[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7455316B2 - Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices - Google Patents

Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices Download PDF

Info

Publication number
JP7455316B2
JP7455316B2 JP2023508530A JP2023508530A JP7455316B2 JP 7455316 B2 JP7455316 B2 JP 7455316B2 JP 2023508530 A JP2023508530 A JP 2023508530A JP 2023508530 A JP2023508530 A JP 2023508530A JP 7455316 B2 JP7455316 B2 JP 7455316B2
Authority
JP
Japan
Prior art keywords
nitrogen
cancer cells
cells
cancer
proton beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023508530A
Other languages
Japanese (ja)
Other versions
JPWO2023068325A1 (en
JPWO2023068325A5 (en
Inventor
康嗣 岩田
裕史 松井
石根 鈴木
裕司 鈴木
かな子 富田
天景 楊
貴文 池田
宏美 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO SERVICE INC.
National Institute of Advanced Industrial Science and Technology AIST
University of Tsukuba NUC
Original Assignee
TAIYO SERVICE INC.
National Institute of Advanced Industrial Science and Technology AIST
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO SERVICE INC., National Institute of Advanced Industrial Science and Technology AIST, University of Tsukuba NUC filed Critical TAIYO SERVICE INC.
Publication of JPWO2023068325A1 publication Critical patent/JPWO2023068325A1/ja
Publication of JPWO2023068325A5 publication Critical patent/JPWO2023068325A5/ja
Application granted granted Critical
Publication of JP7455316B2 publication Critical patent/JP7455316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1098Enhancing the effect of the particle by an injected agent or implanted device
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/06Anti-neoplasic drugs, anti-retroviral drugs, e.g. azacytidine, cyclophosphamide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、抗ガン剤、抗ガン剤のプロドラッグ、体外でガン細胞を死滅させる方法、ガンの治療方法、及びガンの治療装置に関する。 The present invention relates to an anticancer drug, a prodrug of an anticancer drug, a method for killing cancer cells outside the body, a method for treating cancer, and a device for treating cancer.

世界の陽子線治療施設では、年間約2万人が治療を受けており、患者数は延べ21万人を越えている。しかし世界には、1700万人のガン患者がおり、陽子線によるガン治療は、僅か850人に1人の割合で行われるに留まっている。 Approximately 20,000 people are treated annually at proton beam therapy facilities around the world, with a total of over 210,000 patients. However, there are 17 million cancer patients in the world, and only 1 in 850 patients receive cancer treatment using proton beams.

特許第4520219号公報Patent No. 4520219 特許第7648586号公報Patent No. 7648586 特許第5392752号公報Patent No. 5392752

F. Tabbakh, N. S. Hosmane, Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches, Scientific Reports 10 (2020) 5466.F. Tabbakh, N. S. Hosmane, Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches, Scientific Reports 10 (2020) 5466. 田中享、等,光合成細菌変異株を用いた5- アミノレブリン酸生産における副産物の生成と培養温度の制御による5-アミノレブリン酸の大量生産,生物工学会誌93 (2015) 24-31.Takashi Tanaka et al., Production of by-products in 5-aminolevulinic acid production using photosynthetic bacterial mutants and mass production of 5-aminolevulinic acid by controlling culture temperature, Journal of the Japan Society of Biotechnology 93 (2015) 24-31. C. ROLFS and W. S. RODNEY, PROTON CAPTURE BY 15N AT STELLAR ENERGIES, Nuclear Physics, A235 (1974) 450-459.C. ROLFS and W. S. RODNEY, PROTON CAPTURE BY 15N AT STELLAR ENERGIES, Nuclear Physics, A235 (1974) 450-459. G. Imbriani, et al., Measurement of γ rays from 15N(p,γ)16O cascade and 15N(p,α1γ)12C reactions, PHYSICAL REVIEW, C85 (2012) 065810.G. Imbriani, et al., Measurement of γ rays from 15N(p,γ)16O cascade and 15N(p,α1γ)12C reactions, PHYSICAL REVIEW, C85 (2012) 065810. 技術資料「トレリナ(登録商標) Torelina(登録商標) ポリフェニレンサルファイドフィルム」東レ株式会社工業材料事業第1部(2013).Technical data “Torelina (registered trademark) Torelina (registered trademark) polyphenylene sulfide film” Toray Industries, Inc. Industrial Materials Division 1 (2013). M. Tamura, H. Ito, H. Matsui, Radiotherapy for cancer using X-ray fluorescence emitted from iodine, Scientific Reports 7 (2017) 43667.M. Tamura, H. Ito, H. Matsui, Radiotherapy for cancer using X-ray fluorescence emitted from iodine, Scientific Reports 7 (2017) 43667. M Shibuta, et al., Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform, J. Bioscience and Bioengineering, 126 (2018) 653-660.M Shibuta, et al., Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform, J. Bioscience and Bioengineering, 126 (2018) 653-660.

本発明者らの知見によれば、陽子線治療によるガン患者の生存率が上昇すれば、陽子線治療が広まることを期待できる。本発明者らの知見によれば、陽子線治療により、従来治癒が困難である、5年生存率が極端に低い(8.5%、2009年~2011年)膵臓ガン、日本人男性の部位別死亡原因がずば抜けて高い(全ガン男性死亡数220,339人の24.2%、2019年)肺ガン、脳腫瘍のグレード4の症状で5年生存率が10%未満と低い神経膠芽腫等の臓器固有のガンのみならず、ガン転移を惹起することで恐れられる播種やリンパ腫などのガン患者の生存率を上昇させることを期待できる。また、本発明者らの知見によれば、陽子線治療を、非侵襲の治療が切望される乳ガンに適用することを期待できる。 According to the findings of the present inventors, if the survival rate of cancer patients by proton beam therapy increases, proton beam therapy can be expected to become widespread. According to the findings of the present inventors, proton beam therapy can be used to treat pancreatic cancer in Japanese men at sites that are conventionally difficult to cure, with an extremely low 5-year survival rate (8.5%, 2009-2011). Other causes of death are by far the highest (24.2% of 220,339 male cancer deaths in 2019) Lung cancer, grade 4 brain tumor symptoms, and glioblastoma with a low 5-year survival rate of less than 10% It can be expected to increase the survival rate not only for cancers specific to organs such as cancer patients, but also for patients with cancers such as lymphoma and dissemination, which are feared by causing cancer metastasis. Furthermore, according to the findings of the present inventors, proton beam therapy can be expected to be applied to breast cancer, for which non-invasive treatment is highly desired.

本発明者らの知見によれば、ガン患者の生存率を上昇させたり、非侵襲でガンを効率的に治療したりするには、ガン細胞を特異的に死滅させることが望ましい。そこで、本発明は、ガン細胞を特異的に死滅させる抗ガン剤、抗ガン剤のプロドラッグ、体外でガン細胞を死滅させる方法、ガンの治療方法、及びガンの治療装置を提供することを課題の少なくとも一部とする。 According to the findings of the present inventors, it is desirable to specifically kill cancer cells in order to increase the survival rate of cancer patients and to treat cancer efficiently in a non-invasive manner. Therefore, an object of the present invention is to provide an anticancer drug that specifically kills cancer cells, a prodrug of the anticancer drug, a method for killing cancer cells in vitro, a method for treating cancer, and a device for treating cancer. shall be at least a part of.

[1]ガン細胞に窒素15を特異的に蓄積させる物質を含む、抗ガン剤。 [1] An anticancer agent containing a substance that specifically causes nitrogen-15 to accumulate in cancer cells.

[2]患者の体内に投与され、投与後、患者に陽子線が照射される、[1]に記載の抗ガン剤。 [2] The anticancer agent according to [1], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[3]ガンの治療に用いるための、ガン細胞に窒素15を特異的に蓄積させる物質 [3] Substance that specifically accumulates nitrogen-15 in cancer cells for use in cancer treatment

[4]患者の体内に投与され、投与後、患者に陽子線が照射される、[3]に記載の物質。 [4] The substance according to [3], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[5]窒素が窒素15である分子標的治療薬である、[1]に記載の抗ガン剤。 [5] The anticancer agent according to [1], which is a molecular target therapeutic agent in which the nitrogen is nitrogen-15.

[6]ガン細胞に結合する部分を含む、[5]に記載の抗ガン剤。 [6] The anticancer agent according to [5], which contains a portion that binds to cancer cells.

[7]ガン細胞に結合する部分が抗体又は抗体の一部である、[6]に記載の抗ガン剤。 [7] The anti-cancer agent according to [6], wherein the portion that binds to cancer cells is an antibody or a part of an antibody.

[8]抗体又は抗体の一部に薬物が結合している、[7]に記載の抗ガン剤。 [8] The anticancer agent according to [7], wherein a drug is bound to the antibody or a part of the antibody.

[9]抗体又は抗体の一部が、窒素が窒素15であるトラスツズマブである、[7]に記載の抗ガン剤。 [9] The anticancer agent according to [7], wherein the antibody or a part of the antibody is trastuzumab in which nitrogen is nitrogen-15.

[10]抗ガン剤の製造のための、ガン細胞に窒素15を特異的に蓄積させる物質の使用。 [10] Use of a substance that causes nitrogen-15 to specifically accumulate in cancer cells for the production of an anticancer drug.

[11]抗ガン剤が、患者の体内に投与され、投与後、患者に陽子線が照射される、[10]に記載の使用。 [11] The use according to [10], wherein the anticancer drug is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[12]窒素が窒素15である5-アミノレブリン酸を含む抗ガン剤。 [12] An anticancer agent containing 5-aminolevulinic acid whose nitrogen is nitrogen-15.

[13]患者の体内に投与され、投与後、患者に陽子線が照射される、[12]に記載の抗ガン剤。 [13] The anticancer agent according to [12], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[14]ガンの治療に用いるための、窒素が窒素15である5-アミノレブリン酸。 [14] 5-Aminolevulinic acid whose nitrogen is nitrogen-15 for use in the treatment of cancer.

[15]患者の体内に投与され、投与後、患者に陽子線が照射される、[14]に記載の窒素が窒素15である5-アミノレブリン酸。 [15] The 5-aminolevulinic acid according to [14], wherein the nitrogen is nitrogen-15, which is administered into a patient's body and the patient is irradiated with a proton beam after administration.

[16]抗ガン剤の製造のための、窒素が窒素15である5-アミノレブリン酸の使用。 [16] Use of 5-aminolevulinic acid whose nitrogen is nitrogen 15 for the production of an anticancer drug.

[17]抗ガン剤が、患者の体内に投与され、投与後、患者に陽子線が照射される、[16]に記載の使用。 [17] The use according to [16], wherein the anticancer drug is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[18]窒素が窒素15である5-フルオロウラシルを含む抗ガン剤。 [18] An anticancer agent containing 5-fluorouracil in which nitrogen is nitrogen-15.

[19]患者の体内に投与され、投与後、患者に陽子線が照射される、[18]に記載の抗ガン剤。 [19] The anticancer agent according to [18], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[20]ガンの治療に用いるための、窒素が窒素15である5-フルオロウラシル。 [20] 5-fluorouracil in which the nitrogen is nitrogen-15 for use in the treatment of cancer.

[21]患者の体内に投与され、投与後、患者に陽子線が照射される、[20]に記載の窒素が窒素15である5-フルオロウラシル。 [21] The 5-fluorouracil according to [20], wherein the nitrogen is nitrogen-15, which is administered into a patient's body and the patient is irradiated with a proton beam after administration.

[22]抗ガン剤の製造のための、窒素が窒素15である5-フルオロウラシルの使用。 [22] Use of 5-fluorouracil in which the nitrogen is nitrogen-15 for the production of an anticancer agent.

[23]抗ガン剤が、患者の体内に投与され、投与後、患者に陽子線が照射される、[22]に記載の使用。 [23] The use according to [22], wherein the anticancer drug is administered into the body of a patient, and after administration, the patient is irradiated with a proton beam.

[24]ガン細胞に窒素15を特異的に蓄積させる物質を含む抗ガン剤のプロドラッグ。 [24] A prodrug of an anticancer drug containing a substance that causes nitrogen-15 to specifically accumulate in cancer cells.

[25]患者の体内に投与され、投与後、患者に陽子線が照射される、[24]に記載のプロドラッグ。 [25] The prodrug according to [24], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[26]ガンの治療に用いるための、ガン細胞に窒素15を特異的に蓄積させる物質を含む抗ガン剤のプロドラッグ。 [26] A prodrug of an anticancer agent containing a substance that causes nitrogen-15 to specifically accumulate in cancer cells, for use in cancer treatment.

[27]患者の体内に投与され、投与後、患者に陽子線が照射される、[26]に記載のプロドラッグ。 [27] The prodrug according to [26], which is administered into the body of a patient, and after administration, the patient is irradiated with a proton beam.

[28]抗ガン剤のプロドラッグの製造のための、ガン細胞に窒素15を特異的に蓄積させる物質の使用。 [28] Use of a substance that causes nitrogen-15 to be specifically accumulated in cancer cells for the production of a prodrug of an anticancer drug.

[29]抗ガン剤のプロドラッグが、患者の体内に投与され、投与後、患者に陽子線が照射される、[28]に記載の使用。 [29] The use according to [28], wherein the anticancer drug prodrug is administered into the body of a patient, and after administration, the patient is irradiated with a proton beam.

[30]窒素が窒素15である5-フルオロウラシルを含む抗ガン剤のプロドラッグ。 [30] A prodrug of an anticancer drug containing 5-fluorouracil in which nitrogen is nitrogen-15.

[31]患者の体内に投与され、投与後、患者に陽子線が照射される、[30]に記載のプロドラッグ。 [31] The prodrug according to [30], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[32]窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択される、[30]又は[31]に記載のプロドラッグ。 [32] The prodrug according to [30] or [31], which is selected from the group consisting of tegafur, tegafur-uracil, tegafur-gimeracil-oteracil potassium, doxifluridine, and capecitabine, in which nitrogen is nitrogen 15.

[33]ガンの治療に用いるための、窒素が窒素15である5-フルオロウラシルを含む抗ガン剤のプロドラッグ。 [33] A prodrug of an anti-cancer drug containing 5-fluorouracil in which the nitrogen is nitrogen-15 for use in the treatment of cancer.

[34]患者の体内に投与され、投与後、患者に陽子線が照射される、[33]に記載のプロドラッグ。 [34] The prodrug according to [33], which is administered into a patient's body, and after administration, the patient is irradiated with a proton beam.

[35]窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択される、[33]又は[34]に記載のプロドラッグ。 [35] The prodrug according to [33] or [34], which is selected from the group consisting of tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, doxifluridine, and capecitabine, in which nitrogen is nitrogen 15.

[36]抗ガン剤のプロドラッグの製造のための、窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択されるいずれかの使用。 [36] Use of any one selected from the group consisting of tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, doxifluridine, and capecitabine, in which nitrogen is nitrogen 15, for the production of a prodrug of an anticancer drug. .

[37]抗ガン剤のプロドラッグが、患者の体内に投与され、投与後、患者に陽子線が照射される、[36]に記載の使用。 [37] The use according to [36], wherein the anticancer drug prodrug is administered into the body of a patient, and after administration, the patient is irradiated with a proton beam.

[38](a)体外で、ガン細胞に窒素15を蓄積させること、(b)体外で、ガン細胞に、陽子線を照射することと、を含む、体外でガン細胞を死滅させる方法。 [38] A method for killing cancer cells outside the body, comprising (a) accumulating nitrogen-15 in the cancer cells outside the body, and (b) irradiating the cancer cells with a proton beam outside the body.

[39]ガン細胞に窒素15を蓄積させることが、ガン細胞に、上記のいずれかに記載の抗ガン剤を与えることを含む、[38]に記載の体外でガン細胞を死滅させる方法。 [39] The method for killing cancer cells in vitro according to [38], wherein accumulating nitrogen-15 in cancer cells includes providing the cancer cells with any of the anticancer agents described above.

[40]ガン細胞に窒素15を蓄積させることが、ガン細胞に、上記のいずれかに記載の抗ガン剤のプロドラッグを与えることを含む、[38]に記載の体外でガン細胞を死滅させる方法。 [40] Killing cancer cells in vitro according to [38], wherein accumulating nitrogen-15 in cancer cells comprises providing the cancer cells with a prodrug of the anticancer drug according to any of the above. Method.

[41](a)ヒト又は非ヒト動物のガン細胞に窒素15を蓄積させること、(b)ヒト又は非ヒト動物に、陽子線を照射することと、を含む、ガンの治療方法。 [41] A method for treating cancer, comprising (a) accumulating nitrogen-15 in cancer cells of a human or non-human animal, and (b) irradiating the human or non-human animal with a proton beam.

[42]ヒト又は非ヒト動物のガン細胞に窒素15を蓄積させることが、ヒト又は非ヒト動物に、上記のいずれかに記載の抗ガン剤を投与することを含む、[41]に記載のガンの治療方法。 [42] The method according to [41], wherein accumulating nitrogen-15 in cancer cells of a human or non-human animal comprises administering to the human or non-human animal any of the anticancer agents described above. How to treat cancer.

[43]ヒト又は非ヒト動物のガン細胞に窒素15を蓄積させることが、ヒト又は非ヒト動物に、上記のいずれかに記載の抗ガン剤のプロドラッグを投与することを含む、[41]に記載のガンの治療方法。 [43] Accumulating nitrogen-15 in cancer cells of a human or non-human animal comprises administering to the human or non-human animal a prodrug of any of the anticancer agents described above [41] The cancer treatment method described in .

[44]ガン細胞に窒素15が蓄積しているヒト又は非ヒト動物に陽子線を照射する照射装置を備える、ガンの治療装置。 [44] A cancer treatment device comprising an irradiation device for irradiating a human or non-human animal with proton beams in which nitrogen-15 has accumulated in cancer cells.

[45]ヒト又は非ヒト動物が、上記のいずれかに記載の抗ガン剤を投与されている、[44]に記載のガンの治療装置。 [45] The cancer treatment device according to [44], wherein the human or non-human animal is administered any of the anticancer agents described above.

[46]ヒト又は非ヒト動物が、上記のいずれかに記載の抗ガン剤のプロドラッグを投与されている、[44]に記載のガンの治療装置。 [46] The cancer treatment device according to [44], wherein the human or non-human animal is administered a prodrug of any of the anticancer agents described above.

[47]陽子線を加速する加速装置をさらに備える、[44]から[46]のいずれかに記載のガンの治療装置。[47] A cancer treatment device described in any one of [44] to [46], further comprising an accelerator for accelerating a proton beam.

[48]加速装置が、レーザープラズマを備える、[47]に記載のガンの治療装置。 [48] The cancer treatment device according to [47], wherein the accelerator includes laser plasma.

本発明によれば、ガン細胞を特異的に死滅させる抗ガン剤、抗ガン剤のプロドラッグ、体外でガン細胞を死滅させる方法、ガンの治療方法、及びガンの治療装置を提供可能である。 According to the present invention, it is possible to provide an anticancer drug that specifically kills cancer cells, a prodrug of the anticancer drug, a method for killing cancer cells outside the body, a method for treating cancer, and a device for treating cancer.

5-アミノレブリン酸から誘導されたプロトポルフィリンIXがヘムに変換される経路を示す模式図である。FIG. 2 is a schematic diagram showing the pathway by which protoporphyrin IX derived from 5-aminolevulinic acid is converted to heme. 15N(H,αγ)12C共鳴核反応による共鳴エネルギー位置を示す模式図である。 15 is a schematic diagram showing resonance energy positions due to a 15 N( 1 H, α 1 γ) 12 C resonance nuclear reaction. FIG. 15N(H,αγ)12C共鳴核反応における実験室系と重心系の関係を示す図である。 15 is a diagram showing the relationship between a laboratory system and a centroid system in a 15 N( 1 H, α 1 γ) 12 C resonance nuclear reaction. 陽子と生成イオンのLETを比較した図である。FIG. 1 is a diagram comparing the LET of protons and product ions. 15N(H,αγ)12C共鳴核反応の反応断面積の陽子エネルギー依存性を示す図である。 15 is a diagram showing the proton energy dependence of the reaction cross section of 15 N( 1 H, α 1 γ) 12 C resonance nuclear reaction. FIG. 15N(H,αγ)12C共鳴核反応の共鳴エネルギーと体内における陽子の反応位置(残飛程)との関係、及び当該残飛程のスケールで反応生成イオンの飛程を記載した図である。Describe the relationship between the resonance energy of the 15 N ( 1 H, α 1 γ) 12 C resonance nuclear reaction and the reaction position (residual range) of protons in the body, and the range of the reaction generated ions on the scale of the residual range. This is a diagram. 15N(H,αγ)12C共鳴核反応の共鳴エネルギー(resonance energy)、体内における陽子の反応位置(residual range)、反応生成イオン(He2+126+)の飛程、生物学的電離効果(Bragg’s peak)を示す。 15 N( 1 H, α 1 γ) 12 C resonance energy of resonance nuclear reaction, residual range of protons in the body, range of reaction product ions ( 4 He 2+ , 12 C 6+ ), Biological ionization effect (Bragg's peak) is shown. ガン細胞において15N共鳴核反応が発生することを示す模式図である。FIG. 1 is a schematic diagram showing that a 15 N resonance nuclear reaction occurs in cancer cells. トレリナ(登録商標)の熱加水分解耐性を示す図である(非特許文献8参照。)。FIG. 2 is a diagram showing the thermal hydrolysis resistance of Torelina (registered trademark) (see Non-Patent Document 8). トレリナ(登録商標)フィルムのガス透過性を示す表である(非特許文献9参照。)。It is a table showing the gas permeability of Torelina (registered trademark) film (see Non-Patent Document 9). 実施形態に係るガンの治療装置を示す模式図である。FIG. 1 is a schematic diagram showing a cancer treatment device according to an embodiment. 実施例1に係る正常細胞とガン細胞のそれぞれに蓄積された15Nを定量する方法を示す図である。FIG. 2 is a diagram showing a method for quantifying 15 N accumulated in each of normal cells and cancer cells according to Example 1. 実施例1に係る正常細胞とガン細胞のそれぞれに蓄積された15Nの定量で得られたガンマ線スペクトルを示すグラフである。2 is a graph showing gamma ray spectra obtained by quantifying 15 N accumulated in normal cells and cancer cells, respectively, according to Example 1. 実施例1に係る正常細胞とガン細胞のそれぞれにおける15N_5-ALAの取り込み量を示すグラフである。2 is a graph showing the uptake amount of 15 N_5-ALA in normal cells and cancer cells according to Example 1. FIG. 実施例2に係るpUC4-KIXXプラスミドの遺伝子構造図である。FIG. 2 is a diagram of the gene structure of the pUC4-KIXX plasmid according to Example 2. 実施例2に係るpUC4-KIXXにおける15Nの同位体比を変化させた場合の大腸菌のコロニーを示す写真である。3 is a photograph showing colonies of E. coli when the isotopic ratio of 15 N in pUC4-KIXX according to Example 2 was changed. 実施例2に係るpUC4-KIXXにおける15Nの同位体比を変化させた場合の大腸菌の菌数(左縦軸)と、15N(H,αγ)12C共鳴核反応(E=0.987MeV)で放出される4.43MeVのガンマ線線量(右縦軸)と、を示すグラフである。The number of E. coli bacteria (left vertical axis) when changing the isotope ratio of 15 N in pUC4-KIXX according to Example 2, and the 15 N ( 1 H, α 1 γ) 12 C resonance nuclear reaction (E r It is a graph showing the gamma ray dose (right vertical axis) of 4.43 MeV emitted at 0.987 MeV). 実施例3に係る陽子線照射を行った直後の15N_5-ALAを含まない培地で培養したRGM-GFP細胞の写真である。3 is a photograph of RGM-GFP cells cultured in a medium not containing 15N_5-ALA immediately after proton beam irradiation according to Example 3. 実施例3に係る15N_5-ALAを含まない培地で培養したRGM-GFP細胞の陽子線照射電荷量に対する生存率を想定した結果のグラフである。FIG. 2 is a graph illustrating the survival rate of RGM-GFP cells cultured in a medium not containing 15N_5-ALA according to Example 3 with respect to the charge amount of proton beam irradiation. FIG. 実施例3に係る陽子線照射を行った直後のRGK-KO細胞の写真である。15N_5-ALAを含む培地と含まない培地それぞれで培養した細胞の写真である。3 is a photograph of RGK-KO cells immediately after proton beam irradiation according to Example 3. These are photographs of cells cultured in a medium containing 15N_5-ALA and a medium not containing 15N_5-ALA. 実施例3に係る陽子線照射を行って24時間経過後のRGK-KO細胞の写真、及び15N_5-ALAを含む培地で培養した細胞の写真である。These are a photograph of RGK-KO cells 24 hours after proton beam irradiation according to Example 3, and a photograph of cells cultured in a medium containing 15N_5-ALA. 実施例4に係る細胞を生きた状態で真空中に保持することを可能にする細胞ホルダーの写真である。3 is a photograph of a cell holder that allows cells to be kept alive in vacuum according to Example 4. 実施例4に係る細胞を生きた状態で真空中に保持したときの真空度の経時変化を示すグラフである。7 is a graph showing changes in the degree of vacuum over time when cells according to Example 4 are kept alive in vacuum.

以下、本発明を実施するための形態(以下、「実施形態」ということがある)について説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。また、以下に示す実施形態は、この発明の技術的思想を具体化するための方法等を例示するものであって、これらの例示に限定されるものではない。 Hereinafter, a mode for carrying out the present invention (hereinafter sometimes referred to as "embodiment") will be described. The present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist. Furthermore, the embodiments described below are intended to exemplify methods for embodying the technical idea of the present invention, and are not limited to these examples.

実施形態に係る抗ガン剤は、窒素15を含み、ガン細胞に特異的に蓄積する物質を含む。 The anticancer agent according to the embodiment includes a substance that contains nitrogen 15 and specifically accumulates in cancer cells.

窒素(N)は、必須多量6元素(O、C、H、N、Ca、P)の一つであり、ヒトの体重の2.6%を占め、身体の全ての部位に存在し得る。窒素15は、15Nとも表記される。15Nは、天然に存在する窒素の安定同位体の一つであり、陽子7個と中性子8個から構成される。15Nは、地球上の全窒素の0.364%を占める。15Nは、同じ比率で、体内にも存在する。 Nitrogen (N) is one of six essential abundant elements (O, C, H, N, Ca, P), accounts for 2.6% of the human body weight, and can be present in all parts of the body. Nitrogen 15 is also written as 15 N. 15 N is one of the naturally occurring stable isotopes of nitrogen, and is composed of seven protons and eight neutrons. 15N accounts for 0.364% of the total nitrogen on Earth. 15N is also present in the body in the same proportion.

窒素15を含み、ガン細胞に特異的に蓄積する物質は、窒素が窒素15である5-アミノレブリン酸であってもよい。5-アミノレブリン酸(5-ALA)は、全ての細胞で合成され、ポルフィリン合成経路の出発物質として知られている。正常細胞では、7段階の酵素反応を経て、5-アミノレブリン酸から、エネルギー代謝に必要なヘムが合成される。タンパク質から遊離したヘムは、活性酸素の生成を促進し、DNAや脂質を損傷する酸化ストレスの要因となるため、エネルギー生産後、速やかに分解され、排泄される。5-アミノレブリン酸の化学式は、以下のとおりである。

Figure 0007455316000001
The substance that contains nitrogen-15 and specifically accumulates in cancer cells may be 5-aminolevulinic acid, where the nitrogen is nitrogen-15. 5-Aminolevulinic acid (5-ALA) is synthesized in all cells and is known as a starting material for the porphyrin synthesis pathway. In normal cells, heme, which is necessary for energy metabolism, is synthesized from 5-aminolevulinic acid through a seven-step enzymatic reaction. Heme released from proteins promotes the generation of active oxygen and causes oxidative stress that damages DNA and lipids, so it is rapidly degraded and excreted after energy production. The chemical formula of 5-aminolevulinic acid is as follows.
Figure 0007455316000001

実施形態に係る抗ガン剤において、5-アミノレブリン酸のNが15Nで置換されている。窒素が窒素15である5-アミノレブリン酸は、15N_5-ALAとも表記される。窒素が窒素15である5-アミノレブリン酸の化学式は、以下のとおりである。

Figure 0007455316000002
In the anticancer agent according to the embodiment, N in 5-aminolevulinic acid is substituted with 15N . 5-Aminolevulinic acid, where the nitrogen is nitrogen 15, is also written as 15 N_5-ALA. The chemical formula of 5-aminolevulinic acid where nitrogen is nitrogen 15 is as follows.
Figure 0007455316000002

実施形態に係る抗ガン剤は、ヒト又は非ヒト動物に投与される。投与経路の例としては、局所投与、経口投与を含む経腸投与、及び非経口投与が挙げられるが、特に限定されない。投与された抗ガン剤は、細胞に取り込まれる。 The anticancer agent according to the embodiment is administered to a human or a non-human animal. Examples of administration routes include, but are not limited to, topical administration, enteral administration including oral administration, and parenteral administration. The administered anticancer drug is taken up by cells.

図1に示すように、正常細胞においては、鉄付加酵素(FECH)によって、窒素が窒素15である5-アミノレブリン酸から誘導されたプロトポルフィリンIXがヘムに変換される。ヘムを正常に合成できる正常細胞では、窒素15は排泄され、蓄積しない。 As shown in FIG. 1, in normal cells, protoporphyrin IX, which is derived from 5-aminolevulinic acid whose nitrogen is nitrogen 15, is converted to heme by iron-adding enzyme (FECH). In normal cells that can normally synthesize heme, nitrogen-15 is excreted and does not accumulate.

しかし、ガン細胞では、誘導型一酸化窒素合成酵素(iNOS: induced Nitric Oxide Synthase)が活発に働き、細胞内の一酸化窒素(NO)濃度が高く維持されている。そのため、ガン細胞内では、鉄硫黄錯体が、一酸化窒素(NO)と速やかに反応して、不可逆的にジニトロシルジチオラト鉄錯体(DNIC)を形成するため、ヘムを合成することができない。そのため、ガン細胞においては、窒素が窒素15である5-アミノレブリン酸、及び窒素が窒素15であるプロトポルフィリンIXのような窒素が窒素15である5-アミノレブリン酸の誘導体が長時間蓄積される。 However, in cancer cells, induced nitric oxide synthase (iNOS) actively works to maintain a high intracellular nitric oxide (NO) concentration. Therefore, in cancer cells, iron-sulfur complexes rapidly react with nitric oxide (NO) to irreversibly form dinitrosyl dithiolate iron complexes (DNIC), making it impossible to synthesize heme. Therefore, in cancer cells, 5-aminolevulinic acid whose nitrogen is nitrogen 15 and derivatives of 5-aminolevulinic acid whose nitrogen is nitrogen 15, such as protoporphyrin IX whose nitrogen is nitrogen 15, accumulate for a long time.

したがって、実施形態に係る抗ガン剤をヒト又は非ヒト動物に投与すると、窒素15がガン細胞に特異的に蓄積するが、正常細胞には蓄積しない。 Therefore, when the anticancer agent according to the embodiment is administered to a human or non-human animal, nitrogen-15 is specifically accumulated in cancer cells, but not in normal cells.

図2は、窒素15原子核の陽子捕獲共鳴核反応の重心系エネルギーダイアグラムを示す(単位はMeV)。陽子と窒素15が衝突する際、両原子核の結合エネルギーと衝突エネルギーの和が酸素16原子核の励起準位に一致する(共鳴する)とき、陽子が窒素15原子核に捕獲されて酸素16複合原子核16が形成される。励起状態にある16は、原子核種の中で最も安定なHe2+原子核(α線)を放出して直ぐに炭素12原子核の第一励起準位となり、12励起準位から4.43MeVのガンマ線を放出して基底状態の12C原子核になる。この一連の共鳴核反応を式は、下記式(1)で表される。
15N(H,αγ)12C (1)
ここで、αの1は12の第一励起準位を表し、16励起準位とのエネルギー差分Eが運動量保存則に従ってHeと12の運動エネルギーに分配され、Heと12は生成イオンとして放出される。この一連の反応過程を重心系、すなわち陽子と窒素15の重心が動く速度VGで移動する座標系で見ると、16複合原子核は静止している。陽子と15Nの質量及び実験室系での速度をそれぞれm,m,u,u=0,とすると重心速度は、下記式(2)で表される。

Figure 0007455316000003
FIG. 2 shows a center-of-mass energy diagram of the proton capture resonance nuclear reaction of the nitrogen-15 nucleus (units are MeV). When a proton and nitrogen 15 collide, when the sum of the binding energy and collision energy of both nuclei matches (resonates with) the excited level of the oxygen 16 nucleus, the proton is captured by the nitrogen 15 nucleus and becomes the oxygen 16 compound nucleus 16. O * is formed. 16 O * in the excited state emits the 4 He 2+ nucleus (α ray), which is the most stable among atomic nuclides, and immediately becomes the first excited level of the carbon 12 nucleus, and the 4 . It emits gamma rays of 43 MeV and becomes a 12 C nucleus in the ground state. This series of resonance nuclear reactions is expressed by the following formula (1).
15 N( 1 H, α 1 γ) 12 C (1)
Here, 1 of α 1 represents the first excited level of 12 C * , and the energy difference E 0 with the excited level of 16 O * is distributed into the kinetic energy of 4 He and 12 C * according to the law of conservation of momentum, 4 He and 12 C * are released as product ions. If we look at this series of reaction processes in a center-of-gravity system, that is, a coordinate system in which the centers of gravity of protons and nitrogen 15 move at a moving speed V G , the 16 O * complex nucleus is stationary. When the masses of protons and 15 N and the velocities in the laboratory system are respectively m H , m N , u H , u N =0, the center of gravity velocity is expressed by the following equation (2).
Figure 0007455316000003

図3には実験室系と重心系の関係を示す。重心系における陽子と15Nの速度V,Vはそれぞれu-V,-Vで与えられ、共鳴エネルギーεは、下記式(3)に示すように、実験室系の陽子の運動エネルギーに等しい。

Figure 0007455316000004
Figure 3 shows the relationship between the laboratory system and the center of gravity system. The velocities V H and V N of the proton and 15 N in the centroid system are given by u H -V G and -V G , respectively, and the resonance energy ε 0 is the proton velocity in the laboratory system, as shown in equation (3) below. is equal to the kinetic energy of
Figure 0007455316000004

16複合原子核の共鳴エネルギー準位と12の第一励起準位のエネルギー差が生成イオンの運動量を保存して、すなわちそれぞれの生成イオン運動量のベクトル和が静止している16複合原子核の運動量ゼロに等しくなるように(mHeHe+m=0)、生成イオンの運動エネルギーに分配される。

Figure 0007455316000005
The energy difference between the resonance energy level of the 16 O * composite nucleus and the first excited level of 12 C * conserves the momentum of the produced ions, that is, the vector sum of the momentum of each produced ion remains stationary . The kinetic energy of the generated ions is distributed so that the momentum of the composite nucleus is equal to zero (m He V He +m C V C =0).
Figure 0007455316000005

実験室系におけるHeと12の運動エネルギーεHe,εの最大値は、下記式(5)及び式(6)で与えられる。

Figure 0007455316000006

Figure 0007455316000007
The maximum values of the kinetic energies ε He and ε C of 4 He and 12 C * in a laboratory system are given by the following equations (5) and (6).
Figure 0007455316000006

Figure 0007455316000007

上記式(5)及び式(6)で与えられる運動エネルギーεHe,εは、生成イオンの飛跡に沿ってイオンから周囲へ付与されるエネルギー(単位飛程当たりのエネルギー付与linear energy transfer,LET)と生成イオンの飛跡を規定する。LETがイオンの電荷の2乗Zに比例することから、Z=2をもつHe2+原子核とZ=6をもつ126+原子核が細胞内に生成イオンとして放出されると、He2+原子核と126+原子核は、高い運動エネルギーで細胞内を飛行して高いエネルギーを周囲に付与し、細胞を殺傷する能力を有し得る。図4には、陽子と生成イオン(He2+原子核と126+原子核)のLETを比較して示したグラフである。生成イオンが陽子に比べて高いLETを示し、15Nを蓄積したガン細胞では、15N共鳴核反応による生成イオンによって、ガン細胞が特異的に死滅することが可能になる。 The kinetic energy ε He , ε C given by the above equations (5) and (6) is the energy imparted from the ions to the surroundings along the trajectory of the generated ions (linear energy transfer, LET ) and the trajectory of the generated ions. Since LET is proportional to the square of the ion's charge, Z 2 , when 4 He 2+ nuclei with Z=2 and 12 C 6+ nuclei with Z=6 are released into the cell as generated ions, 4 He 2+ Nuclei and 12 C 6+ atomic nuclei may have the ability to fly within cells with high kinetic energy and impart high energy to their surroundings, killing cells. FIG. 4 is a graph showing a comparison of the LETs of protons and generated ions ( 4 He 2+ nucleus and 12 C 6+ nucleus). In cancer cells in which the produced ions exhibit a higher LET than protons and have accumulated 15 N, the cancer cells can be specifically killed by the produced ions due to the 15 N resonance nuclear reaction.

また、16複合原子核の励起核準位からは、式(1)の反応チャネルの他に炭素の基底状態に直接脱励起する反応、αを放出せずにガンマ線のみを放出して酸素16の基底状態になる反応があり、式で表すとそれぞれ、下記(7)式及び(8)式の反応チャネルが同時に開く。
15N(H,α12C (7)
15N(H,γ16O (8)
In addition to the reaction channel of formula (1), there are also reactions that directly de-excite the carbon to the ground state from the excited nuclear level of the 16 O * complex nucleus, and reactions that release only gamma rays without emitting α to generate oxygen 16. There is a reaction that leads to the ground state, and when expressed in formulas, the reaction channels of the following formulas (7) and (8) open simultaneously.
15 N ( 1 H, α 0 ) 12 C (7)
15 N ( 1 H, γ 0 ) 16 O (8)

式(8)で表される共鳴核反応では透過力の高いガンマ線が放出されるのみであり、本実施形態の目的であるガン細胞特異的に放射線作用をもたらすことにならない。しかし、He2+原子核と12原子核の極めて高い安定性によって、式(1)及び式(7)で表される共鳴核反応チャネルが、式(8)で表される共鳴核反応チャネルより圧倒的に高い確率で生じる。核反応確率の順序は、下記式(9)で表される。
(式1の反応確率)>(式7の反応確率)>>(式8の反応確率) (9)
The resonance nuclear reaction represented by formula (8) only emits gamma rays with high penetrating power, and does not cause radiation effects specific to cancer cells, which is the purpose of this embodiment. However, due to the extremely high stability of the 4 He 2+ nucleus and the 12 C * nucleus, the resonant nuclear reaction channels represented by equations (1) and (7) are more stable than the resonant nuclear reaction channels represented by equation (8). It occurs with an overwhelmingly high probability. The order of nuclear reaction probabilities is expressed by the following equation (9).
(Reaction probability of Equation 1)>(Reaction probability of Equation 7)>>(Reaction probability of Equation 8) (9)

窒素15を多く蓄積したガン細胞で陽子が窒素15原子核と衝突して生成イオンが放出される共鳴核反応が高い確率で生じることにより、ガン細胞を特異的に死滅させることが可能になる。 In cancer cells that have accumulated a large amount of nitrogen-15, a resonance nuclear reaction in which protons collide with nitrogen-15 nuclei and generated ions are released occurs with a high probability, making it possible to specifically kill cancer cells.

図5は16複合原子核の励起準位に対応した、式(3)で規定される、15N(H,αγ)12C共鳴核反応の陽子の共鳴エネルギーごとの反応断面積を示す(非特許文献3、4参照。)。図6には、陽子線の当該共鳴エネルギーを体内における陽子の反応位置を示す残飛程(residual range from the p-stopping point)、及び当該残飛程のスケールで反応生成イオンの飛程を示す。陽子が体内に入射して、10MeV以下のエネルギーに減衰する範囲、残飛程で約800μmの領域に12か所の共鳴エネルギーが存在する。それぞれ共鳴エネルギーに相当する残飛程位置では、式(5)及び式(6)で規定される運動エネルギーで生成イオンHe2+原子核と126+原子核が放出され、それぞれの生成イオンの飛程を、共鳴エネルギーごとに、小円の半径で示した。当該生成イオン飛程に亙り、その周囲に高いエネルギーを付与し、周囲を高密度に励起する。したがって、ガン細胞では、当該12か所の共鳴エネルギー位置で損傷が発生し、ガン細胞が死滅する。図7に、15N(H,αγ)12C共鳴核反応の共鳴エネルギー(resonance energy)、体内における陽子の反応位置(residual range)、反応生成イオン(He2+126+)の飛程、生物学的電離効果(Bragg’s peak)の値をまとめて示す。 Figure 5 shows the reaction cross section for each proton resonance energy of the 15 N( 1 H, α 1 γ) 12 C resonance nuclear reaction defined by formula (3), which corresponds to the excited level of the 16 O * complex nucleus. (See Non-Patent Documents 3 and 4.) Figure 6 shows the resonance energy of the proton beam as the residual range from the p-stopping point, which indicates the reaction position of the proton in the body, and the range of the reaction generated ions on the scale of the residual range. . There are 12 resonance energies in the range where a proton enters the body and is attenuated to an energy of 10 MeV or less, a region with a residual range of about 800 μm. At the residual range position corresponding to the resonance energy, the generated ions 4 He 2+ nucleus and 12 C 6+ nucleus are ejected with the kinetic energy defined by equations (5) and (6), and the range of each generated ion is is shown by the radius of a small circle for each resonance energy. High energy is applied to the surrounding area over the range of the generated ion, and the surrounding area is excited with high density. Therefore, cancer cells are damaged at these 12 resonance energy positions, and the cancer cells die. Figure 7 shows the resonance energy of the 15 N( 1 H, α 1 γ) 12 C resonance nuclear reaction, the residual range of protons in the body, and the reaction product ions ( 4 He 2+ , 12 C 6+ ). The range and biological ionization effect (Bragg's peak) values are summarized below.

実施形態に係る抗ガン剤を与えられたガン細胞では、特にミトコンドリアで、窒素が窒素15であるプロトポルフィリンIXが多く合成される。そのため、理論に拘束されるものではないが、図8に示すように、ガン細胞では、陽子線照射により、ミトコンドリアで15N共鳴核反応が多く発生してミトコンドリアが損傷し、ガン細胞が死滅するものと考えられる。 In cancer cells given the anticancer agent according to the embodiment, a large amount of protoporphyrin IX, in which nitrogen is nitrogen 15, is synthesized particularly in the mitochondria. Therefore, without being bound by theory, as shown in Figure 8, proton beam irradiation in cancer cells causes many 15N resonance nuclear reactions to occur in the mitochondria, damaging the mitochondria and killing the cancer cells. it is conceivable that.

よって、実施形態に係る抗ガン剤を投与されたヒト又は非ヒト動物に陽子線を照射することにより、ヒト又は非ヒト動物の体内のガン細胞を特異的に死滅させることが可能である。 Therefore, by irradiating a human or non-human animal to which the anti-cancer agent according to the embodiment has been administered with a proton beam, it is possible to specifically kill cancer cells in the body of the human or non-human animal.

窒素が窒素15である5-アミノレブリン酸の製造方法は、特に限定されない。通常の5-アミノレブリン酸は、光合成細菌Rhodobacter. sphaeroides IFO12203をベースに作製された、好気暗条件で5-アミノレブリン酸の生産が可能な第5次変異株(CR-520)、第6次変異株(CR-606)、及び第7次変異株(CR-720)に、5-アミノレブリン酸の前駆体であるグリシンとコハク酸を与えることによって生合成されている。There is no particular limitation on the method for producing 5-aminolevulinic acid in which the nitrogen is nitrogen-15. Normal 5-aminolevulinic acid is biosynthesized by feeding the precursors of 5-aminolevulinic acid, glycine and succinic acid, to the fifth mutant strain (CR-520), sixth mutant strain (CR-606), and seventh mutant strain (CR-720), which were created based on the photosynthetic bacterium Rhodobacter sphaeroides IFO12203 and are capable of producing 5-aminolevulinic acid under aerobic dark conditions.

したがって、窒素が窒素15であるグリシンと、窒素が窒素15であるコハク酸と、を、5-アミノレブリン酸の生産菌に与えることによって、窒素が窒素15である5-アミノレブリン酸を生産することが可能である。 Therefore, by feeding glycine whose nitrogen is 15 and succinic acid whose nitrogen is 15 to a 5-aminolevulinic acid producing bacterium, it is possible to produce 5-aminolevulinic acid whose nitrogen is 15. It is possible.

生合成で窒素が窒素15である5-アミノレブリン酸を製造する場合、5-ALAの代謝経路以外にタンパク質、核酸などの合成過程に多くの窒素が消費され、自然には0.364%しか存在しない希少な窒素15を有効に利用することが望ましい。そのためには、生合成で窒素が窒素15である5-アミノレブリン酸を製造した後の残渣に大量に含まれる15Nを回収し、5-アミノレブリン酸製造工程に戻すことが望ましい。残渣から窒素を回収する方法としては、有機態窒素を硫酸存在下で加熱して(NHイオンとして回収するケルダール法がその一例である。微細藻類や大腸菌などにおける窒素利用は、(NHイオンを直接取り込むことが可能であり、窒素15の回収経路として適している。取り込まれた(NHイオンは、グルタミン合成酵素によってグルタミン酸合成回路に取り込まれ、グルタミン酸が合成される。グルコースを取り込むTCA(TriCarboxylic Acid)回路のα-KG(α-ketoglutarate)によって合成されたグルタミン酸から3種類の酵素(GltX,HemA,HemL)によって5-ALAが合成されるC5経路の利用が、バイオ製薬で窒素が窒素15である5-アミノレブリン酸を製造する手段として用いられ得る。 When producing 5-aminolevulinic acid whose nitrogen is nitrogen 15 during biosynthesis, a large amount of nitrogen is consumed in the synthesis process of proteins, nucleic acids, etc. in addition to the metabolic pathway of 5-ALA, and only 0.364% of nitrogen exists in nature. It is desirable to make effective use of the rare nitrogen 15. To this end, it is desirable to recover a large amount of 15 N contained in the residue after producing 5-aminolevulinic acid whose nitrogen is 15 through biosynthesis, and return it to the 5-aminolevulinic acid production process. An example of a method for recovering nitrogen from the residue is the Kjeldahl method, in which organic nitrogen is heated in the presence of sulfuric acid and recovered as (NH 4 ) + ions. Nitrogen utilization in microalgae, Escherichia coli, and the like can directly take in (NH 4 ) + ions, and is suitable as a recovery route for nitrogen-15. The incorporated (NH 4 ) + ions are incorporated into the glutamic acid synthesis cycle by glutamine synthetase, and glutamic acid is synthesized. The use of the C5 pathway, in which 5-ALA is synthesized by three types of enzymes (GltX, HemA, and HemL) from glutamic acid synthesized by α-KG (α-ketoglutarate) in the TCA (TriCarboxylic Acid) cycle that takes in glucose, is a biological It can be used in pharmaceuticals as a means to produce 5-aminolevulinic acid where the nitrogen is nitrogen 15.

窒素15を含み、ガン細胞に特異的に蓄積する物質は、窒素が窒素15である5-アミノレブリン酸に限定されない。例えば、窒素15を含み、ガン細胞に特異的に蓄積する物質は、窒素が窒素15である5-フルオロウラシルであってもよい。あるいは、窒素15を含み、ガン細胞に特異的に蓄積する物質は、窒素が窒素15である5-フルオロウラシルのプロドラッグであってもよい。窒素が窒素15である5-フルオロウラシルのプロドラッグの例としては、窒素が窒素15であるテガフール、窒素が窒素15であるテガフール・ウラシル、窒素が窒素15であるテガフール・ギメラシル・オテラシルカリウム、窒素が窒素15であるドキシフルリジン、及び窒素が窒素15であるカペシタビンが挙げられる。 Substances that contain nitrogen-15 and specifically accumulate in cancer cells are not limited to 5-aminolevulinic acid, where the nitrogen is nitrogen-15. For example, a substance that contains nitrogen-15 and specifically accumulates in cancer cells may be 5-fluorouracil, where the nitrogen is nitrogen-15. Alternatively, the substance that contains nitrogen-15 and specifically accumulates in cancer cells may be a prodrug of 5-fluorouracil, where the nitrogen is nitrogen-15. Examples of prodrugs of 5-fluorouracil where the nitrogen is nitrogen 15 include tegafur where the nitrogen is nitrogen 15, tegafur uracil where the nitrogen is nitrogen 15, tegafur gimeracil oteracil potassium where the nitrogen is nitrogen 15, nitrogen and capecitabine, where nitrogen is nitrogen-15.

また、実施形態に係る窒素15を含み、ガン細胞に特異的に蓄積する物質は、窒素が窒素15である分子標的治療薬であってもよい。分子標的治療薬は、例えば、ガン細胞に結合する部分を有する。分子標的治療薬は、例えば、ガン細胞で特異的に発現する生体分子に結合する部分を有する。例えば、ガン細胞で特異的に発現する生体分子に結合する部分が、窒素15を含んでいてもよい。ガン細胞で特異的に発現する生体分子に結合する部分は、抗体又は抗体の一部であってもよい。分子標的薬は、健康な細胞を温存しながら腫瘍細胞を標的として殺傷する、窒素が窒素15である抗体薬物複合体(antibody-drug conjugate, ADC)であってもよい。分子標的薬は、乳ガン細胞表面に存在するHER2(human epidermal growth factor receptor 2)糖タンパクを標的とする、窒素が窒素15である抗体又は抗体の一部であってもよい。HER2を標的とする、窒素が窒素15である抗体又は抗体の一部は、例えば、トラスツズマブ(商品名ハーセプチン)の窒素を窒素15に置換することによって得られてもよい。 Further, the substance containing nitrogen 15 and specifically accumulating in cancer cells according to the embodiment may be a molecular target therapeutic drug whose nitrogen is nitrogen 15. Molecularly targeted therapeutics, for example, have a moiety that binds to cancer cells. Molecularly targeted therapeutic agents, for example, have moieties that bind to biomolecules that are specifically expressed in cancer cells. For example, a portion that binds to a biomolecule specifically expressed in cancer cells may contain nitrogen-15. The moiety that binds to a biomolecule specifically expressed in cancer cells may be an antibody or a portion of an antibody. The molecularly targeted drug may be an antibody-drug conjugate (ADC), where the nitrogen is nitrogen-15, to target and kill tumor cells while sparing healthy cells. The molecular targeting drug may be an antibody or a portion of an antibody whose nitrogen is nitrogen-15, which targets the HER2 (human epidermal growth factor receptor 2) glycoprotein present on the surface of breast cancer cells. An antibody or a portion of an antibody in which the nitrogen is nitrogen-15, which targets HER2, may be obtained, for example, by substituting nitrogen-15 for the nitrogen in trastuzumab (trade name Herceptin).

実施形態に係るガン治療薬に用いる15Nは、必須多量6元素の一つであり、身体の全ての部位に供給が可能である。 15 N used in the cancer treatment drug according to the embodiment is one of six essential elements in large quantities, and can be supplied to all parts of the body.

実施形態に係るガン治療薬に用いる15Nは、自然界では全窒素の0.364%を占めるに留まり、15N抗ガン剤がガン細胞に高い割合で集積することで、ガン細胞を特異的に死滅させることが可能になる。 The 15 N used in the cancer treatment drug according to the embodiment only accounts for 0.364% of the total nitrogen in nature, and the 15 N anticancer drug accumulates in cancer cells at a high rate, thereby specifically targeting cancer cells. It is possible to kill it.

実施形態に係るガン治療薬に用いる15Nは安定同位体元素である。既に承認を受けているガン治療薬のNを15Nに置換した場合、Nを15Nに置換したガン治療薬をガン患者へ投与しても、患者への負担はすでに承認を受けているガン治療薬と同等である。 15 N used in the cancer therapeutic drug according to the embodiment is a stable isotope element. If N is replaced with 15 N in a cancer drug that has already been approved, even if the cancer drug with N replaced with 15 N is administered to a cancer patient, the burden on the patient will be higher than that of the already approved cancer drug. Equivalent to therapeutic drugs.

実施形態に係るガン治療薬に用いる15Nは、自然界に99.636%で存在する窒素14(14N)と化学作用は全く同等である。既に承認を受けているガン治療薬が窒素を含む場合、その窒素の99.636%は14Nであり、14Nを高濃度、例えば98%以上の比率、で15Nに置換しても、当該ガン治療薬の体内における化学作用は全く同じであり、毒性が変わることはない。 The chemical action of 15 N used in the cancer treatment drug according to the embodiment is completely equivalent to that of nitrogen 14 ( 14 N), which exists in nature at 99.636%. If an already approved cancer treatment drug contains nitrogen, 99.636% of that nitrogen is 14N , and even if 14N is replaced with 15N at a high concentration, for example at a ratio of 98% or more, The chemical action of the cancer drug in the body is exactly the same, and its toxicity remains the same.

実施形態に係る体外でガン細胞を死滅させる方法は、窒素15を含むガン治療薬の治療効果を示す。実施形態に係る体外でガン細胞を死滅させる方法より、陽子線の照射エネルギーを15N共鳴核反応が生じる共鳴エネルギーに規定してガン細胞に照射することを可能ならしめるため、窒素15を含むガン治療薬の治療効果を正確に評価することが可能になる。 The method of killing cancer cells outside the body according to the embodiment shows the therapeutic effect of a cancer treatment drug containing nitrogen-15. In the method for killing cancer cells outside the body according to the embodiment, in order to make it possible to irradiate cancer cells by specifying the irradiation energy of the proton beam to the resonance energy at which the 15 N resonance nuclear reaction occurs, the cancer cells containing nitrogen 15 are used. It becomes possible to accurately evaluate the therapeutic effects of therapeutic drugs.

当該体外でガン細胞を死滅させる方法は、ガン細胞、及び任意で正常細胞を高分子フィルムで培養液ごと真空中に封止することを含む。これにより、陽子線が通過する真空容器内に細胞を生きた状態で保持することが可能である。 The method for killing cancer cells outside the body includes sealing the cancer cells and, optionally, the normal cells together with a culture medium in a vacuum with a polymer film. This makes it possible to keep cells alive in a vacuum chamber through which the proton beam passes.

当該体外でガン細胞を死滅させる方法は、ガン細胞、及び任意で正常細胞を培養液ごと真空中に封止する高分子フィルムは、ポリエチレンサルファイド素材であってもよく、トレリナ(東レ株式会社)として製品化されているフィルムを使用してもよい。図9に示すように、ポリエチレンサルファイドフィルムは、熱加水分解に対して極めて安定である(非特許文献5参照。)。またトレリナは、図10に示すように、酸素、窒素、二酸化炭素に対する透過性が高い反面、水蒸気の透過性は極めて低いという性質を有する(非特許文献5参照。)。 In this method of killing cancer cells outside the body, the polymer film that seals the cancer cells and, optionally, the normal cells together with the culture medium in a vacuum may be made of polyethylene sulfide material, and is known as Torelina (Toray Industries, Inc.). Commercially available films may also be used. As shown in FIG. 9, polyethylene sulfide film is extremely stable against thermal hydrolysis (see Non-Patent Document 5). Furthermore, as shown in FIG. 10, Torelina has a property of having high permeability to oxygen, nitrogen, and carbon dioxide, but extremely low permeability to water vapor (see Non-Patent Document 5).

当該トレリナフィルムの熱加水分解に対して極めて安定な性質を利用して、培養のための水溶液と接しながら陽子線による高密度励起作用に晒される環境においても、ガン細胞、及び任意で正常細胞を培養液ごと真空中に安定して封止することが可能になる。当該トレリナフィルムの水蒸気透過性が極めて低い性質により、水溶液とトレリナフィルムが接する界面で、トレリナ繊維の極めて高い疎水性によってフィルムの真空側表面が陰圧になっても、水分子が水蒸気になり難く、培養液は液体状態で存在できる。培養液が液体状態を維持する間は、透過性の高い酸素や二酸化炭素は液体中に溶解した状態で維持され、細胞が生きた状態を維持するために必要な酸素や二酸化炭素が培養液中に維持される環境が得られる。 Utilizing the extremely stable property of the Torelina film against thermal hydrolysis, it can be used to treat cancer cells and optionally normal cells even in environments where they are exposed to high-density excitation by proton beams while in contact with aqueous culture solutions. This makes it possible to stably seal the entire culture solution in a vacuum. Due to the extremely low water vapor permeability of the Torelina film, water molecules do not turn into water vapor at the interface where the aqueous solution and the Torelina film come into contact, even if the vacuum side surface of the film is under negative pressure due to the extremely high hydrophobicity of the Torelina fibers. The culture solution can exist in a liquid state. While the culture medium maintains a liquid state, highly permeable oxygen and carbon dioxide are maintained dissolved in the liquid, and the oxygen and carbon dioxide necessary for keeping cells alive are in the culture medium. This results in an environment that is maintained in a safe manner.

ガン細胞、及び任意で正常細胞を培養液ごと真空中に閉じ込めるために、トレリナフィルム等の高分子フィルムをシールする機能を有する器具を用いてもよい。当該シール機能を有する器具は、高エネルギーの陽子線を照射するのに必要な真空度、望ましくは1×10-3Pa以下になる真空度が得られるよう構成されていてもよい。当該シール機能を有する器具は、極めて低い炭素含有量(0.007%以下)の柔らかいステンレス鋼で、製品名クリーンスターB(大同特殊鋼株式会社)を素材に有していてもよい。当該シール機能を有する器具は、断面が半円状の形状を持つシール面を有していてもよい。当該シール面にNイオン注入によって表層100nmの厚さに窒化鉄の硬度の高い層を形成し、締め付け時の当該シール面の弾性変形による密着性と、開放時の容易に剥離する性質と、を有するように構成してもよい(特許文献2、3参照。)。 In order to confine the cancer cells and, optionally, the normal cells together with the culture medium in a vacuum, an instrument having the function of sealing a polymeric film such as Torelina film may be used. The device having the sealing function may be configured to obtain a degree of vacuum necessary for irradiation with a high-energy proton beam, preferably a degree of vacuum of 1×10 −3 Pa or less. The device having the sealing function may be made of soft stainless steel with an extremely low carbon content (0.007% or less), and may have the product name Clean Star B (Daido Steel Co., Ltd.) as a material. The device having the sealing function may have a sealing surface having a semicircular cross section. A highly hard layer of iron nitride is formed on the sealing surface to a thickness of 100 nm on the surface layer by N 2 ion implantation, and the sealing surface has adhesive properties due to elastic deformation when tightening, and easily peels off when opening. (See Patent Documents 2 and 3).

ガン細胞、及び任意で正常細胞を真空容器に入れる前に、窒素15を含む抗ガン剤を、ガン細胞、及び任意で正常細胞に投与する。トレリナフィルム等の高分子フィルムを当該シール面でシールして、ガン細胞、及び任意で正常細胞を培養液ごと真空容器に生きた状態で保持する。これにより、抗ガン剤と共に細胞内に15Nを取り込んだガン細胞、及び任意で正常細胞が、真空容器に保持される。したがって、ガン細胞、及び任意で正常細胞内の15Nに陽子を衝突させて共鳴核反応を生じさせることにより、体外でガン細胞を死滅させることが可能になる。 An anti-cancer agent containing nitrogen 15 is administered to the cancer cells and optionally normal cells prior to placing them into the vacuum vessel. A polymer film such as Torelina film is sealed with the sealing surface, and cancer cells, and optionally normal cells, are kept alive in a vacuum container along with the culture medium. As a result, cancer cells that have taken up 15 N into their cells together with the anticancer drug, and optionally normal cells, are held in the vacuum container. It is therefore possible to kill cancer cells outside the body by bombarding 15 N in cancer cells, and optionally normal cells, with protons to create a resonant nuclear reaction.

実施形態に係るガンの治療装置は、図11に示すように、ガン細胞に窒素15が蓄積しているヒト10又は非ヒト動物に陽子線を照射する照射装置20を備える。ヒト10又は非ヒト動物は、上述した抗ガン剤、又は抗ガン剤のプロドラッグを投与されている。実施形態に係るガンの治療装置は、陽子線を加速する加速装置をさらに備えていてもよい。加速装置が、レーザープラズマを備えていてもよい。 As shown in FIG. 11, the cancer treatment device according to the embodiment includes an irradiation device 20 that irradiates a human 10 or a non-human animal in which nitrogen 15 has accumulated in cancer cells with a proton beam. The human 10 or non-human animal is administered the above-mentioned anticancer agent or a prodrug of the anticancer agent. The cancer treatment device according to the embodiment may further include an accelerator that accelerates the proton beam. The accelerator may include a laser plasma.

(実施例1)
正常細胞としてラット胃粘膜由来細胞(RGM-GFP)、ガン細胞としてラット胃粘膜由来ガン細胞(RGK-KO)を用意し、RGM-GFP細胞とRGK-KO細胞の15N_5-ALAの細胞取り込みの違いを、以下のように確認した。ラット胃粘膜由来細胞とラット胃粘膜由来ガン細胞は、共に胃由来であり、同じ遺伝子配列を有するため、抗ガン剤の研究で広く用いられている(非特許文献6、7参照。)。
(Example 1)
Rat gastric mucosa-derived cells (RGM-GFP) were prepared as normal cells, and rat gastric mucosa-derived cancer cells (RGK-KO) were prepared as cancer cells. The difference was confirmed as follows. Rat gastric mucosa-derived cells and rat gastric mucosa-derived cancer cells are both derived from the stomach and have the same gene sequence, so they are widely used in research on anticancer drugs (see Non-Patent Documents 6 and 7).

RGM-GFP細胞とRGK-KO細胞はそれぞれに適した培養液に3日乃至4日間培養して80%コンフルエントに成長させたのち、15N_5-ALAを投与し、経過時間に従って細胞当たりの15N取り込み量を測定した。図12に、15N取り込み量の測定概略図を示す。80%コンフルエントに成長したRGM-GFP細胞と、RGK-KO細胞に、15N_5-ALAを投与し、投与後0時間、0.5時間、1時間、3時間、6時間、12時間、24時間、それぞれ経過後の細胞試料を準備した。細胞表面に残る15N_5-ALAを除去するために新たな培養液で3回洗浄した。トリプシンを添加してシャーレの底に付着して成長する細胞をシャーレから剥がし、遊離した細胞の濃度を計測した。 RGM-GFP cells and RGK-KO cells were cultured in appropriate culture media for 3 to 4 days to grow to 80% confluence, and then 15N_5 -ALA was administered, and 15N per cell was increased according to the elapsed time. The amount of uptake was measured. FIG. 12 shows a schematic diagram of the measurement of 15 N uptake. 15 N_5-ALA was administered to RGM-GFP cells and RGK-KO cells that had grown to 80% confluence, and 0 hours, 0.5 hours, 1 hour, 3 hours, 6 hours, 12 hours, and 24 hours after administration. , cell samples were prepared after each period. The cells were washed three times with fresh culture medium to remove 15 N_5-ALA remaining on the cell surface. Trypsin was added and the cells that had grown attached to the bottom of the Petri dish were peeled off from the Petri dish, and the concentration of released cells was measured.

濃度を調整して10個の細胞/2μLをシリコン結晶基板に滴下し、乾燥させた。試料サイズは概ね直径2.5mm程度に調整した。細胞試料は試料ホルダーにセットし、真空容器に入れて陽子線を照射した。陽子線のエネルギーは試料の厚さ分、試料内部で陽子線のエネルギーが減衰することを考慮して、15N(H,αγ)12C共鳴核反応(E=0.897MeV)が試料内部の15Nを定量可能なように、0.894MeV~0.994MeV間の22点に設定した。15Nとの当該共鳴核反応で放出される4.43MeVのガンマ線をBiGe12(BGO)検出器で計測を行った。 The concentration was adjusted and 10 5 cells/2 μL were dropped onto a silicon crystal substrate and dried. The sample size was adjusted to approximately 2.5 mm in diameter. The cell sample was set in a sample holder, placed in a vacuum container, and irradiated with a proton beam. Considering that the energy of the proton beam is attenuated inside the sample by the thickness of the sample, 15 N ( 1 H, α 1 γ) 12 C resonance nuclear reaction (E r =0.897 MeV) was set at 22 points between 0.894 MeV and 0.994 MeV so that 15 N inside the sample could be quantified. 4.43 MeV gamma rays emitted by the resonance nuclear reaction with 15 N were measured with a Bi 4 Ge 3 O 12 (BGO) detector.

図13に、計測したガンマ線スペクトルを示す。4.43MeVの主ピークと2本の消滅ガンマ線ピーク(3.92MeVS.E.および3.41MeVD.E.)とがブロードなピークを形成するため、2.98MeV~4.85MeVのエネルギー範囲のガンマ線線量を積分し、自然バックグラウンド(図中の白抜きドット)を差し引きして、有効ガンマ線線量とした。濃度を規定した15N_5-ALA水溶液を滴下した試料からのガンマ線線量を基に、15N_5-ALAの細胞取り込み量を絶対値で求めた。結果を図14に示す。15N_5-ALAを与えてから24時間後、ガン細胞の15N_5-ALAの取り込み量は、正常細胞の15N_5-ALAの取り込み量の5倍以上であった。 FIG. 13 shows the measured gamma ray spectrum. Since the main peak at 4.43 MeV and two annihilation gamma ray peaks (3.92 MeVSE.E. and 3.41MeVD.E.) form a broad peak, gamma rays in the energy range of 2.98 MeV to 4.85 MeV The effective gamma ray dose was obtained by integrating the dose and subtracting the natural background (white dots in the figure). Based on the gamma ray dose from a sample into which a 15 N_5-ALA aqueous solution with a specified concentration was dropped, the amount of 15 N_5-ALA taken up by cells was determined as an absolute value. The results are shown in FIG. Twenty-four hours after the administration of 15 N_5-ALA, the amount of 15 N_5-ALA taken up by cancer cells was more than five times the amount of 15 N_5-ALA taken up by normal cells.

以上の結果から、ガン細胞に15N_5-ALAとして取り込まれた窒素15は、細胞内に蓄積され、ガン細胞が特異的に死滅することが可能であることを示された。 The above results showed that nitrogen 15 taken into cancer cells as 15 N_5-ALA is accumulated within the cells and can specifically kill cancer cells.

RGM-GFP細胞とRGK-KO細胞の15N_5-ALA取り込み量の具体的な定量手順は以下のとおりであった。 The specific procedure for quantifying the amount of 15 N_5-ALA uptake by RGM-GFP cells and RGK-KO cells was as follows.

35mmディッシュでRGM-GFP及びRGK-KOを80%コンフルエントまで3日、乃至4日掛けてインキュベータ(37℃ 5%CO)で培養した。 RGM-GFP and RGK-KO were cultured in a 35 mm dish in an incubator (37° C., 5% CO 2 ) for 3 to 4 days until 80% confluence.

1mmol/Lの15N_5-ALAを含む培地溶液を各ディッシュに1000μLずつ投入した。規定の経過時間毎にそれぞれの細胞にトリプシン処理を行った。 1000 μL of a medium solution containing 1 mmol/L of 15 N_5-ALA was added to each dish. Each cell was treated with trypsin at predetermined intervals.

リン酸緩衝生理食塩水(Phosphate-buffered saline, PBS)もしくは5%ブドウ糖液で、細胞の洗浄と遠心分離を3回繰り返した。 Cells were washed with phosphate-buffered saline (PBS) or 5% glucose and centrifuged three times.

細胞数を自動計測器(Invitrogen Countess(登録商標))で計測し、1.0×10cell/2μLに調整した。シリコン基板に細胞を滴下した後、乾燥後真空容器にシリコン基板をセットして、1MVタンデム加速器(筑波大学応用加速器部門)から陽子線をシリコン基板上の細胞に照射し、15Nとの共鳴核反応で放出される4.43MeVガンマ線を、真空容器の外に設置したBGO検出器で計測した。 The number of cells was measured using an automatic counting device (Invitrogen Countess (registered trademark)) and adjusted to 1.0×10 5 cells/2 μL. After dropping the cells onto the silicon substrate, after drying, the silicon substrate was set in a vacuum container, and the cells on the silicon substrate were irradiated with a proton beam from a 1 MV tandem accelerator (University of Tsukuba Applied Accelerator Department) to generate resonance nuclei with 15 N. The 4.43 MeV gamma rays emitted during the reaction were measured with a BGO detector installed outside the vacuum container.

サファイヤ板に陽子ビームを照射して蛍光像からビーム面積を計測し、シリコン基板に滴下した試料面積との相対比から、単位陽子線電荷量に規格化したガンマ線線量を求めた。 The sapphire plate was irradiated with a proton beam, the beam area was measured from the fluorescence image, and the gamma ray dose normalized to the unit proton beam charge was determined from the relative ratio to the area of the sample dropped onto the silicon substrate.

陽子線電荷量規格化ガンマ線線量を、濃度を規定した15N_5-ALA水溶液試料からのガンマ線線量を陽子線電荷量に規格化し比較することで、細胞内の窒素15を定量した。 Intracellular nitrogen 15 was quantified by normalizing the gamma ray dose from a 15 N_5-ALA aqueous solution sample with a defined concentration to the proton beam charge and comparing the gamma ray dose normalized to the proton beam charge.

実施例1で使用した試薬は、以下のとおりである。
5-アミノレブリン酸塩酸塩:018-13133(富士フィルム和光純薬)
15Nアミノレブリン酸塩酸塩:N1371(Medical Isotope)
0.5% Trypsin-EDTA(10x):15400054
TrypLE Select Enzyme(1X), no phenol red 100ml:12563011(Glibco)
10×D-PBS:048-29805(富士フィルム和光純薬)
D(+)-グルコース:049-31165(富士フイルム和光純薬)
The reagents used in Example 1 are as follows.
5-aminolevulinic acid hydrochloride: 018-13133 (Fujifilm Wako Pure Chemical Industries)
15 N-aminolevulinic acid hydrochloride: N1371 (Medical Isotope)
0.5% Trypsin-EDTA (10x): 15400054
TrypLE Select Enzyme (1X), no phenol red 100ml: 12563011 (Glibco)
10xD-PBS: 048-29805 (Fuji Film Wako Pure Chemical)
D(+)-glucose: 049-31165 (Fujifilm Wako Pure Chemical)

(実施例2)
図15に環状の人工プラスミドDNAであるpUC4-KIXX(3914bps)の遺伝子構造を示す。pUC4-KIXXは、アンピシリン耐性遺伝子とカナマイシン耐性遺伝子を有するため、pUC4-KIXXを形質転換した大腸菌は、アンピシリンとカナマイシンに対して耐性を示す。pUC4-KIXX中のNの同位体比15N/(14N+15N)を、自然存在比0.364%、25%、50%、75%、及び98%以上に段階的に変えた、改変pUC4-KIXXを用意した。
(Example 2)
FIG. 15 shows the genetic structure of pUC4-KIXX (3914 bps), which is a circular artificial plasmid DNA. Since pUC4-KIXX has an ampicillin resistance gene and a kanamycin resistance gene, E. coli transformed with pUC4-KIXX exhibits resistance to ampicillin and kanamycin. Modification in which the N isotope ratio 15 N/( 14 N + 15 N) in pUC4-KIXX was changed stepwise to the natural abundance ratio of 0.364%, 25%, 50%, 75%, and 98% or more. pUC4-KIXX was prepared.

それぞれの改変pUC4-KIXXで形質転換された大腸菌を、100μg/mLのアンピシリンを含む培地と、20μg/mLのカナマイシンを含む培地と、で、培養し、陽子線を照射した。その結果、図16及び図17に示すように、15Nを含まないpUC4-KIXXで形質転換された大腸菌と比較して、15Nを含むpUC4-KIXXで形質転換された大腸菌は、15Nの同位体比が高くなるほど、陽子線照射により死滅する菌数が上昇した。15Nを含まないpUC4-KIXXで形質転換された大腸菌と比較して、15Nの同位体比が75%以上のpUC4-KIXXで形質転換された大腸菌のコロニー数は、10の3乗分の1以上減少した。 E. coli transformed with each modified pUC4-KIXX was cultured in a medium containing 100 μg/mL ampicillin and a medium containing 20 μg/mL kanamycin, and irradiated with proton beams. As a result, as shown in FIGS . 16 and 17, compared to E. coli transformed with pUC4-KIXX that does not contain 15 N , E. coli transformed with pUC4-KIXX containing 15 N is As the isotope ratio increased, the number of bacteria killed by proton beam irradiation increased. Compared to E. coli transformed with pUC4-KIXX that does not contain 15 N, the number of colonies of E. coli transformed with pUC4-KIXX with a 15 N isotope ratio of 75% or more is 10 to the third power. decreased by 1 or more.

15Nを含まないpUC4-KIXXで形質転換された大腸菌は、陽子線の照射で多数死滅することはなかった。よって、改変pUC4-KIXXで形質転換された大腸菌が多数死滅したことは、15N(H,αγ)12C共鳴核反応により、アンピシリン耐性遺伝子とカナマイシン耐性遺伝子が損傷し、大腸菌の薬剤耐性が消失したためによると考えられる。A large number of E. coli transformed with pUC4-KIXX that does not contain 15 N was not killed by proton beam irradiation. Therefore, the reason why a large number of E. coli transformed with modified pUC4-KIXX died was that the ampicillin resistance gene and kanamycin resistance gene were damaged by the 15 N ( 1 H, α 1 γ) 12 C resonance nuclear reaction, and the E. coli drug resistance gene was damaged. This is thought to be due to loss of tolerance.

(実施例3)
ラット胃粘膜由来ガン細胞(RGK-KO)と正常細胞(RGM-GFP)をそれぞれに適した培地をいれた35mmディッシュで一律7日間培養し、全てのディッシュが80%コンフルエントになるように細胞の準備を行った。陽子線を照射する24時間前に15N_5-ALAを培地に投入し、15N_5-ALAを含まない培地との対比が可能なように、両培地での培養条件を同じにして24時間維持した。15N_5-ALAを含む培地で培養したRGK-KO細胞とRGM-GFP細胞、及び15N_5-ALAを含まない培地で培養したRGK-KO細胞とRGM-GFP細胞のそれぞれを、培養液とともに真空中に封止保持し、所定のイオン電荷量の陽子線を照射した。陽子線のエネルギーは、真空中に封止した培養液とトレリナフィルムによる陽子線のエネルギー減衰を考慮して、1.21MeV共鳴エネルギーに合わせて1.3MeVで試料への照射を行った。
(Example 3)
Rat gastric mucosa-derived cancer cells (RGK-KO) and normal cells (RGM-GFP) were cultured in 35 mm dishes containing appropriate media for 7 days, and the cells were grown so that all dishes were 80% confluent. I made preparations. 15N_5 -ALA was added to the medium 24 hours before proton beam irradiation, and the culture conditions in both media were kept the same and maintained for 24 hours to enable comparison with a medium not containing 15N_5 -ALA. . 15 RGK-KO cells and RGM-GFP cells cultured in a medium containing N_5-ALA, and RGK-KO cells and RGM-GFP cells cultured in a medium not containing 15 N_5-ALA were placed in a vacuum together with the culture medium. was held in a sealed state and irradiated with a proton beam having a predetermined ion charge. The sample was irradiated with the proton beam energy at 1.3 MeV in accordance with the 1.21 MeV resonance energy, taking into consideration the energy attenuation of the proton beam due to the culture solution sealed in vacuum and the Torelina film.

図18は、15N_5-ALAを含まない培地で培養したRGM-GFP細胞に陽子線を照射した直後(3時間以内)に観察した蛍光顕微鏡写真を示す。上部は遺伝子組み換えによって蛍光タンパクを代謝するようになったRGM-GFP細胞像を示し、下部は死亡した細胞の核内DNAを染色するDAPI染色法により、死亡した細胞を識別した写真をそれぞれ示す。陽子線の照射電荷量が2.5nC,4.0nC,5.0nC,10nC,25nCと増加するに従い、細胞の死亡数、すなわち蛍光タンパク像の細胞数(生存細胞数)とDAPI染色蛍光像の細胞数(死亡細胞数)の和に対する蛍光タンパク像細胞数が、増加している。15N_5-ALAを含まない培地で培養したRGM-GFP細胞に陽子線を照射し、その照射電荷量と、細胞生存率と、の関係を図19に示す。両者に対数関数的関係が見られ、陽子線の生物学的放射線損傷の特徴が示された。 FIG. 18 shows a fluorescence micrograph taken immediately (within 3 hours) after proton beam irradiation of RGM-GFP cells cultured in a medium containing no 15 N_5-ALA. The upper part shows an image of RGM-GFP cells that have been genetically modified to metabolize fluorescent proteins, and the lower part shows photographs of dead cells identified using the DAPI staining method, which stains the nuclear DNA of dead cells. As the irradiation charge amount of the proton beam increases from 2.5nC, 4.0nC, 5.0nC, 10nC, and 25nC, the number of dead cells, that is, the number of cells in the fluorescent protein image (the number of viable cells) and the number of cells in the DAPI-stained fluorescence image, increase. The number of fluorescent protein-imaged cells relative to the sum of the number of cells (number of dead cells) is increasing. RGM-GFP cells cultured in a medium containing no 15 N_5-ALA were irradiated with a proton beam, and the relationship between the amount of irradiation charge and cell survival rate is shown in FIG. A logarithmic relationship was observed between the two, indicating the characteristics of biological radiation damage caused by proton beams.

15N_5-ALAを含まない培地と含む培地のそれぞれに培養したRGK-KO細胞に陽子線を照射した直後の写真を図20に示す。図20の写真は、両細胞共に陽子線の照射電荷量が4.0nCの場合を示している。RGK-KO細胞にも蛍光タンパクを代謝する遺伝子が組み込まれており、蛍光顕微鏡下では細胞は赤い色を呈する。15N_5-ALAを含まない培地で培養したRGK-KO細胞では、蛍光タンパク像の細胞数が4671個、DAPI染色蛍光像の細胞数は3179個で、生存率は59.5%であった。一方、15N_5-ALAを含む培地で培養したRGK-KO細胞では、蛍光タンパク像の細胞数が4522個、DAPI染色蛍光像の細胞数は1622個で、生存率は73.5%であった。FIG. 20 shows photographs immediately after proton beam irradiation of RGK-KO cells cultured in a medium without and a medium containing 15N_5 -ALA. The photograph in FIG. 20 shows a case where the irradiation charge amount of the proton beam was 4.0 nC for both cells. RGK-KO cells also contain a gene that metabolizes fluorescent proteins, and the cells appear red under a fluorescence microscope. In RGK-KO cells cultured in a medium containing no 15 N_5-ALA, the number of cells in the fluorescent protein image was 4671, and the number of cells in the DAPI-stained fluorescent image was 3179, and the survival rate was 59.5%. On the other hand, in RGK-KO cells cultured in a medium containing 15N_5 -ALA, the number of cells in the fluorescent protein image was 4522, the number of cells in the DAPI staining fluorescence image was 1622, and the survival rate was 73.5%. .

図21は、共に15N_5-ALAを含む培地で培養したRGK-KO細胞に陽子線を電荷量4.0nC照射を行い、その後24時間経過後の細胞の写真を示す。照射直後3時間以内の生存率が73.5%と85.5%であった細胞の24時間後の生存率は、それぞれ40.5%と10.6%にまで減少した。RGK-KO細胞の生存率が時間経過と共に急激に減少する傾向は、RGK-KO細胞に取り込まれた15N_5-ALAが、ガン細胞内でプロトポリフィリンIXに誘導される代謝経路と関係することを示している。 FIG. 21 shows a photograph of the cells 24 hours after irradiation with a proton beam at a charge amount of 4.0 nC to RGK-KO cells cultured in a medium containing 15 N_5-ALA. The survival rates of cells whose survival rates were 73.5% and 85.5% within 3 hours immediately after irradiation decreased to 40.5% and 10.6% after 24 hours, respectively. The tendency for the survival rate of RGK-KO cells to rapidly decrease over time suggests that 15N_5 -ALA taken up by RGK-KO cells is related to the metabolic pathway induced by protoporphyrin IX in cancer cells. It shows.

(実施例4)
体外でガン細胞を死滅させる方法として、トレリナフィルム(厚さ4μm、東レ株式会社)とクリーンスターを素材とするシール機能を有する真空封止継手(以下、「CSフランジ」と呼ぶ。)を利用して、RGM-GFP細胞とRGK-KO細胞とを封止し、真空容器にセットして真空中に保持した。図22は、高純度シリコンで製作した深さ1.0mmの円形皿に直径15mm、厚さ0.5mmのシリコン結晶基板を入れ、RGM-GFP細胞とRGK-KO細胞を培養液ごと当該基板に滴下し、トレリナフィルムで封止した写真を示す。トレリナフィルムの片側表面には薄いカーボン膜を蒸着し(東レKPフィルム株式会社)、陽子線の電荷帯電による放電破損を回避可能にした。
(Example 4)
As a method to kill cancer cells outside the body, a vacuum sealing joint (hereinafter referred to as "CS flange") with a sealing function made of Torelina film (4 μm thick, Toray Industries, Inc.) and Clean Star is used. Then, RGM-GFP cells and RGK-KO cells were sealed, set in a vacuum container, and kept in vacuum. In Figure 22, a silicon crystal substrate with a diameter of 15 mm and a thickness of 0.5 mm is placed in a circular dish with a depth of 1.0 mm made of high-purity silicon, and RGM-GFP cells and RGK-KO cells are placed on the substrate together with the culture medium. A photograph of the product being dropped and sealed with Torelina film is shown. A thin carbon film was deposited on one surface of the Torelina film (Toray KP Film Co., Ltd.), making it possible to avoid discharge damage caused by proton beam charging.

真空中に20分から30分間保持したRGM-GFP細胞とRGK-KO細胞を封止から解放して培養すると、図22の細胞写真が示す通り、両細胞種共に再び細胞が成長するのが確認され、生きた状態で一定時間真空下に保持されることが明らかになった。 When RGM-GFP cells and RGK-KO cells held in vacuum for 20 to 30 minutes were released from the seal and cultured, it was confirmed that both cell types grew again, as shown in the cell photo in Figure 22. , it has been revealed that they can be kept alive under vacuum for a certain period of time.

図23には、RGM-GFP細胞とRGK-KO細胞とを培養液ごと封止して、ドライポンプ(TSU071E,排気速度60L/s、到達真空度10-5Pa,PFEIFFER)にて真空排気を行い、細胞試料が無い状態の真空排気過程と変わらない速さで真空が降下することが確認された。 In Figure 23, RGM-GFP cells and RGK-KO cells are sealed together with the culture solution and evacuated using a dry pump (TSU071E, pumping speed 60 L/s, ultimate vacuum 10 -5 Pa, PFEIFFER). It was confirmed that the vacuum dropped at the same speed as the vacuum evacuation process without a cell sample.

Claims (18)

ガン細胞に窒素15を特異的に蓄積させる物質を含む、抗ガン剤であって、
前記物質が、窒素が窒素15である5-アミノレブリン酸、及び窒素が窒素15である5-フルオロウラシルから選択される少なくとも一つであり、
患者の体内に投与され、投与後、前記患者に陽子線が照射されるための抗ガン剤。
An anticancer agent containing a substance that specifically accumulates nitrogen-15 in cancer cells,
the substance is at least one selected from 5-aminolevulinic acid where the nitrogen is nitrogen 15, and 5-fluorouracil where the nitrogen is nitrogen 15;
An anticancer drug that is administered into a patient's body, and the patient is irradiated with a proton beam after administration.
ガン細胞に窒素15を特異的に蓄積させる物質を含む、抗ガン剤であって、
前記物質が、窒素が窒素15であるガン細胞の分子標的治療薬であり、
患者の体内に投与され、投与後、前記患者に陽子線が照射されるための抗ガン剤。
An anticancer agent containing a substance that specifically accumulates nitrogen-15 in cancer cells,
The substance is a molecular target therapeutic drug for cancer cells whose nitrogen is nitrogen-15,
An anticancer drug that is administered into a patient's body, and the patient is irradiated with a proton beam after administration.
前記窒素が窒素15であるガン細胞の分子標的治療薬が、前記ガン細胞に結合する部分を含む、請求項2に記載の抗ガン剤。 3. The anticancer agent according to claim 2, wherein the molecular targeting drug for cancer cells in which the nitrogen is nitrogen-15 includes a moiety that binds to the cancer cells. 前記ガン細胞に結合する部分が抗体又は抗体の一部である、請求項3に記載の抗ガン剤。 The anti-cancer agent according to claim 3, wherein the portion that binds to cancer cells is an antibody or a part of an antibody. 前記抗体又は抗体の一部に薬物が結合している、請求項4に記載の抗ガン剤。 The anticancer agent according to claim 4, wherein a drug is bound to the antibody or a part of the antibody. 前記抗体又は抗体の一部が、窒素が窒素15であるトラスツズマブである、請求項4に記載の抗ガン剤。 The anticancer agent according to claim 4, wherein the antibody or a part of the antibody is trastuzumab in which nitrogen is nitrogen-15. ガン細胞に窒素15を特異的に蓄積させる物質のプロドラッグを含む抗ガン剤であって、
前記物質が、窒素が窒素15である5-フルオロウラシルであり、
患者の体内に投与され、投与後、前記患者に陽子線が照射されるための抗ガン剤。
An anticancer drug containing a prodrug of a substance that specifically accumulates nitrogen-15 in cancer cells,
the substance is 5-fluorouracil, where the nitrogen is nitrogen-15;
An anticancer drug that is administered into a patient's body, and the patient is irradiated with a proton beam after administration.
前記プロドラッグが、窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択される、請求項7に記載の抗ガン剤。 8. The anticancer agent according to claim 7, wherein the prodrug is selected from the group consisting of tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, doxifluridine, and capecitabine, in which nitrogen is nitrogen 15. 体外で、ガン細胞に窒素が窒素15である5-アミノレブリン酸、及び窒素が窒素15である5-フルオロウラシルから選択される少なくとも一つの物質を与えて、前記ガン細胞に窒素15を蓄積させること、
体外で、前記ガン細胞に、陽子線を照射することと、
を含む、体外でガン細胞を死滅させる方法。
administering to cancer cells in vitro at least one substance selected from 5-aminolevulinic acid, where the nitrogen is nitrogen 15, and 5-fluorouracil, where the nitrogen is nitrogen 15, to cause the cancer cells to accumulate nitrogen 15;
irradiating the cancer cells with a proton beam outside the body;
A method of killing cancer cells outside the body, including:
体外で、ガン細胞に窒素が窒素15であるガン細胞の分子標的治療薬を与えて、前記ガン細胞に窒素15を蓄積させること、
体外で、前記ガン細胞に、陽子線を照射することと、
を含む、体外でガン細胞を死滅させる方法。
administering to cancer cells a molecularly targeted therapeutic agent for cancer cells whose nitrogen is nitrogen-15 in vitro, causing the cancer cells to accumulate nitrogen-15;
irradiating the cancer cells with a proton beam outside the body;
A method of killing cancer cells outside the body, including:
前記分子標的治療薬が、窒素が窒素15であるトラスツズマブである、請求項10に記載の方法。 11. The method of claim 10, wherein the molecularly targeted therapeutic agent is trastuzumab, where the nitrogen is nitrogen-15. 体外で、ガン細胞に窒素が窒素15である5-フルオロウラシルのプロドラッグを与えて、前記ガン細胞に窒素15を蓄積させること、
体外で、前記ガン細胞に、陽子線を照射することと、
を含む、体外でガン細胞を死滅させる方法。
administering a prodrug of 5-fluorouracil in which nitrogen is nitrogen-15 to cancer cells in vitro, causing said cancer cells to accumulate nitrogen-15;
irradiating the cancer cells with a proton beam outside the body;
A method of killing cancer cells outside the body, including:
前記プロドラッグが、窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択される、請求項12に記載の方法。 13. The method of claim 12, wherein the prodrug is selected from the group consisting of tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, doxifluridine, and capecitabine, where the nitrogen is nitrogen 15. 非ヒト動物に窒素が窒素15である5-アミノレブリン酸、及び窒素が窒素15である5-フルオロウラシルから選択される少なくとも一つの物質を投与して、前記非ヒト動物のガン細胞に窒素15を蓄積させること、
前記非ヒト動物に、陽子線を照射することと、
を含む、ガンの治療方法。
Accumulating nitrogen-15 in cancer cells of the non-human animal by administering at least one substance selected from 5-aminolevulinic acid whose nitrogen is nitrogen-15 and 5-fluorouracil whose nitrogen is nitrogen-15 to a non-human animal. to let;
irradiating the non-human animal with a proton beam;
cancer treatment methods, including.
非ヒト動物に窒素が窒素15であるガン細胞の分子標的治療薬を投与して、前記非ヒト動物のガン細胞に窒素15を蓄積させること、
前記非ヒト動物に、陽子線を照射することと、
を含む、ガンの治療方法。
administering to a non-human animal a molecular targeting therapeutic agent for cancer cells whose nitrogen is nitrogen-15, thereby accumulating nitrogen-15 in the cancer cells of the non-human animal;
irradiating the non-human animal with a proton beam;
cancer treatment methods, including.
前記分子標的治療薬が、窒素が窒素15であるトラスツズマブである、請求項15に記載の方法。 16. The method of claim 15, wherein the molecularly targeted therapeutic agent is trastuzumab, where the nitrogen is nitrogen-15. 非ヒト動物に窒素が窒素15である5-フルオロウラシルのプロドラッグを投与して、前記非ヒト動物のガン細胞に窒素15を蓄積させること、
前記非ヒト動物に、陽子線を照射することと、
を含む、ガンの治療方法。
administering to a non-human animal a prodrug of 5-fluorouracil in which the nitrogen is nitrogen-15, thereby accumulating nitrogen-15 in cancer cells of the non-human animal;
irradiating the non-human animal with a proton beam;
cancer treatment methods, including.
前記プロドラッグが、窒素が窒素15であるテガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、及びカペシタビンからなる群から選択される、請求項17に記載の方法。 18. The method of claim 17, wherein the prodrug is selected from the group consisting of tegafur, tegafur uracil, tegafur gimeracil oteracil potassium, doxifluridine, and capecitabine, where the nitrogen is nitrogen 15.
JP2023508530A 2021-10-20 2022-10-20 Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices Active JP7455316B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021172003 2021-10-20
JP2021172003 2021-10-20
PCT/JP2022/039079 WO2023068325A1 (en) 2021-10-20 2022-10-20 Anticancer agent, prodrug of anticancer agent, method for killing cancer cells in vitro, cancer therapy method and cancer therapy device

Publications (3)

Publication Number Publication Date
JPWO2023068325A1 JPWO2023068325A1 (en) 2023-04-27
JPWO2023068325A5 JPWO2023068325A5 (en) 2023-09-21
JP7455316B2 true JP7455316B2 (en) 2024-03-26

Family

ID=86058319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023508530A Active JP7455316B2 (en) 2021-10-20 2022-10-20 Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices

Country Status (4)

Country Link
EP (1) EP4420678A1 (en)
JP (1) JP7455316B2 (en)
CN (1) CN118159293A (en)
WO (1) WO2023068325A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096098A (en) 2001-09-25 2003-04-03 Nippon Sanso Corp Stable isotopic labeling antibody, production method, and detection method using the same
JP2008022994A (en) 2006-07-19 2008-02-07 Japan Atomic Energy Agency Particle beam therapy apparatus
JP2014177421A (en) 2013-03-14 2014-09-25 Univ Of Fukui Sensitizer for proton beam therapy and proton beam therapeutic method using the same
JP2016216404A (en) 2015-05-22 2016-12-22 国立大学法人北海道大学 Sensitizer for proton beam therapy and method of proton beam therapy
JP2018058822A (en) 2016-08-03 2018-04-12 ファイザー・インク Heteroaryl sulfone-based conjugation handles, methods for their preparation, and their use in synthesizing antibody drug conjugates
JP2018527402A (en) 2015-09-22 2018-09-20 シントン・バイオファーマシューティカルズ・ビー.ブイ.Synthon Biopharmaceuticals B.V. SYD985 treatment of patients with T-DM1 refractory cancer
WO2018237241A1 (en) 2017-06-22 2018-12-27 University Of Virginia Patent Foundation Proton activated atomic medicine
WO2021029391A1 (en) 2019-08-09 2021-02-18 国立研究開発法人産業技術総合研究所 Artificial gene and gene mutation method
CN112834680A (en) 2020-12-31 2021-05-25 苏州海科医药技术有限公司 Method for determining concentrations of tegafur, gimeracil and 5-fluorouracil in blood plasma of tumor patient

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203663A (en) 1983-05-02 1984-11-17 Matsushita Electric Ind Co Ltd Atomizer
JPH1112197A (en) * 1997-06-18 1999-01-19 Cosmo Sogo Kenkyusho:Kk Malignant tumor diagnostic agent and therapeutic agent
JP4520219B2 (en) 2004-05-28 2010-08-04 協和発酵バイオ株式会社 Process for producing 5-aminolevulinic acid
JP5392752B2 (en) 2009-02-18 2014-01-22 独立行政法人産業技術総合研究所 Ultra-low carbon stainless steel flange and fitting and ultra-low carbon stainless steel sealing valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096098A (en) 2001-09-25 2003-04-03 Nippon Sanso Corp Stable isotopic labeling antibody, production method, and detection method using the same
JP2008022994A (en) 2006-07-19 2008-02-07 Japan Atomic Energy Agency Particle beam therapy apparatus
JP2014177421A (en) 2013-03-14 2014-09-25 Univ Of Fukui Sensitizer for proton beam therapy and proton beam therapeutic method using the same
JP2016216404A (en) 2015-05-22 2016-12-22 国立大学法人北海道大学 Sensitizer for proton beam therapy and method of proton beam therapy
JP2018527402A (en) 2015-09-22 2018-09-20 シントン・バイオファーマシューティカルズ・ビー.ブイ.Synthon Biopharmaceuticals B.V. SYD985 treatment of patients with T-DM1 refractory cancer
JP2018058822A (en) 2016-08-03 2018-04-12 ファイザー・インク Heteroaryl sulfone-based conjugation handles, methods for their preparation, and their use in synthesizing antibody drug conjugates
WO2018237241A1 (en) 2017-06-22 2018-12-27 University Of Virginia Patent Foundation Proton activated atomic medicine
WO2021029391A1 (en) 2019-08-09 2021-02-18 国立研究開発法人産業技術総合研究所 Artificial gene and gene mutation method
CN112834680A (en) 2020-12-31 2021-05-25 苏州海科医药技术有限公司 Method for determining concentrations of tegafur, gimeracil and 5-fluorouracil in blood plasma of tumor patient

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩田康嗣,医療機関、企業、大学、行政の連携が創る独自医療技術開発,日レ医誌,2021年09月30日,Vol.42, No.3,p138

Also Published As

Publication number Publication date
JPWO2023068325A1 (en) 2023-04-27
WO2023068325A1 (en) 2023-04-27
EP4420678A1 (en) 2024-08-28
CN118159293A (en) 2024-06-07

Similar Documents

Publication Publication Date Title
Tian et al. Cerenkov luminescence-induced NO release from 32P-labeled ZnFe (CN) 5NO nanosheets to enhance radioisotope-immunotherapy
Blakely et al. Heavy-ion radiobiology: Cellular studies
CN1112946C (en) Boron neutron capture enhancement of fast neutron therapy
US20120087868A1 (en) Nanoparticle-loaded cells
EP3424561B1 (en) Boron neutron capture treating system and alpha-amino acid-like boron trifluoride compounds for use in treating tumors
Yasui et al. Boron neutron capture in prostate cancer cells
US9468608B2 (en) Preparation method of radiation sensitive copolymer carrier for coating radiated nanoparticles and chemotherapy drugs
Idrissou et al. Targeted radionuclide therapy using auger electron emitters: the quest for the right vector and the right radionuclide
Zhang et al. Nanoscintillator‐Mediated X‐Ray‐Triggered Boosting Transformation of Fe3+ into Fe2+ for Enhancing Tumor Ferroptosis/Immunotherapy
JP7455316B2 (en) Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices
US20240002419A1 (en) Radiation-activated tetravalent platinum complex and use thereof
Alizadeh et al. Low-Energy Electron Generation for Biomolecular Damage Inquiry: Instrumentation and Methods
CN107224675B (en) Boron neutron capture therapy system
US11351258B2 (en) Systems, methods, and biomaterials for radiation therapy
RU2768732C2 (en) Method of producing isotope
TW201836613A (en) Boron neutron capture therapeutic system and applications of [alpha]-amino acid-like boron trifluoride compound in preparing drugs for tumor therapy comprising a boron neutron capture therapeutic device and an [alpha]-amino acid like boron trifluoride compound
Koltover Stable magnetic isotopes: from spin chemistry to biomedicine
US7572458B2 (en) Boron compound-layered double hydroxide nanohybrid, method of preparing the boron compound-LDH nanohybrid, and pharmaceutical composition comprising the boron compound-LDH nanohybrid
US9327025B2 (en) Enriched 10-boron composition for cancer therapy and a method of synthesizing the same
Terakawa et al. PIXE Analysis of a Murine Fibrosarcoma Tumor Treated With a Vascular Disrupting Agent AVE8062
Ferruz Oxygen effect in medical ion beam radiation combined with nanoparticles
Harada et al. Innovation of hyaluronic acid-protamine microparticles and their kinetics in vivo
Demichelis et al. Synthesis and Characterization of B4C-Based Multifunctional Nanoparticles for Boron Neutron Capture Therapy Applications
Druzkova et al. L-Boronphenylalanine Biodistribution Dynamics in the Organs of Mice with Subcutaneous Tumor Xenograft is a Model to Assess Neuron Sources Efficiency in Boron Neutron Capture Therapy
Harada et al. The target-chemotherapy directed by the radiation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230207

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240304

R150 Certificate of patent or registration of utility model

Ref document number: 7455316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150