[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7220750B1 - Hot work tool steel with excellent high-temperature strength and toughness - Google Patents

Hot work tool steel with excellent high-temperature strength and toughness Download PDF

Info

Publication number
JP7220750B1
JP7220750B1 JP2021122796A JP2021122796A JP7220750B1 JP 7220750 B1 JP7220750 B1 JP 7220750B1 JP 2021122796 A JP2021122796 A JP 2021122796A JP 2021122796 A JP2021122796 A JP 2021122796A JP 7220750 B1 JP7220750 B1 JP 7220750B1
Authority
JP
Japan
Prior art keywords
toughness
carbides
temperature strength
work tool
tool steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021122796A
Other languages
Japanese (ja)
Other versions
JP2023024893A (en
Inventor
剛士 難波
章生 美谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021122796A priority Critical patent/JP7220750B1/en
Priority to CN202280045221.3A priority patent/CN117561345A/en
Priority to TW111127903A priority patent/TW202321480A/en
Priority to KR1020247004389A priority patent/KR20240041334A/en
Priority to PCT/JP2022/028733 priority patent/WO2023008413A1/en
Application granted granted Critical
Publication of JP7220750B1 publication Critical patent/JP7220750B1/en
Publication of JP2023024893A publication Critical patent/JP2023024893A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】 高い軟化抵抗性、焼入性、靭性を兼ね備えた熱間工具鋼の提供。【解決手段】 質量%で、C:0.20~0.60%、Si:0.10~0.30%未満、Mn:0.50~2.00%、Ni:0.50~2.50%、Cr:1.6~2.6%、Mo:0.3~2.0%、V:0.05~0.80%、残部がFeおよび不可避的不純物であり、かつ式Aの値Aが27.4~29.3となるように焼入焼戻しされた状態であって、使用前における10000μm2当たりの円相当径1μm以上の炭化物個数が150個以下である、熱間工具鋼。ただし、式A:A=[T](log10[t]+24)/1000。【選択図】 なし[PROBLEMS] To provide a hot work tool steel having high softening resistance, hardenability and toughness. SOLUTION: By mass %, C: 0.20 to 0.60%, Si: 0.10 to less than 0.30%, Mn: 0.50 to 2.00%, Ni: 0.50 to 2.0%. 50%, Cr: 1.6 to 2.6%, Mo: 0.3 to 2.0%, V: 0.05 to 0.80%, the balance being Fe and unavoidable impurities, and formula A A hot work tool steel which has been quenched and tempered so that the value A is 27.4 to 29.3, and has 150 or less carbides having an equivalent circle diameter of 1 μm or more per 10000 μm 2 before use. However, formula A: A=[T](log10[t]+24)/1000. [Selection figure] None

Description

本発明は、熱間鍛造金型等に使用される、高温強度と靭性に優れた熱間工具鋼に関する。関する。 TECHNICAL FIELD The present invention relates to hot work tool steel excellent in high-temperature strength and toughness, which is used for hot forging dies and the like. related.

熱間プレス鍛造や熱間押出しやダイカスト用の金型には、一般的に、日本産業規格(JIS)SKD61鋼が、熱間ハンマー鍛造用の金型には、JIS SKT4鋼が汎用的に使用されている。JIS SKD61鋼は強度と靭性の双方を比較的高位で兼備した金型用鋼ではあるが、使用中の割れによる早期破損が生じることが多く、靭性面では必ずしも十分ではない。また、JIS SKD61鋼の靭性は、熱疲労き裂の伸展を抑制するためには不足している。JIS SKT4鋼はハンマー鍛造による大きな衝撃にも耐え得るように靭性を重視した一方で、軟化抵抗性が低いために耐摩耗性が不足する。また、再生加工を目的とした型彫り面の引下げを繰返して行うと、焼入性が低いために中心部では硬さ低下が生じてしまい、強度不足から割れやヘタリなどが発生する。さらには、適用可能な硬さが低いために耐摩耗性や強度が不足し、熱間プレス鍛造や熱間押出の用途には向いていない。 Japanese Industrial Standard (JIS) SKD61 steel is generally used for hot press forging, hot extrusion, and die casting dies, and JIS SKT4 steel is commonly used for hot hammer forging dies. It is JIS SKD61 steel is a mold steel that has both strength and toughness at relatively high levels, but it often suffers premature failure due to cracking during use, and is not always sufficient in terms of toughness. In addition, the toughness of JIS SKD61 steel is insufficient to suppress extension of thermal fatigue cracks. JIS SKT4 steel emphasizes toughness so that it can withstand a large impact due to hammer forging, but it lacks wear resistance due to its low softening resistance. In addition, if the engraving surface is repeatedly lowered for the purpose of reprocessing, the hardenability is low, causing a decrease in hardness at the center, and cracks and settling occur due to lack of strength. Furthermore, since the applicable hardness is low, wear resistance and strength are insufficient, and it is not suitable for hot press forging or hot extrusion.

本出願人は、質量%で、C:0.37~0.45%、Si:0.3~1.2%、Mn:0.6~1.5%、Ni:0.3~1.0%、Cr:1.0~2.0%、Mo:1.1~1.4%、V:0.1~0.3%及び残部Feからなり、合金成分の式Lと式Yを特定の範囲と規定する熱間工具鋼を提案している(特許文献1参照。)。
もっとも、使用前の炭化物析出状態については考慮されておらず、高温強度が不十分であった。
The applicant has determined that, in mass %, C: 0.37 to 0.45%, Si: 0.3 to 1.2%, Mn: 0.6 to 1.5%, Ni: 0.3 to 1.5%. 0%, Cr: 1.0 to 2.0%, Mo: 1.1 to 1.4%, V: 0.1 to 0.3%, and the balance Fe. We have proposed a hot work tool steel with a specific range (see Patent Document 1).
However, the state of carbide precipitation before use was not taken into consideration, and the high-temperature strength was insufficient.

また、C:0.10~0.70%、Si:0.10~2.00%、Mn≦2.00%、Cr≦7.00%、WおよびMoの単独または複合で(1/2W+Mo):0.20~12.00%、V≦3.00%、さらにS:0.005%未満、Oが30ppm未満であり、残部が実質的にFeからなる組成の熱間加工用工具が提案されている(特許文献2参照。)。もっとも、成分変動の幅、使用前の炭化物析出状態についてはいずれも考慮されておらず、靭性が不十分であった。 In addition, C: 0.10 to 0.70%, Si: 0.10 to 2.00%, Mn ≤ 2.00%, Cr ≤ 7.00%, W and Mo alone or in combination (1/2 W + Mo ): 0.20 to 12.00%, V ≤ 3.00%, S: less than 0.005%, O content is less than 30 ppm, and the balance is substantially Fe. It has been proposed (see Patent Document 2). However, neither the range of component fluctuations nor the state of carbide precipitation before use was considered, and the toughness was insufficient.

特開2019-19374号公報JP 2019-19374 A 特開平11-6868号公報JP-A-11-6868

高温使用時にMC系、M2C系炭化物、炭窒化物が析出することで軟化抵抗、即ち高温強度が得られる。しかし、使用前の段階でM236系炭化物が多いと使用中のMC系、M2C系炭化物、炭窒化物析出量が減少し、高い高温強度が得られない。また、使用前に粗大な炭化物が多く存在すると靱性が低くなるといった問題がある。 When used at high temperatures, MC-based carbides and M 2 C-based carbides and carbonitrides precipitate to provide softening resistance, that is, high-temperature strength. However, if there is a large amount of M 23 C 6 -based carbides before use, the precipitation amount of MC-based, M 2 C-based carbides and carbonitrides during use decreases, and high high-temperature strength cannot be obtained. Moreover, if a large amount of coarse carbides are present before use, there is a problem that the toughness is lowered.

そこで、本発明が解決しようとする課題は、焼入れ条件を限定することで、圧鍛後に残存している、高温強度への寄与が小さいM236系炭化物を焼入れ工程にて固溶させ、これと同時に成分変動の幅を制御することで優れた靱性を得ることである。そして、焼入れ工程におけるM236炭化物の固溶により、マトリックス中の炭素量を増加させ、熱間工具鋼として使用中に、高温強度への寄与が大きいMC系、M2C系の微細な炭化物、炭窒化物を析出させることで、優れた高温強度を得ることである。すなわち、靭性と高温強度とを備えた熱間工具鋼を提供することである。 Therefore, the problem to be solved by the present invention is to limit the quenching conditions so that the M 23 C 6 -based carbides, which remain after pressing and have a small contribution to high-temperature strength, are dissolved in the quenching process. At the same time, it is necessary to obtain excellent toughness by controlling the width of component variation. The solid solution of M 23 C 6 carbides in the quenching process increases the carbon content in the matrix. It is to obtain excellent high-temperature strength by precipitating carbides and carbonitrides. That is, to provide a hot work tool steel with toughness and high temperature strength.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、合金成分、焼入れ条件、炭化物状態、成分変動の幅を規定することで、優れた高温強度と靭性を兼備する熱間工具鋼が得られることを見出した。 In order to solve the above-mentioned problems, the inventors have made intensive development, and as a result, by specifying the alloy composition, quenching conditions, carbide state, and the range of composition fluctuation, it has both excellent high temperature strength and toughness. It has been found that a hot work tool steel can be obtained.

すなわち、課題を解決するための第1の手段は、質量%で、C:0.20~0.60%、Si:0.10~0.30%未満、Mn:0.50~2.00%、Ni:0.50~2.50%、Cr:1.6~2.6%、Mo:0.3~2.0%、V:0.05~0.80%、残部がFeおよび不可避的不純物であり、かつ式Aの値Aが27.4~29.3となるように焼入焼戻しされた状態であって、使用前における10000μm2当たりの円相当径1μm以上の炭化物個数が150個以下である、熱間工具鋼である。
ただし、式A:A=[T](log10[t]+24)/1000、なお、[T]及び[t]には、[T]:焼入温度(K)、[t]:焼入温度保持時間(h)の数値を代入する。
That is, the first means for solving the problem is, in mass%, C: 0.20 to 0.60%, Si: 0.10 to less than 0.30%, Mn: 0.50 to 2.00 %, Ni: 0.50 to 2.50%, Cr: 1.6 to 2.6%, Mo: 0.3 to 2.0%, V: 0.05 to 0.80%, the balance being Fe and The number of carbides that are inevitable impurities and that have been quenched and tempered so that the value A in formula A is 27.4 to 29.3 and have an equivalent circle diameter of 1 μm or more per 10000 μm 2 before use 150 or less, hot work tool steel.
However, formula A: A = [T] (log 10 [t] + 24) / 1000, where [T] and [t] include [T]: quenching temperature (K), [t]: quenching Substitute the numerical value for the temperature holding time (h).

その第2の手段は、第1の手段の鋼であって、鋼中のC,Cr,Mo,Vの成分変動の幅が、
(Cmax-Cmin)/C≦1.0、
(Crmax-Crmin)/Cr≦0.5、
(Momax-Momin)/Mo≦1.5、
(Vmax-Vmin)/V≦1.5
であることを特徴とする熱間工具鋼である。
The second means is the steel of the first means, and the range of variation in the components of C, Cr, Mo, and V in the steel is
(C max −C min )/C≦1.0,
(Cr max −Cr min )/Cr≦0.5,
(Mo max −Mo min )/Mo≦1.5,
( Vmax - Vmin )/V≤1.5
It is a hot work tool steel characterized by being

本発明の手段の熱間工具鋼は、初期硬さからの減少幅は14HRC以内で、シャルピー衝撃試験も衝撃値は70J/cm2以上であるなど、高温強度と靭性を兼備した熱間工具鋼を得ることができる。
成分変動の幅を規定して良好に制御すると、内部偏析が小さく、シャルピー衝撃試験の衝撃値が85J/cm2以上となるので、より靭性が良好な熱間工具鋼を得ることができる。
The hot work tool steel of the means of the present invention has both high-temperature strength and toughness, such as a reduction in hardness from the initial hardness of 14 HRC or less and an impact value of 70 J/cm 2 or more in the Charpy impact test. can be obtained.
If the range of component variation is specified and well controlled, the internal segregation is small and the impact value in the Charpy impact test is 85 J/cm 2 or more, so hot work tool steel with better toughness can be obtained.

先ず、本願にかかる発明の実施の形態の記載に先立って、本発明の手段の熱間工具鋼に添加する化学成分を規定する理由、式Aを規定し、炭化物個数を規定する理由について説明する。なお、化学成分における%は質量%を示す。 First, prior to describing the embodiments of the invention according to the present application, the reasons for specifying the chemical components added to the hot work tool steel of the means of the present invention, the reasons for specifying the formula A, and the reasons for specifying the number of carbides will be described. . In addition, % in a chemical component shows the mass %.

C:0.20~0.60%
Cは、十分な焼入性を確保し、炭化物、炭窒化物を形成させることで高温強度、硬度、耐摩耗性を得るための成分である。Cが0.20%未満であると、十分な高温強度が得られない。他方、Cが0.60%を超えると、凝固偏析を助長し、粗大な炭化物、炭窒化物が生じ、靭性が低下する。また、生じた炭化物が焼入れ時に未固溶で残存することで、熱間工具鋼として使用時の炭化物、炭窒化物析出量が減少し、高温強度の向上が望めない。そこで、Cは0.20~0.60%とする。好ましくは、Cは0.40~0.60%である。
C: 0.20-0.60%
C is a component for ensuring sufficient hardenability and forming carbides and carbonitrides to obtain high-temperature strength, hardness, and wear resistance. If C is less than 0.20%, sufficient high-temperature strength cannot be obtained. On the other hand, when C exceeds 0.60%, solidification segregation is promoted, coarse carbides and carbonitrides are formed, and toughness is lowered. In addition, the resulting carbides remain undissolved during quenching, reducing the amount of carbides and carbonitrides precipitated when used as a hot work tool steel, and an improvement in high-temperature strength cannot be expected. Therefore, C is set to 0.20 to 0.60%. Preferably, C is 0.40-0.60%.

Si:0.10~0.30%未満
Siは、製鋼での脱酸効果、焼入性確保に必要な成分である。Siが0.10%未満であると十分な効果を発揮しない。他方、Siが0.30%以上であると靭性の低下を招く。そこでSiは0.10%以上0.30%未満とする。
Si: 0.10 to less than 0.30% Si is a component necessary for securing the deoxidizing effect and hardenability in steelmaking. If the Si content is less than 0.10%, a sufficient effect cannot be exhibited. On the other hand, when Si is 0.30% or more, the toughness is lowered. Therefore, Si should be 0.10% or more and less than 0.30%.

Mn:0.50~2.00%
Mnは製鋼での脱酸効果、焼入性の確保に必要な成分である。Mnが0.50%未満であると十分な効果を発揮しない。Mnが2.00%より多いと加工性の低下を招く。そこで、Mnは0.50~2.00%とする。
Mn: 0.50-2.00%
Mn is a component necessary for securing the deoxidizing effect and hardenability in steelmaking. If Mn is less than 0.50%, sufficient effects are not exhibited. If the Mn content is more than 2.00%, the workability is deteriorated. Therefore, Mn is set to 0.50 to 2.00%.

Ni:0.50~2.50%
Niは焼入性の確保、靱性向上のために必要な成分である。Niが0.50%未満であると十分な効果を発揮しない。Niが2.50%より多いとコストが大きくなりすぎる。そこで、Niは0.50~2.50%とする。
Ni: 0.50-2.50%
Ni is a component necessary for ensuring hardenability and improving toughness. If Ni is less than 0.50%, sufficient effects are not exhibited. If Ni is more than 2.50%, the cost becomes too high. Therefore, Ni should be 0.50 to 2.50%.

Cr:1.6~2.6%
Crは十分な焼入性の確保に必要な成分である。Crが1.6%未満では十分な焼入性が得られない。他方、Crを2.6%より多く添加すると、焼入焼戻し時にCr,Feを主体とするM236系の炭化物が過多に形成され、高温強度・軟化抵抗性および靱性を低下させる。そこで、Crは1.6~2.6%とする。
Cr: 1.6-2.6%
Cr is a component necessary for ensuring sufficient hardenability. If Cr is less than 1.6%, sufficient hardenability cannot be obtained. On the other hand, when Cr is added in an amount of more than 2.6%, an excessive amount of M 23 C 6 -based carbides mainly composed of Cr and Fe are formed during quenching and tempering, deteriorating high-temperature strength, softening resistance and toughness. Therefore, Cr is set to 1.6 to 2.6%.

Mo:0.3~2.0%
Moは焼入性と二次硬化、高温強度に寄与する析出炭化物を得るために有用な成分である。Moが0.3%未満であると十分な効果が得られない。Moが2.0%より多いと、過剰に添加しても効果が飽和するばかりか、炭化物が粗大凝集することにより靭性を
低下させる。また、コスト高になる。そこで、Moは0.3~2.0%とする。
Mo: 0.3-2.0%
Mo is a useful component for obtaining precipitated carbides that contribute to hardenability, secondary hardening, and high-temperature strength. If Mo is less than 0.3%, sufficient effects cannot be obtained. When Mo is more than 2.0%, not only does the effect saturate even if it is excessively added, but also the toughness is reduced due to coarse aggregation of carbides. Moreover, it becomes costly. Therefore, Mo is set to 0.3 to 2.0%.

V:0.05~0.8%
Vは焼戻し時または熱間工具鋼として使用中に微細で硬質な炭化物、炭窒化物を析出し、強度や耐摩耗性に寄与する成分である。Vが0.05%より少ないとこれらの効果が十分には得られない。Vが0.80%より多いと、凝固時に粗大な炭化物、炭窒化物が晶出し、靭性を阻害する。そこでVは0.05~0.80%である。好ましくは、Vは0.05~0.20%である。
V: 0.05-0.8%
V is a component that precipitates fine hard carbides and carbonitrides during tempering or during use as a hot work tool steel and contributes to strength and wear resistance. If V is less than 0.05%, these effects cannot be sufficiently obtained. If V is more than 0.80%, coarse carbides and carbonitrides are crystallized during solidification, impairing toughness. Therefore, V is 0.05 to 0.80%. Preferably V is between 0.05 and 0.20%.

値A:27.4~29.3
式A:A=[T](log10[t]+24)/1000
なお、[T]及び[t]には、[T]:焼入温度(K)、[t]:焼入温度保持時間(h)の数値を代入する。
式Aは、焼入温度と保持時間を規定することで、炭化物の固溶性を確保するための指標である。値Aが27.4以下となると、本発明の成分における鋼の焼入れによる炭化物の固溶が不十分となるので、熱間工具として使用する際の靭性、高温強度が不足する。他方、値Aが29.3を超えると、旧オーステナイト結晶粒の粗大化により靭性が低下する。そこで値Aを27.4~29.3とする。
Value A: 27.4-29.3
Formula A: A = [T] (log 10 [t] + 24)/1000
[T]: quenching temperature (K) and [t]: quenching temperature holding time (h) are substituted for [T] and [t].
Formula A is an index for ensuring the solid solubility of carbide by defining the quenching temperature and holding time. If the value A is 27.4 or less, solid solution of carbides due to quenching of the steel of the composition of the present invention becomes insufficient, resulting in insufficient toughness and high-temperature strength when used as a hot tool. On the other hand, if the value A exceeds 29.3, the prior austenite crystal grains become coarse, resulting in a decrease in toughness. Therefore, the value A is set to 27.4 to 29.3.

10000μm2当たりの円相当径1μm以上の炭化物個数:150個以下
円相当径で1μm以上の炭化物が多すぎると、マトリックス中の炭素量が不足し、熱間工具鋼として使用中に析出するMC系、M2C系炭化物、炭窒化物の量が減少する。MC系、M2C系炭化物、炭窒化物は、熱間工具鋼として使用中に析出することで高温強度向上に寄与しているので、これらが減少してしまうと、十分な高温強度が得られないこととなる。また、円相当径1μm以上の炭化物が多すぎると応力が集中し、割れの起点や伝ぱ経路として作用するため、靱性を阻害することとなる。そこで、10000μm2当たりの円相当径1μm以上の炭化物個数を150個以下とする。
Number of carbides with an equivalent circle diameter of 1 μm or more per 10,000 μm 2 : 150 or less When there are too many carbides with an equivalent circle diameter of 1 μm or more, the amount of carbon in the matrix is insufficient, and the MC system precipitates during use as a hot work tool steel. , M 2 C-based carbides and carbonitrides are reduced. MC-based, M 2 C-based carbides, and carbonitrides contribute to the improvement of high-temperature strength by precipitating during use as hot work tool steel. It will not be possible. Also, if there are too many carbides with an equivalent circle diameter of 1 μm or more, stress concentrates and acts as a starting point or propagation path for cracks, which impairs toughness. Therefore, the number of carbides having an equivalent circle diameter of 1 μm or more per 10000 μm 2 is 150 or less.

鋼中のC,Cr,Mo,Vの成分変動の幅が、
(Cmax-Cmin)/C≦1.0
(Crmax-Crmin)/Cr≦0.5
(Momax-Momin)/Mo≦1.5
(Vmax-Vmin)/V≦1.5
合金元素[M]について([M]Max-[M]Min)/[M]で評価するとき、各合金元素([M]は、C、Cr、Mo、Vである。)の内部偏析による成分のばらつきが大きいと、炭化物、炭窒化物 の分布差、変形能差が大きくなるので、靭性を低下させることとなる。
そこで、C、Cr、Mo、Vについての成分変動の幅について規制することが望ましい。
なお、偏析による成分変動幅は、鋼材のL面をEPMA(Electron Prove Micro Analysis)を用いて0.5mm×0.5mm範囲の濃度プロファイルを測定する。
また、1225℃~1300℃の範囲で、鋼塊中心部を10~40時間均熱保持するソーキング処理の適用は、成分変動の値を効果的に小さくすることを可能にする。
The range of variation in the components of C, Cr, Mo, and V in steel is
( Cmax - Cmin )/C≤1.0
( Crmax - Crmin )/Cr≤0.5
( Momax - Momin )/Mo≤1.5
( Vmax - Vmin )/V≤1.5
When evaluating the alloying element [M] by ([M] Max - [M] Min ) / [M], due to internal segregation of each alloying element ([M] is C, Cr, Mo, V.) If there is a large variation in composition, the difference in distribution of carbides and carbonitrides and the difference in deformability will increase, resulting in a decrease in toughness.
Therefore, it is desirable to regulate the range of variation in the components of C, Cr, Mo, and V.
In addition, the component fluctuation range due to segregation is obtained by measuring the concentration profile in the range of 0.5 mm×0.5 mm using EPMA (Electron Prove Micro Analysis) on the L surface of the steel material.
Also, the application of soaking treatment in which the center of the steel ingot is soaked in the range of 1225° C. to 1300° C. for 10 to 40 hours makes it possible to effectively reduce the values of component fluctuations.

(実施例)
表1の発明鋼No.1~28及び表2の比較鋼No.29~40に記載の化学成分と残部Fe及び不可避不純物からなる鋼を100kgVIMで溶製し、インゴットに造塊した。なお、発明鋼No.1~20に関しては上記の範囲でソーキングを行った。その後、これらのインゴットを1220℃に加熱して、角15に鍛伸した。なお、バルクの各鋼の成分組成は、ICP分光分析で確認した。
その後、850~960℃に加熱し、各種時間(30分~3時間)保持することで、オーステナイト組織を得た。次いで油冷する焼入れを実施し、さらに500~700℃に加熱した後、空冷の焼戻しを2回実施し、39~41HRCに調質した。さらに機械加工にて供試材を得た。
なお、表1の化学成分の残部はFeと不可避的不純物である。
(Example)
Steels composed of the chemical compositions described in Inventive Steel Nos. 1 to 28 in Table 1 and Comparative Steels Nos. 29 to 40 in Table 2 and the balance Fe and unavoidable impurities were melted at 100 kg VIM and cast into ingots. Inventive Steel No. For 1 to 20, soaking was performed in the above range. These ingots were then heated to 1220° C. and stretched to 15 corners. The component composition of each bulk steel was confirmed by ICP spectroscopic analysis.
After that, it was heated to 850 to 960° C. and held for various times (30 minutes to 3 hours) to obtain an austenite structure. Then, quenching by oil cooling was performed, and after further heating to 500 to 700° C., tempering by air cooling was performed twice to refining to 39 to 41 HRC. Furthermore, test materials were obtained by machining.
The rest of the chemical composition in Table 1 is Fe and unavoidable impurities.

Figure 0007220750000001
Figure 0007220750000001

Figure 0007220750000002
Figure 0007220750000002

(炭化物量の測定)
焼入焼戻し材の鋼材中心をバフ研磨にて鏡面研磨した後、炭化物が多く観察される箇所を30視野選択し、電子顕微鏡にて10,000倍で観察される円相当径1μm以上の炭化物個数を画像解析により計測した。10,000μm2あたりの円相当径1μm以上の炭化物個数が150個以下となったものをAとし、これより個数の多いものをCとした。
(Measurement of carbide content)
After mirror-polishing the center of the steel material of the quenched and tempered material by buffing, select 30 fields where many carbides are observed, and observe the number of carbides with an equivalent circle diameter of 1 μm or more with an electron microscope at a magnification of 10,000. was measured by image analysis. When the number of carbides having an equivalent circle diameter of 1 μm or more per 10,000 μm 2 was 150 or less, it was rated as A, and when the number was greater than this, it was rated as C.

(成分変動の幅の評価)
各試験片について、そのL面(鋼板の圧延方向及び板厚方向に平行な面、いわゆる長手断面)を鏡面研磨した後、EPMA(Electron Prove Micro Analysis)を用いて0.5mm×0.5mm範囲の濃度プロファイルを測定した。合金元素[M]について([M]Max-[M]Min)/[M]で評価した。結果を成分変動の幅として表3、表4に示す。
C,Cr,Mo,Vについて全ての合金元素で[M]Max-[M]Min)/[M]の値が規定の値内である場合は、成分変動の幅の規定要件を満たす優れたものとしてA評価とし、一成分でも変動幅が大きく要件を満たさなかったものは劣るものとしてC評価とした。表1、表2に成分変動の幅の評価結果を示した。
(Evaluation of width of component variation)
For each test piece, the L surface (surface parallel to the rolling direction and plate thickness direction of the steel plate, the so-called longitudinal section) is mirror-polished, and then EPMA (Electron Prove Micro Analysis) is used to a range of 0.5 mm × 0.5 mm. was measured. The alloy element [M] was evaluated by ([M] Max - [M] Min )/[M]. The results are shown in Tables 3 and 4 as component variation ranges.
If the value of [M] Max - [M] Min ) / [M] for all alloying elements for C, Cr, Mo, V is within the specified value, it is an excellent If even one component did not meet the requirements due to a large fluctuation range, it was rated C as inferior. Tables 1 and 2 show the evaluation results of the width of component variation.

Figure 0007220750000003
Figure 0007220750000003

Figure 0007220750000004
Figure 0007220750000004

(高温強度)
各試験片の焼入焼戻し材のHRC硬さを測定した後、さらに600℃で100時間保持後空冷し、室温におけるHRC硬さを測定して、初期硬さからの減少値をもって高温強度を評価した。減少値が14HRC以下となったものをAとし、減少値がこれより大きいものをCとした。
(high temperature strength)
After measuring the HRC hardness of the quenched and tempered material of each test piece, it was further held at 600 ° C. for 100 hours and then air-cooled. bottom. A was given when the reduction value was 14 HRC or less, and C was given when the reduction value was greater than this value.

(靱性)
JIS規定の3号角10mm、長さ55mmからなるUノッチの試験片に対し、硬さが39~41HRCになるように焼入焼戻しを施して、常温でシャルピー衝撃試験を行うことで靱性を評価した。衝撃値70J/cm2以上となったものをA、特に85J/cm2以上をA+とした、70J/cm2未満のものをCとした。
(Toughness)
A U-notch test piece of JIS-specified No. 3 square of 10 mm and length of 55 mm was quenched and tempered so that the hardness was 39 to 41 HRC, and the toughness was evaluated by performing a Charpy impact test at room temperature. . Those with an impact value of 70 J/cm 2 or more were rated A, those with an impact value of 85 J/cm 2 or more were rated A + , and those with an impact value of less than 70 J/cm 2 were rated C.

発明例No.1~28は、表1に示すように、いずれも化学成分の規定範囲内であって、式Aの値を満足しており、円相当径1μm以上の炭化物個数も少ないものとなった。そこで、シャルピー衝撃試験では衝撃値は70J/cm2以上を示したので靭性はA評価であり、初期硬さからの減少幅も14HRC以内で高温強度(軟化抵抗性)もAの評価で優れたものとなるなど、高温強度と靭性を兼備した熱間工具鋼が得られた。 Invention Example No. As shown in Table 1, all of Nos. 1 to 28 were within the specified range of chemical composition, satisfied the value of formula A, and had a small number of carbides having an equivalent circle diameter of 1 μm or more. Therefore, in the Charpy impact test, the impact value was 70 J/cm 2 or more, so the toughness was evaluated as A, the reduction width from the initial hardness was within 14 HRC, and the high temperature strength (softening resistance) was also excellent with an A evaluation. A hot work tool steel with both high-temperature strength and toughness was obtained.

比較例No.29は、C量が少ないため、高温強度が低いものとなった。
比較例No.30は、C量が多く、円相当径1μm以上の炭化物個数が多く、成分変動の幅が大きいため、靭性、高温強度が低いものとなった。
比較例No.31は、Si量が多く、靭性が低いものとなった。
比較例No.32は、Ni量が少なく、靭性が低いものとなった。
比較例No.33は、Cr量が多く、円相当径1μm以上の炭化物個数が多く、成分変動の幅が大きいため、靭性、高温強度が低いものとなった。
比較例No.34は、Mo量が少なく、高温強度が低いものとなった。
比較例No.35は、Mo量が多く、円相当径1μm以上の炭化物個数が多く、成分変動の幅が大きいため、靭性、高温強度が低いものとなった。
比較例No.36は、V量が少なく、高温強度が低い。
比較例No.37は、V量が多く、円相当径1μm以上の炭化物個数が多く、成分変動の幅が大きいため、靭性が低いものとなった。
比較例No.38は、式Aの値が小さく、円相当径1μm以上の炭化物個数が多いため、靭性、高温強度が低いものとなった。
比較例No.39は、式Aの値が大きく、靭性が低いものとなった。
比較例No.40は、円相当径1μm以上の炭化物個数が多く、靭性、高温強度が低いものとなった。
Comparative example no. No. 29 had a low high-temperature strength due to a small amount of C.
Comparative example no. In No. 30, the amount of C was large, the number of carbides having an equivalent circle diameter of 1 μm or more was large, and the range of component fluctuation was large, so the toughness and high-temperature strength were low.
Comparative example no. In No. 31, the amount of Si was large and the toughness was low.
Comparative example no. In No. 32, the amount of Ni was small and the toughness was low.
Comparative example no. In No. 33, the amount of Cr was large, the number of carbides having an equivalent circle diameter of 1 μm or more was large, and the range of component fluctuation was large, so the toughness and high-temperature strength were low.
Comparative example no. In No. 34, the amount of Mo was small and the high-temperature strength was low.
Comparative example no. In No. 35, the amount of Mo was large, the number of carbides having an equivalent circle diameter of 1 μm or more was large, and the range of component fluctuation was large, so the toughness and high-temperature strength were low.
Comparative example no. No. 36 has a small amount of V and a low high-temperature strength.
Comparative example no. In No. 37, the amount of V was large, the number of carbides having an equivalent circle diameter of 1 μm or more was large, and the range of component fluctuation was large, so the toughness was low.
Comparative example no. In No. 38, the value of Formula A was small and the number of carbides having an equivalent circle diameter of 1 μm or more was large, so the toughness and high-temperature strength were low.
Comparative example no. In No. 39, the value of Formula A was large and the toughness was low.
Comparative example no. In No. 40, the number of carbides having an equivalent circle diameter of 1 μm or more was large, and the toughness and high-temperature strength were low.

Claims (1)

質量%で、C:0.20~0.60%、Si:0.10~0.30%未満、Mn:0.50~2.00%、Ni:0.50~2.50%、Cr:1.6~2.6%、Mo:0.3~2.0%、V:0.05~0.80%、残部がFeおよび不可避的不純物であり、焼入焼戻しされた状態であって、式Aの値Aが27.4~29.3であり、使用前における10000μm2当たりの円相当径1μm以上の炭化物個数が150個以下であり、
さらに、鋼中のC,Cr,Mo,Vの成分変動の幅が、
(C max -C min )/C≦1.0、
(Cr max -Cr min )/Cr≦0.5、
(Mo max -Mo min )/Mo≦1.5、
(V max -V min )/V≦1.5
である熱間工具鋼。
ただし、式A:A=[T](log10[t]+24)/1000、なお、[T]及び[t]には、[T]:焼入温度(K)、[t]:焼入温度保持時間(h)の数値を代入する。
% by mass, C: 0.20 to 0.60%, Si: 0.10 to less than 0.30%, Mn: 0.50 to 2.00%, Ni: 0.50 to 2.50%, Cr : 1.6 to 2.6%, Mo: 0.3 to 2.0%, V: 0.05 to 0.80%, the balance being Fe and unavoidable impurities, in a quenched and tempered state. the value A of formula A is 27.4 to 29.3, and the number of carbides having an equivalent circle diameter of 1 μm or more per 10000 μm 2 before use is 150 or less,
Furthermore, the range of variation in the components of C, Cr, Mo, and V in the steel is
(C max −C min )/C≦1.0,
(Cr max −Cr min )/Cr≦0.5,
(Mo max −Mo min )/Mo≦1.5,
(Vmax - Vmin ) /V≤1.5
Hot work tool steel.
However, formula A: A = [T] (log 10 [t] + 24) / 1000, where [T] and [t] include [T]: quenching temperature (K), [t]: quenching Substitute the numerical value for the temperature holding time (h).
JP2021122796A 2021-07-27 2021-07-27 Hot work tool steel with excellent high-temperature strength and toughness Active JP7220750B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021122796A JP7220750B1 (en) 2021-07-27 2021-07-27 Hot work tool steel with excellent high-temperature strength and toughness
CN202280045221.3A CN117561345A (en) 2021-07-27 2022-07-26 Hot work tool steel excellent in high temperature strength and toughness
TW111127903A TW202321480A (en) 2021-07-27 2022-07-26 Hot work tool steel having excellent high-temperature strength and toughness
KR1020247004389A KR20240041334A (en) 2021-07-27 2022-07-26 Hot-worked tool steel with excellent high-temperature strength and toughness
PCT/JP2022/028733 WO2023008413A1 (en) 2021-07-27 2022-07-26 Hot work tool steel having excellent high-temperature strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021122796A JP7220750B1 (en) 2021-07-27 2021-07-27 Hot work tool steel with excellent high-temperature strength and toughness

Publications (2)

Publication Number Publication Date
JP7220750B1 true JP7220750B1 (en) 2023-02-10
JP2023024893A JP2023024893A (en) 2023-02-20

Family

ID=85087657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021122796A Active JP7220750B1 (en) 2021-07-27 2021-07-27 Hot work tool steel with excellent high-temperature strength and toughness

Country Status (5)

Country Link
JP (1) JP7220750B1 (en)
KR (1) KR20240041334A (en)
CN (1) CN117561345A (en)
TW (1) TW202321480A (en)
WO (1) WO2023008413A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213255A (en) 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel
CN104928586A (en) 2015-06-30 2015-09-23 宝山钢铁股份有限公司 Hot stamping die steel and production method thereof
JP2019019397A (en) 2017-07-20 2019-02-07 山陽特殊製鋼株式会社 Preharden hot tool steel excellent in machinability
JP2019116678A (en) 2017-04-19 2019-07-18 大同特殊鋼株式会社 Prehardened steel material, mold and mold component
JP2021080492A (en) 2019-11-14 2021-05-27 山陽特殊製鋼株式会社 Hot work tool steel excellent in high-temperature strength and toughness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952245B2 (en) * 1998-07-24 1999-09-20 日立金属株式会社 Tool steel for hot working
JP6903507B2 (en) 2017-07-15 2021-07-14 山陽特殊製鋼株式会社 Hot tool steel with excellent hardenability and toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213255A (en) 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel
CN104928586A (en) 2015-06-30 2015-09-23 宝山钢铁股份有限公司 Hot stamping die steel and production method thereof
JP2019116678A (en) 2017-04-19 2019-07-18 大同特殊鋼株式会社 Prehardened steel material, mold and mold component
JP2019019397A (en) 2017-07-20 2019-02-07 山陽特殊製鋼株式会社 Preharden hot tool steel excellent in machinability
JP2021080492A (en) 2019-11-14 2021-05-27 山陽特殊製鋼株式会社 Hot work tool steel excellent in high-temperature strength and toughness

Also Published As

Publication number Publication date
JP2023024893A (en) 2023-02-20
KR20240041334A (en) 2024-03-29
CN117561345A (en) 2024-02-13
TW202321480A (en) 2023-06-01
WO2023008413A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP7305483B2 (en) Hot work tool steel with excellent toughness
US20220162731A1 (en) Hot-working die steel, heat treatment method thereof and hot-working die
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JP6581782B2 (en) High toughness hot work tool steel with excellent machinability and softening resistance
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
JP6798557B2 (en) steel
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP5351528B2 (en) Cold mold steel and molds
JP2017066460A (en) Age hardening steel
JP2005336553A (en) Hot tool steel
JP2008144211A (en) V-containing non-heat treated steel
JP7220750B1 (en) Hot work tool steel with excellent high-temperature strength and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
KR20090069608A (en) Cold work tool steel and method of preparing thereof
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2003313635A (en) Hot work tool steel with high toughness
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
JP4302480B2 (en) High hardness steel with excellent cold workability
JP2013213256A (en) Matrix high-speed steel with high strength
JP3898880B2 (en) Machine structural steel with excellent cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230131

R150 Certificate of patent or registration of utility model

Ref document number: 7220750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150