[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019219235A - Biaxial compression tensile test tool and biaxial compression tensile test method - Google Patents

Biaxial compression tensile test tool and biaxial compression tensile test method Download PDF

Info

Publication number
JP2019219235A
JP2019219235A JP2018115871A JP2018115871A JP2019219235A JP 2019219235 A JP2019219235 A JP 2019219235A JP 2018115871 A JP2018115871 A JP 2018115871A JP 2018115871 A JP2018115871 A JP 2018115871A JP 2019219235 A JP2019219235 A JP 2019219235A
Authority
JP
Japan
Prior art keywords
plate
test piece
mold
central
shaped test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018115871A
Other languages
Japanese (ja)
Inventor
裕樹 荻原
Hiroki Ogiwara
裕樹 荻原
簑手 徹
Toru Minote
徹 簑手
亮伸 石渡
Akinobu Ishiwatari
亮伸 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018115871A priority Critical patent/JP2019219235A/en
Publication of JP2019219235A publication Critical patent/JP2019219235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a biaxial compression tensile test tool used for a biaxial compression tensile test for measuring distortion by a strain gauge, and a biaxial compression tensile test method.SOLUTION: A biaxial compression tensile test tool 1 used for a biaxial compression tensile test for measuring distortion caused in a central portion 101 of a tabular test piece 100 by acting a compressive load and/or a tensile load on a cross shaped tabular test piece 100 having a strain gauge 105 stuck thereon comprises: a central die 11 clamping a central portion 101 of the tabular test piece 100; a pressing mechanism 21 for applying a predetermined clamping force to the central portion 101; and side part dies 31 and 41 for acting the compressive load and/or the tensile load on the central portion 101 through each piece portion 103 of the tabular test piece 100. The central die 11 includes: a pressing part 15 for pressing the central portion 101; and a soft member 17 provided in a portion contacting a strain gauge 105 in the pressing part 15 and having a Young's modulus of 1500 MPa or more and 3000 MPa or less.SELECTED DRAWING: Figure 1

Description

本発明は、十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させる二軸圧縮引張試験に用いる二軸圧縮引張試験用治具及び二軸圧縮引張試験方法に関する。 The present invention relates to a biaxial compression / tension test jig and a biaxial compression / tension test method used for a biaxial compression / tension test in which a compression load and / or a tensile load are applied to a cruciform plate-like test piece.

鋼板のような金属板材のプレス成形においては、一方向から荷重が作用する一軸荷重(単軸応力)状態だけでなく、金属板材の面内において直交する二方向から荷重が作用する二軸荷重(二軸応力)状態で該金属板材の変形が生じるものとみなされる。そのため、金属板材を被加工材とするプレス成形解析を高精度に行うためには、二軸応力状態における前記金属板材の応力−ひずみ特性を、引張試験や圧縮試験などといった材料試験により予め把握しておく必要がある。   In press forming of a metal sheet material such as a steel sheet, not only a uniaxial load (uniaxial stress) state in which a load acts from one direction but also a biaxial load (a uniaxial load) in which a load acts in two orthogonal directions in a plane of the metal sheet material. It is considered that the metal plate material is deformed in the state of (biaxial stress). Therefore, in order to perform press forming analysis using a metal plate material as a workpiece with high accuracy, the stress-strain characteristics of the metal plate material in a biaxial stress state are grasped in advance by a material test such as a tensile test or a compression test. Need to be kept.

二軸応力状態における材料試験を行うものとして、例えば、特許文献1に開示されている技術が挙げられる。当該技術は、平板状の試験片の下側を支持する支持部を有する下側保持部材と、試験片の上面から応力を負荷する応力負荷部材とこれを保持する上側保持部材とを用いて行うものであって、下側保持部材の支持部で試験片の下面を支持した状態で応力負荷部材により試験片の上面に対して下方に応力を負荷することで、試験片を鞍状に変形させて試験片の上面側における引張応力と、下面側であって該引張応力が作用する軸方向と直交する軸方向の圧縮応力との二軸応力状態を形成するものである。そして、試験片の上方と下方それぞれにレーザー光を照射し、二軸応力状態の前後におけるレーザー光の検出位置間の距離の変化量を測定することで、二軸応力状態における試験片の撓み量(変位)を取得する。   As a technique for performing a material test in a biaxial stress state, for example, a technique disclosed in Patent Document 1 is cited. This technique is performed using a lower holding member having a support portion for supporting the lower side of a flat test piece, a stress loading member that applies stress from the upper surface of the test piece, and an upper holding member that holds the stress loading member. A test piece is deformed in a saddle shape by applying a stress downward to the upper surface of the test piece by a stress applying member in a state where the lower surface of the test piece is supported by the support portion of the lower holding member. Thus, a biaxial stress state of a tensile stress on the upper surface side of the test piece and a compressive stress on the lower surface side in an axial direction orthogonal to the axial direction on which the tensile stress acts is formed. Then, the upper and lower portions of the test piece are irradiated with laser light, and the amount of change in the distance between the detection positions of the laser light before and after the biaxial stress state is measured, whereby the deflection amount of the test piece in the biaxial stress state is measured. (Displacement).

このように、特許文献1に開示された技術は、試験片の面内方向に圧縮荷重と引張荷重を作用させた二軸応力状態における試験片の変位を求めることができるが、二軸の圧縮応力のみや二軸の引張応力のみを試験片に作用させることはできない。   As described above, the technique disclosed in Patent Document 1 can determine the displacement of a test piece in a biaxial stress state in which a compressive load and a tensile load are applied in the in-plane direction of the test piece. It is not possible to apply only stress or biaxial tensile stress to a test piece.

そこで、発明者らはこれまでに、二軸圧縮応力又は二軸引張応力を作用させるものとして、特許文献2に開示されている技術を提案してきた。当該技術によれば、十字形状の板状試験片における中央部の上面と下面の双方を挟持して板厚方向に押圧した状態で、十字形状の4つの片部を介して圧縮荷重及び/又は引張荷重を付与することにより、該板状試験片の中央部を二軸圧縮応力又は二軸引張応力を作用させることができる。   Therefore, the inventors have proposed a technique disclosed in Patent Document 2 as a technique for applying a biaxial compressive stress or a biaxial tensile stress. According to this technique, in a state in which both the upper surface and the lower surface of the central portion of the cruciform plate-shaped test piece are sandwiched and pressed in the thickness direction, the compressive load and / or By applying a tensile load, a biaxial compressive stress or a biaxial tensile stress can be applied to the central portion of the plate-shaped test piece.

特開平9−318510号公報JP-A-9-318510 特開2018−80923号公報JP 2018-80923 A

特許文献2に開示されている技術においては、板状試験片の中央部に面内方向の圧縮荷重を付与したときに板厚方向の座屈が生じないようにするために、中央金型により中央部を挟持して板厚方向に所定の荷重を付与して前記中央部を二軸応力状態にするものである。そして、二軸応力状態において板状試験片の中央部に生じるひずみを光学的にまたはひずみゲージにより測定することができるとされている。   In the technique disclosed in Patent Document 2, in order to prevent buckling in the thickness direction when a compressive load in the in-plane direction is applied to the center of the plate-shaped test piece, a center mold is used. A predetermined load is applied in the thickness direction while sandwiching the central portion to bring the central portion into a biaxial stress state. It is stated that the strain generated at the center of the plate-shaped test piece in a biaxial stress state can be measured optically or by a strain gauge.

これら2つの測定方法のうちひずみゲージによりひずみを測定する場合にあっては、板状試験片の中央部にひずみゲージを貼付するものであるため、中央金型を繰り返し使用することができることに加え、安価かつ簡便に材料試験を行うことが可能となる。一般的に用いられるひずみゲージは、樹脂製のベースの厚みが数十μmのものがある。しかしながら、このようなひずみゲージを板状試験片に貼付し、該板状試験片を中央金型で挟持して所定の荷重を板厚方向に付与すると、ひずみゲージに欠損が生じたり、ひずみゲージに接続するリード線との接続部が損傷し、ひずみを測定することができなくなってしまう課題があった。   When strain is measured with a strain gauge among these two measurement methods, the strain gauge is attached to the center of the plate-shaped test piece, so that the center mold can be used repeatedly. In addition, it is possible to perform a material test easily and inexpensively. Some commonly used strain gauges have a resin base having a thickness of several tens of μm. However, when such a strain gauge is attached to a plate-shaped test piece, and the plate-shaped test piece is sandwiched by a central mold and a predetermined load is applied in the thickness direction, the strain gauge may be damaged, or the strain gauge may be damaged. There is a problem that a connection portion with a lead wire to be connected to the device is damaged, and strain cannot be measured.

本発明は、上記のような課題を解決するためになされたものであり、二軸方向から引張荷重及び/又は圧縮荷重を作用させた二軸応力下での板状試験片におけるひずみを該板状試験片に貼付したひずみゲージにより測定するに際し、該ひずみゲージの欠損を防止することができる二軸圧縮引張試験用治具及び二軸圧縮引張試験方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is intended to reduce the strain in a plate-shaped test piece under biaxial stress in which a tensile load and / or a compressive load is applied from a biaxial direction. It is an object of the present invention to provide a biaxial compression / tensile test jig and a biaxial compression / tensile test method capable of preventing a loss of the strain gauge when measuring with a strain gauge attached to a test piece.

(1)本発明に係る二軸圧縮引張試験用治具は、ひずみゲージを貼付した十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させて、該板状試験片に生じるひずみを前記ひずみゲージにより測定する二軸圧縮引張試験に用いるものであって、前記板状試験片を両面から挟持する一対からなる矩形の中央金型と、該中央金型に前記板状試験片の板厚方向に所定の挟持力を付与する挟持力付与手段と、前記中央金型の四辺の側方に配設されて前記板状試験片における十字形状の各片部を両面から挟持し、前記板状試験片の面内方向に所定の荷重を作用させる一対からなる側部金型と、を備え、前記中央金型は、その四辺の縁部に形成された櫛歯状の凹凸からなる中央金型櫛歯部と、該中央金型櫛歯部に囲まれて前記中央金型で挟持された前記板状試験片の中央部を押圧する押圧部と、該押圧部における前記ひずみゲージに当接する部位に設けられてヤング率が1500MPa以上3000MPa以下の軟質部材を有し、前記各側部金型は、前記板状試験片の片部を保持する保持部を有すると共に端部に前記中央金型櫛歯部に抜き差し可能な側部金型櫛歯部が形成されていることを特徴とするものである。 (1) The jig for a biaxial compression-tensile test according to the present invention applies a compressive load and / or a tensile load to a cruciform plate-like test piece to which a strain gauge is attached, and generates a strain generated in the plate-like test piece. Is used in a biaxial compression-tensile test to be measured by the strain gauge, wherein a pair of rectangular central molds sandwiching the plate-shaped test piece from both sides, and the plate-shaped test piece in the central mold Clamping force applying means for applying a predetermined clamping force in the plate thickness direction, and sandwiches each cross-shaped piece portion of the plate-shaped test piece disposed on the four sides of the central mold from both sides; A pair of side molds for applying a predetermined load in the in-plane direction of the plate-shaped test piece, and the center mold has a comb-shaped unevenness formed on the edges of four sides thereof. A mold comb tooth portion, which was sandwiched by the central mold surrounded by the central mold comb tooth portion. A pressing portion for pressing the central portion of the plate-shaped test piece, and a soft member having a Young's modulus of 1500 MPa or more and 3000 MPa or less provided at a portion in contact with the strain gauge in the pressing portion, and each of the side molds Is characterized in that it has a holding portion for holding a piece portion of the plate-shaped test piece, and a side mold comb tooth portion which can be inserted into and removed from the central mold comb tooth portion at an end portion. It is.

(2)本発明に係る二軸圧縮引張試験方法は、上記(1)に記載の二軸圧縮引張試験用治具を用いて、十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させるものであって、前記板状試験片の中央部にひずみゲージを貼付し、前記押圧部に設けられた前記軟質部材を前記板状試験片に貼付したひずみゲージに当接させ、前記押圧部で前記板状試験片の中央部を所定の押圧荷重で押圧するとともに、前記側部金型の保持部で前記板状試験片の各片部を保持した状態で、前記板状試験片の中央部に圧縮荷重及び/又は引張荷重を作用させて前記ひずみゲージによりひずみを測定することを特徴とするものである。 (2) The biaxial compression / tension test method according to the present invention is directed to applying a compression load and / or a tensile load to a cross-shaped plate-shaped test piece using the biaxial compression / tension test jig according to the above (1). A strain gauge is attached to a central portion of the plate-shaped test piece, and the soft member provided on the pressing portion is brought into contact with the strain gauge attached to the plate-shaped test piece, and the pressing is performed. While pressing the central portion of the plate-shaped test piece with a predetermined pressing load at the portion, while holding each piece of the plate-shaped test piece in the holding portion of the side mold, the plate-shaped test piece The present invention is characterized in that a compressive load and / or a tensile load is applied to a central portion and strain is measured by the strain gauge.

本発明においては、ひずみゲージを貼付した十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させて、該板状試験片に生じるひずみを前記ひずみゲージにより測定する二軸圧縮引張試験に用いるものであって、前記板状試験片を両面から挟持する一対からなる矩形の中央金型と、該中央金型に前記板状試験片の板厚方向に所定の挟持力を付与する挟持力付与手段と、前記中央金型の四辺の側方に配設されて前記板状試験片における十字形状の各片部を両面から挟持し、前記板状試験片の面内方向に所定の荷重を作用させる一対からなる側部金型と、を備え、前記中央金型は、その四辺の縁部に形成された櫛歯状の凹凸からなる中央金型櫛歯部と、該中央金型櫛歯部に囲まれて前記中央金型で挟持された前記板状試験片の中央部を押圧する押圧部と、該押圧部における前記ひずみゲージに当接する部位に設けられてヤング率が1500MPa以上3000MPa以下の軟質部材を有し、前記各側部金型は、前記板状試験片の片部を保持する保持部を有すると共に端部に前記中央金型櫛歯部に抜き差し可能な側部金型櫛歯部が形成されていることにより、ひずみゲージの破損を防止し、板状試験片の面内方向に圧縮荷重を付与しても座屈を生じさせず二軸圧縮試験を行うことができ、さらに、中央金型を繰り返し使用することが可能である。
また、板状試験片における一軸方向に圧縮荷重を付与するとともに該一軸方向に直交する軸方向に引張荷重を負荷する一軸圧縮・他軸引張試験、さらには、板状試験片の二軸方向に引張荷重を付与した後に二軸圧縮荷重を付与する面内反転負荷試験など、前記板状試験片における二軸方向に任意の応力状態を作用させた二軸圧縮引張試験を容易に行うことができる。
In the present invention, a compressive load and / or a tensile load are applied to a cruciform plate-shaped test piece to which a strain gauge is attached, and a strain generated in the plate-shaped test piece is measured by the strain gauge. A pair of rectangular central molds for clamping the plate-shaped test piece from both sides, and clamping to apply a predetermined clamping force to the central mold in the thickness direction of the plate-shaped test piece. A force applying means, a cross-shaped piece of the plate-shaped test piece, which is arranged on four sides of the central mold and is sandwiched from both sides, and a predetermined load is applied in the in-plane direction of the plate-shaped test piece. And a pair of side molds that act on the central mold, wherein the central mold has a central mold comb tooth portion formed of comb-like irregularities formed on edges of four sides thereof, and the central mold comb. Pressing the center of the plate-shaped test piece, which is surrounded by the teeth and held by the center mold, Pressing portion, and a soft member having a Young's modulus of 1500 MPa or more and 3000 MPa or less provided at a portion in contact with the strain gauge in the pressing portion, and each of the side molds is a piece of the plate-shaped test piece. Having a holding portion for holding the side mold comb teeth at the end portion which can be inserted into and removed from the center mold comb teeth, prevents breakage of the strain gauge, and prevents the plate-shaped test piece from being damaged. Even if a compressive load is applied in the in-plane direction, a biaxial compression test can be performed without causing buckling, and the central mold can be used repeatedly.
In addition, a uniaxial compression / other-axis tensile test in which a compressive load is applied in a uniaxial direction in a plate-shaped test piece and a tensile load is applied in an axial direction orthogonal to the uniaxial direction, and further, in a biaxial direction of the plate-shaped test piece. A biaxial compression tensile test in which an arbitrary stress state is applied in the biaxial direction on the plate-like test piece, such as an in-plane reversal load test for applying a biaxial compression load after applying a tensile load, can be easily performed. .

本発明の実施の形態に係る二軸圧縮引張試験用治具の各構成要素を説明する説明図であり、(a)は、二軸圧縮引張試験用治具を組付けたときの状態、(b)は、試験対象とする板状試験片の二軸圧縮引張試験用治具における配置、(c)は、二軸圧縮引張試験用治具により板状試験片を挟持した状態を示す図である。It is an explanatory view explaining each component of a jig for a biaxial compression tension test concerning an embodiment of the invention, (a) is a state at the time of attaching a jig for a biaxial compression tension test, (b) is a view showing the arrangement of a plate-shaped test piece to be tested in a jig for biaxial compression and tension test, and (c) is a view showing a state where the plate-shaped test piece is sandwiched by the jig for biaxial compression and tension test. is there. 本実施の形態において試験対象とする板状試験片の形状を示す図である。It is a figure showing the shape of the plate-shaped test piece used as a test object in this embodiment. 本実施の形態に係る二軸圧縮引張試験用治具を分解した状態を示す図である。It is a figure showing the state where the jig for the biaxial compression tension test concerning this embodiment was disassembled. 本実施の形態において試験対象とする板状試験片を二軸圧縮引張試験用治具に設置した状態を説明する図である。It is a figure explaining the state where the plate-shaped test piece used as a test object in this embodiment was installed in the jig for biaxial compression tension test. 本実施の形態において、中央金型の押圧部に設けられた軟質部材を説明する図である。FIG. 3 is a diagram illustrating a soft member provided in a pressing portion of a central mold in the present embodiment. 本実施の形態において、軟質部材の好適なヤング率の範囲を説明する図である。FIG. 4 is a diagram illustrating a preferred range of the Young's modulus of the soft member in the present embodiment. 本発明の実施例で使用した板状試験片の形状を示す図である。It is a figure showing the shape of the tabular test piece used in the example of the present invention. 本発明の実施例における二軸圧縮試験により得られた塑性ひずみ−真応力の関係の測定結果である。It is the measurement result of the relationship of the plastic strain-true stress obtained by the biaxial compression test in the Example of this invention.

本発明において、まず、二軸引張圧縮試験の対象とする板状試験片について説明した後、本発明の実施の形態に係る二軸圧縮引張試験用治具および二軸圧縮引張試験方法ついて説明する。   In the present invention, first, a plate-shaped test piece to be subjected to a biaxial tension-compression test will be described, and then a biaxial compression-tensile test jig and a biaxial compression-tensile test method according to an embodiment of the present invention will be described. .

<板状試験片>
板状試験片100は、図2に一例として示すように、十字形状であって、該十字形状の中央となる矩形の中央部101と、中央部101の四辺から外方に延出する4つの片部103を有してなるものである。
<Plate-shaped test piece>
As shown as an example in FIG. 2, the plate-shaped test piece 100 has a cross shape, and has a rectangular central portion 101 serving as a center of the cross shape, and four rectangular portions extending outward from four sides of the central portion 101. It has the one part 103.

中央部101は、二軸圧縮引張試験においてひずみや応力などの測定対象となる部位である。図2は、中央部101が正方形のものを例示したものであるが、本発明においては、中央部が長方形のものであってもよい。   The central part 101 is a part to be measured for strain, stress, and the like in a biaxial compression-tension test. FIG. 2 illustrates an example in which the central portion 101 is square, but in the present invention, the central portion may be rectangular.

片部103は、中央部101を挟んで対向する二組の片部103aおよび片部103bからなり、中央部101に対して片部103aが延在する方向と片部103bが延在する方向とが中央部101において直交し、これらの方向が、板状試験片100に対して圧縮荷重及び/又は引張荷重を作用させる二軸の方向に対応する。   The piece 103 is composed of two sets of pieces 103a and 103b opposed to each other with the central part 101 interposed therebetween, and the direction in which the part 103a extends with respect to the central part 101 and the direction in which the piece 103b extends. Are orthogonal to each other in the central portion 101, and these directions correspond to biaxial directions in which a compressive load and / or a tensile load are applied to the plate-shaped test piece 100.

すなわち、板状試験片100に対して二軸圧縮試験を行うには、片部103のうち一方の一組の片部103aと他方の一組の片部103bそれぞれを介して中央部101に向かう各軸方向に圧縮荷重を作用させることにより、中央部101を二軸圧縮状態とする。   That is, in order to perform the biaxial compression test on the plate-shaped test piece 100, the test piece 100 is directed toward the central portion 101 via one set of the pieces 103a and the other set of the pieces 103b. By applying a compressive load in each axial direction, the central portion 101 is brought into a biaxially compressed state.

また、板状試験片100に対して一軸圧縮・他軸引張試験を行うには、例えば、片部103のうち一方の一組の片部103aを介して中央部101に向かって圧縮荷重を作用させるとともに、他方の一組の片部103bを介して中央部101に対して引張荷重を作用させることにより、中央部101を一軸圧縮・他軸引張状態とする。   In addition, in order to perform a uniaxial compression / diaxial tension test on the plate-shaped test piece 100, for example, a compressive load is applied to the central portion 101 through one set of the pieces 103 a of the pieces 103. At the same time, a tension load is applied to the central portion 101 via the other pair of pieces 103b, thereby bringing the central portion 101 into a uniaxially compressed / diaxially tensioned state.

さらに、板状試験片100に対して二軸引張試験を行うには、例えば、片部103のうち一方の一組の片部103aと、他方の一組の片部103bの双方を介して中央部101に対して引張荷重を作用させることにより、中央部101を二軸引張状態とする。   Further, in order to perform a biaxial tensile test on the plate-shaped test piece 100, for example, the center of the plate-shaped test piece 100 is formed through both one set of the piece 103a and the other set of the piece 103b. By applying a tensile load to the portion 101, the central portion 101 is set in a biaxial tension state.

このように、一組の片部103aと一組の片部103bを介して中央部101に圧縮荷重及び/又は引張荷重を作用させて、二軸応力状態(二軸圧縮状態、一軸圧縮・他軸引張状態、二軸引張状態)における中央部101のひずみや応力を中央部101に貼付したひずみゲージ105(図1(c)、図4参照)により測定する。   As described above, a compressive load and / or a tensile load are applied to the central portion 101 via one set of the piece 103a and one set of the piece 103b, and a biaxial stress state (a biaxial compressed state, a uniaxial compressed / other state) is applied. The strain and stress of the central portion 101 in the axial tension state and the biaxial tension state) are measured by a strain gauge 105 attached to the central portion 101 (see FIGS. 1C and 4).

なお、本発明に係る二軸圧縮引張試験用治具及び二軸圧縮引張試験方法は、図2に示す形状の板状試験片100を用いることに限定されるものではなく、二軸圧縮引張試験の荷重条件等に合わせて板状試験片100の形状を適宜変更することができる。   The jig for biaxial compression and tension test and the biaxial compression and tension test method according to the present invention are not limited to using the plate-shaped test piece 100 having the shape shown in FIG. The shape of the plate-shaped test piece 100 can be appropriately changed according to the load conditions and the like.

<二軸圧縮引張試験用治具>
本発明の実施の形態に係る二軸圧縮引張試験用治具1は、図2に一例として示す十字形状の板状試験片100に圧縮荷重及び/又は引張荷重を作用させる二軸圧縮引張試験に用いるものであって、図1に示すように、中央金型11と、押さえ機構21と、中央金型11を挟んで対向配置された二組の第1側部金型31および第2側部金型41とを備えている。以下、二軸圧縮引張試験用治具1の各構成について説明する。
<Jig for biaxial compression and tension test>
The jig 1 for a biaxial compression / tension test according to the embodiment of the present invention performs a biaxial compression / tension test in which a compressive load and / or a tensile load is applied to a cross-shaped plate-shaped test piece 100 shown as an example in FIG. As shown in FIG. 1, a center mold 11, a pressing mechanism 21, and two sets of a first side mold 31 and a second side mold which are opposed to each other with the center mold 11 interposed therebetween are used. A mold 41 is provided. Hereinafter, each configuration of the jig 1 for a biaxial compression-tensile test will be described.

なお、本発明に係る二軸圧縮引張試験用治具は、既存の二軸圧縮引張試験機に装着して使用することを想定したものであり、二軸圧縮引張試験機に装着するために二軸圧縮引張試験用治具の寸法や形状などを適宜変更しても、本発明に係る二軸圧縮引張試験用治具の作用および機能が異なるものではない。   The jig for a biaxial compression / tensile test according to the present invention is intended to be used by attaching to an existing biaxial compression / tensile tester. The function and function of the jig for a biaxial compression / tension test according to the present invention does not differ even if the dimensions and the shape of the jig for an axial compression / tension test are appropriately changed.

≪中央金型≫
中央金型11は、図3に示すように、板状試験片100を上下両面から挟持する一対の略矩形状のものであり、該矩形状の四辺の縁部に形成された櫛歯状の凹凸からなる中央金型櫛歯部13と、4つの中央金型櫛歯部13に囲まれて板状試験片100の中央部101を押圧する押圧部15と、押圧部15に設けられた軟質部材17を有する(図1(c))。また、中央金型11は、面内方向への移動を防止するため、図1及び図3に示すように、その四隅が位置決めピン19により押さえ機構21のベース部23に固定される。
≪Central mold≫
As shown in FIG. 3, the center mold 11 is a pair of substantially rectangular shapes that sandwich the plate-shaped test piece 100 from both upper and lower surfaces, and has a comb-like shape formed at the edges of the four sides of the rectangular shape. A central mold comb tooth portion 13 having irregularities, a pressing portion 15 surrounded by the four central mold comb teeth portions 13 to press the central portion 101 of the plate-shaped test piece 100, and a soft member provided on the pressing portion 15. It has a member 17 (FIG. 1 (c)). In addition, as shown in FIGS. 1 and 3, the four corners of the central mold 11 are fixed to the base 23 of the holding mechanism 21 by positioning pins 19 in order to prevent movement in the in-plane direction.

中央金型櫛歯部13は、図3に示すように、押圧部15を挟んで対向する一組の中央金型櫛歯部13aと一組の中央金型櫛歯部13bからなり、一方の中央金型櫛歯部13aが延在する方向と、他方の中央金型櫛歯部13bが延在する方向とが押圧部15において直交する。そして、これらの方向は図4に示すように、板状試験片100の片部103a及び103bを介して中央部101に圧縮荷重及び/又は引張荷重を作用させる二軸の方向に対応する。   As shown in FIG. 3, the central mold comb tooth portion 13 includes a pair of central mold comb teeth portions 13a and a pair of central mold comb teeth portions 13b opposed to each other with the pressing portion 15 interposed therebetween. The direction in which the central mold comb tooth 13a extends and the direction in which the other central mold comb tooth 13b extends are orthogonal to each other in the pressing portion 15. These directions correspond to biaxial directions in which a compressive load and / or a tensile load are applied to the central portion 101 via the pieces 103a and 103b of the plate-shaped test piece 100, as shown in FIG.

図3および図1(c)に示す押圧部15は、二組の中央金型櫛歯部13aおよび中央金型櫛歯部13bに囲まれて中央金型11で挟持された板状試験片100の中央部101を押圧するものであり、押さえ機構21により所定の挟持力で板状試験片100の中央部101を押圧する。   The pressing portion 15 shown in FIG. 3 and FIG. 1C is a plate-shaped test piece 100 sandwiched by the central mold 11 surrounded by two sets of central mold comb teeth 13a and central mold comb teeth 13b. The pressing mechanism 21 presses the central portion 101 of the plate-shaped test piece 100 with a predetermined holding force.

軟質部材17は、押圧部15におけるひずみゲージ105に当接する部位に設けられてヤング率が1500MPa以上3000MPa以下のものである。また、軟質部材17は、少なくともひずみゲージ105が貼付された側となる中央金型11aの押圧部15に設けられているものとする。   The soft member 17 has a Young's modulus of 1500 MPa or more and 3000 MPa or less, which is provided at a portion of the pressing portion 15 that contacts the strain gauge 105. The soft member 17 is provided at least on the pressing portion 15 of the central mold 11a on the side where the strain gauge 105 is attached.

押圧部15に設けられた軟質部材17の一例を図5に示す。図5は、板状試験片100の上下両面を挟持する中央金型11aおよび11b(図4(a)参照)のうち、板状試験片100に貼付されたひずみゲージ105側となる中央金型11aの下面側を上にして図示したものである。なお、図5(a)は、軟質部材17が設けられておらず、板状試験片100に直接当接する押圧面部15aを有する中央金型11cを示したものである。   FIG. 5 shows an example of the soft member 17 provided on the pressing portion 15. FIG. 5 shows the central mold 11a and 11b (see FIG. 4A) sandwiching the upper and lower surfaces of the plate-shaped test piece 100 on the side of the strain gauge 105 attached to the plate-shaped test piece 100. 11a is illustrated with the lower surface side up. FIG. 5A shows a central mold 11c having no pressing member 15a which is not provided with the soft member 17 and directly abuts on the plate-shaped test piece 100.

本実施の形態に係る二軸圧縮引張試験用治具1に用いられている中央金型11aは、図5(a)に示す中央金型11cの押圧面部15aに矩形状の凹みを設け、凹ませた部位15b(図5(b))に軟質部材17を嵌め込んだものである(図5(c))。   The central mold 11a used in the jig 1 for a biaxial compression-tensile test according to the present embodiment is provided with a rectangular recess in the pressing surface 15a of the central mold 11c shown in FIG. The soft member 17 is fitted into the bent portion 15b (FIG. 5B) (FIG. 5C).

このように、押圧部15における板状試験片100に当接する全面に軟質部材17が設けられていることにより、中央金型11により板状試験片100を挟持したときにおいては、板状試験片100の中央部101に貼付されたひずみゲージ105に軟質部材17を当接させることができる。   As described above, since the soft member 17 is provided on the entire surface of the pressing portion 15 in contact with the plate-shaped test piece 100, when the plate-shaped test piece 100 is sandwiched by the central mold 11, the plate-shaped test piece is The soft member 17 can be brought into contact with the strain gauge 105 attached to the central portion 101 of the 100.

なお、軟質部材17の材料としては、樹脂を例示でき、ヤング率が上記の1500MPa以上3000MPa以下の範囲にあるものを選択すればよい。
さらに、図5(c)に示す軟質部材17は、一例として、押圧部15における板状試験片100に当接させる全面に設けられたものである。もっとも、本発明においては、押圧部15における板状試験片100の当接する面部のうちひずみゲージ105に当接する一部の部位に設けてもよい(図示なし)。この場合、押圧部15においては、板状試験片100に当接させる面と軟質部材とが面一となるように軟質部材を設ければよい。
In addition, as a material of the soft member 17, a resin can be exemplified, and a material having a Young's modulus in the range of 1500 MPa or more and 3000 MPa or less may be selected.
Further, the soft member 17 shown in FIG. 5C is provided, for example, on the entire surface of the pressing portion 15 to be brought into contact with the plate-shaped test piece 100. However, in the present invention, it may be provided at a part of the pressing portion 15 where the plate-shaped test piece 100 comes into contact with the strain gauge 105 (not shown). In this case, in the pressing portion 15, a soft member may be provided so that the surface to be brought into contact with the plate-shaped test piece 100 and the soft member are flush.

≪押さえ機構≫
押さえ機構21は、中央金型11に対して板状試験片100の板厚方向に所定の挟持力を付与する挟持力付与手段として、図1(b)に示すように、ベース部23と天板部25とボルト27を備えてなるものであり、ベース部23と天板部25により中央金型11の上下から挟持する。
≪Holding mechanism≫
As shown in FIG. 1B, the holding mechanism 21 is a holding force applying unit that applies a predetermined holding force to the central mold 11 in the thickness direction of the plate-shaped test piece 100. It comprises a plate portion 25 and a bolt 27, and is held by the base portion 23 and the top plate portion 25 from above and below the central mold 11.

押さえ機構21においては、ベース部23と天板部25の四隅をボルト27により任意の締付力で締め付けることにより中央金型11に所定の挟持力を付与し、中央金型11の押圧部15で板状試験片100の中央部101を押圧することができる。   In the holding mechanism 21, a predetermined clamping force is applied to the central mold 11 by tightening the four corners of the base portion 23 and the top plate 25 with bolts 27 with an arbitrary tightening force. Can press the central portion 101 of the plate-shaped test piece 100.

天板部25の下面(中央金型11側)における中央金型11の上面(押圧部15に対応する上面側)には、当接する位置に凸部(図示なし)が設けられており、板状試験片100の中央部101を押圧する挟持力を付与する際に、天板部25を中央金型櫛歯部13には当接させずに中央金型11を挟持できるようになっている。   On the upper surface (upper surface corresponding to the pressing portion 15) of the central mold 11 on the lower surface of the top plate portion 25 (the central mold 11 side), a convex portion (not shown) is provided at a contact position. When applying a clamping force for pressing the central portion 101 of the test piece 100, the central mold 11 can be clamped without bringing the top plate 25 into contact with the central mold comb teeth 13. .

このため、当該凸部を中央金型11の押圧部15に当接させて押さえ機構21が中央金型11に挟持力を付与した状態であっても、第1側部金型31および第2側部金型41を移動させることができる。   For this reason, even when the convex portion is brought into contact with the pressing portion 15 of the central mold 11 and the pressing mechanism 21 applies a clamping force to the central mold 11, the first side mold 31 and the second The side mold 41 can be moved.

≪第1側部金型および第2側部金型≫
第1側部金型31および第2側部金型41は、図1および図3に示すように、側部金型として中央金型11の各四辺の側方に配設され、板状試験片100の片部103を上下両面から挟持するものであり、板状試験片100の面内方向に所定の荷重(圧縮及び/又は引張)を作用させる。
<< First side mold and second side mold >>
As shown in FIGS. 1 and 3, the first side mold 31 and the second side mold 41 are disposed on the four sides of the central mold 11 as side molds, and a plate-like test is performed. The piece portion 103 of the piece 100 is sandwiched from both upper and lower surfaces, and a predetermined load (compression and / or tension) is applied in the in-plane direction of the plate-shaped test piece 100.

第1側部金型31は、図3に示すように、中央金型11の押圧部15を挟んで対向して配設された一組の第1側部金型31a、31bからなり、第1側部金型31a、31bは、板状試験片100における一組の片部103aを保持する保持部33a、33bを有している。また、第1側部金型31a、31bの端部には、中央金型11の中央金型櫛歯部13aに抜き挿し可能な側部金型櫛歯部35a、35bが形成されている。   As shown in FIG. 3, the first side mold 31 includes a pair of first side molds 31 a and 31 b disposed to face each other with the pressing portion 15 of the central mold 11 interposed therebetween. The one-side molds 31a and 31b have holding portions 33a and 33b for holding a pair of pieces 103a of the plate-shaped test piece 100. Further, side mold comb teeth 35a, 35b which can be inserted into and removed from the central mold comb teeth 13a of the central mold 11 are formed at the ends of the first side molds 31a, 31b.

同様に、第2側部金型41は、中央金型11の押圧部15を挟んで対向して配設された一組の第2側部金型41a、41bからなり、第2側部金型41a、41bは、板状試験片100の片部103bを保持する保持部43a、43bを有している。また、第2側部金型41a、41bの端部には、中央金型11の中央金型櫛歯部13bに抜き挿し可能な側部金型櫛歯部45a、45bが形成されている。   Similarly, the second side mold 41 is composed of a pair of second side molds 41a and 41b disposed to face each other with the pressing portion 15 of the central mold 11 interposed therebetween. The dies 41a and 41b have holding parts 43a and 43b for holding the piece 103b of the plate-shaped test piece 100. Further, side mold comb teeth 45a, 45b that can be inserted into and removed from the central mold comb teeth 13b of the central mold 11 are formed at the ends of the second side molds 41a, 41b.

第1側部金型31および第2側部金型41は、ベース部23の上面に設けられたコロ37およびコロ47上にそれぞれ設置され、側部金型櫛歯部35および側部金型櫛歯部45それぞれが中央金型11の中央金型櫛歯部13aおよび13bに噛み合った状態で抜き差し可能に移動する。   The first side mold 31 and the second side mold 41 are respectively set on rollers 37 and 47 provided on the upper surface of the base 23, and the side mold comb teeth 35 and the side molds are provided. Each of the comb teeth portions 45 is detachably moved while being engaged with the central mold comb teeth portions 13a and 13b of the central mold 11.

<二軸圧縮引張試験方法>
次に、本発明の実施の形態に係る二軸圧縮引張試験方法について、二軸圧縮引張試験用治具1を用いて板状試験片100において直交する二軸方向に圧縮荷重を作用させる場合を例として説明する。
<Biaxial compression and tension test method>
Next, with respect to the biaxial compression / tension test method according to the embodiment of the present invention, the case where a compressive load is applied in the biaxial direction orthogonal to the plate-shaped test piece 100 using the jig 1 for biaxial compression / tension test is described. This will be described as an example.

まず、上下一対の中央金型11の間に板状試験片100を配置し、押さえ機構21により中央金型11に所定の挟持力を付与し、中央金型11で挟持された板状試験片100の中央部101を押圧部15に設けられた軟質部材17で押圧する。   First, a plate-shaped test piece 100 is arranged between a pair of upper and lower central molds 11, a predetermined clamping force is applied to the central mold 11 by a pressing mechanism 21, and the plate-shaped test piece clamped by the central mold 11. The central part 101 of 100 is pressed by the soft member 17 provided on the pressing part 15.

次に、中央部101を押圧した状態のまま、第1側部金型31の側部金型櫛歯部35が中央金型11の中央金型櫛歯部13aに噛み合った状態で抜き差し可能となるように第1側部金型31を配設するとともに、第2側部金型41の側部金型櫛歯部45が中央金型櫛歯部13bに噛み合った状態で抜き差し可能となるように第2側部金型41を配設する。   Next, with the center part 101 pressed, the side mold comb teeth 35 of the first side mold 31 can be inserted and withdrawn while being engaged with the center mold comb teeth 13 a of the center mold 11. The first side mold 31 is disposed such that the side mold comb teeth 45 of the second side mold 41 are engaged with the center mold comb teeth 13b so as to be removable. The second side die 41 is disposed at the second position.

ここで、上下一対の各第1側部金型31の保持部33で板状試験片100の片部103aの上下両面を保持し、上下一対の各第2側部金型41の保持部43で板状試験片100の片部103bの上下両面を保持する。   Here, the upper and lower surfaces of the piece portion 103a of the plate-shaped test piece 100 are held by the holding portions 33 of the pair of upper and lower first side molds 31, and the holding portions 43 of the pair of upper and lower second side molds 41 are held. The upper and lower surfaces of the piece portion 103b of the plate-shaped test piece 100 are held with the.

そして、各第1側部金型31が片部103aを、各第2側部金型41が片部103bを保持した状態で、第1側部金型31および第2側部金型41を中央金型11に向かって移動させる。   Then, with the first side mold 31 holding the piece 103a and the second side mold 41 holding the piece 103b, the first side mold 31 and the second side mold 41 are held together. It is moved toward the central mold 11.

第1側部金型31および第2側部金型41は、それぞれが互いに干渉することなく中央金型11に向けて移動させることができるため、板状試験片100の中央部101を二軸圧縮状態とすることができる。   Since the first side mold 31 and the second side mold 41 can be moved toward the center mold 11 without interfering with each other, the center part 101 of the plate-shaped test piece 100 is biaxial. It can be in a compressed state.

ここで、二軸圧縮引張試験用治具1においては、押さえ機構21により上下一対の中央金型11を挟持し、押圧部15により板状試験片100における中央部101の全面を押圧するため、中央部101に押圧荷重を付与できない部位は存在しない。そのため、中央部101に二軸圧縮荷重を作用させた状態においても中央部101の座屈変形を防止することができる。   Here, in the jig 1 for the biaxial compression / tensile test, since the pair of upper and lower central dies 11 is sandwiched by the pressing mechanism 21 and the entire surface of the central portion 101 of the plate-shaped test piece 100 is pressed by the pressing portion 15, There is no portion where a pressing load cannot be applied to the central portion 101. Therefore, buckling deformation of the central portion 101 can be prevented even when a biaxial compressive load is applied to the central portion 101.

本実施の形態では、板状試験片100の中央部101に貼り付けたひずみゲージ105により、二軸圧縮状態におけるひずみを測定するものであるが、軟質部材17がひずみゲージ105に当接するように板状試験片100を中央金型11の押圧部15で押圧している(図1(c)参照)。   In the present embodiment, the strain in the biaxially compressed state is measured by the strain gauge 105 attached to the central portion 101 of the plate-shaped test piece 100, but in such a manner that the soft member 17 contacts the strain gauge 105. The plate-shaped test piece 100 is pressed by the pressing portion 15 of the central mold 11 (see FIG. 1C).

上述のとおり、軟質部材17は、ヤング率が1500MPa以上3000MPa以下のものとする。
ヤング率が1500MPa未満の軟質部材17を用いた場合、図6(a)に示すように、板状試験片100の中央部101に圧縮荷重を作用させると中央部101が座屈してしわを生じ、ひずみゲージ105の測定精度が低下する。
As described above, the soft member 17 has a Young's modulus of 1500 MPa or more and 3000 MPa or less.
When a soft member 17 having a Young's modulus of less than 1500 MPa is used, as shown in FIG. 6A, when a compressive load is applied to the central portion 101 of the plate-shaped test piece 100, the central portion 101 buckles and wrinkles occur. , The measurement accuracy of the strain gauge 105 is reduced.

また、ヤング率が3000MPa超の軟質部材17を用いた場合、図6(b)に示すように、押圧部15で板状試験片100を押圧するとひずみゲージ105自体や、ひずみゲージ105とリード線107の接続部が損傷する。前述のとおり、一般的に用いられるひずみゲージは、樹脂製のベースの厚みが数十μmのものが用いられている。しかしながら、このようなひずみゲージを板状試験片に貼付し、該板状試験片を中央金型で挟持して所定の荷重を板厚方向に付与すると、ひずみゲージに欠損が生じたり、ひずみゲージに接続するリード線との接続部が損傷し、ひずみを測定することができなくなってしまう場合があった。   When the soft member 17 having a Young's modulus of more than 3000 MPa is used, as shown in FIG. 6B, when the pressing portion 15 presses the plate-shaped test piece 100, the strain gauge 105 itself, or the strain gauge 105 and the lead wire are used. The connection of 107 is damaged. As described above, a commonly used strain gauge having a resin base having a thickness of several tens of μm is used. However, when such a strain gauge is attached to a plate-shaped test piece, and the plate-shaped test piece is sandwiched by a central mold and a predetermined load is applied in the thickness direction, the strain gauge may be damaged, or the strain gauge may be damaged. In some cases, the connection portion with the lead wire connected to the cable may be damaged, making it impossible to measure the strain.

前述のとおり、ひずみゲージ105には、ベース部(図示なし)の厚みが約10μm程度の薄いものを用いることができるが、このような薄型のひずみゲージ105を使用する場合であっても、圧縮荷重を作用させたときに中央部101における板厚方向の座屈を防ぐために所定の荷重で押圧する必要があるため、ひずみゲージ105が欠損しやすい。さらに、ひずみゲージ105に接続するリード線107はその線径が0.1mm程度であってひずみゲージ105よりも厚みがあるために、当該接続部が損傷する場合もある。   As described above, as the strain gauge 105, a thin base plate (not shown) with a thickness of about 10 μm can be used. When a load is applied, it is necessary to press the center portion 101 with a predetermined load in order to prevent buckling in the plate thickness direction, so that the strain gauge 105 is easily damaged. Furthermore, since the lead wire 107 connected to the strain gauge 105 has a wire diameter of about 0.1 mm and is thicker than the strain gauge 105, the connection portion may be damaged.

一方、ヤング率が1500MPa以上3000MPa以下の軟質部材17を用いることで、板状試験片100の面内方向に圧縮荷重を作用させたとの測定精度を低下させずに、かつ、ひずみゲージ105の欠損を防止して二軸圧縮状態におけるひずみを測定することができる。   On the other hand, by using the soft member 17 having a Young's modulus of 1500 MPa or more and 3000 MPa or less, the measurement accuracy that a compressive load is applied in the in-plane direction of the plate-shaped test piece 100 is not reduced, and the strain gauge 105 is defective. Can be prevented and strain in a biaxially compressed state can be measured.

なお、上記の説明は、二軸圧縮試験を行う場合についてのものであったが、本発明に係る二軸圧縮引張試験方法は、既存の二軸圧縮引張試験機を用いて行うことを想定したものである。そのため、板状試験片100の片部103を保持する一組の第1側部金型31と一組の第2側部金型41を互いに独立に移動させることにより、板状試験片100の中央部101に対して圧縮荷重又は引張荷重を作用させても良い。   Although the above description has been made on the case of performing a biaxial compression test, the biaxial compression / tension test method according to the present invention is assumed to be performed using an existing biaxial compression / tension tester. Things. Therefore, by moving a set of the first side mold 31 and a set of the second side mold 41 that hold the piece 103 of the plate-shaped test piece 100 independently of each other, A compressive load or a tensile load may be applied to the central portion 101.

例えば、中央金型11の押圧部15により板状試験片100の中央部101を押圧した状態で、板状試験片100の片部103aを保持する第1側部金型31を中央金型11に向かって移動させるとともに、片部103bを保持する第2側部金型41を中央金型11から離れる方向に移動させることにより、面外座屈を防止しながら板状試験片100に単軸圧縮荷重と単軸引張荷重を作用させる一軸圧縮・他軸引張試験を行うことができる。   For example, in a state where the central portion 101 of the plate-shaped test piece 100 is pressed by the pressing portion 15 of the central mold 11, the first side mold 31 holding the piece 103 a of the plate-shaped test piece 100 is moved to the central mold 11. And the second side mold 41 holding the piece 103b is moved in a direction away from the central mold 11, so that the plate-shaped test piece 100 can be uniaxially moved while preventing out-of-plane buckling. A uniaxial compression / other-axis tension test in which a compressive load and a uniaxial tensile load are applied can be performed.

同様に、片部103のうち一方の一組の片部103aを保持する第1側部金型31と、片部103bを保持する第2側部金型41の双方を板状試験片100の中央部101から離れる方向に移動させて引張荷重を作用させることで、板状試験片100に二軸引張荷重を作用させる二軸引張試験を行うことができる。   Similarly, both the first side mold 31 holding one set of the piece 103a of the piece 103 and the second side mold 41 holding the piece 103b are attached to the plate-shaped test piece 100. By moving in a direction away from the central portion 101 and applying a tensile load, a biaxial tensile test in which a biaxial tensile load is applied to the plate-shaped test piece 100 can be performed.

また、本発明に係る二軸圧縮引張試験方法で用いる二軸圧縮引張試験用治具1は、板状試験片100の片部103aを保持する第1側部金型31と、片部103bを保持する第2側部金型41とをそれぞれ独立に移動させることができるので、上記のように十字形状の板状試験片100に対して、二軸圧縮荷重だけでなく二軸引張荷重や一軸圧縮荷重・他軸引張荷重を作用させることができるだけでなく、各軸方向に作用させる荷重の比(応力比)を任意に設定することができる。   Further, the jig 1 for a biaxial compression / tensile test used in the biaxial compression / tensile test method according to the present invention includes a first side die 31 for holding a piece 103a of a plate-shaped test piece 100 and a piece 103b. Since the holding second side mold 41 can be moved independently of each other, not only the biaxial compressive load but also the biaxial tensile load and the uniaxial Not only can a compressive load and a tensile load on another axis be applied, but also the ratio (stress ratio) of loads applied in each axial direction can be arbitrarily set.

さらに、二軸圧縮引張試験用治具1を用いる二軸圧縮引張試験方法においては、例えば上記のように第1側部金型31および第2側部金型41を用いて板状試験片100に引張荷重を付与した後、第1側部金型31および第2側部金型41それぞれを板状試験片100の中央部101側に向かって移動させて圧縮荷重を作用させることにより、面外座屈を防止しながら面内反転負荷試験を行うこともできる。   Further, in the biaxial compression / tension test method using the biaxial compression / tension test jig 1, for example, as described above, the first side mold 31 and the second side mold 41 are used to form the plate-like test piece 100. After applying a tensile load to the plate-shaped test piece 100, the first side mold 31 and the second side mold 41 are respectively moved toward the central portion 101 of the plate-shaped test piece 100 to apply a compressive load. The in-plane reversal load test can be performed while preventing outer buckling.

また、上記の説明は、板状試験片100を水平に配置したものであったため、中央金型11、第1側部金型31および第2側部金型41は、板状試験片100に対して上下両面に配置されているものであるが、本発明は、二軸圧縮引張試験用治具の配置をこれに限定されるものではなく、二軸圧縮引張試験機に板状試験片を設置する向きに合わせて配置すれば良い。   Also, in the above description, the plate-shaped test piece 100 is arranged horizontally, so that the central mold 11, the first side mold 31, and the second side mold 41 are attached to the plate-shaped test piece 100. Although it is arranged on both upper and lower surfaces, the present invention is not limited to the arrangement of the jig for biaxial compression and tension test, the plate-shaped test piece in a biaxial compression and tension tester What is necessary is just to arrange according to the installation direction.

なお、第1側部金型31および第2側部金型41は、それぞれの側部金型櫛歯部35および45が中央金型11の中央金型櫛歯部13aおよび13bに噛み合った状態で移動させる際に摩擦力を低減させるために、例えば板状試験片100と中央金型11との間にテフロン(登録商標)シートを挟み込んでもよい。   The first side mold 31 and the second side mold 41 are in a state where the respective side mold comb teeth 35 and 45 are engaged with the central mold comb teeth 13 a and 13 b of the central mold 11. For example, a Teflon (registered trademark) sheet may be interposed between the plate-shaped test piece 100 and the central mold 11 in order to reduce the frictional force when the sheet is moved.

本発明に係る二軸圧縮引張試験用治具および二軸圧縮引張試験方法の作用効果について確認するための具体的な実験を行ったので、以下これについて説明する。   A specific experiment was performed to confirm the effects of the jig for a biaxial compression and tension test and the method of the biaxial compression and tension test according to the present invention, which will be described below.

本実施例では、図1に示す二軸圧縮引張試験用治具1を用いて、図7に示す十字形状の板状試験片110の二軸方向から圧縮荷重を作用させたときの中央部111に生じるひずみを測定した。   In the present embodiment, the jig 1 for a biaxial compression-tensile test shown in FIG. 1 is used to apply a compressive load to the cross-shaped plate-like test piece 110 shown in FIG. Was measured.

板状試験片110は、引張強度590MPa級、板厚1.2mmの冷延鋼板を供試材とし、正方形の中央部111と、中央部111を挟んで対向し外方に延出する二組の片部113a及び片部113bを有する十字形状とした。ここで、中央部111の幅を30mm、片部113a及び片部113bそれぞれの軸方向(図7中のX軸方向及びY軸方向)における板状試験片110の長さを320mmとした。   The plate-shaped test piece 110 is made of a cold-rolled steel sheet having a tensile strength of 590 MPa class and a thickness of 1.2 mm as a test material, and has a square central portion 111 and two sets of opposed pairs extending outward with the central portion 111 interposed therebetween. It has a cross shape having one part 113a and one part 113b. Here, the width of the central portion 111 was 30 mm, and the length of the plate-shaped test piece 110 in the axial direction (the X-axis direction and the Y-axis direction in FIG. 7) of each of the pieces 113a and 113b was 320 mm.

二軸圧縮試験においては、まずは、板状試験片110の中央部111には、リード線(銅線、φ0.14mm)を接続したひずみゲージ(ベースの厚み13μm)を貼付した。そして、板状試験片110の中央部111を中央金型11により挟持するとともに片部113を第1側部金型31及び第2側部金型41により保持し、二軸応力試験機(図示なし)に設置した。中央金型11により中央部111を挟持する際には、軟質部材17を板状試験片110に貼付したひずみゲージに当接させた。   In the biaxial compression test, first, a strain gauge (base thickness: 13 μm) connected to a lead wire (copper wire, φ0.14 mm) was attached to the central portion 111 of the plate-shaped test piece 110. Then, the central portion 111 of the plate-shaped test piece 110 is sandwiched by the central mold 11, and the piece portion 113 is held by the first side mold 31 and the second side mold 41, and a biaxial stress tester (illustrated) None). When the central portion 111 was sandwiched by the central mold 11, the soft member 17 was brought into contact with a strain gauge attached to the plate-shaped test piece 110.

そして、中央部111に二軸方向(図7のX軸方向及びY軸方向)から圧縮荷重を作用させ、中央部111に生じるひずみをひずみゲージにより測定した。さらに、板状試験片110に付与した荷重と板状試験片の片部の断面積から、中央部111に作用する応力を各軸方向について算出した。   Then, a compressive load was applied to the central portion 111 in two axial directions (the X-axis direction and the Y-axis direction in FIG. 7), and the strain generated in the central portion 111 was measured with a strain gauge. Further, the stress acting on the central portion 111 was calculated for each axial direction from the load applied to the plate-shaped test piece 110 and the cross-sectional area of the piece of the plate-shaped test piece.

本実施例では、ヤング率が本発明の範囲内である1500MPa以上3000MPa以下の樹脂を軟質部材17に用いた場合を発明例とした、   In the present embodiment, a case where a resin having a Young's modulus of 1500 MPa or more and 3000 MPa or less, which is within the range of the present invention, is used as the soft member 17,

図8に、軟質部材17としてヤング率2000MPaのポリウレタンを用いて二軸圧縮荷重を作用させたときのX軸方向及びY軸方向それぞれの塑性ひずみと真応力の関係の測定結果を示す。   FIG. 8 shows the measurement results of the relationship between the plastic strain and the true stress in the X-axis direction and the Y-axis direction when a biaxial compressive load is applied using polyurethane having a Young's modulus of 2000 MPa as the soft member 17.

図8の横軸は、引張側のひずみを正(プラス)としたときの塑性ひずみの値である。図8より、測定された塑性ひずみと真応力の関係は、X軸方向とY軸方向とでほぼ同等結果となり、本発明に係る二軸圧縮引張試験用治具1を用いることで、塑性ひずみが-0.012(圧縮)まで測定できることが示される。   The horizontal axis in FIG. 8 is the value of the plastic strain when the strain on the tensile side is positive (plus). From FIG. 8, the relationship between the measured plastic strain and the true stress was almost the same in the X-axis direction and the Y-axis direction, and by using the jig 1 for a biaxial compression-tensile test according to the present invention, the plastic strain was measured. Can be measured down to -0.012 (compression).

本実施例では、軟質部材が設けられておらず板状試験片110に直接当接する押圧面部15aが設けられた中央金型11c(図5(a)参照)を用いた場合を従来例とし、前述の発明例と同様に板状試験片110に対して二軸方向から圧縮荷重を作用させて試験を行った。しかしながらひずみゲージが貼付された板状試験片110を中央金型11cにより挟持して所定の荷重で押圧したところ、ひずみゲージが損傷してしまい、ひずみを測定することはできなかった。   In the present embodiment, a case where a central mold 11c (see FIG. 5 (a)) provided with a pressing surface portion 15a that directly contacts the plate-shaped test piece 110 without using a soft member is used as a conventional example. The test was performed by applying a compressive load to the plate-shaped test piece 110 from the biaxial directions in the same manner as in the above-described invention examples. However, when the plate-shaped test piece 110 to which the strain gauge was attached was sandwiched by the central mold 11c and pressed with a predetermined load, the strain gauge was damaged, and the strain could not be measured.

さらに、本実施例では、発明例の比較対象として、軟質部材17のヤング率が本発明の範囲外(1500MPa未満又は3000MPa超)の樹脂を用いた場合を比較例とした。比較例においても、板状試験片110に貼付したひずみゲージによりひずみを測定し、軟質部材17に用いた樹脂の種類とヤング率以外の条件(荷重条件、試験片形状など)は、発明例と同一とした。
表1に、本実施例において軟質部材17の材料として用いた樹脂の種類と、各樹脂のヤング率を示す。
Further, in this example, as a comparative example of the invention example, a case where a resin whose Young's modulus of the soft member 17 is out of the range of the present invention (less than 1500 MPa or more than 3000 MPa) was used as a comparative example. Also in the comparative example, the strain was measured by a strain gauge attached to the plate-shaped test piece 110, and the conditions (loading conditions, test piece shape, etc.) other than the type and the Young's modulus of the resin used for the soft member 17 were the same as those of the invention. Identical.
Table 1 shows the types of resins used as the material of the soft member 17 in this example and the Young's modulus of each resin.

表1に、二軸圧縮荷重を付与したときの実験可否の結果も併せて示す。実験可否の欄に示す“しわ”は、二軸圧縮荷重を付与することで中央部111が座屈してしわが発生したもの、“ゲージ欠損”は、ひずみゲージの欠損やリード線との接続部の損傷によりひずみの測定ができなかったもの、“○”は、中央部111におけるしわやひずみゲージの欠損のいずれも生じることなく。ひずみを測定できたものを示してる。さらに、軟質部材17の種類とヤング率が異なるものであって、発明例におけるひずみの測定値は一致する結果であった。   Table 1 also shows the results of the test availability when a biaxial compressive load was applied. "Wrinkles" shown in the column of the experiment availability indicate that the central portion 111 buckled and wrinkled when a biaxial compressive load was applied, and "gauge loss" means that the strain gauge was broken or the connection with the lead wire. In the case where the strain could not be measured due to the damage of the sample, “○” indicates that neither wrinkles in the central portion 111 nor loss of the strain gauge occurred. It shows what the strain could be measured. Furthermore, the type and the Young's modulus of the soft member 17 were different, and the measured values of the strain in the invention examples were the same.

表1より、発明例においては、軟質部材17に用いた樹脂の種類によらずヤング率が1500MPa以上3000MPa以下ものであれば、中央部111における座屈の発生と、ひずみゲージの損傷の双方を防止することができた。
これに対し、比較例においては、軟質部材17の種類によらずヤング率が本発明の範囲よりも小さい場合にはしわが発生し、ヤング率が本発明の範囲よりも大きい場合にはひずみゲージが欠損し、試験ができなかった。
From Table 1, in the invention example, if the Young's modulus is 1500 MPa or more and 3000 MPa or less irrespective of the type of resin used for the soft member 17, both generation of buckling in the central portion 111 and damage to the strain gauge are reduced. Could be prevented.
On the other hand, in the comparative example, wrinkles occur when the Young's modulus is smaller than the range of the present invention regardless of the type of the soft member 17, and when the Young's modulus is larger than the range of the present invention, the strain gauge Was lost and could not be tested.

以上、本発明に係る二軸圧縮引張試験用治具によれば、十字形状の板状試験片に圧縮荷重を作用させても面外座屈を防止して二軸圧縮引張試験を行うことができることが実証された。さらに、本発明に係る二軸圧縮引張試験用治具を用いて二軸圧縮引張試験を行うことにより、プレス成形解析に有意な材料特性(ひずみ−応力関係)を取得できることが示された。   As described above, according to the jig for a biaxial compression / tensile test according to the present invention, even when a compressive load is applied to a cruciform plate-shaped test piece, it is possible to perform the biaxial compression / tensile test by preventing out-of-plane buckling. Demonstrated what can be done. Furthermore, it was shown that by performing a biaxial compression-tensile test using the jig for a biaxial compression-tensile test according to the present invention, material properties (strain-stress relationship) significant for press-forming analysis can be obtained.

1 二軸圧縮引張試験用治具
11、11a、11b 中央金型
11c 中央金型(従来例)
13、13a、13b 中央金型櫛歯部
15 押圧部
15a 押圧面部
15b 部位
17 軟質部材
19 位置決めピン
21 押さえ機構
23 ベース部
25 天板部
27 ボルト
31、31a、31b 第1側部金型
33、33a、33b 保持部
35、35a、35b 側部金型櫛歯部
37 コロ
41、41a、41b 第2側部金型
43、43a、43b 保持部
45、45a、45b 側部金型櫛歯部
47 コロ
100 板状試験片
101 中央部
103、103a、103b 片部
105 ひずみゲージ
107 リード線
110 板状試験片
111 中央部
113、113a、113b 片部
DESCRIPTION OF SYMBOLS 1 Biaxial compression-tensile test jig 11, 11a, 11b Central mold 11c Central mold (conventional example)
13, 13a, 13b Central mold comb tooth portion 15 Pressing portion 15a Pressing surface portion 15b Site 17 Soft member 19 Positioning pin 21 Pressing mechanism 23 Base portion 25 Top plate portion 27 Bolts 31, 31a, 31b First side mold 33, 33a, 33b Holder 35, 35a, 35b Side mold comb tooth 37 Roller 41, 41a, 41b Second side mold 43, 43a, 43b Holder 45, 45a, 45b Side mold comb tooth 47 Roller 100 Plate-shaped test piece 101 Central part 103, 103a, 103b Single part 105 Strain gauge 107 Lead wire 110 Plate-shaped test piece 111 Central part 113, 113a, 113b Single part

Claims (2)

ひずみゲージを貼付した十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させて、該板状試験片に生じるひずみを前記ひずみゲージにより測定する二軸圧縮引張試験に用いる二軸圧縮引張試験用治具であって、
前記板状試験片を両面から挟持する一対からなる矩形の中央金型と、
該中央金型に前記板状試験片の板厚方向に所定の挟持力を付与する挟持力付与手段と、
前記中央金型の四辺の側方に配設されて前記板状試験片における十字形状の各片部を両面から挟持し、前記板状試験片の面内方向に所定の荷重を作用させる一対からなる側部金型と、を備え、
前記中央金型は、その四辺の縁部に形成された櫛歯状の凹凸からなる中央金型櫛歯部と、該中央金型櫛歯部に囲まれて前記中央金型で挟持された前記板状試験片の中央部を押圧する押圧部と、該押圧部における前記ひずみゲージに当接する部位に設けられてヤング率が1500MPa以上3000MPa以下の軟質部材を有し、
前記各側部金型は、前記板状試験片の片部を保持する保持部を有すると共に端部に前記中央金型櫛歯部に抜き差し可能な側部金型櫛歯部が形成されていることを特徴とする二軸圧縮引張試験用治具。
Biaxial compression used in a biaxial compression-tensile test in which a compressive load and / or a tensile load is applied to a cruciform plate-like test piece to which a strain gauge is attached, and strain generated in the plate-like test piece is measured by the strain gauge. A tensile test jig,
A rectangular central mold consisting of a pair of the plate-shaped test pieces sandwiched from both sides,
Clamping force applying means for applying a predetermined clamping force to the central mold in the thickness direction of the plate-shaped test piece,
A pair of cross-shaped pieces arranged on the four sides of the central mold and sandwiching the cross-shaped pieces of the plate-shaped test piece from both sides, and applying a predetermined load in the in-plane direction of the plate-shaped test piece. A side mold,
The central mold has a central mold comb tooth portion formed of comb-shaped irregularities formed on the edges of the four sides thereof, and the central mold is surrounded by the central mold comb tooth portion and held by the central mold. A pressing portion for pressing the central portion of the plate-shaped test piece, and a soft member having a Young's modulus of 1500 MPa or more and 3000 MPa or less, which is provided at a portion in contact with the strain gauge in the pressing portion,
Each of the side molds has a holding portion for holding a piece of the plate-shaped test piece, and a side mold comb tooth portion that can be inserted into and removed from the central mold comb tooth portion is formed at an end. A jig for a biaxial compression / tensile test characterized by the above-mentioned.
請求項1に記載の二軸圧縮引張試験用治具を用いて、十字形状の板状試験片に圧縮荷重及び/又は引張荷重を作用させる二軸圧縮引張試験方法であって、
前記板状試験片の中央部にひずみゲージを貼付し、
前記押圧部に設けられた前記軟質部材を前記板状試験片に貼付したひずみゲージに当接させ、前記押圧部で前記板状試験片の中央部を所定の押圧荷重で押圧するとともに、前記側部金型の保持部で前記板状試験片の各片部を保持した状態で、前記板状試験片の中央部に圧縮荷重及び/又は引張荷重を作用させて前記ひずみゲージによりひずみを測定することを特徴とする二軸圧縮引張試験方法。
A biaxial compression / tensile test method for applying a compressive load and / or a tensile load to a cruciform plate-like test piece using the biaxial compression / tensile test jig according to claim 1,
Attach a strain gauge to the center of the plate-shaped test piece,
The soft member provided in the pressing portion is brought into contact with a strain gauge attached to the plate-shaped test piece, and the pressing portion presses a central portion of the plate-shaped test piece with a predetermined pressing load, and With each piece of the plate-shaped test piece held by the holding portion of the mold, a compressive load and / or a tensile load are applied to the center of the plate-shaped test piece, and strain is measured by the strain gauge. A biaxial compression-tension test method, characterized in that:
JP2018115871A 2018-06-19 2018-06-19 Biaxial compression tensile test tool and biaxial compression tensile test method Pending JP2019219235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115871A JP2019219235A (en) 2018-06-19 2018-06-19 Biaxial compression tensile test tool and biaxial compression tensile test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115871A JP2019219235A (en) 2018-06-19 2018-06-19 Biaxial compression tensile test tool and biaxial compression tensile test method

Publications (1)

Publication Number Publication Date
JP2019219235A true JP2019219235A (en) 2019-12-26

Family

ID=69096162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115871A Pending JP2019219235A (en) 2018-06-19 2018-06-19 Biaxial compression tensile test tool and biaxial compression tensile test method

Country Status (1)

Country Link
JP (1) JP2019219235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504775A (en) * 2020-06-04 2020-08-07 西安建筑科技大学 Adjustable claw type concrete uniaxial tensile test clamp and using method thereof
CN113670719A (en) * 2021-08-09 2021-11-19 华南理工大学 Plane strain compression test die with one die for dual purposes
KR102400933B1 (en) * 2020-11-24 2022-05-23 현대제철 주식회사 Tensile and compression test apparatus for horizontally placed specimens, and tensile and compression test methods
CN116380653A (en) * 2023-03-23 2023-07-04 鞍钢股份有限公司 Gauge length positioning device and method for biaxial stretching sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504775A (en) * 2020-06-04 2020-08-07 西安建筑科技大学 Adjustable claw type concrete uniaxial tensile test clamp and using method thereof
KR102400933B1 (en) * 2020-11-24 2022-05-23 현대제철 주식회사 Tensile and compression test apparatus for horizontally placed specimens, and tensile and compression test methods
CN113670719A (en) * 2021-08-09 2021-11-19 华南理工大学 Plane strain compression test die with one die for dual purposes
CN116380653A (en) * 2023-03-23 2023-07-04 鞍钢股份有限公司 Gauge length positioning device and method for biaxial stretching sample

Similar Documents

Publication Publication Date Title
JP2019219235A (en) Biaxial compression tensile test tool and biaxial compression tensile test method
JP2018080923A (en) Biaxial compression and tension testing jig and biaxial compression and tension testing method
KR101911895B1 (en) Device for carrying out a bending test
KR101654164B1 (en) Test apparatus and method of tension compression specimen during electricity pulsing
CN109668785B (en) Adjustable clamp for sheet structure compression buckling test
CN108195679B (en) Device for measuring tensile strength of wire rod micro sample and test method
KR100940655B1 (en) Jig for anti-buckling of specimen
JP2008281390A (en) Manufacturing method of bending test tool, bending test tool and bending test device
KR101506908B1 (en) Anti-bucking device of a sheet metal specimen in fatigue testiung machine
JP2019035603A (en) Biaxial in-plane compression test method
JP2014228290A (en) Biaxial tensile testing method
CN108693032B (en) Plate compression performance test sample, device and method
KR101176958B1 (en) Three point bending test machine
JP2009257885A (en) Test piece holding apparatus
CN111595674A (en) Device capable of loading various stress fields in sample and loading method
CN114923775A (en) Metal plate tension and compression test device and test method
CN110530718B (en) Double-shaft residual stress introducing device based on white light interferometry surface morphology
CN107589031B (en) Check-up draws and presses reaction frame
CN106404553B (en) Three-point bending sample ductile fracture toughness JIC auxiliary test device and test method
JPS6381244A (en) Fatigue testing method
CN110608834A (en) Double-shaft prestress applying device capable of avoiding bending stress
CN115575229B (en) Pull/press shear composite loading test device
CN113237739B (en) Continuous tension and compression test fixture for measuring Baoxing behavior
CN117268906A (en) Profile bending test clamping tool, system and method for preventing web buckling
US11125665B2 (en) Test jig and test method