[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5456238B2 - Membrane separator - Google Patents

Membrane separator Download PDF

Info

Publication number
JP5456238B2
JP5456238B2 JP2007049032A JP2007049032A JP5456238B2 JP 5456238 B2 JP5456238 B2 JP 5456238B2 JP 2007049032 A JP2007049032 A JP 2007049032A JP 2007049032 A JP2007049032 A JP 2007049032A JP 5456238 B2 JP5456238 B2 JP 5456238B2
Authority
JP
Japan
Prior art keywords
membrane
suction pump
treated water
valve
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007049032A
Other languages
Japanese (ja)
Other versions
JP2008207157A (en
Inventor
貴範 糸永
渉 藤井
賢治 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2007049032A priority Critical patent/JP5456238B2/en
Publication of JP2008207157A publication Critical patent/JP2008207157A/en
Application granted granted Critical
Publication of JP5456238B2 publication Critical patent/JP5456238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

この発明は、膜分離装置に関するものである。 The present invention relates to a membrane separation apparatus.

従来から、微生物を利用して生物処理を行う生物反応槽と物理化学処理である膜分離装置を組み合わせた膜分離活性汚泥法が知られている。この膜分離活性汚泥法の膜分離装置には、生物反応槽内に中空糸膜、平膜などの複数の濾過機能を備えた膜濾過ユニットを浸漬させることが一般的である。処理水は、膜濾過ユニットに配管接続した吸引ポンプを作動させる吸引濾過により、生物反応槽内の活性汚泥に代表される不純物を膜により分離して得られる。このような浸漬型の膜濾過ユニットを用いる場合には、活性汚泥中に含まれる懸濁物質や溶存物質が吸引時に膜表面に堆積/吸着して膜の透水性能を低下させるいわゆる膜ファウリングが経時的に進行することが知られている。そのため、膜濾過ユニットの下方に散気装置を配置して、この散気装置から放出される気泡によって膜のエアスクラビング(バブリング)洗浄を行い、膜ファウリングの進行を抑制する運転が通常行われている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a membrane separation activated sludge method in which a biological reaction tank that performs biological treatment using microorganisms and a membrane separation device that is a physicochemical treatment is combined is known. In the membrane separation apparatus of this membrane separation activated sludge method, it is common to immerse a membrane filtration unit having a plurality of filtration functions such as a hollow fiber membrane and a flat membrane in a biological reaction tank. The treated water is obtained by separating impurities represented by activated sludge in the biological reaction tank with a membrane by suction filtration that operates a suction pump connected to the membrane filtration unit. When such a submerged membrane filtration unit is used, there is a so-called membrane fouling in which suspended substances and dissolved substances contained in activated sludge are deposited / adsorbed on the membrane surface during suction to reduce the water permeability of the membrane. It is known to progress over time. Therefore, an operation that suppresses the progress of membrane fouling is usually performed by disposing an air diffuser below the membrane filtration unit, performing air scrubbing (bubbling) cleaning of the membrane with bubbles released from the air diffuser. (For example, refer to Patent Document 1).

ところで、上記膜分離装置では、吸引ポンプによる吸引濾過を常時行うと、膜ファウリングの進行速度が高くなる傾向が観察され、この結果、薬液を用いた煩雑な膜洗浄を頻繁に実施しなければならない。そのため、図4に示すような膜分離装置による吸引濾過を行う場合、所定時間毎に吸引ポンプの運転と停止を繰り返す、間欠運転を実行している。この運転操作において、吸引ポンプ停止時には、エアスクラビングによる膜の洗浄が行われるため、膜ファウリングの進行を抑制できることが知られている(例えば、非特許文献1参照)。
特開2004−305885号公報 Yamamoto et al., Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank, Water Science and Technology, Vol.21, pp.43-53, 1989.
By the way, in the above-mentioned membrane separation device, when the suction filtration by the suction pump is always performed, the tendency of the progress of the membrane fouling to be increased is observed, and as a result, complicated membrane cleaning using a chemical solution must be performed frequently. Don't be. Therefore, when performing suction filtration with a membrane separator as shown in FIG. 4, intermittent operation is performed in which the operation and stop of the suction pump are repeated every predetermined time. In this operation, it is known that when the suction pump is stopped, the membrane is cleaned by air scrubbing, so that the progress of membrane fouling can be suppressed (for example, see Non-Patent Document 1).
JP 2004-305895 A Yamamoto et al., Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank, Water Science and Technology, Vol.21, pp.43-53, 1989.

しかしながら、このような吸引ポンプの間欠運転を頻繁に行うと、とりわけ始動時には、吸引ポンプを構成するシール部材やモーターなどに大きな負荷がかかる。そのため、大型の吸引ポンプの運転・停止を頻繁に繰り返すような運転を実施すると吸引ポンプの故障につながる可能性がある。   However, if such intermittent operation of the suction pump is frequently performed, a large load is applied to the seal member, the motor, and the like constituting the suction pump, particularly at the time of starting. For this reason, if the operation that frequently repeats the operation / stop of the large-sized suction pump is performed, there is a possibility that the suction pump may break down.

そこで、本発明では、膜分離装置による吸引濾過における所定時間毎の吸引停止状態を保持したまま吸引ポンプの始動回数を極力減らして、吸引ポンプの故障頻度を低減させることができる膜分離装置を提供するものである。 Therefore, in the present invention, as much as possible reduce the number of starts of the suction while the suction pump was maintained in the stopped state for each predetermined time in suction filtration by membrane separation device, a membrane separation equipment capable of reducing the failure frequency of the suction pump It is to provide.

上記課題を解決するために、請求項に記載した発明は、被処理液で満たされた水槽(例えば、実施の形態におけるばっ気槽5)に分離膜(例えば、実施の形態における膜濾過ユニット8)を浸漬させ、該分離膜に接続された吸引ポンプ(例えば、実施の形態における吸引ポンプPv)にて前記被処理液を吸引することで前記被処理液を固液分離して処理水を得る膜分離装置において、前記吸引ポンプの出口側管路から吐出した前記処理水を、前記吸引ポンプの入口側管路に戻す循環管路(例えば、実施の形態における循環管路13)を設け、前記入口側管路に吸引ポンプへの分離膜からの処理水供給と循環管路からの処理水供給を切り換える弁体、前記出口側管路に放流と循環を切り換える弁体(例えば、実施の形態における三方弁14と弁15)を設けたことを特徴とする。
請求項2に記載した発明は、請求項1に記載した発明において、前記入口側管路に設けられ前記吸引ポンプへの分離膜からの処理水供給と循環管路からの処理水供給とを切り換える弁体、および、前記出口側管路に設けられ放流と循環とを切り換える弁体、が何れも三方弁であることを特徴とする。
In order to solve the above problems, the invention described in claim 1 is directed to a separation tank (for example, a membrane filtration unit in the embodiment) in a water tank (for example, an aeration tank 5 in the embodiment) filled with a liquid to be treated. 8) is immersed, and the liquid to be treated is solid-liquid separated by sucking the liquid to be treated with a suction pump (for example, the suction pump Pv in the embodiment) connected to the separation membrane, and treated water is obtained. In the obtained membrane separation device, a circulation line (for example, the circulation line 13 in the embodiment) for returning the treated water discharged from the outlet side line of the suction pump to the inlet side line of the suction pump is provided. A valve body that switches the supply of treated water from the separation membrane to the suction pump and the supply of treated water from the circulation pipe to the inlet side pipe, and a valve body that switches between discharge and circulation to the outlet side pipe (for example, an embodiment) Three-way valve 14 in Characterized in that a 15).
According to a second aspect of the present invention, in the first aspect of the present invention, the supply of the treated water from the separation membrane to the suction pump and the treated water supply from the circulation line provided in the inlet side pipe are switched. Both the valve body and the valve body provided in the outlet side pipe and switching between discharge and circulation are three-way valves.

請求項3に記載した発明は、被処理液で満たされた水槽に分離膜を浸漬させ、該分離膜に接続された吸引ポンプにて前記被処理液を吸引することで前記被処理液を固液分離して処理水を得る膜分離装置において、処理水を貯める処理水槽と前記吸引ポンプの入口側管路とを接続する循環管路を設け、前記入口側管路に前記吸引ポンプへの分離膜からの処理水供給と前記循環管路からの処理水供給とを切り換える弁体を設けたことを特徴とする。 According to a third aspect of the invention, the separation membrane is immersed in a water tank filled with the treatment liquid, and the treatment liquid is fixed by sucking the treatment liquid with a suction pump connected to the separation membrane. In a membrane separation apparatus for obtaining treated water by liquid separation, a circulation pipe that connects a treated water tank for storing treated water and an inlet-side pipe of the suction pump is provided, and the inlet-side pipe is separated into the suction pump. A valve body is provided for switching between the treated water supply from the membrane and the treated water supply from the circulation pipe .

請求項4に記載した発明は、請求項3に記載した発明において、前記入口側管路に設けられ前記吸引ポンプへの分離膜からの処理水供給と前記循環管路からの処理水供給とを切り換える弁体が三方弁であることを特徴とする。
請求項5に記載した発明は、請求項1から4の何れか一項に記載した発明において、前記分離膜による前記処理水の処理水量が1000m/日以上であることを特徴とする。
The invention described in claim 4 is the invention described in claim 3, wherein the supply of treated water from the separation membrane to the suction pump and the supply of treated water from the circulation pipe are provided in the inlet side pipe. The switching valve body is a three-way valve.
The invention described in claim 5 is the invention described in any one of claims 1 to 4, characterized in that the amount of treated water by the separation membrane is 1000 m 3 / day or more.

本願発明によれば、吸引ポンプから吐出される処理水を吸引ポンプの入口側に間欠的に戻すようにしたことで、吸引ポンプの入口側と出口側との間で処理水が循環し、この処理水が循環している間だけ分離膜による吸引濾過を停止させることができる。したがって、吸引ポンプを作動させた状態を維持しつつ、分離膜による吸引濾過を停止することができる。この結果、運転中における吸引ポンプの頻繁な始動がなくなり、吸引ポンプの負荷を極めて軽減させることができるため、吸引ポンプの故障頻度を大幅に減らすことができる。   According to the present invention, the treated water discharged from the suction pump is intermittently returned to the inlet side of the suction pump, so that the treated water circulates between the inlet side and the outlet side of the suction pump. Suction filtration by the separation membrane can be stopped only while the treated water is circulating. Therefore, the suction filtration by the separation membrane can be stopped while maintaining the state in which the suction pump is operated. As a result, the suction pump is not frequently started during operation, and the load on the suction pump can be greatly reduced, so that the failure frequency of the suction pump can be greatly reduced.

さらに、本願発明によれば、吸引ポンプの入口ならびに出口側管路に循環管路を設け前記入口管路に分離膜と接続された配管を遮断する弁体と出口側管路に設けた弁体をそれぞれ切り換え制御することで、吸引ポンプから出口側管路に吐出された処理水を、循環管路を介して入口側管路に戻して、吸引ポンプ、出口側管路、循環管路および入口側管路の順に送液させることができるため、吸引ポンプを停止することなく分離膜による吸引濾過を停止することができる。したがって、運転中における吸引ポンプの頻繁な始動がないため、吸引ポンプの負荷を極めて軽減することができ、吸引ポンプの故障頻度を大幅に減らすことができる。   Furthermore, according to the present invention, a valve body provided in the inlet side and outlet side pipes of the suction pump, and a valve body provided in the outlet side pipe line for shutting off the pipe connected to the separation membrane in the inlet pipe line. By switching control of each, the treated water discharged from the suction pump to the outlet side pipe is returned to the inlet side pipe through the circulation pipe, and the suction pump, outlet side pipe, circulation pipe and inlet Since the liquid can be fed in the order of the side pipe lines, the suction filtration by the separation membrane can be stopped without stopping the suction pump. Accordingly, since the suction pump is not frequently started during operation, the load on the suction pump can be greatly reduced, and the failure frequency of the suction pump can be greatly reduced.

また、とりわけ分離膜による処理水量が1000m/日以上となるような相対的に処理水量が多い場合においては、大型の吸引ポンプが必要となり、吸引ポンプの停止状態から始動して定常運転に復帰するまでに時間を要していたが、吸引ポンプを停止させないため吸引濾過停止状態から定常的な流量での吸引濾過に迅速に復帰することが可能となり、吸引ポンプを始動・停止させる場合よりも処理システムの効率を向上させることができる。 In particular, when the amount of water treated by the separation membrane is relatively large, such as 1000 m 3 / day or more, a large suction pump is required, and the suction pump is started from a stopped state to return to steady operation. Although it took time to do so, the suction pump was not stopped, so it was possible to quickly return to the suction filtration at a steady flow rate from the suction filtration stopped state, rather than starting and stopping the suction pump. The efficiency of the processing system can be improved.

以下、この発明の実施の形態を図面に基づいて説明する。
図1において、符号1は膜分離活性汚泥処理装置を示している。この膜分離活性汚泥処理装置1は、工業用排水や生活排水などに含まれる汚濁物質を生物処理(詳細を後述する)と膜による固液分離により処理水として放流する装置であり、1000m/日以上の処理を行うことが可能なものである。この膜分離活性汚泥処理装置1は、原水を貯水する原水調整槽2を備えており、原水が膜分離活性汚泥処理装置1の外部から順次原水調整槽2に送液されるようになっている。原水調整槽2は膜分離活性汚泥処理装置1に送液される原水量が調整可能であり、原水の液面レベルを図示せぬ液面計測器とによって構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the code | symbol 1 has shown the membrane separation activated sludge processing apparatus. This membrane separation activated sludge treatment device 1 is a device that discharges pollutants contained in industrial wastewater, domestic wastewater, etc. as treated water by biological treatment (details will be described later) and solid-liquid separation by membrane, and has a capacity of 1000 m 3 / It is possible to perform processing for more than a day. The membrane separation activated sludge treatment apparatus 1 includes a raw water adjustment tank 2 for storing raw water, and the raw water is sequentially fed from the outside of the membrane separation activated sludge treatment apparatus 1 to the raw water adjustment tank 2. . The raw water adjustment tank 2 can adjust the amount of raw water sent to the membrane-separated activated sludge treatment apparatus 1, and is composed of a liquid level measuring instrument (not shown) for the level of the raw water.

また、原水調整槽2には、配管3を介して無酸素槽4が接続されており、配管3の途中に原水調整槽2内に貯水されている原水を無酸素槽4に送液する第1送液ポンプP1と、原水中の比較的大きな固形分を除去する微細目スクリーンsとが介挿されている。すなわち、上述した液面計測器の測定結果に基づいて、配管3に設けられた第1送液ポンプP1を間欠作動することで原水調整槽2の液面の高さを所定の範囲内で調整するようになっている。そして、上記第1送液ポンプP1で送液された原水は、微細目スクリーンsを通過した後、無酸素槽4に導入されることとなる。   In addition, an oxygen-free tank 4 is connected to the raw water adjustment tank 2 via a pipe 3, and the raw water stored in the raw water adjustment tank 2 in the middle of the pipe 3 is sent to the oxygen-free tank 4. One liquid feed pump P1 and a fine screen s for removing a relatively large solid content in the raw water are interposed. That is, based on the measurement result of the liquid level measuring instrument described above, the liquid level of the raw water adjustment tank 2 is adjusted within a predetermined range by intermittently operating the first liquid feed pump P1 provided in the pipe 3. It is supposed to be. And the raw | natural water sent with the said 1st liquid feeding pump P1 will be introduce | transduced into the anoxic tank 4 after passing the fine screen s.

無酸素槽4は、原水中に含まれる窒素を除去するいわゆる脱窒反応を行う槽である。この無酸素槽4は、2つの経路でばっ気槽5に接続されており、この2つの経路を介して原水が無酸素槽4とばっ気槽5との間で循環可能である。ここで、無酸素槽4内には、モーターなどで駆動される撹拌器Mを設けており、この攪拌機Mにより、大気中の酸素を可能な限り混入させないよう、無酸素槽4の汚泥濃度が深さ方向に均一となるべく攪拌を行う。   The anoxic tank 4 is a tank that performs a so-called denitrification reaction for removing nitrogen contained in the raw water. The anaerobic tank 4 is connected to the aeration tank 5 through two paths, and the raw water can be circulated between the anoxic tank 4 and the aeration tank 5 through the two paths. Here, a stirrer M driven by a motor or the like is provided in the anoxic tank 4, and the sludge concentration in the anoxic tank 4 is reduced by this stirrer M so as not to mix oxygen in the atmosphere as much as possible. Stir as much as possible in the depth direction.

また、ばっ気槽5から無酸素槽4に原水を戻す経路の途中には、第2送液ポンプP2が設けられており、この第2送液ポンプP2によってばっ気槽5の活性汚泥が無酸素槽4に送液される。なお、原水調整槽2やばっ気槽5から無酸素槽4に送られた活性汚泥は、無酸素槽4から越流し、この越流した活性汚泥がばっ気槽5に流れ込むようになっている。   A second liquid feed pump P2 is provided in the middle of the path for returning the raw water from the aeration tank 5 to the anoxic tank 4, and there is no activated sludge in the aeration tank 5 by the second liquid feed pump P2. The solution is sent to the oxygen tank 4. The activated sludge sent from the raw water adjustment tank 2 or the aeration tank 5 to the oxygen-free tank 4 overflows from the oxygen-free tank 4 and the overflowed activated sludge flows into the aeration tank 5. .

ばっ気槽5は、活性汚泥中に存在する汚濁物質が酸素を利用した生物反応により無害化される槽であり、活性汚泥中に空気を送り込んで活性汚泥と空気中の酸素とを接触させるいわゆるばっ気を行うように構成されている。より具体的には、ばっ気槽5の内部には、活性汚泥中に空気を供給するための散気部6が設置されおり、槽外に設けられたブロア(B)7から散気部6へ送られた空気が、散気部6から気泡となって活性汚泥中に供給されるようになっている。   The aeration tank 5 is a tank in which the pollutant present in the activated sludge is rendered harmless by a biological reaction using oxygen, and so-called air is fed into the activated sludge to bring the activated sludge into contact with oxygen in the air. It is configured to do aeration. More specifically, an air diffuser 6 for supplying air into the activated sludge is installed inside the aeration tank 5, and the air diffuser 6 from the blower (B) 7 provided outside the tank. The air sent to is turned into bubbles from the air diffuser 6 and supplied into the activated sludge.

さらに、ばっ気槽5には、活性汚泥と処理水とを膜(図示せず)により固液分離する膜濾過ユニット8が浸漬されている。この膜濾過ユニット8の膜出口側には、吸引ポンプPvが介挿された吸引管路9が接続されており、吸引ポンプPvを吸引作動させることで膜濾過ユニット8によって活性汚泥と処理水とに分離され、活性汚泥がばっ気槽5にとどまり、処理水だけが吸引管路9を通じて処理水槽10に送液されるようになっている。   Further, the aeration tank 5 is immersed in a membrane filtration unit 8 that separates activated sludge and treated water into solid and liquid by a membrane (not shown). The membrane outlet side of the membrane filtration unit 8 is connected to a suction line 9 in which a suction pump Pv is inserted. The membrane filtration unit 8 activates activated sludge and treated water by operating the suction pump Pv. The activated sludge stays in the aeration tank 5 and only the treated water is sent to the treated water tank 10 through the suction line 9.

また、ばっ気槽5には、ばっ気処理されて生育した活性汚泥の固形分が自重で槽底部へと沈殿したものを第3送液ポンプP3で吸引して貯蔵する汚泥貯蔵槽(図示せず)が接続されている。なお、ばっ気槽5内部の活性汚泥の一部は第2送液ポンプP2によって無酸素槽4へ返送されるようになっている。   Also, the aeration tank 5 is a sludge storage tank (not shown) for storing the solid content of activated sludge grown by aeration, which has settled to the bottom of the tank by its own weight, with the third liquid feeding pump P3. Connected). A part of the activated sludge inside the aeration tank 5 is returned to the anoxic tank 4 by the second liquid feeding pump P2.

上述した膜濾過ユニット8には、例えば中空糸膜の長さ方向を上下方向に沿って配した複数枚の中空糸膜エレメント(図示せず)を並列させて支持固定した中空糸膜モジュール11と、この中空糸膜モジュール11の下方に所要の間隔を置いて配置され、中空糸膜モジュール11の膜をエアスクラビングにより洗浄する散気装置12とを備えている。   The membrane filtration unit 8 described above includes, for example, a hollow fiber membrane module 11 in which a plurality of hollow fiber membrane elements (not shown) in which the length direction of the hollow fiber membrane is arranged in the vertical direction are supported and fixed in parallel. The air diffuser 12 is disposed below the hollow fiber membrane module 11 at a predetermined interval and cleans the membrane of the hollow fiber membrane module 11 by air scrubbing.

この散気装置12には、空気をばっ気槽5に供給する上述したブロア7が接続されており、上記エアスクラビングは、ブロア7から供給された空気を散気装置12から放出することで行われる。そして、このエアスクラビングによる膜の洗浄は、散気装置12から放出された気泡が活性汚泥中を上昇することで生じる上昇流による剥離と、気泡が膜に接触した時に働くせん弾力によって行われる。なお、中空糸膜モジュール11を構成する中空糸膜エレメントは、多数本の多孔性中空糸膜を平行に並列配置させた中空糸膜シートの開口端部を例えばウレタン樹脂のようなもので処理水取出し管に連通支持させ、濾過水取出し管及び下枠により固定支持したものである。   The air blower 7 that supplies air to the aeration tank 5 is connected to the air diffuser 12, and the air scrubbing is performed by releasing the air supplied from the blower 7 from the air diffuser 12. Is called. The membrane is cleaned by air scrubbing by peeling due to the upward flow generated by the bubbles released from the air diffuser 12 rising in the activated sludge, and by the elastic force acting when the bubbles contact the membrane. The hollow fiber membrane element constituting the hollow fiber membrane module 11 has a hollow fiber membrane sheet in which a plurality of porous hollow fiber membranes are arranged in parallel and the open end of the hollow fiber membrane sheet is treated with water such as urethane resin. It is supported in communication with the take-out pipe and fixedly supported by the filtered water take-out pipe and the lower frame.

次に、膜分離活性汚泥処理装置1による処理を具体的に説明する。
原水調整槽2に導入された原水は無酸素槽4及びばっ気槽5において、活性汚泥により生物学的に無害化される。窒素の除去は、無酸素槽4とばっ気槽5との間で汚泥を循環させることにより、いわゆる硝化脱窒反応によってなされる。生物化学的酸素要求量(BOD)に代表される有機物は、主としてばっ気槽5内に配置されたばっ気装置である散気部6と膜濾過ユニット8の散気装置12から放出される空気とにより好気的に酸化分解される。
Next, the process by the membrane separation activated sludge treatment apparatus 1 will be specifically described.
The raw water introduced into the raw water adjustment tank 2 is biologically rendered harmless by activated sludge in the anoxic tank 4 and the aeration tank 5. Nitrogen is removed by a so-called nitrification denitrification reaction by circulating sludge between the anoxic tank 4 and the aeration tank 5. Organic substances typified by biochemical oxygen demand (BOD) are mainly air released from the air diffuser 6 which is an aeration apparatus disposed in the aeration tank 5 and the air diffuser 12 of the membrane filtration unit 8. And aerobically oxidatively decomposed.

また、排水中に存在する有機窒素化合物の一部は、栄養源としてバクテリアに同化される。さらに、無機窒素化合物は、高い溶存酸素濃度の好気条件下で独立栄養性のアンモニア酸化細菌や亜硝酸酸化細菌により、亜硝酸、硝酸へと酸化される。他方、酸素がない無酸素ならびに嫌気条件下では、脱窒菌が呼吸するために酸素に代わって硝酸を利用し、この過程で、大気中に窒素ガスが放出される。この窒素の酸化還元反応が上記硝化脱窒反応と称される。   Moreover, some organic nitrogen compounds present in the wastewater are assimilated into bacteria as a nutrient source. Furthermore, inorganic nitrogen compounds are oxidized to nitrous acid and nitric acid by autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria under aerobic conditions with a high dissolved oxygen concentration. On the other hand, under oxygen-free and anaerobic conditions without oxygen, denitrifying bacteria use nitric acid instead of oxygen to breathe, and in this process, nitrogen gas is released into the atmosphere. This oxidation-reduction reaction of nitrogen is referred to as the nitrification denitrification reaction.

無酸素槽4及びばっ気槽5の間での活性汚泥の循環は、どちらの槽からポンプを用いて送液するかは必ずしも限定されないが、この実施の形態では第2送液ポンプP2を用いてばっ気槽5から無酸素槽4へと送液し、無酸素槽4から越流してばっ気槽5に流入させる。   The circulation of activated sludge between the anaerobic tank 4 and the aeration tank 5 is not necessarily limited from which tank the liquid is fed using the pump, but in this embodiment, the second liquid feed pump P2 is used. The liquid is fed from the aeration tank 5 to the anaerobic tank 4, overflows from the anoxic tank 4 and flows into the aeration tank 5.

ばっ気槽5内における活性汚泥の流動は、主として膜濾過ユニット8によるばっ気部分において散気装置12から気泡の上昇に伴って活性汚泥も上昇し、ばっ気されていない部分において活性汚泥が下降し、これにより全体が均一に攪拌される。   The flow of the activated sludge in the aeration tank 5 is mainly caused by the rising of bubbles from the air diffuser 12 in the aerated portion by the membrane filtration unit 8 and the activated sludge is lowered in the portion not aerated. As a result, the whole is uniformly stirred.

ところで、上記膜分離活性汚泥処理装置1において、膜濾過ユニット8でエアスクラビングによる膜の洗浄を行う際には、膜ファウリングの進行を抑制するために被処理液の吸引を停止することが好ましい。一方、吸引ポンプPvのON・OFFを頻繁に繰り返すと吸引ポンプPvに負荷がかかり、吸引ポンプの故障の原因となる。そのため、この実施の形態では、吸引ポンプPvのON・OFFを繰り返すことなく膜濾過ユニット8を介するばっ気槽5内の被処理液の吸引を停止するようになっている。以下、詳細を説明する。   By the way, in the membrane separation activated sludge treatment apparatus 1, when the membrane filtration unit 8 performs membrane scrubbing by air scrubbing, it is preferable to stop the suction of the liquid to be treated in order to suppress the progress of membrane fouling. . On the other hand, if the ON / OFF of the suction pump Pv is frequently repeated, a load is applied to the suction pump Pv, causing a failure of the suction pump. Therefore, in this embodiment, the suction of the liquid to be processed in the aeration tank 5 through the membrane filtration unit 8 is stopped without repeating the ON / OFF of the suction pump Pv. Details will be described below.

上述した膜分離活性汚泥処理装置1の吸引管路9は、この吸引管路9に介挿された吸引ポンプPvの入口側、すなわち吸引ポンプPvと膜濾過ユニット8とを接続する入口側吸引配管9aと、吸引ポンプPvの出口側、すなわち吸引ポンプPvと処理水槽10とを接続する出口側吸引配管9bとで構成されている。そして、上記吸引管路9には、出口側吸引配管9bから分岐するとともに入口側吸引配管9aに合流する循環管路13が接続されており、さらに、これら循環管路13と入口側吸引配管9aとの合流部分には、三方弁14が設けられている。また、循環管路と出口側吸引配管9bの間には、弁15が設けられている。   The suction pipe 9 of the membrane separation activated sludge treatment apparatus 1 described above is the inlet side of the suction pump Pv inserted in the suction pipe 9, that is, the inlet side suction pipe connecting the suction pump Pv and the membrane filtration unit 8. 9 a and the outlet side of the suction pump Pv, that is, the outlet side suction pipe 9 b that connects the suction pump Pv and the treated water tank 10. The suction line 9 is connected to a circulation line 13 that branches from the outlet side suction pipe 9b and joins the inlet side suction pipe 9a. Further, the circulation line 13 and the inlet side suction pipe 9a are connected. A three-way valve 14 is provided at the joining portion. Further, a valve 15 is provided between the circulation line and the outlet side suction pipe 9b.

この三方弁14と弁15は、いわゆる電磁式の弁体である。三方弁14は制御部20からの制御指令に基づいて膜濾過ユニット8から吸引ポンプPvへの流路(図中、矢印Aで示す)を保持する弁位置Aと、循環管路13から吸引ポンプPvへの流路(図中、矢印Bで示す)を保持する弁位置Bとが、切り換え可能となるように構成されている。
弁15は、制御部20からの制御指令に基づいて開閉が制御される。
The three-way valve 14 and the valve 15 are so-called electromagnetic valve bodies. The three-way valve 14 has a valve position A for holding a flow path (indicated by an arrow A in the figure) from the membrane filtration unit 8 to the suction pump Pv based on a control command from the control unit 20, and a suction pump from the circulation line 13. A valve position B that holds a flow path to Pv (indicated by an arrow B in the figure) is configured to be switchable.
The valve 15 is controlled to open and close based on a control command from the control unit 20.

制御部20は、この制御部20に接続された操作部(図示せず)への入力結果、液面を計測するレベルメーターなど種々のセンサー(図示せず)の検出結果、および、予めメモリ等に記憶されたプログラムに基づいて、所定のタイミングで上記第1送液ポンプP1、第2送液ポンプP2、撹拌器M、ブロア7、第3送液ポンプP3、吸引ポンプPv、三方弁14および弁15などの作動を制御するものであり、特に三方弁14と弁15については、所定時間毎すなわち間欠的に弁位置の切り換えと開閉の制御を行うように設定されている。なお、上記操作部は、例えば、図示しないコントロールボックス上に設けられるものである。   The control unit 20 includes an input result to an operation unit (not shown) connected to the control unit 20, a detection result of various sensors (not shown) such as a level meter for measuring the liquid level, and a memory or the like in advance. The first liquid pump P1, the second liquid pump P2, the agitator M, the blower 7, the third liquid pump P3, the suction pump Pv, the three-way valve 14 and the The operation of the valve 15 and the like is controlled. In particular, the three-way valve 14 and the valve 15 are set to perform switching of the valve position and control of opening and closing every predetermined time, that is, intermittently. In addition, the said operation part is provided on the control box which is not shown in figure, for example.

次に、図2のタイミングチャートに基づいて、制御部20による吸引ポンプPv、三方弁14および弁15の制御例を説明する。
まず、時刻t0において始動操作が行われると、制御部20は、吸引ポンプPvをON制御すると同時に、三方弁14を膜濾過ユニット8から吸引ポンプPvへの流路とする弁位置Aに保持するとともに弁15を開く。このとき、ばっ気槽5から膜濾過ユニット8を介して吸引濾過される処理水の流量すなわち処理流量が所定流量aとなる。なお、所定流量aは、吸引ポンプPvの性能、膜濾過ユニット8の膜面積および吸引管路9の内径などを考慮して予め設定される流量である。
Next, a control example of the suction pump Pv, the three-way valve 14 and the valve 15 by the control unit 20 will be described based on the timing chart of FIG.
First, when a starting operation is performed at time t0, the control unit 20 controls the suction pump Pv to be ON, and at the same time holds the three-way valve 14 at the valve position A that serves as a flow path from the membrane filtration unit 8 to the suction pump Pv. At the same time, the valve 15 is opened. At this time, the flow rate of the processing water that is suction filtered from the aeration tank 5 through the membrane filtration unit 8, that is, the processing flow rate becomes the predetermined flow rate a. The predetermined flow rate a is a flow rate set in advance in consideration of the performance of the suction pump Pv, the membrane area of the membrane filtration unit 8, the inner diameter of the suction conduit 9, and the like.

そして、時刻t0から所定時間経過した時刻t1になると、三方弁14を弁位置Aから弁位置Bへと切り換えるとともに弁15を閉じる。このとき、吸引ポンプPvのON状態を維持し続けており、循環管路13を介して処理水が循環することとなる。より具体的には、吸引ポンプPvによって吐出された処理水は、循環管路13を介して吸引ポンプPvの入口側に戻り、再び吸引ポンプPvに吸引されて出口側に吐出される。ここで、循環管路13によって吸引ポンプPvの入口側に戻された処理水は、膜濾過ユニット8側に流入しないようになっており、三方弁14が弁位置Bになると吸引濾過が停止して処理流量が0になる。   At time t1 when a predetermined time has elapsed from time t0, the three-way valve 14 is switched from the valve position A to the valve position B and the valve 15 is closed. At this time, the ON state of the suction pump Pv is kept, and the treated water is circulated through the circulation line 13. More specifically, the treated water discharged by the suction pump Pv returns to the inlet side of the suction pump Pv via the circulation line 13, and is again sucked by the suction pump Pv and discharged to the outlet side. Here, the treated water returned to the inlet side of the suction pump Pv by the circulation line 13 does not flow into the membrane filtration unit 8 side, and when the three-way valve 14 reaches the valve position B, the suction filtration is stopped. The processing flow rate becomes zero.

次に、時刻t1から所定時間経過した時刻t2になると、三方弁14を弁位置Bから再び弁位置Aへと戻すとともに弁15を開く。すると、吸引濾過が再開されて処理流量が0から再度所定流量aに戻り、所定時間この状態を維持する。その後、時刻t1と同様に、時刻t3になると再び三方弁14を弁位置Aから弁位置Bに切り換えるとともに弁15を閉じて吸引濾過を停止し、さらに、所定時間後、時刻t2と同様に、時刻t4になると三方弁14を弁位置Bから弁位置Aに切り換えるとともに弁15を開いて吸引濾過を再開する。その後、制御部20は、上記処理と同様に、所定時間毎に三方弁の位置A、位置Bならびに弁15の開閉の切り換えを間欠的に繰り返す。   Next, at time t2 when a predetermined time has elapsed from time t1, the three-way valve 14 is returned from the valve position B to the valve position A and the valve 15 is opened. Then, the suction filtration is resumed, the processing flow rate returns from 0 to the predetermined flow rate a again, and this state is maintained for a predetermined time. Thereafter, similarly to time t1, at time t3, the three-way valve 14 is switched again from the valve position A to the valve position B and the valve 15 is closed to stop the suction filtration. Further, after a predetermined time, similarly to the time t2, At time t4, the three-way valve 14 is switched from the valve position B to the valve position A, and the valve 15 is opened to resume suction filtration. Thereafter, the controller 20 intermittently repeats switching of the positions A and B of the three-way valve and the opening and closing of the valve 15 every predetermined time, in the same manner as in the above processing.

ここで、三方弁の位置Aと弁15の開が維持される時刻t0から時刻t1までの時間と時刻t2から時刻t3までの時間とは同一時間に設定されており、また、同様に三方弁の位置Bと弁15の閉が維持される時刻t1から時刻t2までの時間と時刻t3から時刻t4まで時間も同一時間に設定されている。そして、三方弁の位置Bと弁15の閉が維持される時間よりも三方弁の位置Aと弁15の開が維持される時間の方が十分に長く設定されている。すなわち、制御部20は、吸引濾過を行っている三方弁の位置Aと弁15の開から間欠的に吸引ポンプPvの吐出される処理水を吸引ポンプPvの入力側に戻し吸引濾過を停止する三方弁の位置Bと弁15の閉に切り換えているのである。   Here, the time from the time t0 to the time t1 when the position A of the three-way valve and the opening of the valve 15 are maintained and the time from the time t2 to the time t3 are set to the same time, and similarly the three-way valve The time from the time t1 to the time t2 when the position B and the valve 15 are kept closed and the time from the time t3 to the time t4 are also set to the same time. The time for maintaining the position A of the three-way valve and the opening of the valve 15 is set sufficiently longer than the time for maintaining the position B of the three-way valve and the closing of the valve 15. That is, the control unit 20 returns the treated water discharged from the suction pump Pv intermittently from the position A of the three-way valve performing the suction filtration and the opening of the valve 15 to the input side of the suction pump Pv and stops the suction filtration. The three-way valve position B and the valve 15 are closed.

したがって、上述した実施の形態によれば、吸引ポンプPvから吐出される処理水を吸引ポンプPvの入力側に間欠的に戻すようにしたことで、間欠的に吸引ポンプPvの入口側と出口側との間で処理水が循環し、この処理水が循環している間だけ膜濾過ユニット8による吸引濾過を停止させることができ、この結果、吸引ポンプPvを停止させることなしに膜濾過ユニット8による吸引濾過を停止することができるため、吸引ポンプPvの始動頻度を抑制して吸引ポンプPvの負荷を軽減でき、吸引ポンプの故障頻度を大幅に減らすことができる。   Therefore, according to the above-described embodiment, the treated water discharged from the suction pump Pv is intermittently returned to the input side of the suction pump Pv, so that the inlet side and the outlet side of the suction pump Pv are intermittently provided. , The suction filtration by the membrane filtration unit 8 can be stopped only while the treated water is circulating. As a result, the membrane filtration unit 8 can be stopped without stopping the suction pump Pv. Can be stopped, the frequency of starting the suction pump Pv can be suppressed to reduce the load on the suction pump Pv, and the failure frequency of the suction pump can be greatly reduced.

また、とりわけ膜分離活性汚泥処理装置1の処理水量が1000m/日以上において、吸引ポンプPvを停止することなしに三方弁14と弁15の開閉による迅速な切り替えが可能となるため、処理システムの効率を向上することができる。 In particular, when the amount of treated water in the membrane separation activated sludge treatment apparatus 1 is 1000 m 3 / day or more, it is possible to quickly switch by opening and closing the three-way valve 14 and the valve 15 without stopping the suction pump Pv. Efficiency can be improved.

ところで、上述した実施の形態では、循環管路13を出口側吸引管路9bから分岐するように構成していたが、この変形例として、図3に示すように、循環管路13aの端部開口部を処理水槽10に配置させるようにしてもよい。   By the way, in embodiment mentioned above, although it comprised so that the circulation line 13 might branch from the exit side suction line 9b, as shown in FIG. 3, as shown in FIG. 3, the edge part of the circulation line 13a is comprised. The opening may be arranged in the treated water tank 10.

また、この変形例の他の態様として、図5に示すように、処理水槽10から処理水を放流する放流管路18に対して循環管路13bの基端を分岐接続して、放流管路18と循環管路13bとの分岐点よりも放流側の放流管路18に弁16を設け、循環管路13bに弁17を設け、これら弁16,17の開閉制御を行うことで放流(弁16を開、弁17を閉)と循環(弁16を閉、弁17を開)とを切り換えるようにしてもよい。なお、この図3,5に示す変形例およびこの変形例の他の態様において、上述した実施の形態と同一態様部分に同一符号を付して説明は省略する。   Further, as another aspect of this modified example, as shown in FIG. 5, the outlet end of the circulation pipe 13 b is branched and connected to the outlet pipe 18 that discharges the treated water from the treated water tank 10, and the outlet pipe The valve 16 is provided in the discharge pipe 18 on the discharge side of the branch point between the pipe 18 and the circulation pipe 13b, the valve 17 is provided in the circulation pipe 13b, and the valves 16 and 17 are opened and closed to control the discharge (valve 16 may be switched between opening (opening 16 and closing valve 17) and circulation (closing valve 16 and opening valve 17). In the modification shown in FIGS. 3 and 5 and other aspects of this modification, the same reference numerals are given to the same aspects as those in the above-described embodiment, and the description thereof is omitted.

このように構成することで、吸引ポンプPvが吐出した処理水を吸引ポンプPvの入口側に戻すことができ、上述した実施の形態と同様に、吸引ポンプPvを停止させることなしに吸引濾過を停止させることができる。   With this configuration, the treated water discharged from the suction pump Pv can be returned to the inlet side of the suction pump Pv, and suction filtration can be performed without stopping the suction pump Pv, as in the above-described embodiment. Can be stopped.

なお、上述した実施の形態およびその変形例では、一組の吸引管路9、吸引ポンプPvおよび循環管路13、13に対して、一つの膜分離ユニット8を接続するように構成したが、吸引管路9の入口側吸引配管9aの途中から分岐して複数の膜分離ユニット8を接続するようにしてもよい。   In the above-described embodiment and its modifications, the single membrane separation unit 8 is connected to the set of suction lines 9, the suction pump Pv, and the circulation lines 13, 13. A plurality of membrane separation units 8 may be connected by branching from the middle of the inlet side suction pipe 9 a of the suction pipe 9.

本発明の実施の形態における膜分離活性汚泥処理装置の概略構成図である。It is a schematic block diagram of the membrane separation activated sludge processing apparatus in embodiment of this invention. 本発明の実施の形態における吸引ポンプのON・OFF、処理水量、三方弁の弁位置をそれぞれ示すタイミングチャートである。It is a timing chart which shows ON / OFF of the suction pump in embodiment of this invention, the amount of treated water, and the valve position of a three-way valve, respectively. 本発明の実施の形態の変形例の膜分離活性汚泥処理装置の概略構成図である。It is a schematic block diagram of the membrane separation activated sludge processing apparatus of the modification of embodiment of this invention. 従来の膜分離活性汚泥処理装置における図2に相当するタイミングチャートである。3 is a timing chart corresponding to FIG. 2 in a conventional membrane separation activated sludge treatment apparatus. 本発明の実施の形態の他の態様における膜分離活性汚泥処理装置の概略構成図である。It is a schematic block diagram of the membrane separation activated sludge processing apparatus in the other aspect of embodiment of this invention.

符号の説明Explanation of symbols

5 ばっ気槽(処理槽)
8 膜濾過ユニット(分離膜)
9 吸引管路(配管)
9a 入口側吸引配管(入口側管路)
9b 出口側吸引配管(出口側吸引管路)
13 循環管路
14 三方弁(弁体)
15 弁(弁体)
Pv 吸引ポンプ
5 Aeration tank (treatment tank)
8 Membrane filtration unit (separation membrane)
9 Suction line (pipe)
9a Inlet side suction piping (inlet side pipe line)
9b Outlet side suction piping (outlet side suction pipe)
13 Circulation line 14 Three-way valve (valve)
15 Valve (Valve)
Pv suction pump

Claims (5)

被処理液で満たされた水槽に分離膜を浸漬させ、該分離膜に接続された吸引ポンプにて前記被処理液を吸引することで前記被処理液を固液分離して処理水を得る膜分離装置において、
前記吸引ポンプの出口側管路から吐出した前記処理水を、前記吸引ポンプの入口側管路に戻す循環管路を設け、
前記入口側管路に吸引ポンプへの分離膜からの処理水供給と循環管路からの処理水供給とを切り換える弁体と、前記出口側管路に放流と循環を切り換える弁体とを設けた膜分離装置。
A membrane in which a separation membrane is immersed in a water tank filled with the liquid to be treated, and the liquid to be treated is solid-liquid separated by sucking the liquid to be treated with a suction pump connected to the separation membrane to obtain treated water In the separation device,
Providing a circulation line for returning the treated water discharged from the outlet side line of the suction pump to the inlet side line of the suction pump;
The inlet side pipe line is provided with a valve body for switching the treated water supply from the separation membrane to the suction pump and the treated water supply from the circulation pipe line, and the valve body for switching the discharge and circulation to the outlet side pipe line. Membrane separator.
前記入口側管路に設けられ前記吸引ポンプへの分離膜からの処理水供給と循環管路からの処理水供給とを切り換える弁体、および、前記出口側管路に設けられ放流と循環とを切り換える弁体、が何れも三方弁である請求項1に記載の膜分離装置。   A valve body that is provided in the inlet side pipe and switches between supply of treated water from the separation membrane to the suction pump and treated water from the circulation pipe, and discharge and circulation provided in the outlet side pipe. The membrane separator according to claim 1, wherein each of the switching valve bodies is a three-way valve. 被処理液で満たされた水槽に分離膜を浸漬させ、該分離膜に接続された吸引ポンプにて前記被処理液を吸引することで前記被処理液を固液分離して処理水を得る膜分離装置において、
処理水を貯める処理水槽と前記吸引ポンプの入口側管路とを接続する循環管路を設け、前記入口側管路に前記吸引ポンプへの分離膜からの処理水供給と前記循環管路からの処理水供給とを切り換える弁体を設けた膜分離装置。
A membrane in which a separation membrane is immersed in a water tank filled with the liquid to be treated, and the liquid to be treated is solid-liquid separated by sucking the liquid to be treated with a suction pump connected to the separation membrane to obtain treated water In the separation device,
A circulation pipe connecting the treated water tank for storing treated water and the inlet side pipe of the suction pump is provided, and the inlet side pipe is supplied with treated water from the separation membrane to the suction pump and from the circulation pipe. A membrane separation apparatus provided with a valve body that switches between treated water supply .
前記入口側管路に設けられ前記吸引ポンプへの分離膜からの処理水供給と前記循環管路からの処理水供給とを切り換える弁体が三方弁である請求項3に記載の膜分離装置。 The membrane separator according to claim 3, wherein the valve body provided in the inlet side pipe and switching between the treated water supply from the separation membrane to the suction pump and the treated water supply from the circulation pipe is a three-way valve. 前記分離膜による前記処理水の処理水量が1000m/日以上であることを特徴とする請求項1から4の何れか一項に記載の膜分離装置。 The membrane separation apparatus according to any one of claims 1 to 4, wherein the amount of treated water by the separation membrane is 1000 m 3 / day or more.
JP2007049032A 2007-02-28 2007-02-28 Membrane separator Active JP5456238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049032A JP5456238B2 (en) 2007-02-28 2007-02-28 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049032A JP5456238B2 (en) 2007-02-28 2007-02-28 Membrane separator

Publications (2)

Publication Number Publication Date
JP2008207157A JP2008207157A (en) 2008-09-11
JP5456238B2 true JP5456238B2 (en) 2014-03-26

Family

ID=39783924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049032A Active JP5456238B2 (en) 2007-02-28 2007-02-28 Membrane separator

Country Status (1)

Country Link
JP (1) JP5456238B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207657A (en) * 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
CN102657966B (en) * 2012-05-23 2014-07-23 宋泳 Quick suction filtration device
CN103964632B (en) * 2014-03-28 2016-02-10 浙江埃克钛环境科技有限公司 Sewage integrated treatment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430567B2 (en) * 1993-08-06 2003-07-28 栗田工業株式会社 Membrane separation device
JPH1133550A (en) * 1997-07-23 1999-02-09 Kurita Water Ind Ltd Immersion type membrane treatment apparatus

Also Published As

Publication number Publication date
JP2008207157A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP2005279447A (en) Water treatment method and apparatus
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JPH11277091A (en) Apparatus and method for treating sewage/waste water by biological reaction
JP2010247120A (en) Operation method of immersion type membrane separator
JP7437139B2 (en) Water treatment equipment and water treatment method
JP5456238B2 (en) Membrane separator
KR100992827B1 (en) Cleaning system for waste-water purifier
RU2282597C1 (en) Method for deep biological purification of waste water and apparatus to implement the same
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP5366364B2 (en) Membrane separation activated sludge treatment equipment
JP2005081273A (en) Method for operating activated sludge treatment system and membrane separation unit used for its operation method
JP2018103129A (en) Membrane bioreactor device, membrane bioreactor method and raw water supplying device
JP4403495B2 (en) Wastewater treatment equipment
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP2004249235A (en) Membrane separation device of activated sludge treatment system, membrane separation method, and activated sludge treatment system equipped with membrane separation device
JP2018187539A (en) Membrane separation active sludge treatment device, and membrane separation active sludge treatment method
JPH09117794A (en) Biological denitrification device
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JP2007275895A (en) Method for removing nitrogen in membrane separation type oxidation ditch and device therefor
JP7577576B2 (en) Sedimentation tank, oxygen permeable membrane unit, and method for operating the sedimentation tank
JP7121823B2 (en) Membrane separation activated sludge treatment device, membrane separation activated sludge treatment method and raw water supply device
JP2004249236A (en) Water treatment system using oxidation ditch method and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R151 Written notification of patent or utility model registration

Ref document number: 5456238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250