JP7479787B2 - Hot work tool steel with excellent thermal conductivity - Google Patents
Hot work tool steel with excellent thermal conductivity Download PDFInfo
- Publication number
- JP7479787B2 JP7479787B2 JP2018203256A JP2018203256A JP7479787B2 JP 7479787 B2 JP7479787 B2 JP 7479787B2 JP 2018203256 A JP2018203256 A JP 2018203256A JP 2018203256 A JP2018203256 A JP 2018203256A JP 7479787 B2 JP7479787 B2 JP 7479787B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- thermal conductivity
- work tool
- hot work
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 32
- 229910000831 Steel Inorganic materials 0.000 claims description 85
- 239000010959 steel Substances 0.000 claims description 85
- 238000005496 tempering Methods 0.000 claims description 46
- 238000010791 quenching Methods 0.000 claims description 45
- 230000000171 quenching effect Effects 0.000 claims description 45
- 150000001247 metal acetylides Chemical class 0.000 claims description 40
- 239000012535 impurity Substances 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 229910052804 chromium Inorganic materials 0.000 claims description 23
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 19
- 229910052720 vanadium Inorganic materials 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 229910052721 tungsten Inorganic materials 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000004512 die casting Methods 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005242 forging Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
この発明は、金型用鋼に関して、特にダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼に関する。 This invention relates to die steel, and in particular to die steel used in high-temperature environments such as die casting and hot stamping.
近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や、生産性向上を目的とした部品成形加工ピッチの短縮化から、ダイカスト用金型への機械的および熱的負荷が増大している。その結果、金型には摩耗、大割れ、ヒートチェックといった問題が生じやすくなっている。これらの問題に対応するため、金型材料には、硬度や靭性に優れる材料が求められている。また、ホットスタンピングでは、被加工材である鋼板の表面に発生したスケールによる金型の摩耗が問題となっており、金型材料には、高硬度が求められている。 In recent years, in the field of die casting, the mechanical and thermal load on die casting dies has increased due to the strengthening of aluminum parts to reduce the weight of automobiles and the shortening of part forming processing pitches to improve productivity. As a result, dies are prone to problems such as wear, large cracks, and heat checking. To address these issues, die materials with excellent hardness and toughness are required. In addition, in hot stamping, die wear due to scale that occurs on the surface of the steel plate, the material being processed, has become an issue, so die materials are required to have high hardness.
さらに、ダイカスト用金型やホットスタンピング用金型は内部に冷却回路が配されており、冷却回路を流れる冷却水による冷却効率が生産サイクルスピードに大きく影響する。冷却効率を高める方法としては、金型の高熱伝導率化がある。そのため、前述した生産性向上を目的とした、生産サイクルスピードの向上に対する要求に応えるためには、材料の特性として高い熱伝導率が要請されている。 Furthermore, die casting dies and hot stamping dies have cooling circuits inside, and the cooling efficiency of the cooling water flowing through the cooling circuit has a significant impact on the production cycle speed. One way to increase cooling efficiency is to increase the thermal conductivity of the die. Therefore, in order to meet the demand for faster production cycle speeds with the aim of improving productivity as mentioned above, a material with high thermal conductivity is required as a property.
こうした背景から、従来技術として、質量%で、C:0.30~0.50%、Si:0.10~0.50%、Mn:0.10~1.00%、Cr:4.00~6.00%、Mo:1.40~2.60%、V:0.20~0.80%、Ti:0.0030%以下、N:0.0120%以下を含有し、残部Feおよび不可避不純物からなり、さらに、Mo、Crは0.33×[%Cr]-0.37<[Mo%]<4.45-0.44×[%Cr]の関係式を満足する、高靭性及び高強度な熱間金型用鋼が提案されている(例えば、特許文献1参照。)。
もっとも、この熱間金型用鋼は、44~46HRCまでに調質した状態からの高温での軟化抵抗性が考慮されているものの、焼入焼戻し後に存在する炭化物のサイズについての言及はなく、室温での熱伝導率25.0W/m・K以上の高熱伝導率を有する鋼を得るには不十分である。
また、この提案の熱間金型用鋼は、46.0HRCを超える高硬度を有しておらず、ホットスタンピングの金型用素材として使われた際には金型に摩耗が発生してしまい、十分な金型寿命を得られないものであった。
In light of this background, a high-toughness, high-strength hot die steel has been proposed as a conventional technique, which contains, by mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.10 to 1.00%, Cr: 4.00 to 6.00%, Mo: 1.40 to 2.60%, V: 0.20 to 0.80%, Ti: 0.0030% or less, N: 0.0120% or less, the balance being Fe and unavoidable impurities, and further, Mo and Cr satisfy the relational expression 0.33×[%Cr]−0.37<[Mo%]<4.45−0.44×[%Cr] (see, for example, Patent Document 1).
However, although this hot work die steel takes into consideration softening resistance at high temperatures from a state in which it is tempered to 44 to 46 HRC, there is no mention of the size of the carbides present after quenching and tempering, and this is insufficient for obtaining steel having high thermal conductivity of 25.0 W/m K or more at room temperature.
In addition, the proposed hot work die steel does not have a high hardness exceeding 46.0 HRC, and when used as a material for hot stamping dies, wear occurs in the dies, and sufficient die life cannot be obtained.
他の従来技術として、金型の熱伝導率を高くし得て、金型の急速冷却を可能とし、製品製造のハイサイクル化を実現可能とし、ハイサイクル化の下でも製品品質を高め、不良率を低減することができ、さらに金型の熱応力を低減し得て金型寿命を延長でき、しかも稀少の添加量を少なく抑えつつ金型として必要な強度、靭性、高温特性を得ることのできる金型鋼を志向して、質量%で、0.35<C≦0.50、0.01≦Si<0.19、1.50<Mn<1.78、2.00<Cr<3.05、0.51<Mo<1.25、0.30<V<0.80、0.004≦N≦0.040、残部Fe及び不可避的不純物の組成を有する金型用鋼が提案されている(例えば、特許文献2参照。)。しかしながら、この金型鋼は、Mn量が高いことから、Mnの過剰添加によって熱伝導率が低下しやすくなる。またCrが少なく靱性が得られにくくなる。 As another prior art, a die steel has been proposed that aims to increase the thermal conductivity of the die, enable rapid cooling of the die, enable high cycle production of products, improve product quality and reduce the defect rate even under high cycle production, and further reduce the thermal stress of the die, extend the die life, and obtain the strength, toughness, and high temperature properties required for a die while keeping the amount of rare additives low. The die steel has a composition of 0.35<C≦0.50, 0.01≦Si<0.19, 1.50<Mn<1.78, 2.00<Cr<3.05, 0.51<Mo<1.25, 0.30<V<0.80, 0.004≦N≦0.040, balance Fe and unavoidable impurities (see, for example, Patent Document 2). However, since this die steel has a high Mn content, the thermal conductivity is easily reduced by the excessive addition of Mn. In addition, the Cr content is low, making it difficult to obtain toughness.
また、被削性、熱伝導率、硬さともに良好な特性を志向する金型用鋼として、質量割合で、C:0.45超~0.60%、Si:0.05~0.20%、Mn:0.3~0.7%、Ni:0.2~0.5%、Cr:0.2~0.5%、V:0.03~0.1%、Al:0.01~0.03%、S;0.010%未満、O:0.0030%以下、N:0.02%以下を含有し、残部がFeおよび不可避不純物からなり、かつ不可避不純物中でP:0.015%以下、Cu:0.30%以下、Mo:0.20%以下に規制した組成を有する金型用鋼を、900~1050℃で加熱、空冷の焼ならしによってフェライト・パーライトの二相組織とし、500~650℃で加熱、炉冷の焼戻しにより硬さ180~220HVとした、熱伝導性に優れたプラスチック成形金型用鋼が提案されている(例えば、特許文献3参照。)。しかし、この金型用鋼は、Vの含有量が少ないことから、焼入焼戻し硬さが不足する。 In addition, as a mold steel aiming for good properties in terms of machinability, thermal conductivity, and hardness, it contains, by mass, C: over 0.45 to 0.60%, Si: 0.05 to 0.20%, Mn: 0.3 to 0.7%, Ni: 0.2 to 0.5%, Cr: 0.2 to 0.5%, V: 0.03 to 0.1%, Al: 0.01 to 0.03%, S: less than 0.010%, O: 0.0030% or less, N: 0.02% or less, and the balance being Fe and unavoidable impurities. A steel for plastic molding dies with excellent thermal conductivity has been proposed, in which die steel has a composition regulated to P: 0.015% or less, Cu: 0.30% or less, and Mo: 0.20% or less among unavoidable impurities, and is heated at 900 to 1050°C, normalized with air cooling to form a two-phase structure of ferrite and pearlite, and then heated at 500 to 650°C and tempered with furnace cooling to a hardness of 180 to 220 HV (see, for example, Patent Document 3). However, this die steel has a low V content, so the quenching and tempering hardness is insufficient.
また、質量%で、0.35<C<0.55mass%、0.003≦Si<0.300mass%、0.30<Mn<1.50mass%、2.00≦Cr<3.50mass%、0.003≦Cu<1.200mass%、0.003≦Ni<1.380mass%、0.50<Mo<3.29mass%、0.55<V<1.13mass%、0.0002≦N<0.1200mass%を含み、残部がFe及び不可避的不純物からなり、0.55<Cu+Ni+Mo<3.29mass%を満たす鋼で、硬さが33HRC超~57HRCであり、焼入れ時の旧オーステナイト結晶粒度番号が5以上であり、レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m・K]超である金型鋼が提案されている(例えば、特許文献4参照。)。しかし、この金型鋼は、Crの含有量が十分ではないことから、靭性が不足する。 In terms of mass%, 0.35<C<0.55 mass%, 0.003≦Si<0.300 mass%, 0.30<Mn<1.50 mass%, 2.00≦Cr<3.50 mass%, 0.003≦Cu<1.200 mass%, 0.003≦Ni<1.380 mass%, 0.50<Mo<3.29 mass%, 0.55<V<1.13 mass%, 0.0002≦N<0.1200 mass% A die steel has been proposed that contains 0.55 < Cu + Ni + Mo < 3.29 mass%, with the remainder being Fe and unavoidable impurities, has a hardness of more than 33 HRC to 57 HRC, has a prior austenite grain size number of 5 or more at the time of quenching, and has a thermal conductivity λ at 25°C measured using a laser flash method of more than 27.0 [W/m·K] (see, for example, Patent Document 4). However, this die steel lacks toughness because the Cr content is insufficient.
また、質量%で、0.15<C<0.43、0.20<Si<0.52、5.32<Cr<5.72、-0.05814×[Cr]+0.4326<Mn<-0.2907×[Cr]+2.4628・・式(1)、(但し式(1)中[Cr]はCrの含有量%を表す)、0.72<Mo<1.60、0.20<V<0.61、残部がFe及び不可避的不純物の組成を有する金型用鋼が提案されている(例えば、特許文献5参照。)。しかし、この金型用鋼では、Crが過剰に添加されていることから、これにより熱伝導率が低下しやすいものであった。また、この文献の実施例はC量やMoの量が少ない場合が多く、焼入焼戻し硬さに不足している。 In addition, a die steel has been proposed that has the following composition in mass %: 0.15<C<0.43, 0.20<Si<0.52, 5.32<Cr<5.72, -0.05814 x [Cr] + 0.4326 < Mn < -0.2907 x [Cr] + 2.4628... (1) (where [Cr] in formula (1) represents the % Cr content), 0.72<Mo<1.60, 0.20<V<0.61, with the remainder being Fe and unavoidable impurities (see, for example, Patent Document 5). However, this die steel contains an excessive amount of Cr, which tends to reduce the thermal conductivity. Also, the examples in this document often contain small amounts of C and Mo, resulting in insufficient quench-tempered hardness.
さらに、質量%で、0.15<C<0.43、0.20<Si<0.52、4.00<Cr<5.72、-0.05814×[Cr]+0.4326<Mn<-0.2907×[Cr]+2.4628・・式(1)、(但し式(1)中[Cr]はCrの含有量%を表す)、0.72<Mo<1.60、0.20<V<0.61、残部がFe及び不可避的不純物の組成を有する金型用鋼が提案されている(例えば、特許文献6参照。)。しかし、この金型用鋼の実施例は、C量が少なく、焼入焼戻し硬さが不足している。 Furthermore, a mold steel has been proposed that has the following composition, in mass %, 0.15<C<0.43, 0.20<Si<0.52, 4.00<Cr<5.72, -0.05814 x [Cr] + 0.4326 < Mn < -0.2907 x [Cr] + 2.4628... formula (1) (where [Cr] in formula (1) represents the Cr content in percentage), 0.72<Mo<1.60, 0.20<V<0.61, with the balance being Fe and unavoidable impurities (see, for example, Patent Document 6). However, the example of this mold steel has a low C content and is insufficient in quench-and-temper hardness.
また、質量%で、C:0.30~0.50%、Si:0.10~0.50%、Mn:0.10~1.0%、Cr:4.5~5.4%、Mo:1.4~2.4%、W:1.0%以下、かつMo+W/2:1.7~2.4%、V:0.30~0.70%を含有し、残部Feおよび不可避不純物からなり、焼入焼戻し後に観察される残留炭化物の種類や割合がM26C6、M6C、M2C、MCからなる全炭化物中に占めるM6C、M2C、MCからなる炭化物の割合が5.0以上、さらに全炭化物面積率が断面積0.01mm2辺り2%以下、シャルピー衝撃値が30J/cm2以上、軟化量(ΔHRC)が13HRC以下である、優れた高温強度および靭性を有する熱間金型用鋼が提案されている(例えば、特許文献7参照。)。
しかし、この熱間金型用鋼は、44~45HRCに調質した後の軟化抵抗性についての検討はされているものの、焼入焼戻し後に存在する炭化物のサイズについては言及されておらず、また、室温での熱伝導率25.0W/m・K以上の高熱伝導率および焼入焼戻し後の硬さが46.0HRCを超える高硬度を有する鋼を得るためには不十分であり、ホットスタンピングの金型用素材として使われた際には金型に摩耗が発生してしまい、十分な金型寿命を得られないものであった。
The steel also contains, by mass%, C: 0.30-0.50%, Si: 0.10-0.50%, Mn: 0.10-1.0%, Cr: 4.5-5.4%, Mo: 1.4-2.4%, W: 1.0% or less, Mo+W/2: 1.7-2.4%, V: 0.30-0.70%, with the balance being Fe and unavoidable impurities. The types and ratios of residual carbides observed after quenching and tempering are such that the ratio of carbides consisting of M6C, M2C, and MC to the total carbides consisting of M26C6 , M6C , M2C , and MC is 5.0 or more, the total carbide area ratio is 2% or less per 0.01 mm2 cross-sectional area, and the Charpy impact value is 30 J /cm A hot work die steel having excellent high-temperature strength and toughness, in which the hardness (H) is 0.2 or more and the softening amount (ΔHRC) is 13HRC or less, has been proposed (see, for example, Patent Document 7).
However, although this hot work die steel has been examined for its softening resistance after tempering to 44-45 HRC, there is no mention of the size of the carbides present after quenching and tempering, and it is insufficient for obtaining a steel having a high thermal conductivity of 25.0 W/m·K or more at room temperature and a high hardness of more than 46.0 HRC after quenching and tempering. When used as a material for hot stamping dies, wear occurs in the dies, and a sufficient die life cannot be obtained.
金型用鋼では、焼入焼戻しにより、M23C6、M6C、M2C、MCなどの炭化物を析出する。発明者は、これらの炭化物の状態が熱伝導率へ及ぼす影響について詳細に検討し、焼入焼戻し後の熱伝導率を高めるには析出する炭化物のサイズを大きくすることが有効であるという知見を得た。
一方、炭化物は硬さに大きく影響する因子でもあり、炭化物のサイズの大きさの増加は、かえって硬さの低下を招くという知見も得た。
そこで、発明者は、これらの相反する知見に基づき、熱間工具鋼の化学成分の範囲およびこの熱間工具鋼の焼入焼戻し後の炭化物の大きさの範囲を規定することにより、高熱伝導率、高硬度および高靭性を兼ね備えた熱間工具鋼が得られることを見出した。
In die steel, carbides such as M23C6 , M6C , M2C , and MC are precipitated by quenching and tempering. The inventors have conducted a detailed study on the effect of the state of these carbides on thermal conductivity, and have found that increasing the size of the precipitated carbides is effective in increasing the thermal conductivity after quenching and tempering.
On the other hand, carbides are also a factor that greatly affects hardness, and it has been discovered that an increase in the size of carbides actually leads to a decrease in hardness.
Based on these conflicting findings, the inventors have discovered that by specifying the range of the chemical components of the hot work tool steel and the range of the sizes of the carbides after quenching and tempering of this hot work tool steel, it is possible to obtain a hot work tool steel that combines high thermal conductivity, high hardness and high toughness.
そこで、本願の発明が解決しようとする課題は、高熱伝導率、高硬度および高靭性を兼ね備えた、ダイカストやホットスタンピングなどに適用可能な金型用鋼である熱間工具鋼を提供することである。 The problem that the present invention aims to solve is to provide a hot work tool steel, which is a die steel that combines high thermal conductivity, high hardness and high toughness and can be used in die casting, hot stamping, etc.
上記の課題を解決するための本発明の第1の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The first means of the present invention to solve the above problems is a hot work tool steel that contains, by mass%, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and is characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm, and has high thermal conductivity, high hardness, and high toughness.
その第2の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、Ni:0.01~2.00%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The second means is a hot work tool steel that contains, in mass %, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, Ni: 0.01-2.00%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第3の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、N:0.001~0.040%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The third means is a hot work tool steel that contains, in mass %, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, N: 0.001-0.040%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第4の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、Ni:0.01~2.00%、N:0.001~0.040%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The fourth means is a hot work tool steel that contains, in mass %, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, Ni: 0.01-2.00%, N: 0.001-0.040%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第5の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、Al:0.001~0.080%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The fifth means is a hot work tool steel that contains, in mass%, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, Al: 0.001-0.080%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第6の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、Ni:0.01~2.00%、Al:0.001~0.080%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The sixth means is a hot work tool steel that contains, in mass%, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, Ni: 0.01-2.00%, Al: 0.001-0.080%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第7の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、N:0.001~0.040%、Al:0.001~0.080%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The seventh means is a hot work tool steel that contains, in mass%, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, N: 0.001-0.040%, Al: 0.001-0.080%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and that has high thermal conductivity, high hardness, and high toughness, characterized in that the average equivalent circle diameter of the carbides present in the steel after quenching and tempering is 150-400 nm.
その第8の手段は、質量%で、C:0.34~0.55%、Si:0.01~0.50%、Mn:0.01~1.50%、Cr:3.50~5.32%、V:0.10超~1.00%、Ni:0.01~2.00%、N:0.001~0.040%、Al:0.001~0.080%、さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、残部Feおよび不可避不純物からなる熱間工具鋼であって、該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼である。 The eighth means is a hot work tool steel that contains, in mass%, C: 0.34-0.55%, Si: 0.01-0.50%, Mn: 0.01-1.50%, Cr: 3.50-5.32%, V: over 0.10-1.00%, Ni: 0.01-2.00%, N: 0.001-0.040%, Al: 0.001-0.080%, and one or two of Mo: 4.00% or less or W: 8.00% or less, and satisfies (Mo+W): 1.80% or more and (Mo+W/2): 4.00% or less, with the balance being Fe and unavoidable impurities, and is characterized in that the average equivalent circle diameter of the carbides in the steel after quenching and tempering is 150-400 nm. The hot work tool steel has high thermal conductivity, high hardness, and high toughness.
本発明の上記の手段による熱間工具鋼は、焼入焼戻し後の炭化物の大きさが平均円相当径が150~400mmであって、焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上と高熱伝導率であり、焼入焼戻し後の硬度が46.0HRC超の高硬度であり、さらに焼入焼戻し後のシャルピー衝撃値が30J/cm2以上の高靭性であるなど、高熱伝導率、高硬度および高靭性の熱間工具鋼である。高硬度、高靱性、高熱伝導率を兼ね備えるものであるから、ダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼として優れた特性を発揮する。 The hot work tool steel according to the above-mentioned means of the present invention is a hot work tool steel with high thermal conductivity, high hardness and high toughness, such that the size of the carbides after quenching and tempering is an average equivalent circle diameter of 150 to 400 mm, the thermal conductivity at room temperature after quenching and tempering is high at 25.0 W/m·K or more, the hardness after quenching and tempering is high at over 46.0 HRC, and further the Charpy impact value after quenching and tempering is high at 30 J/ cm2 or more. Since it has high hardness, high toughness and high thermal conductivity, it exhibits excellent properties as a die steel used in high temperature environments such as die casting and hot stamping.
本発明の実施の形態の説明に先立って、本願発明における化学成分等の限定理由を説明する。なお、説明における記載中の%は、質量%である。 Before describing the embodiments of the present invention, we will explain the reasons for limiting the chemical components, etc., in the present invention. Note that % in the description is % by mass.
C:0.34~0.55%
Cは、鋼中に固溶することで、マトリックスを強化し、また炭化物を形成することで析出強化を促す元素である。Cは0.34%より少ないと十分な焼入焼戻し硬さが得られない。一方、Cは0.55%より多いと偏析を助長し、靭性を低下する。そこで、Cは0.34~0.55%とし、好ましくは、0.35~0.50%とする。
C: 0.34 to 0.55%
C is an element that strengthens the matrix by dissolving in steel and promotes precipitation strengthening by forming carbides. If C is less than 0.34%, sufficient quench-temper hardness cannot be obtained. On the other hand, if C is more than 0.55%, it promotes segregation and reduces toughness. Therefore, C is set to 0.34-0.55%, and preferably 0.35-0.50%.
Si:0.01~0.50%
Siは、製鋼時の脱酸剤として必要な元素である。Siはマトリックスに固溶することで硬さを向上する元素であるが、Siは0.01%より少ないと十分に脱酸されない。一方、Siは0.50%より多いと、Si炭化物を形成することなく、マトリックスに固溶して熱伝導率を大きく低下する。そこで、Siは0.01~0.50%とし、好ましくは、0.05~0.40%とする。
Si: 0.01 to 0.50%
Silicon is an element necessary as a deoxidizer during steelmaking. Silicon is an element that improves hardness by dissolving in the matrix, but if the amount of silicon is less than 0.01%, the deoxidization is not sufficient. On the other hand, if the amount of silicon is more than 0.50%, silicon does not form silicon carbides but dissolves in the matrix, greatly reducing the thermal conductivity. Therefore, silicon is set to 0.01 to 0.50%, and preferably 0.05 to 0.40%.
Mn:0.01~1.50%
Mnは、製鋼時の脱酸剤として必要な元素である。Mnは0.01%より少ないと十分に脱酸されない。一方、Mnは、1.50%より多すぎると、マトリックスに固溶して鋼の熱伝導率を低下させる。そこで、Mnは0.01~1.50%とし、好ましくは、0.10~1.20%とする。
Mn: 0.01 to 1.50%
Mn is an element necessary as a deoxidizer during steelmaking. If the Mn content is less than 0.01%, the steel will not be sufficiently deoxidized. On the other hand, if the Mn content is more than 1.50%, the Mn content will dissolve in the matrix and reduce the thermal conductivity of the steel. Therefore, the Mn content is set to 0.01 to 1.50%, and preferably 0.10 to 1.20%.
Cr:3.50~5.32%
Crは、鋼の焼入性を向上させ、ベイナイト形成による靭性の低下を抑制するために必要な元素である。Crが3.50%より少ないと十分な靭性が得られない。一方、Crは5.32%より多いと、マトリックスに固溶して鋼の熱伝導率を低下させる。そこで、Crは3.50~5.32%とし、好ましくは、4.00~5.25%とする。
Cr: 3.50 to 5.32%
Cr is an element necessary for improving the hardenability of steel and suppressing the decrease in toughness due to the formation of bainite. If the Cr content is less than 3.50%, sufficient toughness cannot be obtained. On the other hand, if the Cr content is more than 5.32%, it dissolves in the matrix and decreases the thermal conductivity of the steel. Therefore, the Cr content is set to 3.50 to 5.32%, and preferably 4.00 to 5.25%.
V:0.10超~1.00%
Vは、鋼の焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。Vは0.10以下であると十分な焼入焼戻し硬さが得られない。一方、Vは1.00%より多すぎるとマトリックスに残存するVが増加し、熱伝導率を低下させる。そこで、Vは0.10超~1.00%とし、好ましくは0.25~0.85%とする。
V: more than 0.10 to 1.00%
V is an element that promotes secondary hardening during tempering of steel and increases the quenching and tempering hardness. If V is 0.10 or less, sufficient quenching and tempering hardness cannot be obtained. On the other hand, if V is more than 1.00%, the amount of V remaining in the matrix increases, lowering the thermal conductivity. Therefore, V is set to more than 0.10 to 1.00%, and preferably 0.25 to 0.85%.
(選択的必須成分について)
Mo及びW:1種または2種を含有し、Mo:4.00%以下、W:8.00%以下、(Mo+W):1.80%以上、(Mo+W/2):4.00%以下
MoとWは、鋼の焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。そこで、本発明では、MoとWは選択的な必須成分とし、Mo:4.00%以下、W:8.00%以下のいずれか1種もしくは双方を含有するものであって、さらに両元素の合計含有量は(Mo+W):1.80%以上であり、さらに(Mo+W/2)は4.00%以下を満足する。
(Mo+W)が1.80%より少ないと十分な焼入焼戻し硬さが得られない。そこで、(Mo+W)は1.80%以上とし、好ましくは、1.90%以上とする。一方、Mo:4.00%以下、W:8.00%以下であって、これ以上にMoやWが多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率を低下させる。また、いずれの元素も過剰に添加すると、マトリックスに残存するMoやWが増加して熱伝導性を低下させるので、両元素全体として、(Mo+W/2)は4.00%以下、好ましくは3.50%以下とする。
(Selective Essential Ingredients)
Mo and W: one or two are contained, Mo: 4.00% or less, W: 8.00% or less, (Mo+W): 1.80% or more, (Mo+W/2): 4.00% or less Mo and W are elements that promote secondary hardening during tempering of steel and increase quenching and tempering hardness. Therefore, in the present invention, Mo and W are considered as optional essential components, and either one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and further, the total content of both elements is (Mo+W): 1.80% or more, and further, (Mo+W/2) is 4.00% or less.
If (Mo+W) is less than 1.80%, sufficient quenching and tempering hardness cannot be obtained. Therefore, (Mo+W) is set to 1.80% or more, preferably 1.90% or more. On the other hand, Mo: 4.00% or less, W: 8.00% or less, if there is more Mo or W than this, the amount of Mo or W remaining in the matrix increases, lowering the thermal conductivity. Also, if either element is added in excess, the amount of Mo or W remaining in the matrix increases, lowering the thermal conductivity, so (Mo+W/2) for both elements as a whole is set to 4.00% or less, preferably 3.50% or less.
(付加的成分について)
Ni:0.01~2.00%
Niは、必ずしも添加する必要はないが、Cと同様に、鋼の焼入焼戻し硬さを大きくするのに有効な元素であり、必要に応じて、添加する元素である。一方、Niは2.00%より多くの過剰添加は精錬の時間およびコストの上昇を招く。そこで、Niは0.01~2.00%とし、好ましくは、0.01~1.50%とする。
(Additional Ingredients)
Ni: 0.01 to 2.00%
Although it is not essential to add Ni, like C, it is an effective element for increasing the quenching and tempering hardness of steel, and is added as necessary. On the other hand, excessive addition of Ni more than 2.00% leads to an increase in refining time and cost. Therefore, Ni is set to 0.01 to 2.00%, and preferably 0.01 to 1.50%.
N:0.001~0.040%
Nは、必ずしも添加する必要はないが、Cと同様に、鋼の焼入焼戻し硬さを大きくするのに有効な元素であり、必要に応じて、添加する元素である。一方、Nは、0.040%より多くの過剰添加は精錬の時間およびコストの上昇を招く。そこで、Nは0.001~0.040%とし、好ましくは、0.001~0.030%とする。
N: 0.001 to 0.040%
Although it is not essential to add N, like C, it is an effective element for increasing the quenching and tempering hardness of steel, and is added as necessary. On the other hand, excessive addition of N more than 0.040% leads to an increase in refining time and cost. Therefore, N is set to 0.001-0.040%, and preferably 0.001-0.030%.
Al:0.001~0.080%
Alは、必ずしも添加する必要はないが、Al窒化物を形成して焼入れにおける結晶粒の粗大化を抑制する元素であり、必要に応じて添加することができる。一方、過剰のAl窒化物の形成により、靭性が低下する。そこで、Alは0.001~0.080%とし、好ましくは、0.005~0.060%とする。
Al: 0.001 to 0.080%
Although it is not essential to add Al, it is an element that forms Al nitrides to suppress the coarsening of crystal grains during quenching, and can be added as necessary. On the other hand, the formation of excess Al nitrides reduces toughness. Therefore, the Al content is set to 0.001 to 0.080%, and preferably 0.005 to 0.060%.
(炭化物の大きさについて)
鋼の焼入焼戻し後に存在する炭化物の平均円相当径:150~400nm
金型用鋼では、焼入焼戻しにより炭化物が析出し、析出した炭化物のサイズが大きくなるほど熱伝導率が高くなる。そのため、熱伝導率を十分に得るためには、炭化物の平均円相当径は150nm以上であることが必要である。
また、炭化物は析出強化量に寄与する因子でもあり、炭化物の析出量が多いほど析出粒子が障害物となって転位の移動は困難になるが、炭化物が粗大化してしまうと硬さの低下を招いてしまう。そこで、焼入焼戻し後に存在する炭化物の平均円相当径は150~400nmとし、好ましくは、160~390mmとする。
(Regarding the size of carbides)
Average circle equivalent diameter of carbides present after quenching and tempering of steel: 150 to 400 nm
In die steel, carbides are precipitated by quenching and tempering, and the larger the size of the precipitated carbides, the higher the thermal conductivity. Therefore, in order to obtain sufficient thermal conductivity, the average equivalent circle diameter of the carbides needs to be 150 nm or more.
Carbide is also a factor that contributes to the amount of precipitation strengthening, and the more carbide precipitates, the more difficult it becomes for dislocations to move because the precipitate particles become obstacles, but if the carbides become coarse, it leads to a decrease in hardness. Therefore, the average equivalent circle diameter of carbides present after quenching and tempering is set to 150 to 400 nm, preferably 160 to 390 mm.
次に、発明の実施の形態について、以下に記載する。
表1の本願の発明鋼のNo.1~31および表2の比較鋼のNo.32~47の各化学成分と残部Feおよび不可避不純物からなる鋼を真空溶解炉で溶製し、それぞれ100kgの鋼塊を得た。これらの各鋼塊から、幅65mm、高さ30mmのブロックに熱間鍛伸した。次いで、この鍛伸材を870℃で2時間保持した後、徐冷して焼なまし、その後、表面と中心の中間位置から試料を採取した。これらの各試料を1030℃で焼入れした後、油冷し、550~680℃で2回焼戻しを行なった後、空冷した。これら各試料の鍛伸材の鋼中の炭化物の平均円相当径を測定し、その結果を、表1の発明鋼のNo.1~31に示し、表2の比較鋼のNo.32~47に示した。
Next, embodiments of the invention will be described below.
Steels consisting of the chemical components of the invention steels No. 1 to 31 in Table 1 and the comparative steels No. 32 to 47 in Table 2, with the balance being Fe and unavoidable impurities, were melted in a vacuum melting furnace, and 100 kg of steel ingots were obtained. From each of these steel ingots, a block with a width of 65 mm and a height of 30 mm was hot forged and stretched. Next, the forged and stretched material was held at 870°C for 2 hours, slowly cooled and annealed, and then samples were taken from the intermediate position between the surface and the center. Each of these samples was quenched at 1030°C, oil-cooled, and tempered twice at 550 to 680°C, and then air-cooled. The average circle equivalent diameter of carbides in the forged and stretched steel of each of these samples was measured, and the results are shown in the invention steels No. 1 to 31 in Table 1 and the comparative steels No. 32 to 47 in Table 2.
さらに、これら試料の鍛伸材の鋼の特性である熱伝導率、焼入焼戻し硬さおよびシャルピー衝撃値を測定し、その結果を、表3の発明鋼のNo.1~31に示し、表4の比較鋼のNo.32~47に示した。 Thermal conductivity, quenched and tempered hardness, and Charpy impact value, which are the steel properties of the forged and stretched materials of these samples, were also measured, and the results are shown in Table 3 for the inventive steels No. 1 to 31, and in Table 4 for the comparative steels No. 32 to 47.
上記の炭化物の平均円相当径の測定における鋼中の炭化物を観察するための試験片は、焼入焼戻し後の試料の鍛伸方向に平行な面を研磨し、抽出レプリカ法により作成した。この試験片を透過型電子顕微鏡の明視野像を用いて、総面積100μm2の領域を観察し、画像解析により、各炭化物の面積に相当する真円の直径を換算し、その平均値を表1および表2の炭化物の円相当径として記載した。 The test pieces for observing the carbides in the steel in the above measurement of the average circle equivalent diameter of the carbides were prepared by polishing the surface parallel to the forging direction of the quenched and tempered sample and using the extraction replica method. A region of 100 μm2 in total area of the test pieces was observed using bright field images of a transmission electron microscope, and the diameter of a perfect circle equivalent to the area of each carbide was calculated by image analysis. The average value was recorded as the circle equivalent diameter of the carbides in Tables 1 and 2.
上記の鍛伸材の鋼の特性である熱伝導率の測定には、レーザーフラッシュ法を用いた。焼入焼戻し後の試料を直径10mm×1mmの円柱形状に仕上げ加工して試験に供し、パルス・レーザーを円板の片面に照射して厚さ方向の熱拡散率を得て、定圧比熱と密度を乗じて焼入焼戻し後の室温での熱伝導率を得て、表3および表4の熱伝導率とした。この焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上を高熱伝導率という。 The laser flash method was used to measure the thermal conductivity, a characteristic of the steel of the above forged and stretched material. After quenching and tempering, the sample was finished into a cylindrical shape of 10 mm diameter x 1 mm for testing, and a pulsed laser was irradiated onto one side of the disk to obtain the thermal diffusivity in the thickness direction. This was then multiplied by the specific heat at constant pressure and the density to obtain the thermal conductivity at room temperature after quenching and tempering, which was then used as the thermal conductivity in Tables 3 and 4. A thermal conductivity of 25.0 W/m·K or more at room temperature after quenching and tempering is called high thermal conductivity.
上記の鍛伸材の鋼の特性である焼入焼戻し硬さはロックウエル硬さ試験機で測定した。この場合、焼入焼戻し状態の試料の鍛伸方向に垂直な面を測定してロックウエル硬さを得て、表3および表4の焼入焼戻し硬さとした。この焼入焼戻し後の硬さが46.0HRC超を高硬度であると評価する。 The quenched and tempered hardness, which is a characteristic of the steel of the above forged and stretched material, was measured with a Rockwell hardness tester. In this case, the Rockwell hardness was obtained by measuring the surface perpendicular to the forging direction of the sample in the quenched and tempered state, and was taken as the quenched and tempered hardness in Tables 3 and 4. A hardness of more than 46.0 HRC after quenching and tempering is evaluated as high hardness.
上記の鍛伸材の鋼の特性である靭性は、シャルピー衝撃試験により評価を実施した、この場合、焼入焼戻し後の試料から作成した。試験片形状は2mmUノッチシャルピー試験片であり、ノッチ方向は鍛伸方向に対して垂直な方向として測定して、表3および表4のシャルピー衝撃値とした。この焼入焼戻し後のシャルピー衝撃値が30J/cm2以上を高靭性であると評価する。 The toughness, which is a characteristic of the steel of the above forged and stretched material, was evaluated by a Charpy impact test. In this case, the specimen was made from a sample after quenching and tempering. The test piece shape was a 2 mm U-notch Charpy test piece, and the notch direction was measured in a direction perpendicular to the forging direction, and the Charpy impact values in Tables 3 and 4 were obtained. A Charpy impact value of 30 J/ cm2 or more after quenching and tempering is evaluated as having high toughness.
表2の比較鋼のNo.32はCの含有量が0.33%と発明の範囲より低く、したがって、表4の焼入焼戻し硬さが42.2HRCと本発明で得られる46.0HRC超よりも硬さが低い。 Comparative steel No. 32 in Table 2 has a C content of 0.33%, which is lower than the range of the invention, and therefore has a quenched and tempered hardness of 42.2 HRC in Table 4, which is lower than the hardness of over 46.0 HRC obtained in the present invention.
表2の比較鋼のNo.33はCの含有量が0.56%と発明の範囲より高く、したがって、表4のシャルピー衝撃値が20.1J/cm2と本発明で得られる30J/cm2以上よりも靱性が低い。 Comparative steel No. 33 in Table 2 has a C content of 0.56%, which is higher than the range of the invention, and therefore has a Charpy impact value in Table 4 of 20.1 J/ cm2 , which is lower in toughness than the 30 J/ cm2 or more obtained in the present invention.
表2の比較鋼のNo.34はSiの含有量が0.51%と発明の範囲より低く、したがって、表4の熱伝導率が23.8W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 34 in Table 2 has a Si content of 0.51%, which is lower than the range of the invention, and therefore has a thermal conductivity of 23.8 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.35はMnの含有量が1.51%と発明の範囲より高く、したがって、表4の熱伝導率が22.3W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 35 in Table 2 has a Mn content of 1.51%, which is higher than the range of the invention, and therefore has a thermal conductivity of 22.3 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.36はCrの含有量が3.49%と発明の範囲より低く、したがって、表4のシャルピー衝撃値が28.9J/cm2と本発明で得られる30J/cm2以上よりも靱性が低い。 Comparative steel No. 36 in Table 2 has a Cr content of 3.49%, which is lower than the range of the invention, and therefore has a Charpy impact value in Table 4 of 28.9 J/ cm2 , which is lower in toughness than the 30 J/ cm2 or more obtained in the present invention.
表2の比較鋼のNo.37はCrの含有量が5.33%と発明の範囲より高く、したがって、表4の熱伝導率が24.8W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 37 in Table 2 has a Cr content of 5.33%, which is higher than the range of the invention, and therefore has a thermal conductivity of 24.8 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.38はMoの含有量が4.01%と発明の範囲より高く、(Mo+W/2)も4.01%と高い。したがって、表4の熱伝導率が24.4W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 38 in Table 2 has a Mo content of 4.01%, which is higher than the range of the invention, and (Mo+W/2) is also high at 4.01%. Therefore, the thermal conductivity in Table 4 is 24.4 W/m·K, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.39はWの含有量が8.02%と発明の範囲より高く、(Mo+W/2)も4.01%と高い。したがって、表4の熱伝導率が23.7W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 39 in Table 2 has a W content of 8.02%, which is higher than the range of the invention, and (Mo+W/2) is also high at 4.01%. Therefore, the thermal conductivity in Table 4 is 23.7 W/m·K, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.40はMo+Wの値が1.79%と発明の範囲より低く、したがって、表4の焼入焼戻し硬さが43.3HRCと本発明で得られる46.0HRC超よりも硬さが低い。 Comparative steel No. 40 in Table 2 has a Mo+W value of 1.79%, which is lower than the range of the invention, and therefore has a quenched and tempered hardness of 43.3 HRC in Table 4, which is lower than the 46.0 HRC obtained in the present invention.
表2の比較鋼のNo.41はMo+W/2の値が4.02%と発明の範囲より高く、したがって、表4の熱伝導率が22.9W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 41 in Table 2 has a Mo+W/2 value of 4.02%, which is higher than the range of the invention, and therefore has a thermal conductivity of 22.9 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.42はVの含有量が0.10%と発明の範囲より低く、したがって、表4の焼入焼戻し硬さが43.1HRCと本発明で得られる46.0HRC超よりも硬さが低い。 Comparative steel No. 42 in Table 2 has a V content of 0.10%, which is lower than the range of the invention, and therefore has a quenched and tempered hardness of 43.1 HRC in Table 4, which is lower than the hardness of over 46.0 HRC obtained in the present invention.
表2の比較鋼のNo.43はVの含有量が1.02%と発明の範囲より高く、したがって、表4の熱伝導率が23.2W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 43 in Table 2 has a V content of 1.02%, which is higher than the range of the invention, and therefore has a thermal conductivity of 23.2 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.44はNiの含有量が2.02%と発明の範囲より高く、したがって、表4の熱伝導率が24.3W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 44 in Table 2 has a Ni content of 2.02%, which is higher than the range of the invention, and therefore has a thermal conductivity of 24.3 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.45はAlの含有量が0.094%と発明の範囲より高く、したがって、表4のシャルピー衝撃値が16.2J/cm2と本発明で得られる30J/cm2より靱性が低い。 Comparative steel No. 45 in Table 2 has an Al content of 0.094%, which is higher than the range of the invention, and therefore has a Charpy impact value in Table 4 of 16.2 J/ cm2 , which is lower in toughness than the 30 J/ cm2 obtained in the present invention.
表2の比較鋼のNo.46は炭化物円相当径が123nmと発明の範囲より低く、したがって、表4の熱伝導率が24.6W/m・Kと本発明で得られる25.0W/m・Kよりも熱伝導率が低い。 Comparative steel No. 46 in Table 2 has a carbide equivalent circle diameter of 123 nm, which is lower than the range of the invention, and therefore has a thermal conductivity of 24.6 W/m·K in Table 4, which is lower than the 25.0 W/m·K obtained in the present invention.
表2の比較鋼のNo.47は炭化物円相当径が430nmと発明の範囲より高く、したがって、表4の焼入焼戻し硬さが45.4HRCと本発明で得られる46.0HRC超よりも硬さが低い。 Comparative steel No. 47 in Table 2 has a carbide circle equivalent diameter of 430 nm, which is higher than the range of the invention, and therefore has a quenched and tempered hardness of 45.4 HRC in Table 4, which is lower than the hardness of over 46.0 HRC obtained in the present invention.
Claims (8)
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, Ni: 0.01 to 2.00%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, N: 0.001 to 0.040%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, Ni: 0.01 to 2.00%, N: 0.001 to 0.040%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, Al: 0.001 to 0.080%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, Ni: 0.01 to 2.00%, Al: 0.001 to 0.080%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, N: 0.001 to 0.040%, Al: 0.001 to 0.080%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
さらに、Mo:4.00%以下もしくはW:8.00%以下のうち1種または2種含有し、(Mo+W):1.80%以上でかつ(Mo+W/2):4.00%以下を満足し、
残部Feおよび不可避不純物からなる熱間工具鋼が焼入焼戻しされた状態であって、
該鋼の焼入焼戻し後に存在する該鋼中の炭化物の平均円相当径が150~400nmであることを特徴とする高熱伝導率、高硬度および高靭性を具備した熱間工具鋼。 In mass%, C: 0.34 to 0.55%, Si: 0.01 to 0.50%, Mn: 0.01 to 1.50%, Cr: 3.50 to 5.32%, V: over 0.10 to 1.00%, Ni: 0.01 to 2.00%, N: 0.001 to 0.040%, Al: 0.001 to 0.080%,
Further, one or both of Mo: 4.00% or less and W: 8.00% or less are contained, and (Mo + W): 1.80% or more and (Mo + W / 2): 4.00% or less are satisfied;
A hot work tool steel consisting of the remainder Fe and unavoidable impurities is in a quenched and tempered state,
A hot work tool steel having high thermal conductivity, high hardness and high toughness, characterized in that the average equivalent circle diameter of carbides present in the steel after quenching and tempering is 150 to 400 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018203256A JP7479787B2 (en) | 2018-10-29 | 2018-10-29 | Hot work tool steel with excellent thermal conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018203256A JP7479787B2 (en) | 2018-10-29 | 2018-10-29 | Hot work tool steel with excellent thermal conductivity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020070457A JP2020070457A (en) | 2020-05-07 |
JP7479787B2 true JP7479787B2 (en) | 2024-05-09 |
Family
ID=70547145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018203256A Active JP7479787B2 (en) | 2018-10-29 | 2018-10-29 | Hot work tool steel with excellent thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7479787B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7277426B2 (en) * | 2020-12-10 | 2023-05-19 | 山陽特殊製鋼株式会社 | Shaped body made from powder |
CN113444867B (en) * | 2021-06-30 | 2022-09-20 | 江苏省沙钢钢铁研究院有限公司 | Production method of plastic die steel plate and plastic die steel plate |
CN113667893B (en) * | 2021-08-10 | 2022-06-21 | 北京科技大学 | Wear-resistant TBM cutter ring and preparation method and application thereof |
CN116516130B (en) * | 2023-07-05 | 2023-10-13 | 成都先进金属材料产业技术研究院股份有限公司 | Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof |
CN117925970B (en) * | 2024-03-22 | 2024-07-02 | 成都先进金属材料产业技术研究院股份有限公司 | Preparation method of hot forging die steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307963A (en) | 2003-04-09 | 2004-11-04 | Hitachi Metals Ltd | High-speed tool steel and its production method |
JP2017155306A (en) | 2016-03-03 | 2017-09-07 | 山陽特殊製鋼株式会社 | Hot tool steel having excellent high temperature strength and toughness |
JP2018131654A (en) | 2017-02-15 | 2018-08-23 | 山陽特殊製鋼株式会社 | Hot work tool steel having excellent toughness and softening resistance |
JP2018165400A (en) | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | Annealed steel material preventing generation of coarse crystal grains during quenching, and method for manufacturing the same |
-
2018
- 2018-10-29 JP JP2018203256A patent/JP7479787B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307963A (en) | 2003-04-09 | 2004-11-04 | Hitachi Metals Ltd | High-speed tool steel and its production method |
JP2017155306A (en) | 2016-03-03 | 2017-09-07 | 山陽特殊製鋼株式会社 | Hot tool steel having excellent high temperature strength and toughness |
JP2018131654A (en) | 2017-02-15 | 2018-08-23 | 山陽特殊製鋼株式会社 | Hot work tool steel having excellent toughness and softening resistance |
JP2018165400A (en) | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | Annealed steel material preventing generation of coarse crystal grains during quenching, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2020070457A (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7479787B2 (en) | Hot work tool steel with excellent thermal conductivity | |
US10358688B2 (en) | Steel plate and method of producing same | |
JP2007162128A (en) | Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component | |
JP6925781B2 (en) | Hot tool steel with excellent high temperature strength and toughness | |
JP6581782B2 (en) | High toughness hot work tool steel with excellent machinability and softening resistance | |
WO2015182586A1 (en) | Hot work tool material and method for manufacturing hot work tool | |
JP7083242B2 (en) | Hot tool steel with excellent thermal conductivity | |
JP5881276B2 (en) | Hot tool steel with excellent toughness, short-time and long-term softening resistance | |
KR20190028782A (en) | High frequency quenching steel | |
KR20190028781A (en) | High frequency quenching steel | |
KR20190028757A (en) | High frequency quenching steel | |
JP2021017623A (en) | Tool steel for hot work, excellent in thermal conductivity | |
JPWO2018061101A1 (en) | steel | |
JP6800532B2 (en) | Hot tool steel with excellent thermal conductivity | |
TWI577807B (en) | Hot working tool and manufacturing method thereof | |
JP6903507B2 (en) | Hot tool steel with excellent hardenability and toughness | |
JP2005307242A (en) | Prehardened steel for die casting mold | |
JP7214313B2 (en) | High toughness cold work tool steel with high wear resistance | |
JP7149250B2 (en) | Hot work tool steel with excellent high temperature strength and toughness | |
JP2022143564A (en) | Hot work tool steel having excellent softening resistance and quenchability | |
JP2018131654A (en) | Hot work tool steel having excellent toughness and softening resistance | |
JP7544488B2 (en) | Hot work tool steel with excellent manufacturability and thermal conductivity | |
JP7220750B1 (en) | Hot work tool steel with excellent high-temperature strength and toughness | |
JP2013213256A (en) | Matrix high-speed steel with high strength | |
US20230265535A1 (en) | Steel for a mold and mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220810 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7479787 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |