteristic feature is that the oxygen permeable membrane is disposed on both the front and back outer surfaces of the oxygen supplier .

他の特徴構成は、前記酸素透過膜ユニットの傾斜角が0度より大きく60度以下である点にある。Another characteristic feature is that the inclination angle of the oxygen-permeable membrane unit is greater than 0 degrees and equal to or less than 60 degrees.

他の特徴構成は、前記酸素透過膜ユニットは、側方視で前記掻寄機よりも前記汚濁物の沈降方向と反対方向にある上部領域に配置されている点にある。 Another characteristic feature is that the oxygen-permeable membrane unit is arranged in an upper region that is in the opposite direction to the settling direction of the contaminants from the scraper when viewed from the side.

本構成のように、掻寄機よりも汚濁物の沈降方向と反対方向にある上部領域を活用すれば、沈殿池を改良せずに酸素透過膜ユニットを配置することができる。 As in this configuration, by utilizing the upper area that is located in the opposite direction to the settling direction of the polluted material from the collector, it is possible to place an oxygen-permeable membrane unit without improving the settling tank.

他の特徴構成は、前記沈降槽には、少なくとも前記流出口の側の両側壁に前記被処理水を越流させる一対のトラフが設けられており、前記酸素透過膜ユニットは、一対の前記トラフの間の流路に亘って配置されている点にある。 Another characteristic feature is that the settling tank is provided with a pair of troughs on at least both side walls on the outlet side, through which the water to be treated flows, and the oxygen-permeable membrane unit is disposed across the flow path between the pair of troughs.

本構成のように、一対のトラフ間の流路に亘って酸素透過膜ユニットを配置すれば、酸素透過膜ユニットにより被処理水が整流され、汚濁物の分離と生物処理を円滑に進行させることができる。その結果、沈降槽内の被処理水に乱流が発生して、汚濁物が越流してしまうといった不都合を防止することができる。 As in this configuration, by arranging an oxygen-permeable membrane unit across the flow path between a pair of troughs, the oxygen-permeable membrane unit straightens the water being treated, allowing the separation of pollutants and biological treatment to proceed smoothly. As a result, it is possible to prevent problems such as turbulence occurring in the water being treated in the settling tank, causing pollutants to overflow.

他の特徴構成は、前記沈降槽には、前記掻寄機により掻き寄せて集積させた前記汚濁物をメタン発酵槽に排出する排出口が設けられている点にある。 Another characteristic feature is that the settling tank is provided with an outlet through which the pollutants collected and accumulated by the collector are discharged into a methane fermentation tank.

本構成のように、メタン発酵槽に汚濁物を排出すれば、増大した沈降汚泥量を、メタン発酵処理に利用することができる。 By discharging pollutants into a methane fermentation tank as in this configuration, the increased amount of settled sludge can be used for methane fermentation processing.

本発明に係る酸素透過膜ユニットの特徴構成は、被処理水を生物処理する生物処理槽の上流側に設置される沈殿池の内部のうち少なくとも下流側に浸漬される酸素透過膜ユニットであって、内部に酸素含有気体を流通させる酸素供給体と、当該酸素供給体の外面に配置され、酸素を透過する平膜状の酸素透過膜とを備え、被処理水中の汚濁物の沈降方向に向かうほど前記沈殿池における被処理水の流入口よりも流出口に近付くように傾斜しており、前記汚濁物を落下させると共に、前記酸素透過膜の内側に前記酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う点にある。 The characteristic configuration of the oxygen-permeable membrane unit of the present invention is that it is an oxygen-permeable membrane unit that is immersed at least in the downstream side of a sedimentation basin installed upstream of a biological treatment tank that biologically treats the water to be treated, and is equipped with an oxygen supplier that circulates oxygen-containing gas inside, and a flat-membrane-shaped oxygen-permeable membrane that is arranged on the outer surface of the oxygen supplier and allows oxygen to permeate, and is inclined so that the closer to the outlet of the sedimentation basin than the inlet of the water to be treated as the direction of settling of the pollutants in the water to be treated progresses, and the pollutants are allowed to fall while the oxygen-containing gas is supplied to the inside of the oxygen-permeable membrane, thereby performing biological treatment on the water to be treated.

本構成の酸素透過膜ユニットは、酸素含有気体を被処理水内に吹き込む形態ではなく、酸素透過膜の内側に酸素含有気体を供給するため、生物処理槽の上流側に設置される沈殿池のように、窒素含有化合物等の処理対象物濃度が高い被処理水であっても、被処理水に大量の酸素含有気体を吹き込む必要がなく、生物処理を効率よく行うことができる。また、この酸素透過膜ユニットは、沈降槽の内部のうち少なくとも流出口の側に設けられており、被処理水に含まれる浮遊性の汚濁物を生物処理槽に排出される前に衝突させて沈降させることにより、効率的に除去できる。本構成の酸素透過膜ユニットにより、生物処理槽ヘと流出される被処理水の処理対象物濃度を下げることが可能となり、生物処理槽の負荷を低減することができる。 The oxygen-permeable membrane unit of this configuration does not blow oxygen-containing gas into the water to be treated, but supplies oxygen-containing gas to the inside of the oxygen-permeable membrane, so that even if the water to be treated has a high concentration of the target substances such as nitrogen-containing compounds, as in a settling tank installed upstream of the biological treatment tank, there is no need to blow a large amount of oxygen-containing gas into the water to be treated, and biological treatment can be performed efficiently. In addition, this oxygen-permeable membrane unit is installed inside the settling tank at least on the outlet side, and floating pollutants contained in the water to be treated can be efficiently removed by colliding with them and settling them before being discharged into the biological treatment tank. The oxygen-permeable membrane unit of this configuration makes it possible to lower the concentration of the target substances in the water to be treated that flows out to the biological treatment tank, thereby reducing the load on the biological treatment tank.

上記何れかの沈殿池の運転方法における特徴は、前記流入口から前記流出口に向かって前記被処理水を流通させ、前記掻寄機を作動させることにより、沈降した前記汚濁物を掻き寄せて集積させ、前記酸素透過膜の内側から前記酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う点にある。 The feature of any of the above-mentioned operating methods for the sedimentation tank is that the water to be treated is circulated from the inlet to the outlet, the collector is operated to collect and accumulate the settled pollutants, and the oxygen-containing gas is supplied from the inside of the oxygen-permeable membrane to perform biological treatment on the water to be treated.

本方法では、上述したように、生物処理槽ヘと流出される被処理水の処理対象物濃度を下げることが可能となり、生物処理槽の負荷を低減することができる。また、汚濁物を掻き寄せて集積させることにより、メタン発酵の原料となる汚泥量を確保できる。 As described above, this method makes it possible to lower the concentration of the target substance in the water being treated that is discharged into the biological treatment tank, thereby reducing the load on the biological treatment tank. In addition, by collecting and accumulating pollutants, the amount of sludge that can be used as the raw material for methane fermentation can be secured.

排水処理システムにおける処理系列の説明図である。FIG. 2 is an explanatory diagram of a treatment series in a wastewater treatment system. 最初沈殿池の概略側面図である。FIG. 2 is a schematic side view of a primary sedimentation tank. 図2のIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 2. 酸素透過膜ユニットの概略斜視図である。FIG. 2 is a schematic perspective view of an oxygen-permeable membrane unit. 図4に示す酸素透過膜ユニットの詳細を示す概略斜視図である。FIG. 5 is a schematic perspective view showing details of the oxygen-permeable membrane unit shown in FIG. 4. 変形例における酸素透過膜ユニットの概略斜視図である。FIG. 11 is a schematic perspective view of an oxygen-permeable membrane unit according to a modified example. 酸素透過膜及び生物膜の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of an oxygen permeable membrane and a biofilm.

以下に、本発明に係る沈殿池、酸素透過膜ユニット及び沈殿池の運転方法の実施形態について、図面に基づいて説明する。本実施形態における沈殿池は、排水処理システム100の一部を構成する最初沈殿池Xを一例として説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。 Below, an embodiment of a settling tank, an oxygen permeable membrane unit, and an operating method for a settling tank according to the present invention will be described with reference to the drawings. In this embodiment, the settling tank will be described as a primary settling tank X that constitutes part of a wastewater treatment system 100. However, the present invention is not limited to the following embodiment, and various modifications are possible within the scope of the gist of the present invention.

〔全体構成〕
図1には、流入する排水(被処理水の一例)を浄化する排水処理システム100の概略構成を図示している。この排水処理システム100は、下水処理場等に設けられている。排水処理システム100は、上流から連続的に流入する排水を生物処理する生物処理槽Rを備えている。生物処理槽Rは、嫌気処理装置1と、嫌気処理装置1よりも下流側の好気処理装置2とを有する。
[Overall structure]
1 shows a schematic configuration of a wastewater treatment system 100 that purifies inflowing wastewater (an example of water to be treated). The wastewater treatment system 100 is installed in a sewage treatment plant or the like. The wastewater treatment system 100 includes a biological treatment tank R that biologically treats wastewater that continuously flows in from upstream. The biological treatment tank R includes an anaerobic treatment device 1 and an aerobic treatment device 2 downstream of the anaerobic treatment device 1.

本実施形態においては、生物処理槽Rに流入する排水は、少なくともアンモニア性窒素などの窒素含有化合物(以下、「窒素成分」と記載する)と、有機物とを含んでいる。生物処理槽Rでは、窒素成分を亜硝酸態窒素や硝酸態窒素に酸化する硝化(好気性処理)や、亜硝酸態窒素や硝酸態窒素を還元して窒素ガスに還元する脱窒(嫌気性処理)が行われる。以下では、亜硝酸態窒素と硝酸態窒素とを包括して、単に「硝酸態窒素」と記載する。 In this embodiment, the wastewater flowing into the biological treatment tank R contains at least nitrogen-containing compounds such as ammonia nitrogen (hereinafter referred to as "nitrogen components") and organic matter. In the biological treatment tank R, nitrification (aerobic treatment) is carried out to oxidize nitrogen components to nitrite nitrogen and nitrate nitrogen, and denitrification (anaerobic treatment) is carried out to reduce nitrite nitrogen and nitrate nitrogen to nitrogen gas. Hereinafter, nitrite nitrogen and nitrate nitrogen will be collectively referred to simply as "nitrate nitrogen."

本実施形態の排水処理システム100は、生物処理槽Rの上流に最初沈殿池X(沈殿池の一例)、生物処理槽Rの下流に最終沈殿池99を含んでいる。排水処理システム100は、最初沈殿池X、生物処理槽R及び最終沈殿池99を有する複数の処理系列N1,N2,N3等を有する場合がある。これら処理系列N1,N2,N3は、いずれも等価である。以下では、処理系列N1について説明するが、処理系列N2,N3についても同様である。なお、本実施形態において生物処理槽Rに貯留されている排水の概念には、活性汚泥としての硝化菌や脱窒菌を含む浮遊物質(SS)が懸濁状態で存在している、いわゆる混合液の概念を含む。 The wastewater treatment system 100 of this embodiment includes a primary sedimentation tank X (an example of a sedimentation tank) upstream of the biological treatment tank R, and a final sedimentation tank 99 downstream of the biological treatment tank R. The wastewater treatment system 100 may have multiple treatment series N1, N2, N3, etc., each having a primary sedimentation tank X, a biological treatment tank R, and a final sedimentation tank 99. These treatment series N1, N2, N3 are all equivalent. Below, the treatment series N1 will be described, but the same applies to the treatment series N2 and N3. Note that the concept of wastewater stored in the biological treatment tank R in this embodiment includes the concept of a so-called mixed liquid in which suspended solids (SS) including nitrifying bacteria and denitrifying bacteria as activated sludge are present in a suspended state.

〔各部の説明〕
最初沈殿池Xは、流入した排水に含まれる土砂や夾雑物、汚泥の一部を沈降させて除去するための槽である。最初沈殿池Xで除去されなかった窒素成分と有機物とを含む排水が生物処理槽R(嫌気処理装置1)へ流入する。最初沈殿池Xの詳細は、後述する。
[Explanation of each part]
The primary sedimentation tank X is a tank for settling and removing some of the soil, impurities, and sludge contained in the wastewater that flows in. Wastewater containing nitrogen components and organic matter that was not removed in the primary sedimentation tank X flows into the biological treatment tank R (anaerobic treatment device 1). Details of the primary sedimentation tank X will be described later.

生物処理槽Rは、少なくとも1つの嫌気処理装置1と、嫌気処理装置1よりも下流に直列的に接続された少なくとも1つの好気処理装置2とを有する。嫌気処理装置1に流入した排水は、嫌気処理装置1で所定時間だけ滞留して好気処理装置2に流入する。好気処理装置2に流入した排水は、好気処理装置2で所定時間だけ滞留して流出する。好気処理装置2では、主として硝化が進行する。嫌気処理装置1では、主として脱窒が進行し、併せて硝化も進行する。好気処理装置2から流出した排水の一部は、返送流路9を介してポンプ(図示せず)などで送液されて嫌気処理装置1に返送(供給)される。以下では、返送流路9により嫌気処理装置1に返送される処理水を硝化液と記載する。 The biological treatment tank R has at least one anaerobic treatment device 1 and at least one aerobic treatment device 2 connected in series downstream of the anaerobic treatment device 1. Wastewater that flows into the anaerobic treatment device 1 is retained in the anaerobic treatment device 1 for a predetermined time and then flows into the aerobic treatment device 2. Wastewater that flows into the aerobic treatment device 2 is retained in the aerobic treatment device 2 for a predetermined time and then flows out. In the aerobic treatment device 2, nitrification mainly proceeds. In the anaerobic treatment device 1, denitrification mainly proceeds, and nitrification also proceeds at the same time. A portion of the wastewater that flows out from the aerobic treatment device 2 is pumped via a return flow path 9 by a pump (not shown) or the like and returned (supplied) to the anaerobic treatment device 1. Hereinafter, the treated water returned to the anaerobic treatment device 1 via the return flow path 9 is referred to as nitrification liquid.

生物処理槽Rは上記構成に限定されるものでなく、好気槽から流出した排水の一部を無酸素槽へ返送して脱窒を行う嫌気無酸素好気法を行うような嫌気処理槽、無酸素処理槽、好気処理槽を有する構成としても良いし、ステップ流入式多段硝化脱窒法で嫌気無酸素好気法を行うような嫌気処理槽、第一無酸素槽、第一好気槽、第二無酸素槽、第二好気槽、・・・第N無酸素槽、第N好気槽を有する構成としても良いし、ステップ流入式多段硝化脱窒法を行うような第一無酸素槽、第一好気槽、第二無酸素槽、第二好気槽、・・・第N無酸素槽、第N好気槽を有する構成としても良いし、嫌気槽及び好気槽別々に設けるのではなく、1つの槽内で上流側を嫌気,無酸素領域、下流側を好気領域とする単一の生物反応槽としても良い。脱窒は何れの構成においても嫌気処理槽や無酸素槽で進行する。 The biological treatment tank R is not limited to the above configuration, and may be configured to have an anaerobic treatment tank, an anoxic treatment tank, and an aerobic treatment tank in which a portion of the wastewater flowing out from the aerobic tank is returned to the anoxic tank to perform anaerobic-anoxic-aerobic denitrification, or may be configured to have an anaerobic treatment tank, a first anoxic tank, a first aerobic tank, a second anoxic tank, a second aerobic tank, ... an Nth anoxic tank, and an Nth aerobic tank in which an anaerobic-anoxic-aerobic process is performed using a step-inflow type multistage nitrification denitrification process, or may be configured to have a first anoxic tank, a first aerobic tank, a second anoxic tank, a second aerobic tank, ... an Nth anoxic tank, and an Nth aerobic tank in which a step-inflow type multistage nitrification denitrification process is performed, or may be configured as a single biological reaction tank in which the upstream side is an anaerobic and anoxic region and the downstream side is an aerobic region within one tank, rather than providing separate anaerobic and aerobic tanks. In any configuration, denitrification proceeds in the anaerobic treatment tank or anoxic tank.

嫌気処理装置1は、排水が嫌気的な環境(溶存酸素の乏しい環境)に保たれた槽である。嫌気処理装置1では、主として脱窒を行い、併せて硝化も行う。嫌気処理装置1では、酸素透過膜(不図示)を介して排水に酸素が供給されており、酸素透過膜の表面近傍で硝化が進行する。嫌気処理装置1における酸素透過膜の表面近傍以外の領域は嫌気的な環境に保たれており、脱窒菌により脱窒が進行する。 The anaerobic treatment device 1 is a tank in which wastewater is maintained in an anaerobic environment (an environment with little dissolved oxygen). In the anaerobic treatment device 1, denitrification is mainly performed, but nitrification also occurs. In the anaerobic treatment device 1, oxygen is supplied to the wastewater through an oxygen-permeable membrane (not shown), and nitrification proceeds near the surface of the oxygen-permeable membrane. The areas of the anaerobic treatment device 1 other than the area near the surface of the oxygen-permeable membrane are maintained in an anaerobic environment, and denitrification proceeds by denitrifying bacteria.

好気処理装置2は、排水が好気的な環境(溶存酸素に富む環境)に保たれた槽である。好気処理装置2には、気泡発生部(不図示)が浸漬されている。好気処理装置2では、気泡発生部からバブリングにより空気が供給(散気)されており、気泡からの酸素の溶解により、排水に酸素が供給されている(いわゆる曝気)。これにより、好気処理装置2は好気的な環境に保たれる。好気処理装置2では、気泡発生部により供給される酸素を利用した硝化や有機物の分解が進行する。好気処理装置2から最終沈殿池99に排出される排水の一部、つまり、好気処理装置2で好気処理された排水の一部は硝化液として嫌気処理装置1に返送される。 The aerobic treatment device 2 is a tank in which wastewater is maintained in an aerobic environment (an environment rich in dissolved oxygen). An air bubble generating section (not shown) is immersed in the aerobic treatment device 2. In the aerobic treatment device 2, air is supplied (aeration) by bubbling from the air bubble generating section, and oxygen is supplied to the wastewater by dissolving oxygen from the air bubbles (so-called aeration). This maintains an aerobic environment in the aerobic treatment device 2. In the aerobic treatment device 2, nitrification and decomposition of organic matter progress using the oxygen supplied by the air bubble generating section. A portion of the wastewater discharged from the aerobic treatment device 2 to the final settling tank 99, i.e., a portion of the wastewater aerobically treated in the aerobic treatment device 2, is returned to the anaerobic treatment device 1 as nitrification liquid.

最終沈殿池99は、好気処理装置2から流出した排水を受け入れて、排水中の活性汚泥などを沈降させる槽である。本実施形態では、最終沈殿池99において沈殿した汚泥が、返送流路9により嫌気処理装置1に返送される。 The final settling tank 99 is a tank that receives wastewater discharged from the aerobic treatment device 2 and allows the activated sludge and other substances in the wastewater to settle. In this embodiment, the sludge that settles in the final settling tank 99 is returned to the anaerobic treatment device 1 via the return flow path 9.

〔最初沈殿池〕
図2~図3に示すように、最初沈殿池Xは、排水が流入する流入口51と、生物処理槽R(嫌気処理装置1)に排水を流出される流出口52とを有し、排水に含まれる土砂や夾雑物、汚泥(汚濁物の一例)を沈降させる沈降槽5を備えている。本実施形態における沈降槽5の内部には、汚泥を掻き寄せて集積される掻寄機4と、酸素を透過する酸素透過膜30を含む複数の酸素透過膜ユニット3とが配置されている。
[Primary sedimentation tank]
2 and 3, the primary settling tank X has an inlet 51 through which wastewater flows in and an outlet 52 through which the wastewater flows out to a biological treatment tank R (anaerobic treatment device 1), and is equipped with a settling tank 5 in which soil, impurities, and sludge (an example of pollutant) contained in the wastewater are allowed to settle. Inside the settling tank 5 in this embodiment, a collector 4 that collects and accumulates sludge, and a plurality of oxygen-permeable membrane units 3 including oxygen-permeable membranes 30 that allow oxygen to pass through are arranged.

沈降槽5は、直方体状の槽であり、上流側の底部には、掻寄機4により集積された汚泥を排出する排出ピット53がすり鉢状に傾斜して形成されている。この排出ピット53には、ポンプ(不図示)の動力により汚泥を排出するための排出口53aが設けられている。沈降槽5は、少なくとも流出口52側(下流側の上部)の両側壁に、排水を越流させる一対のトラフ54が設けられている。このトラフ54は、沈降槽5の流出口52側(上流側の上部)で、沈降槽5の3分の1程度の領域に亘って配置されている。汚泥が沈降して除去された排水は、トラフ54を越流して流出口52から流出する。 The settling tank 5 is a rectangular parallelepiped tank, and a discharge pit 53 is formed at the bottom on the upstream side, sloping like a mortar, for discharging sludge accumulated by the collector 4. The discharge pit 53 is provided with a discharge port 53a for discharging sludge using the power of a pump (not shown). The settling tank 5 is provided with a pair of troughs 54 for overflowing wastewater on at least both side walls on the outlet 52 side (upper downstream side). The troughs 54 are arranged over an area of about one-third of the settling tank 5 on the outlet 52 side (upper upstream side) of the settling tank 5. The wastewater from which the sludge has settled and been removed overflows the troughs 54 and flows out from the outlet 52.

掻寄機4は、沈降槽5の両側方に配置された一対のチェーン41と、夫々のチェーン41を回転支持する複数(図2では4つ)のスプロケット42とを備えている。一対のチェーン41に亘って、汚泥等の堆積物を掻き寄せる細長い板状のスクレーパ(不図示)が設けられており、スクレーパの両端が一対のチェーン41に固定されている。スプロケット42をモータ等の動力により回転駆動させることにより、スクレーパが取り付けられたチェーン41が回転し、沈降した堆積物をスクレーパが掻き寄せて排出ピット53に集積させる。排出口53aは、掻寄機4により掻き寄せて集積させた汚泥等の堆積物をメタン発酵槽(不図示)に排出する。そして、この汚泥等の堆積物は、メタン発酵槽にてメタン発酵処理の原料として用いられる。なお、この汚泥等の堆積物は、特に処理することなくメタン発酵槽(不図示)に排出しても良いし、公知の濃縮処理や脱水処理にて固液分離処理した後、メタン発酵槽(不図示)へ排出しても良い。 The scraper 4 is equipped with a pair of chains 41 arranged on both sides of the settling tank 5, and a plurality of sprockets 42 (four in FIG. 2) that rotate and support each of the chains 41. A long, thin, plate-shaped scraper (not shown) that scrapes up sediments such as sludge is provided across the pair of chains 41, and both ends of the scraper are fixed to the pair of chains 41. By rotating the sprockets 42 with the power of a motor or the like, the chain 41 to which the scraper is attached rotates, and the scraper scrapes up the settled sediments and accumulates them in the discharge pit 53. The discharge outlet 53a discharges the sediments such as sludge scraped and accumulated by the scraper 4 into a methane fermentation tank (not shown). The sediments such as sludge are then used as raw materials for methane fermentation treatment in the methane fermentation tank. This sludge and other sediments may be discharged into a methane fermentation tank (not shown) without any special treatment, or may be subjected to solid-liquid separation treatment using known concentration or dehydration processes before being discharged into a methane fermentation tank (not shown).

掻寄機4のチェーン41に固定されたスクレーパは、側方視で沈降槽5の底部の略全域に亘って配置されており、沈降槽5の流出口52側の上部において沈降槽5の半分以下の領域に亘って配置されている。これにより、沈降槽5の内部のうち少なくとも下流側の上部領域は、掻寄機4が存在しない空きスペースとなっている。換言すると、この空きスペースは、側方視で掻寄機4よりも汚泥等の汚濁物の沈降方向と反対方向にある上部領域となっている。 The scrapers fixed to the chains 41 of the collector 4 are arranged over almost the entire bottom of the settling tank 5 in a side view, and are arranged over less than half of the area of the settling tank 5 at the upper part on the outlet 52 side of the settling tank 5. As a result, at least the upper downstream area of the interior of the settling tank 5 is an empty space where the collector 4 is not present. In other words, this empty space is an upper area that is in the opposite direction to the settling direction of sludge and other pollutants from the collector 4 in a side view.

複数の酸素透過膜ユニット3は、沈降槽5の内部のうち少なくとも流出口52の側に設けられている。これら酸素透過膜ユニット3は、掻寄機4が存在しない空きスペースに配置されている。これら酸素透過膜ユニット3は、重力方向に沿った直立状態でも良いが、傾斜している方が好ましく、その場合の傾斜角は、汚泥等の汚濁物の沈降方向(下方向)に向かうほど流入口51よりも流出口52に近付くように、0度よりも大きく60度以下で構成されている。酸素透過膜ユニット3の傾斜角が60度を超えると、酸素透過膜ユニット3の上側に位置する酸素透過膜30の上面に汚濁物が堆積するため、好ましくない。 The oxygen-permeable membrane units 3 are provided at least on the outlet 52 side inside the settling tank 5. These oxygen-permeable membrane units 3 are arranged in an empty space where the collector 4 is not present. These oxygen-permeable membrane units 3 may be upright along the direction of gravity, but are preferably inclined. In this case, the inclination angle is configured to be greater than 0 degrees and equal to or less than 60 degrees so that the more the oxygen-permeable membrane units 3 move in the settling direction (downward) of the contaminants such as sludge, the closer they are to the outlet 52 than the inlet 51. If the inclination angle of the oxygen-permeable membrane units 3 exceeds 60 degrees, contaminants will accumulate on the upper surface of the oxygen-permeable membrane 30 located above the oxygen-permeable membrane units 3, which is not preferable.

また、酸素透過膜ユニット3は、一対のトラフ54の間の流路に亘って(流路を閉塞するように全体的に)配置されており、沈降槽5の流出口52側(下流側の上部)で、沈降槽5の3分の1程度の領域に亘って配置されている。複数の酸素透過膜ユニット3は、平面視において重複するように所定の間隔を空けて配置されている。なお、「酸素透過膜ユニット3を一対のトラフ54の間の流路に亘って配置する」とは、酸素透過膜ユニット3が、一対のトラフ54の間の流路の9割以上の幅を有していることを意味する。 The oxygen-permeable membrane unit 3 is disposed across the flow path between the pair of troughs 54 (overall so as to block the flow path), and is disposed across approximately one-third of the area of the settling tank 5 on the outlet 52 side (upper downstream side) of the settling tank 5. The multiple oxygen-permeable membrane units 3 are disposed at a predetermined interval so as to overlap in a plan view. Note that "disposing the oxygen-permeable membrane unit 3 across the flow path between the pair of troughs 54" means that the oxygen-permeable membrane unit 3 has a width of 90% or more of the flow path between the pair of troughs 54.

このように、掻寄機4よりも汚濁物の沈降方向と反対方向にある空きスペースを活用すれば、最初沈殿池Xを改良せずに(既存の最初沈殿池Xを活用して)酸素透過膜ユニット3を配置することができる。また、一対のトラフ54間の流路に亘って酸素透過膜ユニット3を配置すれば、酸素透過膜ユニット3により排水が整流され、汚濁物の分離と生物処理を円滑に進行させることができる。その結果、沈降槽5内の被処理水に乱流が発生して、汚濁物が越流してしまうといった不都合を防止することができる。 In this way, by utilizing the empty space in the opposite direction to the settling direction of the pollutants from the scraper 4, it is possible to place the oxygen-permeable membrane unit 3 without improving the primary settling tank X (by utilizing the existing primary settling tank X). Also, by placing the oxygen-permeable membrane unit 3 across the flow path between a pair of troughs 54, the oxygen-permeable membrane unit 3 straightens the wastewater, allowing separation of pollutants and biological treatment to proceed smoothly. As a result, it is possible to prevent inconveniences such as turbulence occurring in the treated water in the settling tank 5 and pollutants overflowing.

本実施形態のように、酸素透過膜ユニット3を汚濁物の沈降方向に向かうほど流入口51よりも流出口52に近付くように傾斜させれば、酸素透過膜ユニット3に衝突した汚濁物を円滑に落下させることができる。また、酸素透過膜ユニット3を傾斜させることにより、排水に含まれる浮遊性の汚濁物が酸素透過膜30に捕捉されやすくなるため、生物処理を効率的に進行させることができる。しかも、複数の酸素透過膜ユニット3は、平面視において重複するように所定の間隔を空けて配置されているので、浮遊性の汚濁物を酸素透過膜30で効果的に捕捉され、浮遊性の汚濁物が除去された排水がトラフ54の方に誘導される。 As in this embodiment, by tilting the oxygen permeable membrane unit 3 so that it is closer to the outlet 52 than the inlet 51 in the direction of sedimentation of the pollutants, the pollutants that collide with the oxygen permeable membrane unit 3 can be smoothly dropped. In addition, by tilting the oxygen permeable membrane unit 3, floating pollutants contained in the wastewater are more likely to be captured by the oxygen permeable membrane 30, allowing biological treatment to proceed efficiently. Moreover, since the multiple oxygen permeable membrane units 3 are arranged at a predetermined interval so that they overlap in a plan view, the floating pollutants are effectively captured by the oxygen permeable membrane 30, and the wastewater from which the floating pollutants have been removed is guided toward the trough 54.

この酸素透過膜ユニット3には、ファンやブロワなどで構成される送風機31bから20kPa以下の小さな送風圧力で空気(酸素含有気体の一例)が供給されている。沈降槽5には、送風機31bを介して酸素透過膜ユニット3に空気を供給する供給管31と、酸素透過膜ユニット3から空気に含まれる酸素濃度が減少した気体を外部(大気)に排出する排出管32とが設けられている。供給管31から供給された空気は、合流管31aで貯留され、合流管31aから夫々の酸素透過膜ユニット3に分岐する複数の分配管31cを介して、酸素透過膜ユニット3に供給される。夫々の酸素透過膜ユニット3から排出される気体は、複数の分配管32bから合流管32aを介して、排出される。 Air (an example of an oxygen-containing gas) is supplied to this oxygen-permeable membrane unit 3 from a blower 31b composed of a fan, blower, or the like at a low blowing pressure of 20 kPa or less. The settling tank 5 is provided with a supply pipe 31 that supplies air to the oxygen-permeable membrane unit 3 via the blower 31b, and a discharge pipe 32 that discharges the gas with a reduced oxygen concentration contained in the air from the oxygen-permeable membrane unit 3 to the outside (atmosphere). The air supplied from the supply pipe 31 is stored in a junction pipe 31a and is supplied to the oxygen-permeable membrane unit 3 via a plurality of distribution pipes 31c that branch from the junction pipe 31a to each oxygen-permeable membrane unit 3. The gas discharged from each oxygen-permeable membrane unit 3 is discharged from a plurality of distribution pipes 32b via the junction pipe 32a.

酸素透過膜ユニット3は、酸素透過膜30の内側から空気を供給することにより、排水に対して生物処理を行う。図4~図5に示すように、酸素透過膜ユニット3は、内部に空気を流通させる支持体35(酸素供給体の一例)と、支持体35を包囲するように配置され、酸素を透過する平膜状に形成された一対の酸素透過膜30と、を有し、複数の酸素透過膜ユニット3が、フレーム体37に固定された複数の支持柱36に吊り下げられて、モジュールを構成している。これら複数の酸素透過膜ユニット3は、夫々がスペーサ38により傾斜させた状態で所定の間隔で並んでいる。他の例として、図6に示すように、酸素透過膜ユニット3は、内部に空気を流通させる筐体33(酸素供給体の一例)と、筐体33の一対の側面(外面)に配置(固定)され、酸素を透過する平膜状に形成された一対の酸素透過膜30と、を有し、複数の酸素透過膜ユニット3が、連結板34により一体化されてモジュールを構成している。 The oxygen-permeable membrane unit 3 performs biological treatment of wastewater by supplying air from the inside of the oxygen-permeable membrane 30. As shown in Figs. 4 and 5, the oxygen-permeable membrane unit 3 has a support 35 (an example of an oxygen supplier) that allows air to flow inside, and a pair of oxygen-permeable membranes 30 that are arranged to surround the support 35 and are formed in the shape of flat membranes that allow oxygen to pass through. A plurality of oxygen-permeable membrane units 3 are suspended from a plurality of support columns 36 fixed to a frame body 37 to form a module. These multiple oxygen-permeable membrane units 3 are arranged at a predetermined interval with each inclined by a spacer 38. As another example, as shown in Fig. 6, the oxygen-permeable membrane unit 3 has a housing 33 (an example of an oxygen supplier) that allows air to flow inside, and a pair of oxygen-permeable membranes 30 that are arranged (fixed) on a pair of side surfaces (outer surfaces) of the housing 33 and are formed in the shape of flat membranes that allow oxygen to pass through, and a plurality of oxygen-permeable membrane units 3 are integrated by a connecting plate 34 to form a module.

図4~図5に示す支持体35は、内部に重力方向に沿った複数の気体流路Afを有しており、一対の酸素透過膜30が密着する一対の側面全体に多数の微細孔部(不図示)を有する樹脂や不織布等で形成されている。また、一対の酸素透過膜30には、内部に支持体35を収容した状態で、夫々の気体流路Afに空気を均等に分配する上方空間35aを形成するように、周囲が溶着等で固定された密封部30aが形成されている。図6に示す筐体33は、上下方向に配置された複数の仕切板33aで区画されることにより蛇行した気体流路Afを内部に有する金属材料や樹脂材料で構成されている。また、筐体33のうち酸素透過膜30が固定される一対の側面全体には、多数の微細孔部(不図示)が形成されており、これら微細孔部から空気を酸素透過膜30に向けて均等に放出する。 The support 35 shown in Figs. 4 and 5 has a plurality of gas flow paths Af along the direction of gravity inside, and is made of resin, nonwoven fabric, or the like having a large number of fine holes (not shown) on the entire pair of sides to which the pair of oxygen permeable membranes 30 are in close contact. In addition, the pair of oxygen permeable membranes 30 are formed with a sealing portion 30a fixed by welding or the like at the periphery so as to form an upper space 35a that distributes air evenly to each gas flow path Af when the support 35 is housed inside. The housing 33 shown in Fig. 6 is made of a metal material or a resin material having a meandering gas flow path Af inside by being partitioned by a plurality of partition plates 33a arranged in the vertical direction. In addition, a large number of fine holes (not shown) are formed on the entire pair of sides to which the oxygen permeable membranes 30 are fixed, and air is evenly released from these fine holes toward the oxygen permeable membrane 30.

酸素透過膜30は、筐体33の内部を流通する空気に含まれる酸素を透過させて酸素透過膜30外側の排水に供給する、酸素透過能を有する平膜材料で構成されている。この平膜材料は、内側から酸素を透過させると共に外側から内側に排水を透過させない特性を有する樹脂等で形成される微細多孔シートを含んでおり、この微細多孔シートの外側には微生物を保持する生物膜層が排水処理により形成される。本実施形態における支持体35又は筐体33に設けられた酸素透過膜30の平膜面は、沈降槽5内の排水の流通方向に対して傾斜して設けられている。 The oxygen permeable membrane 30 is composed of a flat membrane material with oxygen permeability that allows oxygen contained in the air flowing inside the housing 33 to pass through and supply it to the wastewater outside the oxygen permeable membrane 30. This flat membrane material includes a microporous sheet formed of a resin or the like that allows oxygen to pass through from the inside and prevents wastewater from passing through from the outside to the inside, and a biofilm layer that retains microorganisms is formed on the outside of this microporous sheet by wastewater treatment. In this embodiment, the flat membrane surface of the oxygen permeable membrane 30 provided on the support 35 or housing 33 is provided at an angle to the flow direction of the wastewater in the settling tank 5.

このように、平膜状の酸素透過膜30を用いることにより、沈降せずに下流側まで流通する浮遊性の汚濁物を酸素透過膜30に衝突させて沈降させると共に、酸素透過膜30により生物処理を行い、排水を浄化することができる。また、平膜状の酸素透過膜30を筐体33に固定すれば、耐久性も高めることができる。 In this way, by using the flat-membrane oxygen-permeable membrane 30, floating pollutants that do not settle but flow downstream can be collided with the oxygen-permeable membrane 30 and allowed to settle, and the oxygen-permeable membrane 30 can be used for biological treatment to purify the wastewater. Furthermore, by fixing the flat-membrane oxygen-permeable membrane 30 to the housing 33, durability can also be increased.

酸素透過膜ユニット3は、供給された空気に含まれる酸素を、複数の酸素透過膜30を介して排水に供給するように、全体が排水に浸漬されている。このため、酸素透過膜30が破損したときに排水が逆流しないように、複数の酸素透過膜30に空気を供給するための複数の分配管31cには、空気の流通を許容すると共に排水の浸入により流体の流通を遮断する止水弁Vaが設けられている。同様に、複数の酸素透過膜30から空気を排出するための複数の分配管32bには、空気の流通を許容すると共に排水の浸入により流体の流通を遮断する止水弁Vbが設けられている。換言すると、複数の分配管31c,32bの夫々には、供給管31から酸素透過膜ユニット3への空気の流通及び酸素透過膜ユニット3から排出管32への気体の流通を許容すると共に、酸素透過膜ユニット3から供給管31及び排出管32への排水の浸入を遮断する止水弁Va,Vbが設けられている。 The oxygen permeable membrane unit 3 is entirely immersed in wastewater so that oxygen contained in the supplied air is supplied to the wastewater through the oxygen permeable membranes 30. Therefore, in order to prevent the wastewater from backflowing when the oxygen permeable membrane 30 is damaged, the multiple distribution pipes 31c for supplying air to the multiple oxygen permeable membranes 30 are provided with stop valves Va that allow air to flow and block the flow of fluid due to the intrusion of wastewater. Similarly, the multiple distribution pipes 32b for discharging air from the multiple oxygen permeable membranes 30 are provided with stop valves Vb that allow air to flow and block the flow of fluid due to the intrusion of wastewater. In other words, each of the multiple distribution pipes 31c, 32b is provided with stop valves Va, Vb that allow air to flow from the supply pipe 31 to the oxygen permeable membrane unit 3 and gas to flow from the oxygen permeable membrane unit 3 to the discharge pipe 32 and block the intrusion of wastewater from the oxygen permeable membrane unit 3 to the supply pipe 31 and the discharge pipe 32.

供給管31に連通する分配管31cに設けられる止水弁Vaは、空気の背圧を受けて開弁し、空気の流通方向とは反対方向の排水の流体圧を受けて閉弁する公知の逆止弁等で構成されている。排出管32に連通する分配管32bに設けられる止水弁Vbは、水位が低下したときには開弁し、水位が上昇したときにはフロートが浮き上がって閉弁する公知の空気抜き弁等で構成されている。 The water stop valve Va provided in the distribution pipe 31c that communicates with the supply pipe 31 is composed of a known check valve or the like that opens when it receives air back pressure and closes when it receives drainage fluid pressure in the opposite direction to the air flow direction. The water stop valve Vb provided in the distribution pipe 32b that communicates with the discharge pipe 32 is composed of a known air vent valve or the like that opens when the water level drops and closes when the water level rises due to a float rising.

酸素透過膜30の膜表面上には、図7に示すように、生物膜Lが形成される。本実施形態における生物膜Lは、酸素透過膜30の膜表面(外表面)に隣接して成長し、硝化菌を主として含む第一生物膜Laと、生物膜Lの外表面側で成長し、脱窒菌を主として含む第二生物膜Lbとを含んでいる。 As shown in FIG. 7, a biofilm L is formed on the membrane surface of the oxygen-permeable membrane 30. In this embodiment, the biofilm L includes a first biofilm La that grows adjacent to the membrane surface (outer surface) of the oxygen-permeable membrane 30 and mainly contains nitrifying bacteria, and a second biofilm Lb that grows on the outer surface side of the biofilm L and mainly contains denitrifying bacteria.

第一生物膜Laでは、硝化菌が、酸素透過膜30から供給される酸素により排水中の窒素成分(例えば、NH )を酸化(硝化)して、硝酸態窒素(NO )を生成する。第一生物膜Laでは、酸素透過膜30から供給される酸素は消費し尽くされる。なお、嫌気処理装置1では、第一生物膜Laにより、排水中の窒素成分の一部が硝化される。 In the first biofilm La, the nitrifying bacteria oxidize (nitrify) the nitrogen components (e.g., NH4 + ) in the wastewater using oxygen supplied from the oxygen-permeable membrane 30 to generate nitrate nitrogen ( NOx- ) . In the first biofilm La, the oxygen supplied from the oxygen-permeable membrane 30 is completely consumed. Note that in the anaerobic treatment device 1, the first biofilm La nitrifies some of the nitrogen components in the wastewater.

第二生物膜Lb及び第二生物膜Lbの外部領域(酸素透過膜ユニット3及び生物膜L以外の排水中)では、脱窒菌が、排水中の有機物(BOD)を栄養源として硝酸態窒素(NO )を還元(脱窒)して窒素(N)ガスを放出する。なお、酸素透過膜30に付着した生物膜Lを洗浄するために、気泡噴射や機械的振動や超音波照射によりシェイキング等による洗浄機構を別途設けても良い。 In the second biofilm Lb and in the area outside the second biofilm Lb (in the wastewater other than the oxygen-permeable membrane unit 3 and the biofilm L), denitrifying bacteria use the organic matter (BOD) in the wastewater as a nutrient source to reduce (denitrify) nitrate nitrogen (NO x - ) and release nitrogen (N 2 ) gas. Note that in order to clean the biofilm L attached to the oxygen-permeable membrane 30, a separate cleaning mechanism may be provided that uses bubble injection, mechanical vibration, ultrasonic shaking, or the like.

このように、酸素透過膜30の内側から供給される酸素が酸素透過膜30を透過し、酸素透過膜30の表面で排水の窒素成分を硝化する硝化菌等の生物膜Lが形成され、窒素成分の硝化が行われて硝酸態窒素が生成される。この硝酸態窒素は、排水中の脱窒菌と脱窒菌の栄養となる有機物とにより還元されて窒素ガスが生成される。この硝化及び脱窒により、排水の窒素含有化合物が分解除去されて浄化される。 In this way, oxygen supplied from the inside of the oxygen-permeable membrane 30 permeates the oxygen-permeable membrane 30, and a biofilm L of nitrifying bacteria and the like that nitrifies the nitrogen components of the wastewater is formed on the surface of the oxygen-permeable membrane 30, and the nitrogen components are nitrified to produce nitrate nitrogen. This nitrate nitrogen is reduced by the denitrifying bacteria in the wastewater and the organic matter that serves as nutrition for the denitrifying bacteria to produce nitrogen gas. This nitrification and denitrification decomposes and removes the nitrogen-containing compounds in the wastewater, purifying it.

本実施形態では、空気を排水内に吹き込む形態ではなく、酸素透過膜30の内側に空気を供給するため、生物処理槽Rの上流側に設置される最初沈殿池Xのように、窒素含有化合物等の処理対象物濃度が高い排水であっても、排水に大量の空気を吹き込む必要がなく、生物処理を効率よく行うことができる。効率よく生物処理することにより初沈汚泥量が増大し、メタン発酵処理等に利用することでバイオガス量の増大効果が期待できる。また、この酸素透過膜ユニット3は、沈降槽5の内部のうち少なくとも流出口52の側に設けられているため、排水に含まれる浮遊性の汚濁物を生物処理槽Rに排出される前に衝突させて沈降させることにより、効率的に除去できる。その結果、生物処理槽Rヘと流出される排水の処理対象物濃度を下げることが可能となり、生物処理槽Rの負荷の低減、消費エネルギー量の削減をすることができる。さらに、排水に大量の酸素含有気体を吹き込まずに生物処理を行うため、沈降槽5の底に沈降した汚泥等を水中にまきあげるおそれもない。 In this embodiment, air is not blown into the wastewater, but is supplied to the inside of the oxygen permeable membrane 30. Therefore, even if the wastewater has a high concentration of the target substances to be treated, such as nitrogen-containing compounds, as in the primary sedimentation tank X installed upstream of the biological treatment tank R, there is no need to blow a large amount of air into the wastewater, and biological treatment can be performed efficiently. By efficiently performing biological treatment, the amount of primary sedimentation sludge increases, and by using it for methane fermentation treatment, etc., it is expected that the amount of biogas will increase. In addition, since the oxygen permeable membrane unit 3 is installed at least on the outlet 52 side inside the sedimentation tank 5, floating pollutants contained in the wastewater can be efficiently removed by colliding with them and settling them before being discharged into the biological treatment tank R. As a result, it is possible to reduce the concentration of the target substances to be treated in the wastewater discharged into the biological treatment tank R, and the load on the biological treatment tank R and the amount of energy consumed can be reduced. Furthermore, since biological treatment is performed without blowing a large amount of oxygen-containing gas into the wastewater, there is no risk of sludge and the like that has settled to the bottom of the sedimentation tank 5 being stirred up in the water.

〔最初沈殿池の運転方法〕
図2に示すように、上述した最初沈殿池Xの運転方法は、沈降槽5の流入口51から流出口52に向かって排水を流通させる流通手順と、掻寄機4を作動させることにより、沈降した汚泥等の汚濁物を掻き寄せて集積させる集積手順と、酸素透過膜30の内側から空気を供給することにより、排水に対して生物処理を行う処理手順と、を含んでいる。
[Operation method of primary sedimentation tank]
As shown in FIG. 2, the operating method of the primary sedimentation tank X described above includes a circulation procedure for circulating wastewater from the inlet 51 to the outlet 52 of the sedimentation tank 5, a collection procedure for collecting and collecting pollutants such as settled sludge by operating the collector 4, and a treatment procedure for performing biological treatment on the wastewater by supplying air from the inside of the oxygen-permeable membrane 30.

流通手順では、流入口51から流出口52に向かって排水を流通させることにより、塊状の汚濁物が自重により沈降すると共に、平膜状の酸素透過膜30に衝突した浮遊性の汚濁物が沈降する。集積手順では、この沈降した汚濁物を排出ピット53に掻き寄せて集積させ、排出口53aから汚濁物を排出することにより、排水から汚濁物を除去する。処理手順では、酸素透過膜30の内側から供給される酸素が酸素透過膜30を透過し、排水中に含まれる窒素成分を亜硝酸態窒素や硝酸態窒素に酸化する硝化(好気性処理)や、亜硝酸態窒素や硝酸態窒素を還元して窒素ガスに還元する脱窒(嫌気性処理)が行われる。その結果、生物処理槽Rヘと流出される排水の処理対象物濃度を下げることが可能となる。 In the flow procedure, wastewater is circulated from the inlet 51 to the outlet 52, so that clumps of pollutants settle by their own weight, and floating pollutants that collide with the flat oxygen-permeable membrane 30 settle. In the accumulation procedure, the settled pollutants are collected in the discharge pit 53 and discharged from the outlet 53a, thereby removing the pollutants from the wastewater. In the treatment procedure, oxygen supplied from the inside of the oxygen-permeable membrane 30 permeates the oxygen-permeable membrane 30, and nitrification (aerobic treatment) is performed, in which the nitrogen components contained in the wastewater are oxidized to nitrite nitrogen and nitrate nitrogen, and denitrification (anaerobic treatment) is performed, in which the nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas. As a result, it is possible to reduce the concentration of the target substance in the wastewater discharged to the biological treatment tank R.

[その他の実施形態]
(1)複数の酸素透過膜ユニット3は、傾斜させずに重力方向に沿って配置しても良いし、汚濁物の沈降方向に向かうほど流入口51よりも流出口52から遠ざかるように傾斜させても良い。
(2)最終沈殿池99は、最終沈殿池99において沈殿した汚泥が、返送流路9により嫌気処理装置1に返送されることから、最終沈殿池99(沈殿池の一例)の内部のうち少なくとも流出口の側に酸素透過膜ユニット3を設けても良い。
(3)酸素透過膜ユニット3は、分配管31c,32bを含む酸素透過膜ユニット3の一部を水面より上側に配置して、止水弁Va,Vbを省略しても良い。この場合、図4に示す酸素透過膜30の上端は、開口していても良い。
[Other embodiments]
(1) The multiple oxygen permeable membrane units 3 may be arranged along the direction of gravity without being inclined, or may be inclined so that they are farther from the outlet 52 than the inlet 51 as they move in the direction of the settlement of the pollutants.
(2) Since the sludge that settles in the final sedimentation tank 99 is returned to the anaerobic treatment device 1 via the return flow path 9, an oxygen permeable membrane unit 3 may be provided at least on the outlet side inside the final sedimentation tank 99 (an example of a sedimentation tank).
(3) The oxygen-permeable membrane unit 3 may be provided with a portion of the oxygen-permeable membrane unit 3 including the distribution pipes 31c and 32b disposed above the water surface, thereby eliminating the need for the water stop valves Va and Vb. In this case, the upper end of the oxygen-permeable membrane 30 shown in FIG. 4 may be open.

(4)図6に示す筐体33は、仕切板33aにより蛇行した気体流路Afを内部に形成したが、供給管31及び排出管32に夫々合流する合流管31a,32aから分岐した分配管31c,32bに連通する平行な直線状の複数の気体流路を内部に形成しても良い。この場合、供給管31に合流する合流管31aが酸素透過膜ユニット3の上側、排出管32に合流する合流管32aが酸素透過膜ユニット3の下側に設けられる。
(5)上述した実施形態では、複数の酸素透過膜ユニット3を支持柱36又は連結板34で連結してモジュールを形成したが、1つの酸素透過膜ユニット3でも良いし、複数の酸素透過膜ユニット3を連結することなく個別に設置しても良い。
(6)上述した実施形態における酸素透過膜ユニット3は、上下方向、左右方向に複数設けても良い。この場合、複数の酸素透過膜ユニット3を上下左右に整列して配置させても良いし、千鳥配置する等しても良い。
6 has a meandering gas flow path Af formed therein by the partition plate 33a, but a plurality of parallel linear gas flow paths communicating with distribution pipes 31c, 32b branching from junction pipes 31a, 32a respectively merging with the supply pipe 31 and the exhaust pipe 32 may be formed therein. In this case, the junction pipe 31a merging with the supply pipe 31 is provided above the oxygen-permeable membrane unit 3, and the junction pipe 32a merging with the exhaust pipe 32 is provided below the oxygen-permeable membrane unit 3.
(5) In the above-described embodiment, a module is formed by connecting multiple oxygen-permeable membrane units 3 with support columns 36 or connecting plates 34, but a single oxygen-permeable membrane unit 3 may be used, or multiple oxygen-permeable membrane units 3 may be installed individually without being connected.
(6) In the above-described embodiment, a plurality of oxygen-permeable membrane units 3 may be provided in the vertical and horizontal directions. In this case, the plurality of oxygen-permeable membrane units 3 may be aligned vertically and horizontally, or may be arranged in a staggered manner.

(7)掻寄機4を沈降槽5の底部のみに設けて、沈降槽5の上部領域に形成された空きスペースに複数の酸素透過膜ユニット3を配置しても良い。
(8)酸素透過膜ユニット3は、一対のトラフ54の間の流路を閉塞するように配置せずに、例えば、一対のトラフ54の間の流路の半分の幅で配置しても良い。
(7) The collector 4 may be provided only at the bottom of the settling tank 5 , and a plurality of oxygen-permeable membrane units 3 may be disposed in the empty space formed in the upper region of the settling tank 5 .
(8) The oxygen-permeable membrane unit 3 may be disposed so as not to block the flow path between the pair of troughs 54 , but may be disposed, for example, with a width that is half the width of the flow path between the pair of troughs 54 .

本発明は、生物処理槽の上流側に設置される沈殿池、沈殿池に設置される酸素透過膜ユニット及び沈殿池の運転方法に利用可能である。 The present invention can be used in a sedimentation tank installed upstream of a biological treatment tank, an oxygen-permeable membrane unit installed in the sedimentation tank, and a method for operating the sedimentation tank.

3 :酸素透過膜ユニット
4 :掻寄機
5 :沈降槽
30 :酸素透過膜
33 :筐体(酸素供給体)
35 :支持体(酸素供給体)
51 :流入口
52 :流出口
54 :トラフ
R :生物処理槽
X :最初沈殿池(沈殿池)
3: Oxygen permeable membrane unit 4: Collector 5: Settling tank 30: Oxygen permeable membrane 33: Housing (oxygen supplier)
35: Support (oxygen donor)
51: inlet 52: outlet 54: trough R: biological treatment tank X: primary sedimentation tank (sedimentation tank)

Claims (9)

被処理水を生物処理する生物処理槽の上流側に設置される沈殿池であって、
前記被処理水が流入する流入口と前記生物処理槽に前記被処理水を流出させる流出口とを有し、前記被処理水に含まれる汚濁物を沈降させる沈降槽と、
前記沈降槽の内部に配置され、前記汚濁物を掻き寄せて集積させる掻寄機と、
前記沈降槽の内部のうち少なくとも前記流出口の側に設けられ、酸素を透過する酸素透過膜を含む酸素透過膜ユニットと、を備え、
前記酸素透過膜ユニットは、前記汚濁物の沈降方向に向かうほど前記流入口よりも前記流出口に近付くように傾斜しており、
前記酸素透過膜ユニットは、前記汚濁物を落下させると共に、前記酸素透過膜の内側から酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う沈殿池。
A sedimentation tank installed upstream of a biological treatment tank that biologically treats the water to be treated,
A sedimentation tank having an inlet through which the water to be treated flows and an outlet through which the water to be treated flows into the biological treatment tank, and for settling contaminants contained in the water to be treated;
A scraper disposed inside the settling tank for scraping and accumulating the polluted matter;
an oxygen-permeable membrane unit provided inside the settling tank at least on the outlet side, the oxygen-permeable membrane unit including an oxygen-permeable membrane;
The oxygen permeable membrane unit is inclined so as to be closer to the outlet than to the inlet in a settling direction of the contaminants,
The oxygen-permeable membrane unit is a sedimentation basin that performs biological treatment on the water to be treated by allowing the pollutants to fall and supplying an oxygen-containing gas from the inside of the oxygen-permeable membrane.
前記酸素透過膜ユニットは、内部に前記酸素含有気体を流通させる酸素供給体を含んでおり、
前記酸素透過膜は、当該酸素供給体の外面に配置された平膜状に形成されている請求項1に記載の沈殿池。
The oxygen-permeable membrane unit includes an oxygen supplier that allows the oxygen-containing gas to flow therethrough,
2. The settling basin according to claim 1, wherein the oxygen permeable membrane is formed as a flat membrane disposed on the outer surface of the oxygen supplier.
前記酸素透過膜は、前記酸素供給体の表面及び裏面の両方の外面に配置されている請求項2に記載の沈殿池 3. The settling tank according to claim 2, wherein the oxygen permeable membrane is disposed on both the front and back outer surfaces of the oxygen supplier . 前記酸素透過膜ユニットの傾斜角が0度より大きく60度以下である請求項1から3の何れか一項に記載の沈殿池 4. The settling basin according to claim 1, wherein the inclination angle of the oxygen-permeable membrane unit is greater than 0 degrees and is not greater than 60 degrees . 前記酸素透過膜ユニットは、側方視で前記掻寄機よりも前記汚濁物の沈降方向と反対方向にある上部領域に配置されている請求項1からの何れか一項に記載の沈殿池。 5. The settling basin according to claim 1, wherein the oxygen-permeable membrane unit is disposed in an upper region that is opposite to the settling direction of the polluted matter relative to the collector when viewed from the side. 前記沈降槽には、少なくとも前記流出口の側の両側壁に前記被処理水を越流させる一対のトラフが設けられており、
前記酸素透過膜ユニットは、一対の前記トラフの間の流路に亘って配置されている請求項1からの何れか一項に記載の沈殿池。
The settling tank is provided with a pair of troughs on at least both side walls of the outlet side through which the water to be treated overflows,
The settling basin according to claim 1 , wherein the oxygen-permeable membrane unit is disposed across the flow path between the pair of troughs.
前記沈降槽には、前記掻寄機により掻き寄せて集積させた前記汚濁物をメタン発酵槽に排出する排出口が設けられている請求項1からの何れか一項に記載の沈殿池。 The settling tank according to any one of claims 1 to 6 , wherein the settling tank is provided with a discharge outlet for discharging the pollutants collected and accumulated by the collector into a methane fermentation tank. 被処理水を生物処理する生物処理槽の上流側に設置される沈殿池の内部のうち少なくとも下流側に浸漬される酸素透過膜ユニットであって、
内部に酸素含有気体を流通させる酸素供給体と、当該酸素供給体の外面に配置され、酸素を透過する平膜状の酸素透過膜とを備え、
被処理水中の汚濁物の沈降方向に向かうほど前記沈殿池における被処理水の流入口よりも流出口に近付くように傾斜しており、
前記汚濁物を落下させると共に、前記酸素透過膜の内側に前記酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う酸素透過膜ユニット。
An oxygen-permeable membrane unit that is immersed at least downstream of a sedimentation tank installed upstream of a biological treatment tank that biologically treats water to be treated,
The oxygen supplying device includes an oxygen-containing gas flowing through the oxygen supplying device, and a flat oxygen-permeable membrane that is disposed on an outer surface of the oxygen supplying device and allows oxygen to pass therethrough.
The inclination is such that the more the contaminants in the water to be treated settle, the closer the outlet of the settling tank is to the inlet of the water to be treated,
The oxygen-permeable membrane unit performs biological treatment on the water to be treated by allowing the pollutants to fall and supplying the oxygen-containing gas to the inside of the oxygen-permeable membrane.
請求項1からの何れか一項に記載の沈殿池の運転方法であって、
前記流入口から前記流出口に向かって前記被処理水を流通させ、
前記掻寄機を作動させることにより、沈降した前記汚濁物を掻き寄せて集積させ、
前記酸素透過膜の内側から前記酸素含有気体を供給することにより、前記被処理水に対して生物処理を行う沈殿池の運転方法。
A method for operating a sedimentation tank according to any one of claims 1 to 7 , comprising:
The water to be treated is caused to flow from the inlet to the outlet,
By operating the scraper, the settled pollutants are scraped and accumulated,
A method for operating a sedimentation basin in which the oxygen-containing gas is supplied from the inside of the oxygen-permeable membrane to perform biological treatment on the water to be treated.
JP2021039022A 2021-03-11 2021-03-11 Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank Active JP7577576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021039022A JP7577576B2 (en) 2021-03-11 2021-03-11 Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039022A JP7577576B2 (en) 2021-03-11 2021-03-11 Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank

Publications (2)

Publication Number Publication Date
JP2022138893A JP2022138893A (en) 2022-09-26
JP7577576B2 true JP7577576B2 (en) 2024-11-05

Family

ID=83398966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039022A Active JP7577576B2 (en) 2021-03-11 2021-03-11 Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank

Country Status (1)

Country Link
JP (1) JP7577576B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211185A (en) 2002-01-25 2003-07-29 Hiroshima Pref Gov Powerless wastewater treatment method
JP2018008220A (en) 2016-07-13 2018-01-18 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP2019126781A (en) 2018-01-25 2019-08-01 株式会社日立製作所 Support frame device for ramp sedimentation apparatus, ramp sedimentation apparatus, ramp sedimentation apparatus stacking unit, manufacturing method for ramp sedimentation apparatus, transportation method for ramp sedimentation apparatus and installation method for ramp sedimentation apparatus
JP2020028835A (en) 2018-08-21 2020-02-27 積水化学工業株式会社 Waste water treatment apparatus
JP2020151625A (en) 2019-03-18 2020-09-24 株式会社神鋼環境ソリューション Wastewater treatment system
JP2021030141A (en) 2019-08-22 2021-03-01 積水アクアシステム株式会社 Solid-liquid separation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211185A (en) 2002-01-25 2003-07-29 Hiroshima Pref Gov Powerless wastewater treatment method
JP2018008220A (en) 2016-07-13 2018-01-18 株式会社神鋼環境ソリューション Water treatment device and water treatment method
JP2019126781A (en) 2018-01-25 2019-08-01 株式会社日立製作所 Support frame device for ramp sedimentation apparatus, ramp sedimentation apparatus, ramp sedimentation apparatus stacking unit, manufacturing method for ramp sedimentation apparatus, transportation method for ramp sedimentation apparatus and installation method for ramp sedimentation apparatus
JP2020028835A (en) 2018-08-21 2020-02-27 積水化学工業株式会社 Waste water treatment apparatus
JP2020151625A (en) 2019-03-18 2020-09-24 株式会社神鋼環境ソリューション Wastewater treatment system
JP2021030141A (en) 2019-08-22 2021-03-01 積水アクアシステム株式会社 Solid-liquid separation system

Also Published As

Publication number Publication date
JP2022138893A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US7722769B2 (en) Method for treating wastewater
CA2682707C (en) Improved infiltration/inflow control for membrane bioreactor
US9079125B2 (en) Modular wastewater treatment system management
US9598296B2 (en) Decanted bio-balanced reactor and method
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
RU195498U1 (en) SEWAGE TREATMENT PLANT
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
JP7577576B2 (en) Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank
US8293098B2 (en) Infiltration/inflow control for membrane bioreactor
RU92657U1 (en) BIOLOGICAL WASTE WATER TREATMENT UNIT
JP5456238B2 (en) Membrane separator
JPH09155391A (en) Biological water-treatment apparatus
KR100381901B1 (en) The treatment system of discharging water in the treatment equipment of sewage and serious contaminated rivers water utilizing the contact oxidation method
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
RU67087U1 (en) BLOCK OF BIOLOGICAL CLEANING WASTE WATERS
KR100223543B1 (en) Wastewater treatment device and method by multi anaerobic and aerobic method using yakurut empty bottle
RU197400U9 (en) BIOLOGICAL WASTE WATER TREATMENT UNIT
JP7564739B2 (en) Wastewater treatment device and oxygen permeable membrane unit
Hussain et al. Membrane bio reactors (MBR) in waste water treatment: a review of the recent patents
JP2006218435A (en) Activated sludge treatment system
KR100740579B1 (en) Advanced wastewater treatment apparatus and method improved from existing waste water treatment process using activated sludge method
KR20160067555A (en) The biological reactors with a function of waste water transfer and facilities having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241023