JP7405119B2 - Biaxial stress testing device and biaxial stress testing method - Google Patents
Biaxial stress testing device and biaxial stress testing method Download PDFInfo
- Publication number
- JP7405119B2 JP7405119B2 JP2021096325A JP2021096325A JP7405119B2 JP 7405119 B2 JP7405119 B2 JP 7405119B2 JP 2021096325 A JP2021096325 A JP 2021096325A JP 2021096325 A JP2021096325 A JP 2021096325A JP 7405119 B2 JP7405119 B2 JP 7405119B2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- plate
- plane
- test piece
- compressive load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000009662 stress testing Methods 0.000 title claims description 37
- 238000012360 testing method Methods 0.000 claims description 106
- 230000037303 wrinkles Effects 0.000 claims description 89
- 238000005259 measurement Methods 0.000 claims description 45
- 244000126211 Hericium coralloides Species 0.000 claims description 25
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 238000010998 test method Methods 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 3
- 206010040954 Skin wrinkling Diseases 0.000 description 90
- 238000010586 diagram Methods 0.000 description 29
- 239000000463 material Substances 0.000 description 25
- 238000004088 simulation Methods 0.000 description 24
- 239000002184 metal Substances 0.000 description 21
- 238000000465 moulding Methods 0.000 description 19
- 230000007246 mechanism Effects 0.000 description 14
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 238000012669 compression test Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000001520 comb Anatomy 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000037373 wrinkle formation Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
本発明は、二軸応力試験装置及び二軸応力試験方法に関し、特に、十字形状の板状試験片に少なくとも一軸方向から圧縮荷重を作用させる二軸応力試験装置及び二軸応力試験方法に関する。 The present invention relates to a biaxial stress testing device and a biaxial stress testing method, and particularly to a biaxial stress testing device and a biaxial stress testing method that apply a compressive load to a cross-shaped plate-shaped test piece from at least one axial direction.
従来より、金属材料の材料試験として、金属薄板を破断させずにプレス成形可能な領域を測定するFLD(Forming Limit Diagram;成形限界線図)試験が行われている(非特許文献1等)。そして、当該FLD試験により得られた成形限界線図を用いることで、金属薄板のプレス成形時に発生する張り出し割れや絞り割れ等の発生の危険性を客観的かつ定量的に評価することが可能となる。 BACKGROUND ART Conventionally, as a material test for metal materials, an FLD (Forming Limit Diagram) test has been conducted to measure the area in which a thin metal plate can be press-formed without breaking it (see Non-Patent Document 1, etc.). By using the forming limit diagram obtained from the FLD test, it is possible to objectively and quantitatively evaluate the risk of overhang cracks, drawing cracks, etc. that occur during press forming of thin metal sheets. Become.
また、金属材料の材料試験として、金属薄板に圧縮荷重を作用させる材料試験も行われている(特許文献1、特許文献2、特許文献3等)。
例えば、特許文献3に開示されている材料試験においては、金属薄板の薄板試験片に対して面内二軸方向の圧縮荷重を作用させることで、二軸圧縮応力状態における金属薄板の材料特性を精度よく測定することができるとされている。そして、これらの金属薄板に圧縮荷重を作用させる材料試験により圧縮応力状態における金属薄板の材料特性を測定することで、プレス成形過程のCAE解析(プレス成形シミュレーション)の予測精度向上に寄与することが期待されている。
In addition, as a material test for metal materials, material tests are also conducted in which a compressive load is applied to a thin metal plate (Patent Document 1, Patent Document 2, Patent Document 3, etc.).
For example, in the material test disclosed in Patent Document 3, by applying a compressive load in two in-plane directions to a thin test piece of a thin metal sheet, the material properties of the thin metal sheet under biaxial compressive stress are evaluated. It is said that it can be measured with high accuracy. By measuring the material properties of these thin metal sheets under compressive stress through material testing in which a compressive load is applied to these thin metal sheets, it is possible to contribute to improving the prediction accuracy of CAE analysis (press forming simulation) of the press forming process. It is expected.
一般に、プレス成形中に金属薄板が圧縮荷重を受けると、金属薄板がプレス成形品の目標形状から急に面外変形してはみ出す現象(面外座屈)が生じ、該プレス成形品にしわ(以下、「プレスしわ」と称する場合あり)が発生することがある。このようなプレスしわの発生メカニズムは、(1)金属薄板の弾性的あるいは塑性的座屈現象、(2)金属薄板の過剰な又は不均一な材料流入による肉余り・肉寄り、の2つに分類される。 Generally, when a thin metal plate is subjected to a compressive load during press forming, a phenomenon occurs in which the thin metal plate suddenly deforms out of plane and protrudes from the target shape of the press formed product (out-of-plane buckling), causing wrinkles ( (hereinafter sometimes referred to as "press wrinkles") may occur. There are two mechanisms by which such press wrinkles occur: (1) elastic or plastic buckling of the thin metal sheet, and (2) excessive or uneven material inflow into the thin metal sheet. being classified.
このうち、(1)の弾性的あるいは塑性的座屈現象については、例えば、天板部と縦壁部とフランジ部とを有してハット断面形状をなすプレス成形品のプレス成形過程における縮みフランジ変形によって、フランジ部に発生する圧縮応力やフランジ部への材料流入により縦壁部に発生する圧縮応力等に起因する場合と、不均一荷重や非軸対称荷重等による金属薄板の不均一変形に起因する場合とがある。
一方、(2)の肉余り・肉寄りについては、プレス成形品の形状が急激に変化する部位に発生するとされている(非特許文献2参照)。
Among these, the elastic or plastic buckling phenomenon (1) is related to, for example, shrinkage flange during the press forming process of a press-formed product having a hat cross-section and having a top plate, a vertical wall, and a flange. There are cases where deformation is caused by compressive stress generated in the flange, compressive stress generated in the vertical wall due to material flowing into the flange, and non-uniform deformation of a thin metal plate due to uneven loads, non-axisymmetric loads, etc. There are cases where this is caused by
On the other hand, it is said that (2) over-thickness and under-thickness occur in areas where the shape of the press-formed product changes rapidly (see Non-Patent Document 2).
また、プレスしわは、金属薄板の板厚が薄く、強度が高いほど生じやすい。張り出し成形においては、加工部へその周辺から材料が流入することによる張り出し成形面の材料余りが直接的な要因となりやすいため、プレスしわの発生を防ぎつつ目標形状のプレス成形品を得ることが難しいという問題があった。 Further, press wrinkles are more likely to occur as the thin metal sheet is thinner and the strength is higher. In stretch molding, excess material on the stretch molding surface due to material flowing into the processed area from the surrounding area tends to be a direct factor, making it difficult to obtain a press-formed product with the target shape while preventing the occurrence of press wrinkles. There was a problem.
そこで、プレスしわの発生を防いだプレス成形品を得るためには、プレス成形過程におけるしわ発生の要因を明らかにし、金属薄板の材料特性やプレス成形品の目標形状等に応じてプレス成形条件を決定する必要がある。 Therefore, in order to obtain a press-formed product that prevents the occurrence of press wrinkles, we must clarify the factors that cause wrinkles during the press-forming process, and adjust the press-forming conditions according to the material properties of the thin metal sheet and the target shape of the press-formed product. Need to decide.
プレスしわの発生を予測する方法としては、弾塑性有限要素解析法等によるプレス成形シミュレーションを行い、該プレス成形シミュレーションにより求められた成形途中や成形終了後のプレス成形品をコンピュータ画面上に表示する際に、圧縮応力や圧縮ひずみの度合いに応じて陰影をつけ(シェーディング)、目視でしわ発生の有無を判断する技術がある。 A method for predicting the occurrence of press wrinkles is to perform a press forming simulation using an elastic-plastic finite element analysis method, etc., and display the press-formed product during and after forming, determined by the press forming simulation, on a computer screen. In this case, there is a technology that applies shading according to the degree of compressive stress or compressive strain to visually determine the presence or absence of wrinkles.
さらに、プレス成形シミュレーションにより算出されるひずみや応力等により、しわ発生のメカニズムを推定するとともに、しわ発生の有無を定量的に判断する指標を求める技術がいくつか提案されている。
例えば、特許文献4には、弾塑性有限要素法に基づく板状素材のプレス成形シミュレーションによりプレス成形過程における各要素の相当応力および相当歪を求め、該求めた相当歪に対し板状素材の加工硬化曲線から得られる相当応力とプレス成形シミュレーションにより求めた相当応力との差が大きい場合には、当該要素の位置に座屈が発生していると考え、その差を皺評価パラメータとして求めて皺発生の有無を評価する技術が開示されている。
また、特許文献5には、天板部と外方に向かって湾曲する縦壁部とを備えたプレス成形品をフォーム(曲げ)成形により縮みフランジ成形をするに際し、縦壁部の先端に生じる圧縮ひずみがしわ発生限界ひずみを超えるか否かにより、プレス成形品のしわの発生の有無を予め判定する技術が開示されている。
さらに、特許文献6には、プレス成形における下死点での被成形材の厚み方向断面における曲げ応力に基づいて、除荷(離型)した後の曲率半径又は曲率を推定し、該推定した曲率半径又は曲率に応じてプレス成形における被成形材の皺の発生の有無を予測する技術が開示されている。
Furthermore, several techniques have been proposed to estimate the mechanism of wrinkle generation based on strain, stress, etc. calculated by press forming simulation, and to obtain an index for quantitatively determining the presence or absence of wrinkle generation.
For example, in Patent Document 4, the equivalent stress and equivalent strain of each element in the press forming process are determined by press forming simulation of a plate-shaped material based on the elasto-plastic finite element method, and the plate-shaped material is processed based on the obtained equivalent strain. If the difference between the equivalent stress obtained from the hardening curve and the equivalent stress obtained by press forming simulation is large, it is assumed that buckling has occurred at the position of the element in question, and the difference is determined as a wrinkle evaluation parameter to evaluate the wrinkles. Techniques for evaluating the presence or absence of occurrence have been disclosed.
Furthermore, Patent Document 5 discloses that when a press-formed product having a top plate portion and a vertical wall portion curving outward is subjected to shrinkage flange forming by form (bending) molding, a phenomenon occurs at the tip of the vertical wall portion. A technique has been disclosed in which the presence or absence of wrinkles in a press-molded product is determined in advance based on whether or not the compressive strain exceeds the wrinkle generation limit strain.
Furthermore, Patent Document 6 describes that the radius of curvature or curvature after unloading (mold release) is estimated based on the bending stress in the thickness direction cross section of the material to be formed at the bottom dead center in press forming, and A technique has been disclosed for predicting the occurrence of wrinkles in a material to be formed during press molding according to the radius of curvature or the curvature.
特許文献4~特許文献6に開示されている技術はいずれも、しわ発生のメカニズムを予め想定し、該メカニズムに基づいてしわ発生の有無に関する判断指標を求めるものである。しかしながら、しわ発生の有無に対する判断指標の境界値(臨界値)は、実験又はプレス成形シミュレーションによるプレス成形品のしわ発生の有無を目視による官能的な判断により決定するので、客観性に欠けることが問題であった。
また、特許文献4~特許文献6に開示されている技術は、特定のプレス成形方式(フォーム成形など)や特定の形状のプレス成形品を対象としたものであり、プレス成形方式やプレス成形品の形状が異なるとひずみや応力の状態も異なるため、これらの技術で求められるしわ発生の有無に係る判断指標は汎用性がないことが問題であった。
All of the techniques disclosed in Patent Documents 4 to 6 assume the mechanism of wrinkle generation in advance, and obtain a judgment index regarding the presence or absence of wrinkle generation based on the mechanism. However, the boundary value (critical value) of the judgment index for the presence or absence of wrinkles may lack objectivity because it is determined by visual inspection and sensory judgment of the presence or absence of wrinkles in a press-formed product by experiment or press-forming simulation. That was a problem.
In addition, the technologies disclosed in Patent Documents 4 to 6 are aimed at specific press molding methods (such as foam molding) and press-formed products of specific shapes, and are Since the state of strain and stress differs depending on the shape of the material, the problem is that the indicators for determining the presence or absence of wrinkles required by these techniques are not versatile.
そこで、前述した破断に関するFLD試験と同様に、しわ発生の有無を客観的かつ定量的に判断することが容易に可能であり、プレス成形方式やプレス成形品の形状によらず汎用的にしわ発生を評価することが可能な試験方法が求められていた。
しかしながら、FLD試験は、プレス成形過程において金属薄板に破断(割れ)が発生する起点(限界ひずみ等)を求めるものであり、プレス成形過程において金属薄板に圧縮荷重が作用して生じる面外座屈に起因するしわ発生の起点を求めることはできない。
Therefore, similar to the FLD test for fracture described above, it is easy to objectively and quantitatively determine the presence or absence of wrinkles, and it is possible to universally determine the occurrence of wrinkles regardless of the press forming method or the shape of the press-formed product. There was a need for a test method that could evaluate the
However, the FLD test determines the starting point (critical strain, etc.) at which rupture (cracking) occurs in a thin metal sheet during the press forming process, and out-of-plane buckling that occurs when a compressive load is applied to the thin metal sheet during the press forming process. It is not possible to determine the origin of wrinkles caused by this.
また、特許文献1~特許文献3に開示されている技術はいずれも、金属薄板に圧縮荷重を作用させる際に面外座屈を抑制して材料試験を行うものであるため、金属薄板の圧縮応力状態における面外座屈変形、すなわち、しわ発生の起点となる指標(ひずみ等)を求めることはできなかった。
さらに、金属薄板を素材(ブランク)とするプレス成形時にブランクが受ける変形は、面内二軸方向の少なくとも一方向に圧縮荷重が作用する二軸応力状態で生じるものがほとんどである。そのため、プレス成形におけるしわ発生の有無を評価するためには、少なくとも面内一軸方向に圧縮荷重が作用した二軸応力状態におけるしわ発生の起点となる指標を求めることが必要であった。
In addition, the techniques disclosed in Patent Documents 1 to 3 are all for performing material tests by suppressing out-of-plane buckling when applying a compressive load to a thin metal sheet. It was not possible to determine the out-of-plane buckling deformation under stress, that is, the index (strain, etc.) that is the starting point of wrinkle generation.
Furthermore, most of the deformation that a blank undergoes during press forming using a thin metal plate as a material (blank) occurs in a biaxial stress state where a compressive load is applied in at least one of the in-plane biaxial directions. Therefore, in order to evaluate the presence or absence of wrinkles during press forming, it was necessary to find an index that is the starting point of wrinkles in a biaxial stress state where a compressive load is applied in at least one in-plane direction.
本発明は、上記のような課題を解決するためになされたものであり、十字形状の板状試験片に少なくとも一軸方向から圧縮荷重を作用させ、二軸応力状態においてしわ発生の起点となる指標を求めることができる二軸応力試験装置及び二軸応力試験方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and it applies a compressive load to a cross-shaped plate-shaped specimen from at least one axis, and determines the index that is the starting point of wrinkle generation in a biaxial stress state. The purpose of the present invention is to provide a biaxial stress testing device and a biaxial stress testing method that can determine .
発明者は、金属薄板の板状試験片を用いて二軸応力状態におけるしわ(面外座屈)の発生を再現し、しわ発生の起点となる指標を官能的な評価によらず客観的かつ定量的に測定することができる手法を鋭意検討した。 The inventor reproduced the occurrence of wrinkles (out-of-plane buckling) in a state of biaxial stress using a plate-shaped test piece of a thin metal plate, and determined the index that is the starting point of wrinkle generation objectively and without relying on sensory evaluation. We worked hard to find a method that would allow for quantitative measurement.
前述のとおり、金属薄板を素材(ブランク)とするプレス成形時にブランクが受ける変形は、面内一軸方向の変形ではなく、二軸方向以上の圧縮又は圧縮と引張を組み合わせた変形がほとんどである。よって、プレス成形時に発生するプレスしわ(面外座屈)の発生の有無を評価するために、発明者は、前述した特許文献3に開示されている二軸面内圧縮試験方法において、板状試験片の面内二軸方向に作用させる荷重やひずみの比率を種々変更することで、変形状態を様々に変えることが可能であることに着目した。 As mentioned above, the deformation that a blank undergoes during press forming using a thin metal sheet as a material (blank) is not an in-plane uniaxial deformation, but mostly biaxial compression or a combination of compression and tension. Therefore, in order to evaluate the presence or absence of press wrinkles (out-of-plane buckling) that occur during press forming, the inventor conducted a biaxial in-plane compression test method disclosed in Patent Document 3 mentioned above. We focused on the fact that it is possible to change the deformation state in various ways by varying the load and strain ratios applied in two in-plane directions of the test piece.
そこで、発明者は、特許文献3に開示されている二軸面内圧縮試験方法において、中央金型の押圧面部に開口部を設け、二軸圧縮状態における板状試験片の測定部の面外方向の変形を当該開口部に生じさせることで、様々な圧縮応力状態において面外座屈、すなわち、しわを発生させて、しわ発生の起点となる指標の測定が可能となることを想起するに至った。
本発明は、上記検討に基づいてなされたものであり、以下の構成を備えている。
Therefore, in the biaxial in-plane compression test method disclosed in Patent Document 3, the inventor provided an opening in the pressing surface of the central mold, and developed It is recalled that by causing directional deformation in the opening, out-of-plane buckling, that is, wrinkling, occurs under various compressive stress states, and it becomes possible to measure the index that is the starting point of wrinkling. It's arrived.
The present invention has been made based on the above considerations, and has the following configuration.
(1)本発明に係る二軸応力試験装置は、面内二軸方向に十字形状の板状試験片に少なくとも面内一軸方向の圧縮荷重を作用させる二軸応力試験装置であって、
前記板状試験片における十字形状が交差する測定部に面する矩形の中央部と、該中央部の四辺の縁部に形成された櫛歯状の第1櫛歯部と、を有し、前記板状試験片の両面を挟み込む一対の中央金型と、
該中央金型の四辺の側方に配設されて前記第1櫛歯部に噛合する櫛歯状の第2櫛歯部と、前記板状試験片の十字形状の片部を保持する保持部と、を有する側部金型と、を備え、
前記一対の中央金型のいずれか一方の前記中央部に前記測定部の面外座屈を誘発させることができるようにする開口部が形成されていることを特徴とするものである。
(1) The biaxial stress test device according to the present invention is a biaxial stress test device that applies a compressive load in at least one in-plane direction to a cross-shaped plate-shaped specimen in two in-plane directions,
a rectangular center portion facing the measurement portion where the cross shapes intersect in the plate-like test piece; and a comb-like first comb-teeth portion formed at the edges of the four sides of the center portion; A pair of central molds that sandwich both sides of a plate-shaped test piece,
a second comb-teeth portion disposed on the four sides of the central mold and meshing with the first comb-teeth portion; and a holding portion for holding the cross-shaped piece of the plate-like test piece. and a side mold having;
The present invention is characterized in that an opening is formed in the central portion of one of the pair of central molds to induce out-of-plane buckling of the measuring portion.
(2)上記(1)に記載のものにおいて、
前記中央金型の前記開口部に、前記板状試験片の前記測定部の面外方向の変位を計測する変位計が設けられていることを特徴とするものである。
(2) In the items described in (1) above,
The present invention is characterized in that the opening of the central mold is provided with a displacement meter that measures the displacement of the measurement portion of the plate-shaped test piece in an out-of-plane direction.
(3)本発明に係る二軸応力試験方法は、上記(1)又は(2)に記載の二軸応力試験装置を用いて、前記板状試験片に少なくとも面内一軸方向の圧縮荷重を作用させるものであって、
前記一対の中央金型により前記板状試験片の前記測定部の両面を挟み込み、
前記4つの側部金型により前記板状試験片の前記4つの片部それぞれを保持するとともに、前記中央金型の前記第1櫛歯部に前記側部金型の前記第2櫛歯部を噛合させ、
前記片部を介して前記測定部に少なくとも面内一軸方向の圧縮荷重を作用させ、
前記中央金型の前記開口部に前記測定部の面外座屈を誘発させることを特徴とするものである。
(3) The biaxial stress testing method according to the present invention applies a compressive load in at least an in-plane uniaxial direction to the plate-shaped test piece using the biaxial stress testing apparatus described in (1) or (2) above. It is something that makes
sandwiching both sides of the measurement part of the plate-shaped test piece between the pair of central molds;
Each of the four pieces of the plate-like test piece is held by the four side molds, and the second comb tooth portion of the side mold is attached to the first comb tooth portion of the central mold. mesh,
Applying a compressive load in at least an in-plane uniaxial direction to the measurement part via the piece part,
The invention is characterized in that out-of-plane buckling of the measuring section is induced in the opening of the central mold.
(4)上記(3)に記載のものにおいて、
前記測定部に少なくとも面内一軸方向の圧縮荷重を作用させる過程における前記測定部のひずみと圧縮荷重との関係を取得し、
該取得したひずみと圧縮荷重との関係に基づいてひずみの一次微分を算出し、
該算出したひずみの一次微分が極大となるひずみを前記測定部の面外座屈に対する安定挙動限界ひずみとして求め、
前記取得したひずみと圧縮荷重との関係において、圧縮荷重の増分に対してひずみ増分の極性が反転するひずみを前記測定部におけるしわ発生開始ひずみとして求めることを特徴とするものである。
(4) In the items described in (3) above,
Obtaining the relationship between the strain of the measuring part and the compressive load in the process of applying a compressive load in at least an in-plane uniaxial direction to the measuring part,
Calculating the first derivative of strain based on the relationship between the acquired strain and compressive load,
Determine the strain at which the first derivative of the calculated strain becomes maximum as the critical strain for stable behavior against out-of-plane buckling of the measurement part,
In the relationship between the acquired strain and the compressive load, the strain at which the polarity of the strain increment is reversed with respect to the increment of the compressive load is determined as the wrinkle generation starting strain in the measuring section.
本発明においては、板状試験片における十字形状が交差する測定部に面する矩形の中央部と、該中央部の四辺の縁部に形成された櫛歯状の第1櫛歯部と、を有し、前記板状試験片の両面を挟み込む一対の中央金型と、該中央金型の四辺の側方に配設されて前記第1櫛歯部に噛合する櫛歯状の第2櫛歯部と、前記板状試験片の十字形状の片部を保持する保持部と、を有する側部金型と、を備え、前記一対の中央金型のいずれか一方の前記中央部に前記測定部の面外座屈を誘発させることができるようにする開口部が形成されていることにより、前記板状試験片に少なくとも面内一軸方向の圧縮荷重を作用させることで、前記中央金型の前記開口部に前記測定部の面外座屈を誘発させて、しわ発生の起点を捉える材料試験を行うことができる。
また、本発明においては、十字形状の板状試験片に圧縮荷重を作用させる過程におけるひずみと圧縮荷重との関係を取得し、該取得したひずみと圧縮荷重との関係からしわ発生の起点となるひずみを求めることで、面外座屈の有無をしわ発生の起点となるひずみにより評価することができるため、プレス成形品のプレス成形シミュレーションにおいてしわ発生の有無を目視による官能的な評価によらず客観的に評価することができる。
In the present invention, a rectangular central part facing the measurement part where the cross shapes of the plate-shaped test piece intersect, and a comb-shaped first comb-teeth part formed at the edges of the four sides of the central part. a pair of central molds that sandwich both surfaces of the plate-shaped test piece; and second comb-shaped comb teeth disposed on four sides of the central mold and meshed with the first comb-teeth portions. a side mold having a holding part that holds a cross-shaped piece of the plate-shaped test piece; By forming an opening that can induce out-of-plane buckling of the central mold, a compressive load in at least an in-plane uniaxial direction is applied to the plate-shaped test piece. A material test can be performed to detect the starting point of wrinkle generation by inducing out-of-plane buckling of the measurement part in the opening.
In addition, in the present invention, the relationship between strain and compressive load is acquired in the process of applying compressive load to a cross-shaped plate-like test piece, and the starting point of wrinkle generation is determined from the relationship between the acquired strain and compressive load. By determining the strain, it is possible to evaluate the presence or absence of out-of-plane buckling based on the strain that is the starting point of wrinkle generation, so it is possible to evaluate the presence or absence of wrinkles in press forming simulations of press-formed products without relying on visual sensory evaluation. Can be evaluated objectively.
以下、本発明の実施の形態に係る二軸応力試験装置及び二軸応力試験方法について説明するのに先立ち、本実施の形態において試験対象として用いる板状試験片について説明する。 Hereinafter, prior to explaining the biaxial stress testing device and the biaxial stress testing method according to the embodiment of the present invention, a plate-shaped test piece used as a test object in the present embodiment will be explained.
<板状試験片>
板状試験片100は、図2に一例として示すように、面内二軸方向に十字形状であって、十字形状の中央となる矩形の測定部101と、測定部101の四辺から面内二軸方向に延出する4つの片部103と、を有してなるものである。
<Plate-shaped test piece>
As shown in FIG. 2 as an example, the plate-shaped test piece 100 has a cross shape in two in-plane axes, and includes a rectangular measurement section 101 that is the center of the cross shape, and two in-plane directions from the four sides of the measurement section 101. It has four pieces 103 extending in the axial direction.
測定部101は、二軸応力試験において後述する中央金型11aの中央部13aに設けられた開口部17に面する部位に面外座屈を誘発させて、ひずみや応力等の測定対象となる部位である。なお、図2は、矩形の測定部101が正方形のものを例示しているが、本発明において、測定部は長方形であってもよい。 The measurement unit 101 induces out-of-plane buckling in a portion facing an opening 17 provided in a central portion 13a of a central mold 11a, which will be described later, in a biaxial stress test, and serves as a measurement target for strain, stress, etc. It is a part. Although FIG. 2 shows an example in which the rectangular measuring section 101 is square, in the present invention, the measuring section may be rectangular.
片部103は、測定部101を挟んで対向する一対の片部103aと一対の片部103bとからなり、測定部101を挟んで一対の片部103aが延出する方向と一対の片部103bが延出する方向とが測定部101において直交し、これらの方向が、板状試験片100の測定部101に対して所定の荷重を作用させる面内二軸方向に対応する。 The piece part 103 consists of a pair of piece parts 103a and a pair of piece parts 103b that face each other with the measuring part 101 in between, and the direction in which the pair of piece parts 103a extends with the measuring part 101 in between and the pair of piece parts 103b are perpendicular to the extending direction in the measuring section 101, and these directions correspond to in-plane biaxial directions in which a predetermined load is applied to the measuring section 101 of the plate-shaped test piece 100.
すなわち、一対の片部103a及び一対の片部103bを介して測定部101に面内二軸方向の圧縮荷重を作用させることにより、測定部101を二軸圧縮状態とする二軸圧縮試験を行うことができる。 That is, a biaxial compression test is performed in which the measuring section 101 is placed in a biaxially compressed state by applying a compressive load in two in-plane directions to the measuring section 101 via the pair of pieces 103a and the pair of pieces 103b. be able to.
または、一方の片部103aを介して測定部101に向かって圧縮荷重を作用させ、他方の片部103bを介して測定部101に対して引張荷重を作用させることにより、測定部101を一軸圧縮・他軸引張状態とする一軸圧縮・他軸引張試験を行うことができる。 Alternatively, the measuring section 101 can be uniaxially compressed by applying a compressive load toward the measuring section 101 through one piece 103a and applying a tensile load to the measuring section 101 through the other piece 103b.・Can perform uniaxial compression and other axial tension tests with other axial tension conditions.
そして、測定部101にひずみゲージを貼付することで、二軸応力状態(二軸圧縮状態、一軸圧縮・他軸引張状態)における測定部101のひずみを測定することができる。 By attaching a strain gauge to the measurement section 101, the strain of the measurement section 101 in a biaxial stress state (biaxial compression state, uniaxial compression/other axis tension state) can be measured.
なお、図2に示す板状試験片100は、以下の参考文献に記載のように、十字形状の各角部を円形状に切り欠いた円形切欠部105と、測定部101を囲って隣り合う円形切欠部105の中心を結ぶ各線上に複数個設けられた孔形状部107と、を有するものである。
(参考文献:特開2019-35603号公報)
Note that the plate-shaped test piece 100 shown in FIG. 2 has a circular notch 105 in which each corner of a cross shape is circularly cut out, and a measuring part 101 is surrounded and adjacent to each other, as described in the following reference literature. A plurality of hole-shaped portions 107 are provided on each line connecting the centers of the circular notch portions 105.
(Reference: Japanese Patent Application Publication No. 2019-35603)
円形切欠部105は、片部103aと片部103bのそれぞれを介して測定部101に二軸の圧縮荷重を作用させる際に、片部103aと片部103bとが膨らんで角部が折り重なるのを防止するものであり、材料特性の測定に要求される圧縮ひずみを測定部101に生じさせることを可能とする。 The circular notch 105 prevents the pieces 103a and 103b from bulging and the corners from folding when a biaxial compressive load is applied to the measurement unit 101 through each of the pieces 103a and 103b. This makes it possible to cause the measuring section 101 to generate compressive strain required for measuring material properties.
孔形状部107は、測定部101における局所的な応力集中を分散して応力のばらつきを小さくするためのものである。 The hole-shaped portion 107 is for dispersing local stress concentration in the measuring portion 101 and reducing stress variations.
もっとも、本発明に係る二軸応力試験装置及び二軸応力試験方法は、図2に示す形状の板状試験片100を用いることに限定されるものではなく、円形切欠部105や孔形状部107の有無は問わず、二軸応力試験の条件(荷重比等)に応じて板状試験片の形状や寸法を適宜変更すればよい。 However, the biaxial stress testing device and the biaxial stress testing method according to the present invention are not limited to using the plate-shaped test piece 100 having the shape shown in FIG. The shape and dimensions of the plate-like test piece may be changed as appropriate depending on the conditions (load ratio, etc.) of the biaxial stress test, regardless of the presence or absence of the test piece.
<二軸応力試験装置>
本発明の実施の形態に係る二軸応力試験装置1は、一例として図2に示すような、面内二軸方向に十字形状の板状試験片100に少なくとも面内一軸方向の圧縮荷重を作用させるものであって、一例として図1及び図3に示すように、中央金型11と、側部金型21と、押さえ機構31と、を備えたものである。以下、二軸応力試験装置1の各構成について説明する。
<Biaxial stress test device>
The biaxial stress test device 1 according to the embodiment of the present invention applies a compressive load in at least one in-plane direction to a cross-shaped plate-like test piece 100 in two in-plane directions, as shown in FIG. 2 as an example. As shown in FIGS. 1 and 3 as an example, this device includes a central mold 11, a side mold 21, and a holding mechanism 31. Each configuration of the biaxial stress testing apparatus 1 will be described below.
≪中央金型≫
中央金型11は、図1(b)及び図4に示すように、板状試験片100の十字形状が交差する測定部101に面する矩形の中央部13と、中央部13の四辺の縁部に形成された櫛歯状の第1櫛歯部15と、を有し、板状試験片100の両面を挟み込む一対の中央金型11a及び中央金型11bからなる。
≪Central mold≫
As shown in FIGS. 1(b) and 4, the central mold 11 has a rectangular central part 13 facing the measurement part 101 where the cross shape of the plate-shaped test piece 100 intersects, and four edges of the central part 13. It is composed of a pair of central molds 11a and 11b that sandwich both surfaces of the plate-shaped test piece 100.
第1櫛歯部15は、矩形の中央金型11における対向する二辺の縁部に形成された一対の第1櫛歯部15aと一対の第1櫛歯部15bとからなる。
対向する一対の第1櫛歯部15aが配設される方向と、対向する一対の第1櫛歯部15bが配設される方向とは、中央部13において直交する。そして、これらの方向は、図4に示すように、板状試験片100の一対の片部103a又は一対の片部103bを介して測定部101に圧縮荷重又は引張荷重を作用させる面内二軸方向に対応する。
The first comb-teeth portion 15 includes a pair of first comb-teeth portions 15a and a pair of first comb-teeth portions 15b formed on the edges of two opposing sides of the rectangular central mold 11.
The direction in which the pair of opposing first comb teeth portions 15a are arranged and the direction in which the pair of opposing first comb teeth portions 15b are arranged are orthogonal to each other in the central portion 13. These directions are, as shown in FIG. 4, an in-plane biaxial direction in which a compressive load or a tensile load is applied to the measuring section 101 via the pair of pieces 103a or the pair of pieces 103b of the plate-shaped test piece 100. Corresponds to the direction.
さらに、一対の中央金型11のうち一方の中央金型11aの中央部13aには測定部101の形状変形の自由度を与えて面外座屈を誘発させることができるようにする開口部17が形成されている。
また、中央金型11は、板状試験片100の面内方向への移動を防止するため、図1(b)及び図3に示すように、その四隅が位置決めピン19により押さえ機構31(図3)のベース部33に固定される。
Furthermore, an opening 17 is provided in the central portion 13a of one of the pair of central molds 11, 11a, to provide a degree of freedom in deforming the shape of the measuring part 101, thereby inducing out-of-plane buckling. is formed.
In addition, in order to prevent the plate-shaped test piece 100 from moving in the in-plane direction, the central mold 11 has four corners secured by positioning pins 19 with holding mechanisms 31 (see FIGS. 1(b) and 3). 3) is fixed to the base portion 33.
≪側部金型≫
側部金型21は、図1(a)及び図4に示すように、中央金型11の四辺の側方に配設されて第1櫛歯部15に噛合する櫛歯状の第2櫛歯部23と、板状試験片100の十字形状の片部103を保持する保持部25と、を有するものであり、中央金型11を挟んで配設される一対の側部金型21aと一対の側部金型21bとからなる。
≪Side mold≫
As shown in FIGS. 1A and 4, the side mold 21 includes second comb-shaped combs disposed on the sides of the four sides of the central mold 11 and meshing with the first comb-teeth portions 15. It has a tooth part 23 and a holding part 25 that holds the cross-shaped piece part 103 of the plate-shaped test piece 100, and a pair of side molds 21a disposed with the central mold 11 in between. It consists of a pair of side molds 21b.
側部金型21aは、中央金型11の第1櫛歯部15aに抜き差し可能に噛合する第2櫛歯部23aと、板状試験片100の片部103aを保持する保持部25aと、を有する。 The side mold 21a includes a second comb tooth part 23a that engages with the first comb tooth part 15a of the central mold 11 in a removable manner, and a holding part 25a that holds the piece part 103a of the plate-shaped test piece 100. have
側部金型21bは、中央金型11の第1櫛歯部15bに抜き差し可能に噛合する第2櫛歯部23bと、板状試験片100の片部103bを保持する保持部25bと、を有する。 The side mold 21b includes a second comb tooth portion 23b that engages with the first comb tooth portion 15b of the central mold 11 in a removable manner, and a holding portion 25b that holds the piece portion 103b of the plate-shaped test piece 100. have
このように、第2櫛歯部23が第1櫛歯部15に噛合しながら側部金型21が移動することで、片部103を介して板状試験片100に圧縮荷重を作用させる過程において片部103における座屈を抑制することができる。 In this way, the side mold 21 moves while the second comb tooth portion 23 meshes with the first comb tooth portion 15, thereby applying a compressive load to the plate-shaped test piece 100 via the piece portion 103. Buckling in the piece portion 103 can be suppressed.
なお、本実施の形態において、側部金型21a及び側部金型21bは、押さえ機構31のベース部33の上面に設けられたコロ27a及び27b上にそれぞれ設置され、第2櫛歯部23a及び23bそれぞれが、中央金型11の第1櫛歯部15a及び15bに噛合した状態で、面内一軸方向に移動することができる。 In addition, in this embodiment, the side mold 21a and the side mold 21b are installed on rollers 27a and 27b, respectively, provided on the upper surface of the base portion 33 of the holding mechanism 31, and the second comb tooth portion 23a and 23b can move in a uniaxial in-plane direction while being engaged with the first comb tooth portions 15a and 15b of the central mold 11, respectively.
≪押さえ機構≫
押さえ機構31は、挟持力付与手段として、第1櫛歯部15aに噛合している第2櫛歯部23aと第1櫛歯部15bに噛合している第2櫛歯部23bとを抜き差し可能に板状試験片100の板厚方向に所定の挟持力を付与するものであり、図3に示すように、ベース部33と、天板部35と、ボルト37と、を備えてなる。
≪Holding mechanism≫
The holding mechanism 31 serves as a clamping force imparting means, and is capable of inserting and removing the second comb tooth portion 23a that meshes with the first comb tooth portion 15a and the second comb tooth portion 23b that meshes with the first comb tooth portion 15b. A predetermined clamping force is applied to the plate-shaped test piece 100 in the thickness direction, and as shown in FIG. 3, it includes a base portion 33, a top plate portion 35, and bolts 37.
押さえ機構31においては、ベース部33と天板部35の四隅をボルト37により所定の締付力で締め付けることにより、噛合している第1櫛歯部15と第2櫛歯部23とが抜き差し可能に板状試験片100の板厚方向に所定の挟持力を付与することができ、片部103における座屈変形を確実に防ぐことができて好ましい。 In the holding mechanism 31, by tightening the four corners of the base part 33 and the top plate part 35 with bolts 37 with a predetermined tightening force, the first comb tooth part 15 and the second comb tooth part 23 which are meshed can be inserted and removed. This is preferable because it is possible to apply a predetermined clamping force to the plate-shaped test piece 100 in the thickness direction of the plate-shaped test piece 100, and to reliably prevent buckling deformation in the piece portion 103.
なお、本発明に係る二軸応力試験装置1は、後述するように、中央金型11aの開口部17に、板状試験片100の測定部101の面外方向の変位を計測する変位計51(図10、図1(b)のA-A断面図)が設けられたものが好ましい。これにより、十字形状の板状試験片100に少なくとも面内一軸方向に圧縮荷重が作用された二軸応力状態における測定部101の面外方向の変位を測定することが可能となり、面外座屈53の発生の起点を直接的かつ定量的に確認することできる。なお、変位計として、レーザ変位計や接触式変位計を用いることができる。 The biaxial stress testing apparatus 1 according to the present invention has a displacement meter 51 installed in the opening 17 of the central mold 11a to measure the displacement in the out-of-plane direction of the measurement part 101 of the plate-shaped test piece 100, as described later. (FIG. 10, AA sectional view in FIG. 1(b)) is preferably provided. This makes it possible to measure the displacement in the out-of-plane direction of the measuring section 101 in a biaxial stress state in which a compressive load is applied to the cross-shaped plate-shaped test piece 100 at least in one axial direction within the plane. The origin of the occurrence of 53 can be directly and quantitatively confirmed. Note that a laser displacement meter or a contact type displacement meter can be used as the displacement meter.
<二軸応力試験方法>
本発明の実施の形態に係る二軸応力試験方法は、前述した図1に示す二軸応力試験装置1を用いて、図2に示すような面内二軸方向に十字形状の板状試験片100に少なくとも面内一軸方向の圧縮荷重を作用させるものである。
以下、二軸応力試験装置1を用いて板状試験片100に少なくとも面内一軸方向の圧縮荷重を作用させる場合について説明する。
<Biaxial stress test method>
The biaxial stress testing method according to the embodiment of the present invention uses the biaxial stress testing apparatus 1 shown in FIG. 100 is subjected to a compressive load in at least one in-plane uniaxial direction.
Hereinafter, a case will be described in which a compressive load in at least one in-plane direction is applied to the plate-shaped test piece 100 using the biaxial stress testing apparatus 1.
まず、図1(b)に示すように、一対の中央金型11a及び中央金型11bにより板状試験片100における十字形状が交差する測定部101の両面を挟み込む。 First, as shown in FIG. 1(b), both sides of the measurement part 101 where the cross shapes of the plate-shaped test piece 100 intersect are sandwiched between a pair of central molds 11a and 11b.
次に、図1(a)に示すように、中央金型11の四辺の側方に側部金型21a及び側部金型21bを配設し、保持部25a及び保持部25bにより板状試験片100の片部103a及び片部103bをそれぞれ保持するとともに、図4に示すように、中央金型11の第1櫛歯部15aに側部金型21aの第2櫛歯部23aを噛合させ、中央金型11の第1櫛歯部15bに側部金型21bの第2櫛歯部23bを噛合させる。
そして、図3に示すように、押さえ機構31により、中央金型11と側部金型21とを板状試験片100の板厚方向に所定の挟持力で挟持する。
Next, as shown in FIG. 1(a), a side mold 21a and a side mold 21b are arranged on the four sides of the central mold 11, and a plate-shaped test is performed using the holding parts 25a and 25b. While holding the piece 103a and the piece 103b of the piece 100, as shown in FIG. , the second comb teeth 23b of the side molds 21b are engaged with the first comb teeth 15b of the central mold 11.
Then, as shown in FIG. 3, the center die 11 and the side die 21 are held between the central die 11 and the side die 21 with a predetermined clamping force in the thickness direction of the plate-shaped test piece 100, as shown in FIG.
続いて、図4に示すとおり、第1櫛歯部15aに第2櫛歯部23aを噛合させながら側部金型21aを面内一軸方向に移動させ、かつ、第1櫛歯部15bに第2櫛歯部23bを噛合させながら側部金型21bを面内一軸方向に移動させる。 Subsequently, as shown in FIG. 4, the side mold 21a is moved in the in-plane uniaxial direction while the second comb teeth 23a is engaged with the first comb teeth 15a, and the first comb teeth 15b is fitted with the second comb teeth 23a. The side mold 21b is moved in an in-plane uniaxial direction while the two comb tooth portions 23b are engaged with each other.
ここで、側部金型21a及び側部金型21bは、それぞれが互いに干渉することなく測定部101の面内二軸方向に沿って移動させることができるため、片部103a及び片部103bを介して測定部101に少なくとも面内一軸方向から圧縮荷重が作用する。そして、中央金型11aの中央部13aに開口部17が設けられているので、板状試験片100の測定部101における開口部17に面する部位に面外座屈を誘発させることができる。 Here, since the side mold 21a and the side mold 21b can be moved along the in-plane biaxial directions of the measuring section 101 without interfering with each other, the piece 103a and the piece 103b can be moved. A compressive load acts on the measurement unit 101 from at least one in-plane uniaxial direction. Since the opening 17 is provided in the central portion 13a of the central mold 11a, out-of-plane buckling can be induced in the portion of the measurement portion 101 of the plate-shaped test piece 100 that faces the opening 17.
≪しわ発生の起点となるひずみの測定≫
本実施の形態に係る二軸応力試験方法により、板状試験片100の測定部101にしわが発生する起点となるひずみ(しわ発生起点ひずみ)を求めることができる。
以下、一例として、板状試験片100の測定部101に二軸圧縮荷重を作用させたときの測定部101におけるしわ発生起点ひずみを求める手順について説明する。
≪Measurement of strain that is the starting point of wrinkle formation≫
By the biaxial stress testing method according to the present embodiment, it is possible to determine the strain at which wrinkles occur in the measurement portion 101 of the plate-shaped test piece 100 (wrinkle generation starting point strain).
Hereinafter, as an example, a procedure for determining the wrinkle generation starting strain in the measurement part 101 when a biaxial compressive load is applied to the measurement part 101 of the plate-shaped test piece 100 will be described.
なお、以下の説明は、引張強度270MPa級、板厚1.2mmの鋼板を用いて板状試験片100を作製し、板状試験片100における測定部101のサイズを30mm×30mm、円形切欠部105の半径r1を2.5mm、孔形状部107の形状は、長軸長さ2rxを5.0mm、短軸長さ2ryを1.0mm、中央金型11aにおける開口部17をφ25mmの円形形状とした場合である。 In the following explanation, the plate-shaped test piece 100 is prepared using a steel plate with a tensile strength of 270 MPa class and a plate thickness of 1.2 mm, and the size of the measurement part 101 in the plate-shaped test piece 100 is 30 mm x 30 mm, and the circular notch 105 is used. The radius r1 of the hole 107 is 2.5 mm, the long axis length 2r x is 5.0 mm, the short axis length 2r y is 1.0 mm, and the opening 17 in the central mold 11a is circular with a diameter of 25 mm. This is the case.
(ひずみと圧縮荷重の関係の取得)
まず、板状試験片100の測定部101の開口部17の位置であって、中央部を避けた部位にひずみゲージを貼付し、一対の中央金型11a、11bにより板状試験片100の両面を挟み込む。ここでは、板状試験片100に対して圧縮荷重を作用させる面内二軸方向それぞれの軸方向のひずみを測定する2つの単軸のひずみゲージを測定部101に貼付する。なお、2つの単軸のひずみゲージの替りに、2つのセンサーが互いに垂直に取り付けられている2軸のひずみゲージを用いてもよい。
(Obtaining the relationship between strain and compressive load)
First, a strain gauge is attached to the position of the opening 17 of the measurement part 101 of the plate-shaped test piece 100, avoiding the central part, and both sides of the plate-shaped test piece 100 are attached using a pair of central molds 11a and 11b. Insert. Here, two uniaxial strain gauges are attached to the measurement part 101 to measure the strain in each of the two in-plane directions in which a compressive load is applied to the plate-shaped test piece 100. Note that instead of the two uniaxial strain gauges, a biaxial strain gauge in which two sensors are attached perpendicularly to each other may be used.
次に、板状試験片100の片部103を介して側部金型21を用いて測定部101に二軸圧縮荷重を作用させ、測定部101におけるひずみと測定部101に作用させる圧縮荷重との関係を取得する。なお、圧縮荷重は一方の一軸の値でもよいし、二軸を平均又は合算した値であってもよい。
そして、取得したひずみと圧縮荷重との関係に基づいて、図5に示すひずみ-荷重線図を作成する。図5において、横軸は板状試験片100に作用させた荷重(プラスは引張荷重、マイナスは圧縮荷重)及びひずみの圧縮荷重に対する一次微分を表し、左縦軸はひずみゲージによる測定ひずみ(プラスは引張ひずみ、マイナスは圧縮ひずみ)を表し、右縦軸は測定部101の板厚方向(面外方向)の変形量であるしわ高さを表している。
図6は、面内二軸方向(X軸方向、Y軸方向)それぞれについてひずみ-荷重線図を作成した例である。
Next, a biaxial compressive load is applied to the measuring part 101 using the side mold 21 through the piece part 103 of the plate-shaped test piece 100, and the strain in the measuring part 101 and the compressive load applied to the measuring part 101 are Get the relationship. Note that the compressive load may be a value on one axis, or may be an average value or a sum of two axes.
Then, a strain-load diagram shown in FIG. 5 is created based on the relationship between the acquired strain and compressive load. In FIG. 5, the horizontal axis represents the load applied to the plate-shaped test piece 100 (plus: tensile load, minus: compressive load) and the first derivative of strain with respect to the compressive load, and the left vertical axis represents the strain measured by the strain gauge (plus represents the tensile strain, and the negative represents the compressive strain), and the right vertical axis represents the wrinkle height, which is the amount of deformation in the thickness direction (out-of-plane direction) of the measuring section 101.
FIG. 6 is an example of strain-load diagrams created for each of the two in-plane directions (X-axis direction and Y-axis direction).
(安定挙動限界ひずみの取得)
図5に示すように、測定部101に圧縮荷重の負荷を徐々に作用させる(図5の横軸左側に進む)と、縦軸下方向に圧縮ひずみが蓄積されるが、やがて圧縮荷重の負荷に対する圧縮ひずみの蓄積が鈍くなり、その後圧縮ひずみが(マイナスの)最大値を示し、その後面外座屈が生じて蓄積された圧縮ひずみが一気に引張側に開放される。
(Obtaining the critical strain for stable behavior)
As shown in FIG. 5, when a compressive load is gradually applied to the measurement unit 101 (proceeding to the left side of the horizontal axis in FIG. 5), compressive strain is accumulated downward on the vertical axis, but eventually the compressive load is applied. The accumulation of compressive strain slows down, and then the compressive strain reaches a (negative) maximum value, after which out-of-plane buckling occurs and the accumulated compressive strain is suddenly released to the tensile side.
そこで、圧縮荷重の負荷に対する圧縮ひずみが(マイナスの)最大値を示す前に蓄積が鈍くなり始める時点の圧縮ひずみを、最初に現れる面外座屈の予兆を示す起点となる圧縮ひずみとして捉え、本発明では、この起点となる圧縮ひずみを安定挙動限界ひずみと定義する。 Therefore, we consider the compressive strain at the point when the accumulation of compressive strain starts to slow down before it reaches its (negative) maximum value in response to a compressive load as the compressive strain that is the starting point that indicates the first sign of out-of-plane buckling. In the present invention, the compressive strain that becomes the starting point is defined as the critical strain for stable behavior.
本実施の形態では、図5に示すひずみ-荷重線図に基づいて圧縮ひずみの一次微分を算出し(図中の点線)、圧縮ひずみの一次微分が極大値となるひずみを、測定部101の面外座屈に対する安定挙動限界ひずみとして求める。 In this embodiment, the first derivative of compressive strain is calculated based on the strain-load diagram shown in FIG. It is determined as the critical strain for stable behavior against out-of-plane buckling.
安定挙動限界ひずみは、図5に示すように、中央金型11の開口部17に変位計51を設けて測定部101の面外方向の表面の変位である面外座屈53の高さ(しわ高さ)を測定(図10)した結果において、しわ高さの急激な変化が開始するひずみと一致している。 As shown in FIG. 5, the stable behavior limit strain is determined by installing a displacement meter 51 in the opening 17 of the central mold 11 and determining the height of the out-of-plane buckling 53, which is the displacement of the surface of the measuring part 101 in the out-of-plane direction ( The results of measuring the wrinkle height (Fig. 10) show that the strain at which the wrinkle height starts to change rapidly coincides with the strain.
(しわ発生開始ひずみの取得)
測定部101におけるひずみが安定挙動限界ひずみを超えてもなお測定部101に圧縮荷重を作用させると、蓄積された圧縮ひずみが一気に開放され、明瞭な面外座屈が発生し、引張ひずみとなる。
(Obtaining the wrinkle onset strain)
If a compressive load is still applied to the measuring part 101 even if the strain in the measuring part 101 exceeds the stable behavior limit strain, the accumulated compressive strain is released all at once, clear out-of-plane buckling occurs, and it becomes tensile strain. .
このとき、ひずみゲージによるひずみ測定値は(マイナスの)最大値を示し、圧縮荷重の負荷の増分(図5の横軸左方向)に対するひずみの増分は負(圧縮)から正(引張)へと反転する。そこで、本発明では、圧縮荷重の負荷の増分に対するひずみの増分の極性が反転する時点のひずみを面外座屈(しわ)の発生が開始するしわ発生開始ひずみと定義する。
そして、図5に示すひずみ-荷重線図において、圧縮荷重の負荷の増分に対するひずみの増分の極性が反転する時点のひずみをしわ発生開始ひずみとして求める。
At this time, the strain measured by the strain gauge shows the (minus) maximum value, and the strain increment with respect to the increment of the compressive load (to the left of the horizontal axis in Figure 5) changes from negative (compression) to positive (tension). Invert. Therefore, in the present invention, the strain at which the polarity of the strain increment with respect to the load increment of the compressive load is reversed is defined as the wrinkle generation start strain at which out-of-plane buckling (wrinkle) begins to occur.
Then, in the strain-load diagram shown in FIG. 5, the strain at the time when the polarity of the increment of strain with respect to the increment of compressive load is reversed is determined as the strain at which wrinkle generation starts.
また、図5に示すように、しわ発生開始ひずみは、変位計により測定したしわ高さが加速的に上昇を開始するひずみとも一致している。そのため、しわ発生開始ひずみは、実際のプレス成形品の成形過程においてわずかに視認できる程度のしわが急激に変化して明瞭なしわに転じるタイミングを示す指標に相当すると考えられる。 Further, as shown in FIG. 5, the strain at which wrinkles start to appear coincides with the strain at which the wrinkle height measured by the displacement meter starts to rise at an accelerated rate. Therefore, the strain at which wrinkles start to appear corresponds to an index that indicates the timing at which slightly visible wrinkles suddenly change and turn into clear wrinkles during the actual forming process of a press-formed product.
以上、本実施の形態に係る二軸応力試験装置及び二軸応力試験方法によれば、十字形状の板状試験片100に少なくとも面内一軸方向の圧縮荷重を作用させる際に、板状試験片100の測定部101における開口部17に面する部位に面外座屈を誘発させることができ、しわ発生の起点を捉えることができる。 As described above, according to the biaxial stress testing device and the biaxial stress testing method according to the present embodiment, when applying a compressive load in at least one in-plane direction to the cross-shaped plate-shaped test piece 100, the plate-like test piece Out-of-plane buckling can be induced in the portion of the measurement unit 101 of 100 facing the opening 17, and the starting point of wrinkle generation can be detected.
さらに、本実施の形態に係る二軸応力試験方法においては、板状試験片100に圧縮荷重を作用させる過程におけるひずみと圧縮荷重との関係を取得し、該取得したひずみと圧縮荷重との関係に基づいてしわ発生の起点となるひずみ(安定挙動限界ひずみ及びしわ発生開始ひずみ)を求めることにより、従来のプレス成形シミュレーションによるしわ発生の有無の官能的な評価によらず、しわ発生の起点となるひずみに基づいて面外座屈の有無を客観的に評価することができる。 Furthermore, in the biaxial stress test method according to the present embodiment, the relationship between the strain and the compressive load in the process of applying the compressive load to the plate-shaped test piece 100 is acquired, and the relationship between the acquired strain and the compressive load is obtained. By determining the strain that is the starting point of wrinkle generation (stable behavior limit strain and wrinkle initiation strain) based on the The presence or absence of out-of-plane buckling can be objectively evaluated based on the strain.
なお、上記の説明は、十字形状の板状試験片の測定部に対して二軸方向の等圧縮荷重を作用させるものであったが、本発明は、二軸圧縮変形(例えば、X軸方向とY軸方向の荷重比-1:-1、-2:-1等)や、片軸圧縮・片軸引張(例えば、-2:+1等)、単軸圧縮(例えば、-1:0、0:-1)のように様々な二軸応力状態として、
測定部に作用させる面内二軸方向の荷重が異なる場合においても、測定部にしわ(面外座屈)を発生させることができる。
Note that in the above explanation, an equal compressive load in two axial directions is applied to the measurement part of a cross-shaped plate-like test piece, but the present invention applies biaxial compressive deformation (for example, in the X-axis direction). load ratio in the Y-axis direction -1:-1, -2:-1, etc.), uniaxial compression/uniaxial tension (e.g. -2:+1, etc.), uniaxial compression (e.g. -1:0) , 0:-1) as various biaxial stress states,
Wrinkles (out-of-plane buckling) can be generated in the measuring portion even when the loads in the two in-plane directions applied to the measuring portion are different.
異なる荷重比におけるひずみ-荷重線図の具体例として、図7に、板状試験片の測定部に作用させる面内二軸方向の圧縮荷重を荷重の比で-1:-4、-2:-1及び-1:-1としたときのひずみと圧縮荷重との関係を示す。 As a specific example of a strain-load diagram at different load ratios, Fig. 7 shows the compressive loads in the in-plane biaxial directions applied to the measurement part of the plate-shaped specimen at the load ratios of -1:-4, -2: The relationship between strain and compressive load when -1 and -1:-1 is shown.
このように、本発明によれば、異なる様々な二軸応力状態(単軸圧縮、平面歪圧縮、等二軸圧縮、引張圧縮)でのしわ発生の起点となるひずみ(安定挙動限界ひずみ、しわ発生開始ひずみ)を求めることにより、プレス成形方式やプレス成形品の形状に応じて、汎用的にしわ発生の起点となる指標(しわ発生条件)を求めることができる。 As described above, according to the present invention, the strain that is the starting point of wrinkle generation (stable behavior limit strain, wrinkle By determining the strain at which wrinkles begin to occur, it is possible to determine a general-purpose index (wrinkle generation condition) that is the starting point of wrinkle generation, depending on the press forming method and the shape of the press-formed product.
さらに、プレス成形品のプレス成形シミュレーションにより明瞭なしわが発生した部位のひずみ条件を本実施の形態に係る二軸応力試験方法により再現することにより、当該プレス成形品のプレス成形過程において明瞭なしわの発生に至る直前の不安定挙動、すなわち、しわ発生の起点となる指標(安定挙動限界ひずみ、しわ発生開始ひずみ)を実際の金属薄板を用いた板状試験片で確認することができる。そして、当該二軸応力試験の結果をプレス成形シミュレーションに反映させることで、しわ発生の危険性をプレス成形シミュレーションにおいて精度良く判定することが可能となる。 Furthermore, by reproducing the strain conditions of areas where clear wrinkles have occurred in the press forming simulation of press-formed products using the biaxial stress test method according to this embodiment, clear wrinkles can be avoided during the press-forming process of the press-formed products. Unstable behavior immediately before the occurrence of wrinkles, that is, an index that is the starting point of wrinkle generation (stable behavior limit strain, wrinkle initiation strain) can be confirmed using a plate-shaped test piece using an actual thin metal plate. Then, by reflecting the results of the biaxial stress test in the press forming simulation, it becomes possible to accurately determine the risk of wrinkle generation in the press forming simulation.
なお、本実施の形態に係る二軸応力試験装置において、一方の中央金型11aの中央部13aに設ける開口部17の形状は、図4に示すように、円形とすることが好ましい。開口部17を円形とすることで、測定部101の変形時の方向性の影響を無視できるからである。
また、開口部17を形成するに際し、図1(b)に示すように、中央部13の厚み部分を下面側から上面側に向かって拡径するテーパー形状にするのが好ましい。これにより、板状試験片100の測定部101の面外座屈を目視によっても確認できる。
In addition, in the biaxial stress testing apparatus according to the present embodiment, the shape of the opening 17 provided in the central portion 13a of one central mold 11a is preferably circular, as shown in FIG. This is because by making the opening 17 circular, the influence of the directionality when the measuring section 101 is deformed can be ignored.
Further, when forming the opening 17, it is preferable that the thickness of the central portion 13 be tapered in diameter from the lower surface side toward the upper surface side, as shown in FIG. 1(b). Thereby, out-of-plane buckling of the measurement portion 101 of the plate-shaped test piece 100 can also be confirmed visually.
さらに、開口部は特定の径に定められた円形でなくともよく、正方形や長方形、その他、多角形や多角形と円弧形状を組み合わせた形状でもよく、このような形状であっても測定部101に誘発する面外座屈の起点を捉える上で問題とならない。 Further, the opening does not have to be circular with a specific diameter, and may be a square, rectangle, polygon, or a combination of a polygon and an arc shape, and even if it has such a shape, the measurement part 101 This poses no problem in identifying the origin of out-of-plane buckling induced by
また、開口部17の大きさを調整することで、面外座屈53の発生しやすさを調整することができる。開口部17が小さいほど面外座屈は生じにくく、大きいほど面外座屈は生じやすくなる。開口部17の大きさは、板状試験片100の測定部101に二軸応力状態を発生させるシミュレーションを行い、当該シミュレーションの解析条件や結果に基づいて、板状試験片100の測定部101の表面を抑える拘束状況を勘案して決定すればよい。また、プレス成形品のプレス成形シミュレーションにより、明瞭なしわが発生した部位の範囲の大きさを勘案して決定してもよい。 Further, by adjusting the size of the opening 17, the ease with which out-of-plane buckling 53 occurs can be adjusted. The smaller the opening 17, the less likely out-of-plane buckling will occur, and the larger the opening 17, the more likely out-of-plane buckling will occur. The size of the opening 17 is determined by performing a simulation in which a biaxial stress state is generated in the measuring part 101 of the plate-shaped test piece 100, and based on the analysis conditions and results of the simulation. It may be determined by taking into consideration the restraint situation in which the surface is to be restrained. Further, the size may be determined by taking into consideration the size of the area where clear wrinkles have occurred through a press forming simulation of a press formed product.
なお、本発明に係る二軸応力試験装置には、中央金型11の開口部17に変位計51(図10)を設けるのが好ましい。
変位計51が設けられていることで、二軸応力状態における測定部101の面外方向の変位を測定することができ、面外座屈の発生を直接的かつ定量的に実測できる。
また、変位計51は、測定部101のひずみを測定するのに支障がないものであれば特に限定されるものではなく、例えば、レーザー変位計や接触式変位計等を用いることができる。
In addition, it is preferable to provide the displacement meter 51 (FIG. 10) in the opening 17 of the central mold 11 in the biaxial stress testing apparatus according to the present invention.
By providing the displacement meter 51, it is possible to measure the displacement of the measurement unit 101 in the out-of-plane direction in a biaxial stress state, and it is possible to directly and quantitatively measure the occurrence of out-of-plane buckling.
Further, the displacement meter 51 is not particularly limited as long as it does not interfere with measuring the strain of the measurement unit 101, and for example, a laser displacement meter, a contact type displacement meter, etc. can be used.
本発明に係る二軸応力試験方法において、板状試験片の面外変形は座屈現象であるので、板状試験片の板厚が大きく影響する。そのため、板状試験片の板厚は、しわ発生を再現させたいプレス成形のブランク板厚に合わせるのが好ましい。
なお、板状試験片の材料強度も板状試験片の面外座屈に影響するが、板状試験片の板厚や中央金型に設ける開口部の穴径の大きさに比べると影響は小さいので、本発明は、板状試験片の材料強度を特に制限するものではない。
In the biaxial stress test method according to the present invention, since the out-of-plane deformation of the plate-shaped test piece is a buckling phenomenon, the thickness of the plate-shaped test piece has a large effect. Therefore, it is preferable that the thickness of the plate-shaped test piece be adjusted to the thickness of a press-molded blank plate in which the occurrence of wrinkles is desired to be reproduced.
It should be noted that the material strength of the plate-shaped specimen also affects the out-of-plane buckling of the plate-shaped specimen, but the effect is less compared to the thickness of the plate-shaped specimen and the size of the hole diameter of the opening provided in the central mold. Since it is small, the present invention does not particularly limit the material strength of the plate-shaped specimen.
また、上記の説明は、面外座屈の起点となるひずみを捉えるために、測定部101に貼付したひずみゲージによりひずみを測定するものであったが、本発明にかかる二軸応力試験方法はこれに限るものではなく、開口部からデジタル画像相関法を用いて測定部101のひずみを測定するものであってもよい。
さらに、本発明は、測定部101のひずみを測定するものに限らず、板状試験片の面外方向における測定部101の変位を測定することにより、面外座屈の起点を捉えるものであってもよい。
Furthermore, in the above explanation, the strain was measured using a strain gauge attached to the measurement part 101 in order to capture the strain that becomes the starting point of out-of-plane buckling, but the biaxial stress test method according to the present invention The present invention is not limited to this, and the strain in the measurement unit 101 may be measured from the opening using a digital image correlation method.
Furthermore, the present invention is not limited to measuring the strain of the measuring part 101, but can also detect the starting point of out-of-plane buckling by measuring the displacement of the measuring part 101 in the out-of-plane direction of a plate-shaped test piece. It's okay.
また、上記の説明では、ひずみと圧縮荷重の関係を取得し、ひずみ-荷重線図を作成するものであったが、本発明は、測定した圧縮荷重から圧縮応力を求めることでひずみと圧縮応力の関係を取得し、該取得したひずみと圧縮応力の関係に基づいてしわ発生の起点となるひずみを求めるものであってもよい。 In addition, in the above explanation, the relationship between strain and compressive load was obtained and a strain-load diagram was created. However, the present invention calculates the compressive stress from the measured compressive load. The strain that becomes the starting point of wrinkle generation may be determined based on the acquired relationship between strain and compressive stress.
本発明に係る二軸応力試験装置及び二軸応力試験方法の作用効果を検証する実験及び解析を行ったので、以下、これについて説明する。 Experiments and analyzes were conducted to verify the effects of the biaxial stress testing device and biaxial stress testing method according to the present invention, and will be described below.
本実施例では、十字形状の板状試験片に面内二軸方向の圧縮荷重を作用させてしわ発生の起点となるひずみを求める二軸応力試験と、該二軸応力試験により求めたしわ発生の起点となるひずみに基づいて図8に示すプレス成形品200のプレス成形シミュレーションによるしわ発生の判定を検証した。 In this example, we performed a biaxial stress test in which a compressive load was applied in two in-plane directions to a cross-shaped plate specimen to determine the strain that becomes the starting point of wrinkle generation, and The determination of the occurrence of wrinkles was verified by press forming simulation of the press formed product 200 shown in FIG. 8 based on the strain that becomes the starting point.
<二軸圧縮試験>
まず、図1及び図3に示す二軸応力試験装置1を用い、図2に示す十字形状の板状試験片100の二軸応力試験を行い、測定部101に面内二軸方向の圧縮荷重を作用させたときの測定部101におけるひずみと板状試験片100に作用させた圧縮荷重とを測定した。
<Biaxial compression test>
First, using the biaxial stress testing apparatus 1 shown in FIGS. 1 and 3, a biaxial stress test was performed on the cross-shaped plate specimen 100 shown in FIG. The strain in the measurement part 101 when the pressure was applied and the compressive load applied to the plate-shaped test piece 100 were measured.
板状試験片100には、供試材として引張強度270MPa級、板厚1.2mmの鋼板を用い、測定部のサイズを30mm×30mmとし、二軸応力試験装置1の中央金型11aに形成された開口部17はφ25mmの円形とした。 For the plate-shaped test piece 100, a steel plate with a tensile strength of 270 MPa class and a plate thickness of 1.2 mm was used as the test material, the measurement part size was 30 mm x 30 mm, and it was formed in the central mold 11a of the biaxial stress test device 1. The opening 17 was circular with a diameter of 25 mm.
そして、二軸応力試験装置1の一対の中央金型11a、11bの間に板状試験片100を挟み込むとともに、片部103a、103bをそれぞれ側部金型21a、側部金型21bの保持部25a、25bで保持し、片部103a、103bを介して測定部101に面内二軸方向から圧縮荷重を作用させた。ここで、側部金型21aにより圧縮荷重する方向をX軸方向、側部金型21bにより圧縮荷重を作用する方向をY軸方向とし、X軸方向とY軸方向の圧縮荷重を等しくした(X軸方向の荷重:Y軸方向の荷重=-1:-1、マイナスは圧縮荷重を示す)。 Then, the plate-shaped test piece 100 is sandwiched between the pair of central molds 11a and 11b of the biaxial stress testing apparatus 1, and the pieces 103a and 103b are held in the holding parts of the side molds 21a and 21b, respectively. 25a and 25b, and a compressive load was applied to the measuring section 101 from two in-plane directions via the pieces 103a and 103b. Here, the direction in which the compressive load is applied by the side mold 21a is the X-axis direction, the direction in which the compressive load is applied by the side mold 21b is the Y-axis direction, and the compressive loads in the X-axis direction and the Y-axis direction are made equal ( Load in the X-axis direction: Load in the Y-axis direction = -1: -1 (minus indicates compressive load).
図6に、測定されたひずみとX軸方向及びY軸方向の圧縮荷重との関係を示すひずみ-荷重線図を示す。
さらに、図9に、Y軸方向のひずみ-荷重線図について算出したひずみの一次微分及びひずみ増分と、該算出したひずみの一次微分及びひずみ増分から求めた安定挙動限界ひずみ及びしわ発生開始ひずみを示す。
安定挙動ひずみは、ひずみ-荷重線図においてひずみの一次微分が極大値となるひずみであり、荷重-6.9kNにおいて-1353μεであった。
しわ発生開始ひずみは、ひずみ-荷重線図においてひずみの増分が反転、すなわち、ひずみ-荷重線図が下に凸となり(マイナスの)最大値となるひずみであり、荷重-7.2kNにおいて-1671μεであった。
FIG. 6 shows a strain-load diagram showing the relationship between the measured strain and the compressive loads in the X-axis direction and the Y-axis direction.
Furthermore, Figure 9 shows the first derivative of strain and strain increment calculated for the strain-load diagram in the Y-axis direction, and the stable behavior limit strain and wrinkle initiation strain determined from the calculated first derivative of strain and strain increment. show.
The stable behavior strain was the strain at which the first derivative of strain reached its maximum value in the strain-load diagram, and was -1353με at a load of -6.9kN.
The strain at which wrinkles start is the strain at which the increment of strain in the strain-load diagram is reversed, that is, the strain-load diagram becomes convex downward and reaches its maximum (minus) value, and is -1671 με at a load of -7.2 kN. there were.
<プレス成形シミュレーションによるしわ発生の判定>
次に、図8に示す張り出し成形面部201と側面部203とを有するプレス成形品200のFEM解析によるプレス成形シミュレーションを行い、プレス成形品200におけるしわ発生の有無を判定した。なお、図8ではパンチ211の状態がわかるように、プレス成形品200の左半分のみを示した。プレス成形シミュレーションでは、プレス成形品200はダイ213の全周に渡っている。
<Determination of wrinkle occurrence by press forming simulation>
Next, a press molding simulation was performed using FEM analysis of the press molded product 200 having the overhang molded surface portion 201 and the side surface portion 203 shown in FIG. 8, and the presence or absence of wrinkles in the press molded product 200 was determined. In addition, in FIG. 8, only the left half of the press-formed product 200 is shown so that the state of the punch 211 can be seen. In the press molding simulation, the press molded product 200 extends around the entire circumference of the die 213.
プレス成形品200は、図8に示すように、パンチ211とダイ213とホルダー215とを備えた金型210を用いて張り出し成形したものであり、ブランクには引張強度270MPa、板厚1.2mmの円形の鋼板を用いた。
さらに、プレス成形品200の成形高さを20mm、30mm及び40mmに変更し、成形高さの違いによるしわ発生の有無を判定した。
表1に、ブランクの材料、金型条件及びFEM解析条件を示す。
As shown in FIG. 8, the press-formed product 200 is stretch-molded using a mold 210 equipped with a punch 211, a die 213, and a holder 215, and the blank has a tensile strength of 270 MPa and a plate thickness of 1.2 mm. A circular steel plate was used.
Furthermore, the molding height of the press-formed product 200 was changed to 20 mm, 30 mm, and 40 mm, and the presence or absence of wrinkles due to the difference in molding height was determined.
Table 1 shows the blank material, mold conditions, and FEM analysis conditions.
前述した図9に、プレス成形シミュレーションにより求めたプレス成形品200のシェーディング図を示す。
成形高さ20mm(図9(c))及び30mm(図9(b))では、プレス成形品200の側面部203にしわ発生は認められなかったが、成形高さ40mm(図9(a))では、側面部203にしわ発生が認められた。
The aforementioned FIG. 9 shows a shading diagram of the press-formed product 200 obtained by press-forming simulation.
No wrinkles were observed on the side surface 203 of the press-formed product 200 when the molding height was 20 mm (Fig. 9(c)) and 30 mm (Fig. 9(b)), but when the molding height was 40 mm (Fig. 9(a)) ), wrinkles were observed on the side surface 203.
さらに、図9に示すプレス成形品200のシェーディング図には、側面部203において面内二軸方向の圧縮荷重が等しい等二軸圧縮荷重条件である部位を○印で示しており、当該○印の部位におけるひずみと、前述した二軸応力試験により求めたしわ発生有無の判定との対応を検証した。 Furthermore, in the shading diagram of the press-formed product 200 shown in FIG. 9, the portions in the side surface portion 203 under the equibiaxial compressive load condition where the compressive loads in the two in-plane directions are equal are indicated by ○ marks. We verified the correspondence between the strain in the area and the determination of the presence or absence of wrinkles determined by the biaxial stress test described above.
図9に示すように、プレス成形品200の成形高さが20mm、30mm、40mmと高くなるにつれて等二軸圧縮荷重条件となる部位の成形高さ方向の位置も変化している。 As shown in FIG. 9, as the molding height of the press-formed product 200 increases to 20 mm, 30 mm, and 40 mm, the position of the portion subject to the equibiaxial compressive load condition changes in the molding height direction.
成形高さ20mmのときのひずみは-228μεであり、二軸応力試験により求めた安定挙動限界ひずみ(=-1353με)よりもその絶対値が小さい値であった。そのため、当該部位ではひずみが発生する予兆は認められないと判定される。この判定は、プレス成形シミュレーションにより求められたプレス成形品200のシェーディング図においてもしわ発生が認められなかったことと一致した。 The strain when the molding height was 20 mm was -228με, and its absolute value was smaller than the stable behavior limit strain (=-1353με) determined by the biaxial stress test. Therefore, it is determined that there is no sign that strain will occur in the region. This determination coincided with the fact that no wrinkles were observed in the shading diagram of the press-formed product 200 obtained by press-forming simulation.
成形高さ30mmのときのひずみは-1230μであり、二軸圧縮試験により求めた安定挙動限界ひずみ(=-1353με)よりもその絶対値が小さい値であった。そのため、成形高さ20mmのときと同様、当該部位ではひずみが発生する予兆は認められないと判定される。この判定は、プレス成形シミュレーションにより求められたプレス成形品のシェーディング図においてもしわ発生が認められなかったことと一致した。 The strain when the molding height was 30 mm was -1230 μ, and its absolute value was smaller than the stable behavior limit strain (=-1353 με) determined by the biaxial compression test. Therefore, as with the molding height of 20 mm, it is determined that there is no sign that strain will occur in this area. This judgment was consistent with the fact that no wrinkles were observed in the shading diagram of the press-formed product obtained by press-forming simulation.
成形高さ40mmのときのひずみは-1660μであり、二軸圧縮試験により求めた安定挙動限界ひずみ(=-1353με)よりもその絶対値が大きく、しわ発生限界ひずみ(=-1671με)とほぼ同じ値であった。そのため、当該部位ではしわが発生すると判定される。この判定は、プレス成形シミュレーションにより求められたプレス成形品200のシェーディング図においてもしわ発生が認められたことと一致した。 The strain when the molding height is 40mm is -1660μ, which is larger in absolute value than the stable behavior limit strain (=-1353με) determined by biaxial compression test, and almost the same as the wrinkle generation limit strain (=-1671με). It was a value. Therefore, it is determined that wrinkles will occur in the region. This determination coincided with the fact that wrinkles were also observed in the shading diagram of the press-formed product 200 obtained by press-forming simulation.
以上、本発明に係る二軸応力試験方法により求めたしわ発生の起点となるひずみ(安定挙動限界ひずみ、しわ発生開始ひずみ)により、プレス成形品におけるしわ発生の有無を判定できることが示された。 As described above, it has been shown that the presence or absence of wrinkles in a press-formed product can be determined based on the strain that is the starting point of wrinkle generation (stable behavior limit strain, wrinkle generation start strain) determined by the biaxial stress test method according to the present invention.
1 二軸応力試験装置
11 中央金型
11a 中央金型
11b 中央金型
13 中央部
13a 中央部
15 第1櫛歯部
15a 第1櫛歯部
15b 第1櫛歯部
17 開口部
19 位置決めピン
21 側部金型
21a 側部金型
21b 側部金型
23 第2櫛歯部
23a 第2櫛歯部
23b 第2櫛歯部
25 保持部
25a 保持部
25b 保持部
27a コロ
27b コロ
31 押さえ機構
33 ベース部
35 天板部
37 ボルト
51 変位計
53 面外座屈(面外変形)
100 板状試験片
101 測定部
103 片部
103a 片部
103b 片部
105 円形切欠部
107 孔形状部
200 プレス成形品
201 張り出し成形面部
203 側面部
210 金型
211 パンチ
213 ダイ
215 ホルダー
1 Biaxial stress test device 11 Central mold 11a Central mold 11b Central mold 13 Central part 13a Central part 15 First comb tooth part 15a First comb tooth part 15b First comb tooth part 17 Opening part 19 Positioning pin 21 Side Part mold 21a Side mold 21b Side mold 23 Second comb tooth part 23a Second comb tooth part 23b Second comb tooth part 25 Holding part 25a Holding part 25b Holding part 27a Roller 27b Roller 31 Pressing mechanism 33 Base part 35 Top plate part 37 Bolt 51 Displacement meter 53 Out-of-plane buckling (out-of-plane deformation)
100 Plate test piece 101 Measuring part 103 Piece part 103a Piece part 103b Piece part 105 Circular notch part 107 Hole-shaped part 200 Press molded product 201 Overhang molded surface part 203 Side part 210 Mold 211 Punch 213 Die 215 Holder
Claims (4)
前記板状試験片における十字形状が交差する測定部に面する矩形の中央部と、該中央部の四辺の縁部に形成された櫛歯状の第1櫛歯部と、を有し、前記板状試験片の両面を挟み込む一対の中央金型と、
該中央金型の四辺の側方に配設されて前記第1櫛歯部に噛合する櫛歯状の第2櫛歯部と、前記板状試験片の十字形状の片部を保持する保持部と、を有する側部金型と、を備え、
前記一対の中央金型のいずれか一方の前記中央部に前記測定部の面外座屈を誘発させることができるようにする開口部が形成されていることを特徴とする二軸応力試験装置。 A biaxial stress test device that applies a compressive load in at least one in-plane direction to a cross-shaped plate specimen in two in-plane directions,
a rectangular center portion facing the measurement portion where the cross shapes intersect in the plate-like test piece; and a comb-like first comb-teeth portion formed at the edges of the four sides of the center portion; A pair of central molds that sandwich both sides of a plate-shaped test piece,
a second comb-teeth portion disposed on the four sides of the central mold and meshing with the first comb-teeth portion; and a holding portion for holding the cross-shaped piece of the plate-like test piece. and a side mold having;
A biaxial stress testing device, characterized in that an opening is formed in the central portion of one of the pair of central molds to induce out-of-plane buckling of the measuring portion.
前記一対の中央金型により前記板状試験片の前記測定部の両面を挟み込み、
4つの前記側部金型により前記板状試験片の4つの前記片部それぞれを保持するとともに、前記中央金型の前記第1櫛歯部に前記側部金型の前記第2櫛歯部を噛合させ、
前記片部を介して前記測定部に少なくとも面内一軸方向の圧縮荷重を作用させ、
前記中央金型の前記開口部に前記測定部の面外座屈を誘発させることを特徴とする二軸応力試験方法。 A biaxial stress testing method in which a compressive load in at least an in-plane uniaxial direction is applied to the plate-shaped test piece using the biaxial stress testing apparatus according to claim 1 or 2,
sandwiching both sides of the measurement part of the plate-shaped test piece between the pair of central molds;
Each of the four pieces of the plate-like test piece is held by the four side molds, and the second comb tooth part of the side mold is attached to the first comb tooth part of the central mold. mesh,
Applying a compressive load in at least an in-plane uniaxial direction to the measurement part via the piece part,
A biaxial stress testing method, comprising inducing out-of-plane buckling of the measuring section in the opening of the central mold.
該取得したひずみと圧縮荷重との関係に基づいてひずみの一次微分を算出し、
該算出したひずみの一次微分が極大となるひずみを前記測定部の面外座屈に対する安定挙動限界ひずみとして求め、
前記取得したひずみと圧縮荷重との関係において、圧縮荷重の増分に対してひずみ増分の極性が反転するひずみを前記測定部におけるしわ発生開始ひずみとして求めることを特徴とする請求項3記載の二軸応力試験方法。 Obtaining the relationship between the strain of the measuring part and the compressive load in the process of applying a compressive load in at least an in-plane uniaxial direction to the measuring part,
Calculating the first derivative of strain based on the relationship between the acquired strain and compressive load,
Determine the strain at which the first derivative of the calculated strain becomes maximum as the critical strain for stable behavior against out-of-plane buckling of the measurement part,
4. The biaxial method according to claim 3, wherein, in the relationship between the acquired strain and the compressive load, a strain at which the polarity of the strain increment is reversed with respect to the increment of the compressive load is determined as the wrinkle generation starting strain in the measuring section. Stress test method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021096325A JP7405119B2 (en) | 2021-06-09 | 2021-06-09 | Biaxial stress testing device and biaxial stress testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021096325A JP7405119B2 (en) | 2021-06-09 | 2021-06-09 | Biaxial stress testing device and biaxial stress testing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022188356A JP2022188356A (en) | 2022-12-21 |
JP7405119B2 true JP7405119B2 (en) | 2023-12-26 |
Family
ID=84532285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021096325A Active JP7405119B2 (en) | 2021-06-09 | 2021-06-09 | Biaxial stress testing device and biaxial stress testing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7405119B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019035603A (en) | 2017-08-10 | 2019-03-07 | Jfeスチール株式会社 | Biaxial in-plane compression test method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5297441A (en) * | 1992-08-14 | 1994-03-29 | The Boeing Company | Apparatus for supporting a test specimen for compression testing |
-
2021
- 2021-06-09 JP JP2021096325A patent/JP7405119B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019035603A (en) | 2017-08-10 | 2019-03-07 | Jfeスチール株式会社 | Biaxial in-plane compression test method |
Also Published As
Publication number | Publication date |
---|---|
JP2022188356A (en) | 2022-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5435352B2 (en) | Method for determining the breaking strain of plate materials | |
Singh et al. | Prediction of earing defect and deep drawing behavior of commercially pure titanium sheets using CPB06 anisotropy yield theory | |
JP4814851B2 (en) | Estimation method of stretch flange crack in thin plate press forming simulation | |
KR102556134B1 (en) | Method and facility for collision performance evaluation test for metal sheet material for automobile body | |
JP5434622B2 (en) | Break determination method and break determination apparatus in press forming simulation of thin plate | |
Hu et al. | Edge fracture prediction of traditional and advanced trimming processes for AA6111-T4 sheets | |
Safdarian Korouyeh et al. | Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods | |
CN110740821A (en) | Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die | |
JP6399269B1 (en) | Hardness estimation method for cold-worked parts and hardness-equivalent plastic strain curve acquisition method for steel | |
Sahli et al. | Modelling and numerical simulation of steel sheet fine blanking process | |
JP2019219235A (en) | Biaxial compression tensile test tool and biaxial compression tensile test method | |
JP7405119B2 (en) | Biaxial stress testing device and biaxial stress testing method | |
JP6288468B2 (en) | Forming limit test method and forming limit test apparatus for metal sheet | |
KR101337954B1 (en) | Method and apparatus for measuring extensity of metallic meterial | |
JP5648172B2 (en) | Method for judging bending limit value of plate material and method for judging bending crack of pressed parts using the same | |
JP7156467B1 (en) | Press-molded product wrinkle generation determination index acquisition method and press-molded product wrinkle generation determination method | |
JP5900751B2 (en) | Evaluation method and prediction method of bending inner crack | |
Zhou et al. | FE simulations of gas blow forming and prediction of forming limit diagram of AZ31 magnesium sheet | |
KR20220146642A (en) | How to specify the necking limit distortion of a metal plate | |
Kim et al. | Numerical approach to the evaluation of forming limit curves for zircaloy-4 sheet | |
Trzepiecinski et al. | Experimental investigation of frictional resistances in the drawbead region of the sheet metal forming processes | |
Miranda et al. | Experimental and numerical analysis of springback and bending behavior of a composite sandwich metal-polymer material | |
Iwata et al. | Numerical prediction of the spring-back behavior of stamped metal sheets | |
JP7288212B2 (en) | Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank | |
Guha | Investigation of the mechanical response of a micro-textured surface using a higher order strain gradient plasticity theory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7405119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |