[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7429698B2 - コンバータを有する電気分解装置及びac電圧グリッドに瞬時予備電力を提供するための方法 - Google Patents

コンバータを有する電気分解装置及びac電圧グリッドに瞬時予備電力を提供するための方法 Download PDF

Info

Publication number
JP7429698B2
JP7429698B2 JP2021537721A JP2021537721A JP7429698B2 JP 7429698 B2 JP7429698 B2 JP 7429698B2 JP 2021537721 A JP2021537721 A JP 2021537721A JP 2021537721 A JP2021537721 A JP 2021537721A JP 7429698 B2 JP7429698 B2 JP 7429698B2
Authority
JP
Japan
Prior art keywords
power
converter
voltage
electrolyzer
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021537721A
Other languages
English (en)
Other versions
JP2022515821A (ja
Inventor
ファルク アンドレアス
ハート クリスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMA Solar Technology AG
Original Assignee
SMA Solar Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMA Solar Technology AG filed Critical SMA Solar Technology AG
Publication of JP2022515821A publication Critical patent/JP2022515821A/ja
Application granted granted Critical
Publication of JP7429698B2 publication Critical patent/JP7429698B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、コンバータを有する電気分解装置、コンバータを有する電気分解装置を動作させるための方法及びAC電圧グリッドに瞬時予備電力を提供するための方法に関する。
全国統合グリッドとして構築されたAC電圧グリッドでは、送られる電力と、引き出される電力との間の不均衡に起因して、AC電圧グリッドの公称周波数からのグリッド周波数の偏差が生じる場合がある。この不均衡、したがって周波数偏差は、AC電圧グリッドに電力を送ることができ、且つ/又はAC電圧グリッドから電力を引き出すことができる装置が、それらによって送られるか又は引き出される電力を変更することによって打ち消すことができる。特に、公称周波数より低い周波数では、送られる電力を増加させるか、又は引き出される電力を減少させるのに対して、公称周波数より高い周波数では、送られる電力を減少させるか、又は引き出される電力を増加させることができる。
周波数偏差に直接的又は間接的に応答する電力のそれぞれの変化は、調整電力と呼ばれる。いくつかのAC電圧グリッド、特にヨーロッパの統合グリッドでは、この調整電力の提供は、時間的に互いに依存する段階で編成される。第1の制御段階、いわゆる瞬時制御は、周波数変化に直接的且つ即座に応答して、それらの電力を変化させる装置を用いて保証される。第2の制御段階、持続的周波数偏差の場合に効力を生じるいわゆる一次制御では、公称周波数からのグリッド周波数の偏差の関数としての特性曲線に基づいてそれらの電力を具体的に調節する装置を使用する。第3の段階、いわゆる二次制御では、上位制御装置が、装置に、それらの電力を適切に変化させるように指示することにより、AC電圧グリッドにおける起こり得る持続性又は予測可能な電力不均衡が計画的に打ち消される。
従来技術は、AC電圧グリッドと、直流で動作するDCユニットとの間で電力を交換する装置を開示している。DCユニットは、エネルギー発生器、例えば太陽光発電機を含み得、その電力は、インバータで変換されて、AC電圧グリッドに送られる。独国特許出願公開第102005046919A1号明細書は、風力発電所が調整電力を提供することができるように、電気分解装置を用いて、風力から生成される電気的風力エネルギーを緩衝するための方法を開示している。欧州特許出願公開第2705175A1号明細書は、調整電力を提供するために使用され得る電気分解システムを含むエネルギー管理システムを開示している。
そのような装置のコンバータは、一般に、DC電力の設定値をAC電流の対応する設定値に変換して、このAC電流をAC電圧グリッドに送ることにより、この場合に電流印加方式で動作する。DCユニットは、AC電圧グリッドからAC電力を引き出して、それをDC電力としてDC負荷に利用可能にする電流印加コンバータを用いて動作するDC負荷、例えば非反応性抵抗器、機械又は電気化学設備も含み得る。DC電力の設定値は、この電流印加コンバータに対して同様に事前定義され、コントローラにおいて、AC電力がDC電力の関数であるように、AC電圧グリッドから引き出されるAC電流の設定値に変形される。
そのようなコンバータは、特に、周波数測定に基づいてAC電圧グリッドと同期するサイリスタ整流器又は自己整流IGBTコンバータの形態であり得る。周波数が変化した場合、DC電力及びその結果としてAC電力の設定値が新しい状況に適合される前に、この周波数測定は、まず、新しい周波数に適応しなければならない。この点において、電流印加コンバータは、AC電圧グリッドにおける周波数変化に即座に応答することができない。この遅延応答が理由で、そのような従来の電流印加方式で動作するコンバータを介してAC電圧グリッドに接続されるDC負荷は、瞬時調整電力又は瞬時予備を提供するのに適していない。
独国特許出願公開第102016115182A1号明細書は、電流印加コンバータの電力が電流コントローラを用いて瞬時予備設定値に調節される、AC電圧グリッドにおいて瞬時予備を提供するための方法を開示している。設定値は、AC電圧グリッドのAC電圧を入力変数として使用するPLL制御ループからの位相エラー信号から生成される。特にエネルギー源としての太陽光発電機の場合、ここで、電流印加コンバータが電圧印加コンバータよりも有利であることが分かる。
欧州特許出願公開第2182626A1号明細書は、半導体スイッチが選択的に又は組み合わせて電圧印加及び/又は電流印加変調を用いて制御される、電力コンバータを動作させるための方法を開示している。結果として、その意図は、電力コンバータの電圧印加又は電流印加挙動を作り出す異なるタイプの変調の特性を有利に組み合わせることであり、それは、欧州特許出願公開第2182626A1号明細書に詳細に説明されている。
瞬時制御のために、最初に述べた制御段階の第1の段階中に使用される装置は、特に、電力をグリッドに送るいわゆる同期発電機又は電力をグリッドから引き出す同期機械を含む。そのような同期発電機及び同期機械は、一般に、固有の慣性を有する回転質量を含む。同期機械及び同期発電機は、それらの電力が、AC電圧グリッドのAC電圧と、固有の慣性に起因する回転質量の回転周波数との間の位相差に依存することにより、当業者に周知であるそれらの電気的挙動を通してグリッド周波数を安定化することに寄与する。換言すれば、その慣性フライホイールの質量により、同期発電機又は同期機械は、周波数変化に即座に応答することができ、それらを即座に打ち消すこともできる。
この場合、従来技術によれば、同期発電機の挙動は、電圧印加コンバータを介してグリッドに直接接続されているDC電圧側の装置でのみエミュレートされ得ると想定される。電力半導体スイッチのための切り替え命令がコンバータの入力側AC電圧のAC設定値から導出される、そのようなコンバータは、即座に、すなわち制御遅延なしでグリッド周波数変化に応答する。したがって、DC電圧側の装置は、エネルギーを即座に消費又は放出することもできなければならず、この目的のため、コンバータのDCリンクに直接接続されていなければならない。DC電圧側のそのような装置は、例えば、電圧設定コンバータを介してグリッドに接続され、エネルギーを即座に消費又は放出することができるバッテリを含む。この場合、電圧印加制御は、DC電圧を適合させるための任意のDC/DCコンバータの制御遅延によって大幅に阻害されることになるか又は不可能になりさえすることになる。これは、特に、太陽光発電機が接続されている単段コンバータにも当てはまり、太陽光発電機は、グリッド整流電圧に近いPV電圧で動作し、その結果、小さいDC電圧ディップでさえ、コンバータによって送られる交流のかなりの歪みをもたらすことがあり、そのようなディップは、DC源の適切な制御を用いて防止しなければならない。
独国特許出願公開第102010030093A1号明細書は、AC電圧グリッドと、AC電圧グリッドに接続された設備との間の電気エネルギーの交換を制御するための装置及び方法を開示しており、ここで、設備は、消費装置、発電機及び/又はエネルギー貯蔵部を含み得る。装置は、AC電圧グリッドと交換される電力を有効電力/周波数静態に基づいて調節することができるコンバータを含む。コンバータは、追加的に、いわゆる同期機械エミュレータを有し、それを用いて、コンバータは、同期機械の動的挙動をモデル化する。結果として、グリッド周波数サポートは、特に、過渡的及び/又は半過渡的時間範囲で実行されるように意図されており、ここで、グリッド周波数変化に対する装置の応答は、差動方式で実行することができ、すなわちグリッド周波数の時間的変化率が高いほど、電力の変化が大きくなる。この場合、非反応性抵抗器又は機械は、場合により、熱、機械又は化学エネルギーのための貯蔵装置と組み合わせて消費装置として使用される。結果として、消費装置の容量の一部又はエネルギー貯蔵部に貯蔵されるか若しくは貯蔵され得るエネルギーの一部がグリッドサポートに利用可能である。
同期機械エミュレーションのさらなる実施形態は、例えば、いわゆる仮想同期機械(VISMA)がグリッドサポートに使用され、同期機械の挙動が微分方程式を連続的に解くことによって近似される、独国特許出願公開第102006047792A1号明細書から、且つコンバータの制御システムが仮想慣性を生成するための構造を含み、その結果、コンバータが同期発電機の挙動をエミュレートする、電圧印加コンバータ(VSI)について説明する欧州特許出願公開第3376627A1号明細書から知られている。
欧州特許第1286444B1号明細書は、インバータのためのいわゆるドループモード制御を開示しており、ここで、インバータは、周波数静態f(P)及び電圧静態U(Q)に基づいて動作し、その結果、インバータは、AC電圧グリッドの周波数変化に有効電力の変化で即座に応答し、この点においてさらなるインバータとの並列動作に適し、特にアイランドグリッドの設営に適している。
米国特許第7645931号明細書は、AC電圧グリッドに接続されたコンバータ、太陽光発電機及び電解槽を有する装置を開示しており、ここで、電解槽は、対応する電力で最適動作点において恒久的に動作し、電解槽を動作させるための電力は、PV発電機からDC/DCコンバータを介して又はAC電圧グリッドからコンバータを介してのいずれかで電解槽に導かれる。
欧州特許第2894722B1号明細書は、整流器の半導体部品、特にそのサイリスタが2つのグループに分割され、グループの1つが電解槽の2つのDC接続部の1つにそれぞれ直接配置される、電解槽に直流を供給するための配置を開示している。整流器は、少なくとも1つの変圧器を介して中間電圧グリッドに接続することができ、整流器の出力電力は、サイリスタを制御することにより、整流器の最大出力電力の20%~50%の範囲に設定することができる。
本発明は、電解槽を動作させることができ、同時にAC電圧グリッドのグリッド周波数を安定化するための瞬時予備電力を提供することができる、AC電圧グリッドに接続された電気分解装置を動作させるための方法及び電気分解装置を提供するという目的に基づいている。
この目的は、それぞれ独立特許請求項1及び9に記載の特徴を有する方法及び装置並びに請求項14に記載の特徴を有する方法を用いて達成される。好ましい実施形態は、従属特許請求項に定められる。
コンバータであって、AC電圧側においてデカップリングインダクタンスを介してAC電圧グリッドに接続され、及びAC電圧グリッドからAC有効電力を引き出すコンバータと、電解槽であって、DC電圧側においてコンバータに接続され、及びAC電圧グリッドの公称周波数に対応し、且つ経時的に一定であるグリッド周波数の場合に電解槽の公称電力の50%~100%の電力で動作される電解槽とを有する電気分解装置を動作させるための方法において、コンバータは、AC電圧グリッドから引き出されるAC有効電力が、AC電圧グリッドのグリッド周波数の変化及び/又は変化率に基づいて即座に変化されるように電圧印加方式で動作される。
電気分解装置を動作させるための従来の方法と比較して、本発明による方法は、特に、コンバータが電圧印加方式で動作されるという事実によって区別される。これは、例えば、コンバータを制御するとき、コンバータの入力側AC電圧の設定値が事前定義され、コンバータが、特にそのとき流れている電流に関係なく、可能な場合にこの所望の電圧が達成されるように機能することを意味する。加えて、コンバータの電圧印加動作は、特に、AC電圧グリッドの反対側にあるコンバータの終端にいずれのシンクが接続されているかに関係なく、グリッド周波数の変化が、AC電圧グリッドから引き出される電力の即座の変化をもたらすような方式でグリッド周波数に応じてAC電圧グリッドから引き出されるAC電流を伴う。この場合、電力の変化は、特に、グリッド周波数の変化率に比例し得る。
正確には、グリッド周波数の変化に基づく電力のこの即座の変化は、同期機械の固有の挙動にも属する。これと対照的に、電流印加動作は、AC電流の設定値が事前定義されていることによって固有の遅延を有し、ここで、この設定値は、例えば、P(f)特性曲線を使用して、周波数を安定化するために、周波数が変化した場合、最良でも間接的に適合させることができる程度である。
電圧印加動作と関連付けられた、AC電圧グリッドから引き出されるAC有効電力の変化の形態におけるグリッド周波数の変化への即座の応答は、電解槽自体が、変換された電力のそれに応じて速い変化を起こすことができないとしても、電解槽に即座に伝えることができる。それにもかかわらず、AC有効電力の変化は、例えば、電解槽にコンバータによって印加されるDC電圧の対応する変化を用いて、コンバータを介して電解槽に即座に伝えることができる。DC電圧の変化は、電解槽の電圧/電流特性曲線を介して、電解槽によって消費される電力の変化をもたらす。この場合、電解槽は、変化前、すなわち一定のグリッド周波数の場合、その公称電力の50%~100%で本発明に従って動作され、ここで、電解槽の公称電力は、電解槽の最大電力未満であり、特に電解槽の最大効率における電力に対応し得る。
したがって、電解槽のDC電力は、減少又は増加させることができ、それは、電解槽内の物質変換の変化をもたらす。この場合、その構造に起因して、電解槽は、電解槽を動作させるためのさらなる措置、例えば電解液を循環させるため又は作り出される気体を除去するためのポンプの出力の変更が行われるときにのみ、DC電力の変化の結果として短時間発生する追加の又は減少した変換を恒久的に処理することができる。しかしながら、これらのさらなる措置は、比較的高い慣性を有し、その結果、印加電圧の突然の変化後、遅延を伴ってのみ電解槽の動作を安定化することが可能である。
他方では、コンバータの電圧印加動作は、AC電圧グリッドから引き出される有効電力の変化がグリッド周波数の変化及び/又は変化率に実質的に依存し、その結果、有効電力が、グリッド周波数の変化がなくなると直ちに、すなわち特に変化率がゼロに等しい場合、初期値に戻るという事実によって区別される。結果として、グリッド周波数が再び安定すると直ちに、電解槽内の物質変換はまた、対応する初期値に戻る。
この方式で安定化されたグリッド周波数がAC電圧グリッドの公称周波数から逸脱する場合、一次調整電力が自動的に提供され、瞬時予備電力は、もはや必要とされない。電気分解装置は、したがって、比較的短期間のみ瞬時予備電力を提供し、その結果、ポンプ及びファンを起動することを必要とする電解槽内の物質変換の慣性は、依然として役割を果たさない。したがって、グリッド周波数の変化中に行われる追加の又は減少した変換は、例えば、電解槽内の短時間の正圧又は負圧を許容し、グリッド周波数が安定した後に電解槽の動作中の後続の措置を用いて再びそれを除去することにより、電解槽で緩衝することができる。
本発明は、したがって、電圧設定コンバータに接続されたDC負荷が、必ずしも、AC電圧グリッドから引き出されるAC電力の変化を、意図された目的に使用されるDC電力の変化に同程度に迅速に変換できる必要がないという知識に基づいている。むしろ、DC負荷が、変化したDC電力を少なくとも短時間処理し、場合により内部で緩衝することができる場合、それは、十分である。この場合、一方では、例えばコンバータが電解槽におけるDC電圧を変化させることにより、電解槽にDC電力を変化させるように即座に促すことができ、他方では、前記緩衝は、電解槽で固有に行われ、その結果、電解槽の同様に固有の慣性がDC電力の少なくとも短時間の変化を妨げないため、特に電解槽は、とりわけ有利なDC負荷であることが分かる。
電気分解装置の電圧印加挙動は、したがって、抵抗性消費装置及びエネルギー源又はエネルギー貯蔵部のいずれもコンバータに接続されていなくても、本発明に従って達成することができる。
コンバータの電圧印加動作中、コンバータは、瞬時予備電力を提供することができる。この目的のため、周波数変化に対する同期機械の挙動をエミュレートする制御構造を使用することが可能である。この挙動は、従来の発電所に相当する方式でグリッド周波数を安定化する。代替として、最初に述べた、周波数/電力特性曲線を含むドループモード制御を使用することが可能である。そのような制御は、同様にグリッド周波数を安定化することができ、グリッド周波数に加えてグリッド電圧も安定化するために、且つ場合によりさらなるエネルギー生成ユニットも組み込まれ得るアイランドグリッドを設営又は安定化するために使用され得る電圧/無効電力特性曲線を追加的に含み得る。
AC電圧グリッドから引き出されるAC有効電力の変化は、電解槽におけるDC電圧の変化をもたらし、電解槽におけるDC電圧の変化は、電解槽によって消費されるDC電力の変化をもたらし、その変化は、AC有効電力の変化に対応する。結果として、AC電圧グリッドから引き出されるAC有効電力の変化は、電解槽によって消費されるDC電力の変化として電解槽に即座に伝えることができる。
本方法の1つの実施形態では、変圧は、第1のDC/DCコンバータを用いて電解槽とコンバータとの間に作り出され得る。結果として、電解槽におけるDC電圧の調節範囲は、DC電圧側でコンバータによって調節され得る電圧範囲と比較して拡張することができ、それにより、電解槽の電力消費は、広範囲にわたって調節することもできる。
加えて、コンバータは、DC電圧側において接続されたPV発電機と電力を交換することができ、PV発電機は、電解槽と並列にDCリンク回路に接続される。この場合、PV発電機によって生成された電力が電解槽又はAC電圧グリッドのいずれかに送られる。結果として、別の方法ではAC電圧グリッドから取得しなければならないことになる再生的に生成された電力を費用効果の高い方式で電解槽に供給することができる。
本方法のさらなる一実施形態では、コンバータは、DC電圧側において接続されたバッテリと電力を交換することができ、バッテリは、第2のDC/DCコンバータを介して電解槽と並列にDCリンク回路に接続される。バッテリは、電力を緩衝することを可能にし、グリッドから取得した電力を電解槽電力から時間的に分離することができる。
DC/DCコンバータがコンバータとDC電圧側のユニットとの間に配置される本方法の実施形態では、DC/DCコンバータを使用して、DCリンク回路の電圧を安定化することができる。具体的には、DC/DCコンバータの制御は、フィードフォワード制御を含むことができ、フィードフォワード制御は、グリッド電圧と、コンバータの入力部におけるAC電圧との間の位相差に基づいてDC/DCコンバータのDC電流設定値を設定するために使用される。位相差は、d-q座標系によってさらに処理され得、グリッドから引き出される電力に比例する。結果として、DC/DCコンバータは、DCリンク回路の電圧の変化に応答するだけではなく、位相差が変化した場合にすでにその電力を変化させるように促される。
フィードフォワード制御は、グリッド周波数の変化に基づいてDC/DCコンバータのDC電流設定値を即座に修正するために使用される。結果として、グリッド周波数の変化に応答したAC有効電力の変化に起因して発生する、DCリンク回路における電圧の変化がいわば予想される。DC/DCコンバータの制御は、したがって、グリッド周波数が変化した場合にDC/DCコンバータがDCリンク回路を即座に安定化するようなものである。グリッド周波数の変化が速い場合、すなわちグリッド周波数の変化率が高く、それに応じて大きい位相差、したがってAC電力のとりわけ大きい変化が引き起こされる場合、DC/DCコンバータは、DCリンク電圧の降下又は過度の上昇を防止するために、迅速にエネルギーを追加的に送達又は除去しなければならない。この目的のため、DC/DCコンバータのDC電流設定値は、グリッド電圧と電力コンバータ電圧との間の位相ファイを用いたフィードフォワード制御を受け、制御の動的応答がしたがって向上する。
DCリンク回路における電圧は、第1のDC/DCコンバータ及び第1のDC/DCコンバータに接続された電解槽により、且つ/又は場合により第2のDC/DCコンバータ及び第2のDC/DCコンバータに接続されたバッテリにより安定化することができる。この場合、位相差は、直接又は対応するフィルタを介してDC/DCコンバータのクロッキングに作用し得る。
電解槽であって、コンバータに接続され、且つコンバータを介してAC電圧グリッドからAC有効電力を引き出す電解槽を有する、本発明による電気分解装置は、コンバータが、AC電圧グリッドのグリッド周波数の変化が、AC電圧グリッドから引き出されるAC有効電力の即座の変化を引き起こすように電圧印加方式で動作されるように構成されることを特徴とする。本発明は、AC電圧グリッドから引き出されるAC有効電力の変化の形態における、電圧印加動作と関連付けられた、グリッド周波数の変化に対するコンバータの即座の応答を電解槽に即座に伝えることができるという知識に基づいている。電解槽自体は、変換された電力の相応に速い変化を恒久的に起こすことができないが、一方では、例えばコンバータが電解槽におけるDC電圧を変化させることにより、電解槽にDC電力を変化させるように即座に促すことができ、他方では、電解槽は、外部から印加される電力と、それ自体静的なDC電力設定値との間の短時間の偏差を緩衝することができる。
1つの実施形態では、電気分解装置は、電解槽とコンバータとの間に配置された第1のDC/DCコンバータを含み得る。結果として、電解槽における電圧の調節範囲は、DC電圧側でコンバータによって調節され得る電圧範囲と比較して拡張することができ、それにより、電解槽の電力消費は、広範囲にわたって調節することもできる。
さらなる一実施形態では、電気分解装置は、DC電圧側において電解槽と並列に電気分解装置のDCリンク回路に接続された太陽光発電機を含み得る。太陽光発電機を使用して、別の方法ではAC電圧グリッドから取得しなければならないことになる再生的に生成された電力を電解槽に好ましく供給することができる。
さらなる一実施形態では、電気分解装置は、DC電圧側において第2のDC/DCコンバータを介して電解槽と並列に電気分解装置のDCリンク回路に接続されたバッテリを含み得る。バッテリは、電力を緩衝することを可能にし、グリッドから取得した電力を電解槽の電力から時間的に分離することができる。
AC電圧グリッドからAC電力を引き出し、且つ電解槽にDC電力を供給するコンバータを用いて、AC電圧グリッドに瞬時予備電力を提供するための方法において、コンバータは、AC電圧グリッドのグリッド周波数の変化が、AC電圧グリッドから引き出されるAC有効電力の即座の変化を引き起こすように電圧印加方式で動作される。この場合、一方では、例えばコンバータが電解槽におけるDC電圧を変化させることにより、電解槽にDC電力を変化させるように即座に促すことができ、他方では、電気エネルギーが電解槽で緩衝され、その結果、電解槽は、その固有の慣性にもかかわらず、DC電力の短時間の変化をよく許容し、したがって瞬時制御の一部としてグリッド周波数をサポートするためのAC有効電力の短時間の変化をよくサポートするため、電解槽は、電圧印加コンバータにとって有利なDC負荷であることが分かる。
本発明による方法の範囲内の通常動作中、すなわち特にAC電圧グリッドの公称周波数に対応するグリッド周波数の場合、AC電圧グリッドから引き出され、且つ電解槽に供給される電力は、電解槽の公称電力の50%~100%であり得る。この場合、電解槽は、公称電力を上回る最大電力を有し、ここで、公称電力は、特に、電解槽の最大効率によって区別される動作点に対応し得る。関係する原則により、したがって、特に電解槽がこの動作点で短時間のみ動作する場合、電解槽は、公称電力を上回るDC電力を消費することがある。
本方法の1つの実施形態では、コンバータは、グリッド周波数の変化がAC電力の変化を引き起こし、及び電解槽に供給されるDC電力が電解槽の動作範囲外にある場合、DC電圧側において接続されたバッテリと電力を交換することができる。この場合、動作範囲は、電解槽の公称電力の10%~20%の下側開始電力及び公称電力の110%~120%の上側最大電力によって制限され得る。バッテリは、DC/DCコンバータを介して電解槽と並列にコンバータのDCリンク回路に接続され得る。
本方法のさらなる一実施形態では、コンバータは、DC電圧側において接続された太陽光発電機と電力を交換することができる。通常動作中、すなわち特にAC電圧グリッドの公称周波数に対応するグリッド周波数の場合、PV発電機は、最大電力点において動作され得、及び電解槽は、公称電力で動作され得る。PV発電機の電力は、コンバータが、現在送られているAC電力を減少させるか、又は現在引き出されているAC電力を増加させることを引き起こすグリッド周波数の変化が発生する場合に減少される。しかしながら、電解槽のDC電力は、コンバータが、現在送られているAC電力を増加させるか、又は現在引き出されているAC電力を減少させることを引き起こすグリッド周波数の変化が発生する場合に減少される。結果として、瞬時予備は、両方の方向において任意の時点で利用可能である。
図面に例示された例示的な実施形態に基づいて、以下で本発明をさらに説明及び解説する。
コンバータ及び電解槽を有する、本発明による電気分解装置を示す。 コンバータ及び複数のDC負荷を有する装置を示す。 コンバータ、DC/DCコンバータ及び電解槽を有するさらなる電気分解装置を示す。 制御装置を備えた、図3による電気分解装置を示す。 PV発電機を備えた、図3又は図4による電気分解装置を示す。 図3、図4又は図5による装置を動作させるための方法を示す。 図6による方法を使用して動作する装置の電力を概略的に示す。 コンバータ、電解槽、DC/DCコンバータ及びエネルギー貯蔵部を有するさらなる電気分解装置を示す。 さらなるDC/DCコンバータ及びPV発電機を有する、図8による電気分解装置を示す。
図1は、電解槽11及びコンバータ12を有する電気分解装置10を示す。コンバータ12は、AC電圧側の入力部12a、デカップリングインダクタンス13、好ましくはインダクタ及びグリッド接続点14を介してAC電圧グリッド15に接続され、AC電圧グリッド15から電力を引き出す。電解槽11は、コンバータ12のDC電圧側出力部12bに接続され、コンバータ12によって電力を供給される。
コンバータ12は、DCリンク回路を有することができ、コンバータ12が、三相でAC電圧グリッド15からAC電力を引き出すために三相AC電圧グリッド15に接続され得るように、好ましくは三相設計を有する。コンバータ12は、特に、自己整流トランジスタコンバータの形態であり得、そのようなコンバータ12のトランジスタは、IGBT及び/又はMOSFETから構成され得る。
電解槽11は、本質的にDC負荷を構成し、コンバータ12によってDC電力を供給される。電解槽11によって消費されるDC電力は、この場合、電流/電圧特性曲線を介して、電解槽11に印加され、且つここではコンバータ12の出力部12bにおける電圧に対応する電圧に依存する。電解槽11のタイプ及び設計に応じて、電流/電圧特性曲線は、異なる開始電圧及び勾配を有する場合があり、その場合、電解槽11の許容入力電圧範囲で電流と電圧との間に一般に単調な関係があり、その結果、印加電圧が高いほど、電解槽11によって消費されるDC電力が高くなる。
電解槽11は、電解槽11を最適効率で動作させることができる公称電力を有する。公称電力は、電解槽11の許容入力電圧範囲内の公称電圧及び関連公称電流から構成される。原則として、公称電圧を上回る入力電圧も許容可能であり、より高い電力消費をもたらし、ここで、電解槽11の全体的な効率は、例えば、ポンプなどの補助ユニットのための所要電力の増加に起因して、公称電力を上回って低下する。
コンバータ12は、特に、AC電圧グリッド15の現在のグリッド周波数の変化に基づいて、コンバータ12を用いてコンバータ12の出力部12bにおける電圧、したがって電解槽11の入力電圧を調節することにより、AC電圧グリッド15の現在のグリッド周波数の変化に基づいてコンバータ12によって調節され得るDC電力を電解槽11に供給する。
現在のグリッド周波数が公称周波数に対応し、且つ一定である場合、コンバータ12は、電解槽11に電解槽11の公称電力以下のDC電力が供給されるような方式で動作する。一定のグリッド周波数の場合、DC電力は、好ましくは、電解槽の公称電力の50%~100%の値に設定することができる。
コンバータ12は、半導体スイッチを有し、それらの半導体スイッチは、これ以上詳細に例示されず、ブリッジ回路に配置され、コンバータ12を介したAC電圧グリッドから15から電解槽11への電力の流れが確立されるような方式で(例示されない)制御ユニットによって制御される。この場合、コンバータ12のグリッド側入力部12aにおけるAC電圧を、AC電圧グリッド15のグリッド電圧と、コンバータ12の入力部12aにおけるAC電圧との間の位相差がデカップリングインダクタンス13の両端に形成されるような方式において、半導体スイッチの適切なクロッキングを用いて制御することができる。
そのような制御は、位相差の設定値を事前定義することによって所望のAC有効電力を設定するために使用することができる。所望のAC有効電力は、DC電圧側でコンバータ12によって出力されて、電解槽に供給されるDC電力の設定値から生じる。このDC電流設定値は、コンバータ12の制御ユニットにおいて、位相角の設定値が所望のDC負荷電流の関数であるように、グリッド電圧と、コンバータ12における入力側AC電圧との間の位相差の対応する設定値に変形される。この場合、コンバータ12によってAC電圧グリッド15から引き出されるAC有効電力は、位相差がπに対して小さい場合、確立される位相差にほぼ比例する。
他方では、グリッド電圧と、コンバータ12の入力部12aにおけるAC電圧との間の位相差は、コンバータ12自体によって設定値に制御され、ここで、実際に流れるAC有効電力は、いずれの位相差が実際に存在するかに依存する。結果として、必然的に位相差の変化を引き起こすグリッド周波数の変化は、AC電圧グリッド15から引き出されるAC有効電力の概ね比例する変化を即座にもたらす。
AC電圧グリッド15の周波数変化は、したがって、位相角の変化と相関関係を有し、その結果、引き出されるAC有効電力は、グリッド周波数が変化した場合に同様に即座に変化する。この点において、コンバータ12は、AC電圧グリッド15から引き出されるAC有効電力が、周波数が低下する場合に即座に減少し、周波数が増加する場合に即座に増加することによって電圧印加方式で機能する。
図2は、複数のDC負荷21、22、23及びコンバータ12を有する装置20を示す。コンバータ12は、グリッド接続点14を介して入力側においてAC電圧グリッド15に接続され、AC電圧グリッド15から電力を引き出す。DC負荷21、22、23は、いずれの場合にもスイッチ21a、22a、23aの1つを介してDCリンク回路16に接続され、コンバータ12によって電力を供給される。電解槽11と、抵抗負荷、特に例えば表面仕上げ又は金属処理に使用される加熱抵抗器又は他の抵抗器との両方は、ここで、DC負荷21、22、23として使用することができる。
DC負荷21、22、23は、それぞれスイッチ21a、22a、23aを介してコンバータ12に接続するか又はコンバータ12から切り離すことができる。結果として、全体的に流れるDC電力は、DC負荷21、22、23の一部分のみに電力を供給することにより、コンバータ12のDCリンク回路16において所与の電圧に適合させることができ、ここで、具体的に供給される負荷21、22、23の部分は、スイッチ21a、22a、23aを適切に制御することによって選択される。
図3は、図1による電解槽11及びコンバータ12を有する電気分解装置10を示し、ここで、DC/DCコンバータ32は、電解槽11とコンバータ12との間に追加的に配置され、コンバータ12のDC電圧側出力部12b又はDCリンク回路16における電圧と電解槽11における電圧との間の変圧を可能にする。DC/DCコンバータ32は、昇圧型コンバータ、降圧型コンバータ若しくは昇圧型/降圧型コンバータの形態であり得、且つ/又は例えば双方向電力潮流のために構成され得る。
そのようなDC/DCコンバータ32は、変圧を設定するためのクロック付き半導体スイッチを主に含む様々な実施形態で当業者に知られている。特に、DC/DCコンバータ32は、コンバータ12から電解槽11への単方向電力潮流のための降圧型コンバータの形態であり得、それは、DCリンク回路16の電圧を電解槽11における比較的低い電圧に変換し、ここで、変圧比は、例えば、デューティファクタを用いて設定することができる。
図4は、コンバータ12の制御システムの詳細を示す。制御装置41は、コンバータ12のために、且つDC/DCコンバータ32のために制御信号を生成し、それらの制御信号は、特に、コンバータ12の半導体スイッチ及びDC/DCコンバータ32の半導体スイッチの制御を事前定義する。制御信号は、DC電力の設定値に基づいて制御装置41によって事前定義することができ、ここで、DC電力の実効値は、例えば、特にDC/DCコンバータ32と電解槽11との間に配置され得る電流及び電圧測定に基づいて決定することができる。制御装置41は、電解槽11に適切な電圧を設定するために、DC/DCコンバータ32を動作させなければならない適切なデューティファクタを決定し、その結果、電解槽11は、所望のDC電力を消費する。DCリンク回路16の電圧は、少なくともAC電圧グリッド15の整流グリッド電圧と同程度に高いため、図1による実施形態と対照的に、DC/DCコンバータ32によって電解槽11に整流グリッド電圧よりもかなり低い電圧を印加することが可能となる。
所与のデューティファクタを仮定すると、DC/DCコンバータ32の両側の電圧は、互いに比例する。したがって、デューティファクタが調節されない限り、DCリンク回路16の電圧の変化は、電解槽11における電圧の比例した変化をもたらす。従来の制御システムは、一定の遅延でデューティファクタを調節することができ、その場合、様々な上位の制御目標が追求され得る。特に、電解槽11における電圧、したがってDC電力を一定に保つことができる。代替として、DCリンク回路16の電圧を一定に保つことができる。
図1に関連して解説したように、コンバータ12は、周波数が減少した場合、特にグリッド電圧と、コンバータ12の入力部12aにおけるAC電圧との位相角に基づいて、AC電圧グリッド15から引き出されるAC有効電力を即座に減少させ、周波数が増加した場合にAC有効電力を即座に増加させることによって電圧印加方式で動作することができる。そのようなAC有効電力の即座の変化は、DC電力が変化しないままである限り、DCリンク回路16の電圧の対応する変化をもたらす。しかしながら、一定のDC電力でさえも、AC有効電力の周波数関連の変化に起因するDCリンク回路16の電圧の変化を打ち消すのに十分ではない。したがって、DC電力をAC電力に適合させなければならず、その場合、この電圧を正確に安定化する目的のため、DCリンク回路16の電圧に基づいてDC電力の設定値を調節することは、間接的であり且つそれに応じて遅延した応答を構成する。
制御装置41は、したがって、デカップリングインダクタンス13の上流及び下流の電圧の時間分解測定から、AC電圧グリッド15のグリッド電圧と、コンバータ12の入力部12aにおけるAC電圧との間の瞬時位相差を決定する。この位相差は、DC/DCコンバータ32の設定値のフィードフォワード制御のために制御装置41で使用することができる。結果として、DC電力の設定値、したがってDC/DCコンバータ32のデューティファクタは、位相差の変化に応答してすでに適合されている。この適合は、特に位相差の変化に応答したコンバータ12の電圧印加制御に起因してAC有効電力が変化する場合、AC有効電力の変化と関連付けられた、DCリンク回路16の電圧の著しい変化前にすでに行われている。これは、制御部全体の動的応答をかなり向上させる。
図5は、電解槽11と並列にコンバータ12のDCリンク回路16に接続されたPV発電機51を有する電気分解装置10を示す。PV発電機51の電力は、DCリンク回路16の電圧を介して調節することができ、電解槽11に送るか、又はコンバータ12を介してAC電圧グリッド15と交換することができる。この場合、PV発電機51の動作点は、DCリンク回路16における電圧に基づいて設定されるのに対して、電解槽11における電圧は、DC/DCコンバータ32を介して独立して設定することができる。
図6は、図5による電気分解装置10を用いて調整電力を提供するための方法の例示的なシーケンスを概略的に示す。電気分解装置10の通常動作中、例えばAC電圧グリッド15の公称周波数に対応し、且つ概ね一定であるグリッド周波数でAC電圧グリッド15の電力均衡が均衡を保っている場合(図5のステップS1)、PV発電機51は、最大可能電力点P_MPPにおいて動作することができ、電解槽は、その公称電力P_Nennで動作することができる(ステップS2)。
グリッド周波数が変化した場合、電気分解装置10のコンバータ12は、AC有効電力の変化で応答する(ステップS3)。ステップS3後、グリッド周波数の変化をもたらす電力不均衡の符号に応じて、方法は、AC電圧グリッド15で電力不足の場合にステップS4a及びS5aに分岐し、AC電圧グリッド15で電力過剰の場合にステップS4b及びS5bに分岐する。
ステップS5aでは、AC電圧グリッド15の電力不足を打ち消すAC電力の変化は、公称電力P_Nennと比較して電解槽11のDC電力P_Lastを減少させることによって電気分解装置10に実装される。PV発電機51のPV電力P_PVは、P_MPPで変化しないままとすることができる。
ステップS5bでは、電気分解装置10におけるAC電圧グリッド15の電力過剰を打ち消すAC電力の変化は、反対の符号を有し、公称電力P_Nennと比較して電解槽11のDC電力P_Lastを増加させることによって実装され得る。しかしながら、これは、特に、最大電力が電解槽11の公称電力をわずかに上回るのみであるとき及び/又は電解槽11の効率がその公称電力を上回るDC電力においてかなり低下するとき、不利であることが分かる。したがって、ステップS5bでは、追加又は代替として、PV電力P_PVを最大可能電力P_MPPと比較して減少させる。これは、DC電力をPV発電機51に送り返すことによって任意の時点でさらに可能であり、特に最大可能電力P_MPPがゼロに等しい夜間でも可能である。
DC電力P_Last及びP_PVは、特に、図5又は図9による電気分解装置10において互いに別々に調節することができる。PV電力P_PVは、DCリンク回路16における電圧を介して調節されるのに対して、電解槽11のDC電力P_Lastは、DCリンク回路16における電圧及びDC/DCコンバータ32の調節可能な変圧比から生じる。したがって、図6による方法を使用して電気分解装置10を動作させることにより、AC電圧グリッド15を安定化するための瞬時予備電力を提供することが可能であり、その場合、電解槽11のDC電力を減少させることによって電力不足を除くための調整電力と、PV発電機51を制限することによって電力過剰を除くための調整電力とが達成される。
図7は、AC電圧グリッド15の電力均衡に基づく調整電力の提供の例示的な区分を概略的に示す。
グリッド周波数が一定であり、且つ特にAC電圧グリッド15の公称周波数に対応するという事実によって特に表現することができる電力均衡が均衡を保っている場合、PV発電機51は、最大可能電力P_MPPで動作し、電解槽11は、公称電力P_Nennで動作する。電解槽11の公称電力P_Nennは、装置の特性であり、したがって概ね一定であると想定することができる。電力P_PV及びP_Lastの現在の合計、したがってコンバータ12を介してAC電圧グリッド15と交換されるAC電力も、したがって、PV発電機51上の現在の太陽放射に実質的に依存する。通常動作中、環境条件に応じて、AC電力は、したがって、電解槽11の公称電力P_Nenn(例えば、夜間に太陽放射なしで)と、電解槽11の公称電力P_NennとPV発電機51の公称電力との差との間であり得る。電解槽11の公称電力とPV発電機51の公称電力とが同一である可能性のある特別な場合、通常動作中のAC電力は、したがって、P_Nenn~ゼロである。
AC電圧グリッド15で電力不足の場合、電解槽11に供給されるDC電力P_Lastは、減少するのに対して、PV電力P_PVは、依然として最大可能PV電力P_MPPに対応することができる。特に電力不足に対する措置として、例えば電力変化がグリッド周波数の変化率に比例するように、グリッド周波数の変化率を使用することができ、これは、電力過剰に同じように適用することができる。
AC電圧グリッド15で電力過剰の場合、電解槽11は、依然としてその公称電力P_Nennで動作する。原則として、電解槽11は、P_Nennよりも大きい電力で動作させることもできるが、一般に、効率を下げてのみ及び/又は短時間のみ動作させることができる。AC電圧グリッド15の電力過剰を打ち消すために、PV発電機51から引き出される電力P_PVは、したがって、追加又は代替として減少する。この場合、PV電力P_PVは、ゼロに等しくなる場合があり、負になる場合があり、すなわちDC電力がPV発電機51に送り返されて、そこで消費される場合がある。最大可能PV電力P_MPPは、例えば、夜間において、説明したように、ときに非常に低くなることがあるため、PV電力P_PVは、単にAC電圧グリッド15の電力過剰に基づいてPV発電機51に送られる電力を増加させることによって減少させることもできる。
特別な構成において、電解槽11の公称電力P_Nennは、PV発電機51の公称電力P_Peakにほぼ対応し得る。この場合、電解槽11の完全な公称電力P_Nennは、AC電圧グリッド15の電力不足に応答するために利用可能であるのに対して、PV発電機51の少なくとも完全な公称電力P_Peakは、AC電圧グリッド15の電力過剰に応答するために、任意の時点において、特に夜間でも利用可能である。全体的に、この方式で構成された電気分解装置10により、同一規模の正及び負の調整電力を備えた最適な対称調整電力帯域がしたがって提供される。
原則として、電気分解装置10の多くのさらなる構成が考えられ、例えば通常動作中に公称電力P_Nennのほぼ50%で動作する電解槽11を主な構成要素とし、比較的低い公称電力P_PV<P_Nennを有するPV発電機51を備えた中間の変形形態が考えられる。この場合、PV発電機51は、AC電圧グリッド15の電力過剰に応答して電力変化の一部を実行する。PV発電機の公称電力P_Peakが大きいほど、通常動作中の電解槽11の所望の電力P_Lastは、高くなるように選択することもできる。
別の中間の変形形態は、通常動作中に最大可能電力P_MPPで動作するPV発電機51を主な構成要素として有し、比較的低い公称電力P_Nenn<P_Peakを有する電解槽11を有する電気分解装置10を含む。この場合、電解槽11は、AC電圧グリッド15の電力不足に応答して電力変化を実行し、その結果、対称調整電力帯域を提供することが可能であり、この対称調整電力帯域は、一方では電解槽11の公称電力P_Nenn及び他方では必要に応じてPV発電機51の等しい制限から構成され、したがって単に公称電力P_Nennに依存するか、又はそれを瞬時予備のために完全に使用可能にする。
図8は、コンバータ12及び電解槽11を有する電気分解装置10のさらなる一実施形態を示す。図1と比較して、図8による電気分解装置10は、DC/DCコンバータ82を介して電解槽11と並列にコンバータ12のDCリンク回路16に接続されたバッテリ81を追加的に含む。DC/DCコンバータ82は、特に、DCリンク回路16における電圧が安定化されるような方式において、DCリンク回路16とバッテリ81との間で電力の交換を制御することができ、その場合、適切であれば、図4に類似したフィードフォワード制御を使用することができる。加えて、バッテリ81の結果として、瞬時予備として対称調整電力帯域を提供することへの個別の寄与に排他性を加えるために、図8による電気分解装置10の具体的な構成に利用可能なさらなる自由度がある。例えば、AC電圧グリッド15の電力不足に応答した電力変化は、電解槽11のDC電力P_Lastをその公称電力P_Nenn未満の値に減少させることによって完全に実装され得るのに対して、AC電圧グリッド15の電力過剰に応答した電力変化は、DC電力をバッテリ81に送ることによって完全に実装され、それにより、バッテリに貯蔵されたエネルギーは、次に、電解槽11を動作させるために使用することができる。
図9は、コンバータ12と、DC/DCコンバータ32を介してコンバータ12に接続された電解槽11とを有する電気分解装置10のさらなる一実施形態を示す。図3と比較して、図9による電気分解装置10は、図8に類似した方式において、さらなるDC/DCコンバータ82を介してコンバータ12のDCリンク回路16に接続されたバッテリ81と、図5に類似した方式において、場合によりここで例示されていない第3のDC/DCコンバータを介してコンバータ12のDCリンク回路16に同様に接続されたPV発電機51とを追加的に含む。図9による電気分解装置10は、したがって、図5及び図8による電気分解装置10の特徴を実質的に組み合わせ、したがってそれらの利点も有する。
10、20 電気分解装置
11 電解槽
12 コンバータ
12a 入力部
12b 出力部
13 デカップリングインダクタンス
14 グリッド接続点
15 AC電圧グリッド
21、22、23 DC負荷
21a、22a、23a スイッチ
32 DC/DCコンバータ
41 制御装置
51 太陽光発電機(PV発電機)
S1~S3 方法ステップ
S4a、S4b 方法ステップ
S5a、S5b 方法ステップ
81 バッテリ
82 DC/DCコンバータ

Claims (16)

  1. コンバータ(12)であって、AC電圧側においてデカップリングインダクタンス(13)を介してAC電圧グリッド(15)に接続され、及び前記AC電圧グリッド(15)からAC有効電力を引き出すコンバータ(12)と、電解槽(11)であって、DC電圧側において前記コンバータ(12)に接続され、及び前記AC電圧グリッド(15)の公称周波数に対応し、且つ経時的に一定であるグリッド周波数の場合に前記電解槽(11)の公称電力の50%~100%の電力で動作される電解槽(11)とを有する電気分解装置(10)を動作させるための方法であって、前記コンバータ(12)は、前記AC電圧グリッド(15)から引き出される前記AC有効電力が、前記AC電圧グリッド(15)の前記グリッド周波数の変化及び/又は変化率に基づいて即座に変化されるように電圧印加方式で動作される、方法。
  2. 前記コンバータ(12)は、瞬時予備電力を提供し、前記コンバータ(12)は、周波数変化に対する同期機械の挙動をエミュレートするか、又は周波数/電力特性曲線を含むドループモード制御を使用する、請求項1に記載の方法。
  3. 前記AC電圧グリッド(15)から引き出される前記AC有効電力の前記変化は、前記電解槽(11)におけるDC電圧の変化をもたらし、前記電解槽(11)における前記DC電圧の前記変化は、前記電解槽(11)によって消費されるDC電力の変化をもたらし、前記変化は、前記AC有効電力の前記変化に対応する、請求項1又は2に記載の方法。
  4. 変圧は、第1のDC/DCコンバータ(32)を用いて前記電解槽(11)と前記コンバータ(12)との間に作り出される、請求項1又は2に記載の方法。
  5. 前記コンバータ(12)は、前記DC電圧側において接続されたPV発電機(51)と電力を交換し、前記PV発電機(51)は、前記電解槽(11)と並列にDCリンク回路(16)に接続され、前記PV発電機(51)によって生成された電力は、前記電解槽(11)又は前記AC電圧グリッド(15)のいずれかに送られる、請求項4に記載の方法。
  6. 前記コンバータ(12)は、前記DC電圧側において接続されたバッテリ(81)と電力を交換し、前記バッテリ(81)は、第2のDC/DCコンバータ(82)を介して前記電解槽(11)と並列に前記DCリンク回路(16)に接続される、請求項に記載の方法。
  7. 前記第1のDC/DCコンバータ(32)は、前記DCリンク回路(16)の電圧を安定化し、及び前記第1のDC/DCコンバータ(32)の制御は、フィードフォワード制御を含み、前記フィードフォワード制御は、グリッド電圧と、前記コンバータ(12)の入力部(12a)におけるAC電圧との間の位相差に基づいて前記第1のDC/DCコンバータ(32)のDC電流設定値を設定するために使用される、請求項5又は6に記載の方法。
  8. 前記第2のDC/DCコンバータ(82)は、前記DCリンク回路(16)の電圧を安定化し、及び前記第2のDC/DCコンバータ(82)の制御は、フィードフォワード制御を含み、前記フィードフォワード制御は、グリッド電圧と、前記コンバータ(12)の入力部(12a)におけるAC電圧との間の位相差に基づいて前記第2のDC/DCコンバータ(82)のDC電流設定値を設定するために使用される、請求項6に記載の方法。
  9. 電解槽(11)であって、コンバータ(12)に接続され、且つ前記コンバータ(12)を介してAC電圧グリッド(15)からAC有効電力を引き出す電解槽(11)を有する電気分解装置(10)において、前記コンバータ(12)は、前記AC電圧グリッド(15)のグリッド周波数の変化が、前記AC電圧グリッド(15)から引き出される前記有効電力の即座の変化を引き起こすように電圧印加方式で動作されるように構成されることを特徴とする電気分解装置(10)。
  10. 第1のDC/DCコンバータ(32)は、前記電解槽(11)と前記コンバータ(12)との間に配置される、請求項9に記載の電気分解装置(10)。
  11. 太陽光発電機(51)は、DC電圧側において前記電解槽(11)と並列に前記電気分解装置(10)のDCリンク回路(16)に接続される、請求項9又は10に記載の電気分解装置(10)。
  12. バッテリは、前記DC電圧側において第2のDC/DCコンバータ(82)を介して前記電解槽(11)と並列に前記電気分解装置(10)のDCリンク回路(16)に接続される、請求項11に記載の電気分解装置(10)。
  13. AC電圧グリッド(15)からAC電力を引き出し、且つ電解槽(12)にDC電力を供給するコンバータ(12)を用いて、前記AC電圧グリッド(15)に瞬時予備電力を提供するための方法であって、前記コンバータ(12)は、前記AC電圧グリッド(15)のグリッド周波数の変化が、前記AC電圧グリッド(15)から引き出される前記AC電力の即座の変化を引き起こすように電圧印加方式で動作される、方法。
  14. 前記AC電圧グリッド(15)の公称周波数に対応するグリッド周波数において、前記AC電圧グリッド(15)から引き出され、且つ前記電解槽(11)に供給される有効電力は、前記電解槽(11)の公称電力の50%~100%である、請求項13に記載の方法。
  15. 前記コンバータ(12)は、前記グリッド周波数の変化が前記AC電力の変化を引き起こし、及び前記電解槽(11)に供給される前記DC電力が前記電解槽(11)の動作範囲の境界にある場合、DC電圧側において接続されたバッテリ(81)と電力を交換し、前記動作範囲は、前記電解槽(11)の公称電力の10%~20%の下側開始電力及び前記公称電力の80%~100%の上側最大電力によって制限され、前記バッテリ(81)は、DC/DCコンバータを介して前記電解槽(10)と並列に前記コンバータ(12)のDCリンク回路(16)に接続される、請求項13又は14に記載の方法。
  16. 前記コンバータ(12)は、前記DC電圧側において接続された太陽光発電機(51)と電力を交換し、前記AC電圧グリッド(15)の公称周波数に対応するグリッド周波数の場合、前記PV発電機(51)は、最大電力点において動作され、及び前記電解槽(11)は、公称電力で動作され、前記PV発電機(51)の前記電力は、前記コンバータ(12)が、現在送られているAC電力を減少させるか、又は現在引き出されているAC電力を増加させることを引き起こす前記グリッド周波数の変化が発生する場合に減少され、前記電解槽(11)の前記DC電力は、前記コンバータ(12)が、現在送られているAC電力を増加させるか、又は現在引き出されているAC電力を減少させることを引き起こす前記グリッド周波数の変化が発生する場合に減少される、請求項15に記載の方法。
JP2021537721A 2018-12-27 2019-12-03 コンバータを有する電気分解装置及びac電圧グリッドに瞬時予備電力を提供するための方法 Active JP7429698B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018133641.1 2018-12-27
DE102018133641.1A DE102018133641A1 (de) 2018-12-27 2018-12-27 Elektrolysevorrichtung mit einem umrichter und verfahren zur bereitstellung von momentanreserveleistung für ein wechselspannungsnetz
PCT/EP2019/083382 WO2020135975A1 (de) 2018-12-27 2019-12-03 Elektrolysevorrichtung mit einem umrichter und verfahren zur bereitstellung von momentanreserveleistung für ein wechselspannungsnetz

Publications (2)

Publication Number Publication Date
JP2022515821A JP2022515821A (ja) 2022-02-22
JP7429698B2 true JP7429698B2 (ja) 2024-02-08

Family

ID=68808333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021537721A Active JP7429698B2 (ja) 2018-12-27 2019-12-03 コンバータを有する電気分解装置及びac電圧グリッドに瞬時予備電力を提供するための方法

Country Status (6)

Country Link
US (2) US11851776B2 (ja)
EP (1) EP3903396A1 (ja)
JP (1) JP7429698B2 (ja)
CN (1) CN113228448B (ja)
DE (1) DE102018133641A1 (ja)
WO (1) WO2020135975A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112880A1 (de) 2020-05-12 2021-11-18 Sma Solar Technology Ag Verfahren zum betrieb eines elektrolyseurs, verbindungsschaltung, gleichrichter und elektrolyseanlage zur durchführung des verfahrens
DE102020121093A1 (de) 2020-08-11 2022-02-17 Block Transformatoren-Elektronik Gmbh Vorrichtung und Verfahren zur asymmetrischen Leistungsabfallregelung
JP2022041248A (ja) * 2020-08-31 2022-03-11 株式会社神戸製鋼所 電力制御システム及びこれを用いた水素製造設備
US11670960B2 (en) * 2020-09-01 2023-06-06 Mitsubishi Power Americas, Inc. Integrated power production and storage systems
DE102020124964A1 (de) 2020-09-24 2022-03-24 Sma Solar Technology Ag Verfahren zum betrieb eines hybrid-gleichrichters, hybrid-gleichrichter und elektrolyseanlage mit einem derartigen hybrid-gleichrichter
EP4060084A1 (en) 2021-03-18 2022-09-21 Siemens Energy Global GmbH & Co. KG Electrolysis system and method
EP4445469A1 (en) * 2021-12-08 2024-10-16 Electric Hydrogen Co. Variable inverter based power control
CN114362215A (zh) * 2022-01-04 2022-04-15 阳光氢能科技有限公司 交流电解系统控制方法、装置及交流电解系统
CA3192198A1 (en) * 2022-03-04 2023-09-04 Bloom Energy Corporation Electrolyzer power conversion
DK181634B1 (en) * 2022-03-28 2024-08-14 Kk Wind Solutions As An electrolysis power converter system
DE102022207495A1 (de) * 2022-07-21 2024-02-01 Siemens Energy Global GmbH & Co. KG Elektrolysesystem
EP4353874A1 (en) * 2022-10-14 2024-04-17 Siemens Energy Global GmbH & Co. KG Electrolysis plant and method for operating an electrolysis plant
EP4439953A1 (en) * 2023-03-31 2024-10-02 Siemens Energy Global GmbH & Co. KG Voltage controlled rectifier application for water-electrolysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505233A (ja) 2002-03-08 2006-02-09 アロイス・ヴォベン 島ネットワークと島ネットワークを稼働する方法
US20060192435A1 (en) 2005-02-26 2006-08-31 Parmley Daniel W Renewable energy power systems
JP2008011614A (ja) 2006-06-28 2008-01-17 Honda Motor Co Ltd 水素生成システム
US20090189445A1 (en) 2008-01-24 2009-07-30 Renewable Energy Holdings, Llc Renewable energy management and storage system
JP2011050138A (ja) 2009-08-26 2011-03-10 Tokyo Electric Power Co Inc:The 水または塩水の電気分解装置の出力制御装置
JP2011060921A (ja) 2009-09-08 2011-03-24 Tokyo Electric Power Co Inc:The 太陽光発電設備
JP2015513890A (ja) 2012-03-02 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh コンビネーション発電所を稼働するための方法、並びにコンビネーション発電所
CA3065418A1 (en) 2017-06-13 2018-12-20 Wobben Properties Gmbh Wind turbine or wind park for supplying electric power

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3201339A1 (de) * 1982-01-18 1983-07-28 Kraftwerk Union AG, 4330 Mülheim Anlage zur energieumwandlung
JPH0748951B2 (ja) * 1985-09-30 1995-05-24 株式会社東芝 電力変換装置
ATE242933T1 (de) * 1995-10-24 2003-06-15 Aquagas New Zealand Ltd Gleichrichter-stromversorgung
DE10140783A1 (de) 2001-08-21 2003-04-03 Inst Solare Energieversorgungstechnik Iset Vorrichtung zum gleichberechtigten Parallelbetrieb von ein- oder dreiphasigen Spannungsquellen
PL1834393T3 (pl) * 2005-01-07 2017-12-29 Steag Energy Services Gmbh Sposób i urządzenie do podtrzymywania częstotliwości napięcia przemiennego w sieci elektroenergetycznej
DE102005046919A1 (de) 2005-03-18 2006-09-28 Siemens Ag Verfahren und Vorrichtung zur Zwischenspeicherung von aus Windkraft erzeugter elektrischer Windenergie
DE102006047792A1 (de) 2006-10-06 2008-04-10 Technische Universität Clausthal Konditionierungseinrichtung für Energieversorgungsnetze
US7645931B2 (en) 2007-03-27 2010-01-12 Gm Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
EP2182626B1 (de) 2008-10-31 2018-11-28 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Stromrichters und nach dem Verfahren arbeitender Stromrichter
DE102010030093A1 (de) 2009-06-15 2010-12-16 Technische Universität Clausthal Vorrichtung und Verfahren zum Steuern des Austausches von elektrischer Energie
EP2540873A1 (de) 2011-07-01 2013-01-02 Siemens Aktiengesellschaft Energiemanagementsystem, Industrieanlage mit einem Energiemanagementsystem sowie Verfahren zum Betrieb eines Energiemanagementsystems
DE102011055227A1 (de) * 2011-11-10 2013-05-16 Evonik Degussa Gmbh Verfahren zur Bereitstellung von Regelleistung
DE102011055252A1 (de) * 2011-11-10 2013-05-16 Evonik Degussa Gmbh Verfahren zur Bereitstellung von Regelleistung für ein Stromnetz
EP2706641A1 (en) * 2012-09-05 2014-03-12 Siemens Aktiengesellschaft Method to provide primary control power by an energy storage system
JP6148444B2 (ja) 2012-09-06 2017-06-14 矢崎総業株式会社 端子
DE102013207877A1 (de) * 2013-04-30 2014-10-30 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur photovoltaischen Erzeugung von Wasserstoff aus wasserstoffhaltigen Verbindungen
DE102014000518A1 (de) * 2014-01-15 2015-07-16 Etogas Gmbh Anordung zur Versorgung eines Elektrolyseurs mit Gleichstrom und Anlage zur Durchführung einer Elektrolyse
DE102016115182A1 (de) 2016-08-16 2018-02-22 Technische Universität Braunschweig Verfahren zur Bereitstellung von Momentanreserve in einem elektrischen Energieversorgungsnetz, Computerprogramm und stromeinprägender Wechselrichter
EP3361617A1 (de) * 2017-02-14 2018-08-15 Siemens Aktiengesellschaft Gleichrichterschaltung für eine elektrolyse-anlage
ES2874658T3 (es) 2017-03-14 2021-11-05 Abb Schweiz Ag Procedimiento y sistema de control para controlar un convertidor de potencia

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505233A (ja) 2002-03-08 2006-02-09 アロイス・ヴォベン 島ネットワークと島ネットワークを稼働する方法
US20060192435A1 (en) 2005-02-26 2006-08-31 Parmley Daniel W Renewable energy power systems
JP2008011614A (ja) 2006-06-28 2008-01-17 Honda Motor Co Ltd 水素生成システム
US20090189445A1 (en) 2008-01-24 2009-07-30 Renewable Energy Holdings, Llc Renewable energy management and storage system
JP2011050138A (ja) 2009-08-26 2011-03-10 Tokyo Electric Power Co Inc:The 水または塩水の電気分解装置の出力制御装置
JP2011060921A (ja) 2009-09-08 2011-03-24 Tokyo Electric Power Co Inc:The 太陽光発電設備
JP2015513890A (ja) 2012-03-02 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh コンビネーション発電所を稼働するための方法、並びにコンビネーション発電所
CA3065418A1 (en) 2017-06-13 2018-12-20 Wobben Properties Gmbh Wind turbine or wind park for supplying electric power

Also Published As

Publication number Publication date
JP2022515821A (ja) 2022-02-22
US11851776B2 (en) 2023-12-26
US20240117513A1 (en) 2024-04-11
CN113228448B (zh) 2024-03-01
WO2020135975A1 (de) 2020-07-02
CN113228448A (zh) 2021-08-06
US20210317588A1 (en) 2021-10-14
DE102018133641A1 (de) 2020-07-02
EP3903396A1 (de) 2021-11-03

Similar Documents

Publication Publication Date Title
JP7429698B2 (ja) コンバータを有する電気分解装置及びac電圧グリッドに瞬時予備電力を提供するための方法
Serban et al. Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability
KR102037989B1 (ko) 전력 변환 시스템의 최대 전력점 추적 및 그의 방법
KR101135284B1 (ko) 충전장치를 채용하고 무효전력 제어기능을 갖는 다중기능 전력변환 장치 및 방법
WO2015051161A1 (en) Method and apparatus for independent control of multiple power converter sources
CN109888819B (zh) 一种光伏发电系统及其控制方法和装置
US20130300196A1 (en) Multi-port inverter/converter system for dynamic micro-grid applications
Bajestan et al. Control of a new stand-alone wind turbine-based variable speed permanent magnet synchronous generator using quasi-Z-source inverter
CN108879716A (zh) 直驱永磁风机的无功协调控制方法及系统
JP5830484B2 (ja) 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
Li et al. Master-slave control of parallel-operated interfacing inverters based on wireless digital communication
Navarro-Rodríguez et al. Cooperative control in a hybrid dc/ac microgrid based on hybrid dc/ac virtual generators
KR101287136B1 (ko) H-bridge 2-string 단상 계통연계용 pcs의 제어 시스템
CN109659950A (zh) 变下限电压的电压源换流器的无功控制系统及方法
Shapoval et al. Compensation of current harmonics by means of grid-side converter in doubly-fed induction generator based wind energy system
Bubalo et al. Optimized isolated operation of a WECS-powered microgrid with a battery-assisted qZSI
Xinghua et al. A Pi-based control scheme for primary cascaded H-bridge rectifier in transformerless traction converters
Zhai et al. Adaptive virtual inertia control-based frequency support method for photovoltaic penetrated power system
AU2010358881B2 (en) Management system for variable-resource energy generation systems
do Nascimento et al. Operation Analysis of an Islanded Microgrid with a Single Wind Power/BESS Generation Unit
JP2021035313A (ja) パワーコンディショナおよびパワーコンディショナシステム
JP2021168555A (ja) 電力変換装置
CN107302220B (zh) 一种分布式电压和潮流控制方法及其装置
Salazar et al. Nonlinear Control Design for Bidirectional Synchronous Buck-Boost Converters used in Residential Battery Storage Systems
JP7495654B1 (ja) 電力変換器制御装置、電力変換器の制御方法及び電力変換器の制御プログラム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7429698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150