JP2016216404A - Sensitizer for proton beam therapy and method of proton beam therapy - Google Patents
Sensitizer for proton beam therapy and method of proton beam therapy Download PDFInfo
- Publication number
- JP2016216404A JP2016216404A JP2015104243A JP2015104243A JP2016216404A JP 2016216404 A JP2016216404 A JP 2016216404A JP 2015104243 A JP2015104243 A JP 2015104243A JP 2015104243 A JP2015104243 A JP 2015104243A JP 2016216404 A JP2016216404 A JP 2016216404A
- Authority
- JP
- Japan
- Prior art keywords
- ethynyl
- ribofuranosyl
- proton beam
- sensitizer
- dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation-Therapy Devices (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、陽子線治療用増感剤および陽子線治療方法に関する。 The present invention relates to a proton beam treatment sensitizer and a proton beam treatment method.
陽子線治療は、「陽子」を加速させたものを体の外から病変に当てて治療する放射線治療である。「陽子」は水素の原子核で、この陽子を束にして加速したものが陽子線である。放射線治療に用いられる放射線には陽子線のほかにX線、電子線、ガンマ線、炭素線などがある。陽子線と炭素線による治療を合わせて「粒子線治療」と呼ぶこともある。 Proton therapy is radiation therapy in which an accelerated “proton” is applied to a lesion from outside the body. "Protons" are hydrogen nuclei, and protons are accelerated by bundled protons. In addition to proton beams, radiation used for radiation therapy includes X-rays, electron beams, gamma rays, and carbon beams. The treatment with proton beam and carbon beam is sometimes referred to as “particle beam therapy”.
現在一般的に放射線治療に用いられているX線は、体の表面からある一定の深さでエネルギーが最大になる性質がある(図1参照)。その後X線は緩やかに減っていくが、この性質ゆえに、病変の後ろ側にある正常組織にも、一定量の放射線があたることになる。これに対して陽子線には、到達深度の終わり近くでエネルギーの大半を放出する「ブラッグピーク」という物理学的特徴がある。陽子線は病変の近くでエネルギーの大半を放出してしまうので、照射位置を適切に調整すれば、病変の後ろには陽子線が当たることなく治療できる。これが陽子線治療の大きな特徴であり、利点である。 X-rays currently commonly used for radiation therapy have the property that energy is maximized at a certain depth from the body surface (see FIG. 1). Thereafter, the X-rays gradually decrease, but due to this property, a certain amount of radiation is also applied to the normal tissue behind the lesion. In contrast, protons have a physical feature called “Bragg peak” that emits most of the energy near the end of the depth of reach. Proton rays release most of the energy near the lesion, so if the irradiation position is adjusted appropriately, treatment can be performed without hitting the proton beam behind the lesion. This is a major feature and advantage of proton therapy.
放射線治療は、病変部位と正常組織にあたる放射線の量を適切にコントロールし、同時に副作用を低減することを目指して発展してきた。陽子線治療は、前述した陽子線の特徴であるブラッグピークにより、病変部で止まるという優れた性質を利用することで病変部位に限局した放射線治療が可能である。そのため、陽子線治療は、病変の制御率向上と副作用の低減の両立が期待される理想的な放射線治療である。 Radiation therapy has been developed with the aim of appropriately controlling the amount of radiation hitting the lesion site and normal tissue, and at the same time reducing side effects. The proton beam treatment can be performed by using the superior property of stopping at the lesion site by the Bragg peak, which is the characteristic of the proton beam described above, so that the radiotherapy limited to the lesion site is possible. Therefore, proton therapy is an ideal radiotherapy that is expected to achieve both improvement in the control rate of lesions and reduction in side effects.
前述のように陽子線には、到達深度の終わり近くでエネルギーの大半を放出する「ブラッグピーク」という物理学的特徴があり、そのため腫瘍へ高線量を照射しつつ周囲の正常組織への線量の低減が可能である。しかし、実際の治療は、複数のエネルギーのブラッグピークを重ね合わせて、腫瘍のみを選択的に照射することで行われる。複数のピークの重ね合わせ(spread-out Bragg-peak(SOBP))は、腫瘍位置で一定の物理的線量になるように設定される(図2(A))。 As mentioned earlier, protons have a physical feature called the “Bragg peak” that releases most of the energy near the end of the depth of reach, so that the dose to the surrounding normal tissue is high while irradiating the tumor with a high dose. Reduction is possible. However, the actual treatment is performed by superimposing the Bragg peaks of a plurality of energies and selectively irradiating only the tumor. The superposition of multiple peaks (spread-out Bragg-peak (SOBP)) is set so as to have a constant physical dose at the tumor position (FIG. 2 (A)).
従来、一定の物理的線量であるSOBPにおいては生物効果(生物線量(RBE)も一定であると考えられていた(図2(B))。ところが、腫瘍位置で一定の物理的線量になるように設定された陽子線の実際の生物効果(生物線量(RBE)と呼ぶ)は、SOBP中で一定ではなく、RBEはSOBO中の深い位置ほど大きくなることが報告されている(図3)(非特許文献1)。 Conventionally, the biological effect (biological dose (RBE)) was considered to be constant in SOBP with a constant physical dose (Fig. 2 (B)). It has been reported that the actual biological effect of the proton beam set to (referred to as biological dose (RBE)) is not constant in SOBP, and that RBE increases with depth in SOBO (Figure 3). Non-patent document 1).
SOBP内で物理線量が均一であってもRBEが一定ではない事で、均一な治療効果が達成されない可能性がある。 Even if the physical dose is uniform within the SOBP, the RBE may not be constant, so that a uniform therapeutic effect may not be achieved.
そこで本発明は、均一の物理線量下において生物線量(RBE)も一定にできる手段を提供することを目的とする。 Accordingly, an object of the present invention is to provide a means capable of making the biological dose (RBE) constant under a uniform physical dose.
本発明者らは、上記目的を達成すべく種々検討した。その結果、RNA合成阻害剤を、陽子線照射をする患部に存在させることで、均一の物理線量下において生物線量(RBE)も一定にできることを見出して本発明を完成させた。 The present inventors have made various studies to achieve the above object. As a result, the present inventors have found that the biological dose (RBE) can be made constant under a uniform physical dose by allowing an RNA synthesis inhibitor to be present in the affected area that is irradiated with proton beams.
本発明は以下の通りである。
[1]
照射陽子線の複数のブラッグピークの重ね合わせ(以下、SOBPと呼ぶ)内で均一物理線量の陽子線を照射して行われる悪性腫瘍の治療において、SOBP内での生物線量(RBE)を調整するために用いられる、RNA合成阻害剤を有効成分とする陽子線治療用増感剤。
[2]
前記RNA合成阻害剤は、DNA二本鎖切断に対する細胞の相同組換え修復能阻害剤である、[1]に記載の増感剤。
[3]
前記RNA合成阻害剤は、下記一般式で表される3'-置換ヌクレオシド誘導体である、[1]または[2]に記載の増感剤。
[4]
3'-置換ヌクレオシド誘導体は、下記化合物から成る群から選ばれる少なくとも1種の化合物である[3]に記載の増感剤。
1-(3-C-エチニル-β-D-リボフラノシル)シトシン、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロシトシン、
1-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
3-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロウラシル、
9-(3-C-エチニル-β-D-リボフラノシル)アデニン、
9-(3-C-エチニル-β-D-リボフラノシル)グアニン。
[5]
3'-置換ヌクレオシド誘導体は、下記式で表される1-(3-C-エチニル-β-D-リボフラノシル)シトシンである[3]に記載の増感剤。
RNA合成阻害剤を有効成分とする増感剤を投与した患部に、SOBP内で均一物理線量の陽子線を照射することを含む、陽子線治療方法。
[7]
前記RNA合成阻害剤は、DNA二本鎖切断に対する細胞の相同組換え修復能阻害剤である、[6]に記載の方法。
[8]
前記RNA合成阻害剤は、下記一般式で表される3'-置換ヌクレオシド誘導体である、[6]または[7]に記載の方法。
[9]
3'-置換ヌクレオシド誘導体は、下記化合物から成る群から選ばれる少なくとも1種の化合物である[8]に記載の方法。
1-(3-C-エチニル-β-D-リボフラノシル)シトシン、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロシトシン、
1-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
3-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロウラシル、
9-(3-C-エチニル-β-D-リボフラノシル)アデニン、
9-(3-C-エチニル-β-D-リボフラノシル)グアニン。
[10]
3'-置換ヌクレオシド誘導体は、下記式で表される1-(3-C-エチニル-β-D-リボフラノシル)シトシンである[8]に記載の方法。
陽子線の物理線量を前記増感剤不使用時の、95%以下とする[6]〜[10]のいずれかに記載の方法。
[12]
前記増感剤の患部への投与量は、2.0 mg/m2〜6.85 mg/m2の範囲である[6]〜[11]のいずれかに記載の方法。
[13]
SOBPは、表皮から50〜300mmの範囲である[6]〜[12]のいずれかに記載の方法。
[14]
前記患部は、悪性腫瘍である[6]〜[13]のいずれかに記載の方法。
The present invention is as follows.
[1]
Adjust the biological dose (RBE) in SOBP in the treatment of malignant tumors by irradiating proton beam with uniform physical dose within the superposition of multiple Bragg peaks of irradiated proton beam (hereinafter referred to as SOBP) A sensitizer for proton beam therapy containing an RNA synthesis inhibitor as an active ingredient.
[2]
The sensitizer according to [1], wherein the RNA synthesis inhibitor is a cell homologous recombination repair inhibitor for DNA double-strand breaks.
[3]
The sensitizer according to [1] or [2], wherein the RNA synthesis inhibitor is a 3′-substituted nucleoside derivative represented by the following general formula.
[4]
The sensitizer according to [3], wherein the 3′-substituted nucleoside derivative is at least one compound selected from the group consisting of the following compounds.
1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorocytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
3- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorouracil,
9- (3-C-ethynyl-β-D-ribofuranosyl) adenine,
9- (3-C-ethynyl-β-D-ribofuranosyl) guanine.
[5]
The sensitizer according to [3], wherein the 3′-substituted nucleoside derivative is 1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine represented by the following formula.
A proton beam treatment method comprising irradiating an affected area to which a sensitizer comprising an RNA synthesis inhibitor as an active ingredient is administered with a uniform physical dose of proton beam in SOBP.
[7]
The method according to [6], wherein the RNA synthesis inhibitor is a cell homologous recombination repair inhibitor for DNA double-strand breaks.
[8]
The method according to [6] or [7], wherein the RNA synthesis inhibitor is a 3′-substituted nucleoside derivative represented by the following general formula.
[9]
The method according to [8], wherein the 3′-substituted nucleoside derivative is at least one compound selected from the group consisting of the following compounds.
1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorocytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
3- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorouracil,
9- (3-C-ethynyl-β-D-ribofuranosyl) adenine,
9- (3-C-ethynyl-β-D-ribofuranosyl) guanine.
[10]
The method according to [8], wherein the 3′-substituted nucleoside derivative is 1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine represented by the following formula.
The method according to any one of [6] to [10], wherein the physical dose of the proton beam is 95% or less when the sensitizer is not used.
[12]
The method according to any one of [6] to [11], wherein the dose of the sensitizer to the affected area is in the range of 2.0 mg / m 2 to 6.85 mg / m 2 .
[13]
SOBP is the method in any one of [6]-[12] which is the range of 50-300 mm from an epidermis.
[14]
The method according to any one of [6] to [13], wherein the affected area is a malignant tumor.
本発明によれば、均一の物理線量下において生物線量(RBE)も一定にできる陽子線照射による治療方法を提供することができる。さらにこの方法によれば、所定の物理線量下における生物線量(RBE)を、RNA合成阻害剤が存在しないときに比べて、高めることができ、そのため、より少ない陽子線照射量で、所望の治療効果を得られる可能性もある。 ADVANTAGE OF THE INVENTION According to this invention, the treatment method by proton beam irradiation which can make a biological dose (RBE) constant under uniform physical dose can be provided. Furthermore, according to this method, the biological dose (RBE) under a predetermined physical dose can be increased as compared with the case where no RNA synthesis inhibitor is present, so that a desired treatment can be performed with a smaller proton beam dose. There is a possibility that an effect can be obtained.
<陽子線治療用増感剤>
本発明は、陽子線治療に用いる増感剤(陽子線治療用増感剤)に関する。
本発明の陽子線治療用増感剤は、照射陽子線の複数のブラッグピークの重ね合わせ(SOBP)内で均一物理線量の陽子線を照射して行われる悪性腫瘍の治療において、SOBP内での生物線量(RBE)を調整するために用いられる。有効成分は、RNA合成阻害剤である。陽子線治療およびSOBP内でのRBEの調整については後述する。
<Sensitizer for proton therapy>
The present invention relates to a sensitizer used for proton beam therapy (sensitizer for proton beam therapy).
The sensitizer for proton beam treatment of the present invention is used in the treatment of malignant tumors by irradiating a proton beam with a uniform physical dose within a superposition of a plurality of Bragg peaks of irradiated proton beams (SOBP). Used to adjust biological dose (RBE). The active ingredient is an RNA synthesis inhibitor. Proton therapy and adjustment of RBE within SOBP will be described later.
本発明の陽子線治療用増感剤に有効成分として用いるRNA合成阻害剤は、細胞内においてRNAポリメラーゼによるRNA合成を阻害する作用を有する物質である。細胞内においてRNAポリメラーゼによるRNA合成を阻害する作用を有する物質であれば、本発明におけるRNA合成阻害剤として特に制限なく利用できる。 The RNA synthesis inhibitor used as an active ingredient in the sensitizer for proton beam therapy of the present invention is a substance having an action of inhibiting RNA synthesis by RNA polymerase in cells. Any substance that has an action of inhibiting RNA synthesis by RNA polymerase in a cell can be used without particular limitation as an RNA synthesis inhibitor in the present invention.
RNA合成阻害剤は、例えば、DNA二本鎖切断に対する細胞の相同組換え修復能阻害剤であることができる。相同組換え修復能阻害剤として、例えば、3'-置換ヌクレオシド誘導体が知られている(WO96/18636、WO97/43295、特開2000-154197参照)。本発明では、これらの公報に記載の3'-置換ヌクレオシド誘導体をRNA合成阻害剤として用いることができ、3'-置換ヌクレオシド誘導体は、例えば、下記一般式で表される化合物である。 The RNA synthesis inhibitor can be, for example, a cell homologous recombination repair ability inhibitor against DNA double-strand breaks. As a homologous recombination repair ability inhibitor, for example, 3′-substituted nucleoside derivatives are known (see WO96 / 18636, WO97 / 43295, and JP2000-154197). In the present invention, the 3′-substituted nucleoside derivatives described in these publications can be used as an RNA synthesis inhibitor, and the 3′-substituted nucleoside derivatives are, for example, compounds represented by the following general formula.
3'-置換ヌクレオシド誘導体の具体例としては、
1-(3-C-エチニル-β-D-リボフラノシル)シトシン、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロシトシン、
1-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
3-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロウラシル、
9-(3-C-エチニル-β-D-リボフラノシル)アデニン、
9-(3-C-エチニル-β-D-リボフラノシル)グアニン、
を挙げることができる。
Specific examples of 3′-substituted nucleoside derivatives include
1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorocytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
3- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorouracil,
9- (3-C-ethynyl-β-D-ribofuranosyl) adenine,
9- (3-C-ethynyl-β-D-ribofuranosyl) guanine,
Can be mentioned.
核酸塩基がシトシンである1-(3-C-エチニル-β-D-リボフラノシル)シトシンは、以下の式で示され、以下ECydと略記されることがある。
これら3'-置換ヌクレオシド誘導体の製造方法は、WO96/18636、WO97/43295、特開2000-154197に記載されている。 Methods for producing these 3′-substituted nucleoside derivatives are described in WO96 / 18636, WO97 / 43295, and JP2000-154197.
<陽子線治療方法>
本発明は、RNA合成阻害剤を有効成分とする前記本発明の治療増感剤を用いる陽子線治療方法を包含する。本発明の陽子線治療方法は、前記RNA合成阻害剤を有効成分とする治療増感剤を投与した患部に、SOBP内で均一物理線量の陽子線を照射することを含む。
<Proton therapy>
The present invention includes a proton beam treatment method using the therapeutic sensitizer of the present invention, which comprises an RNA synthesis inhibitor as an active ingredient. The proton beam treatment method of the present invention includes irradiating an affected area to which a therapeutic sensitizer containing the RNA synthesis inhibitor as an active ingredient is administered with a uniform physical dose of proton beam in SOBP.
SOBP内で均一物理線量の陽子線を照射する方法自体は、公知の方法である。本発明において陽子線治療対象の患部は、悪性腫瘍であり、悪性腫瘍としては、例えば、前立腺がん、脳腫瘍、頭頚部がん、食道がん、肺がん、肝臓がん、膵がんなどの固形がんが主な陽子線治療対象である。 The method itself of irradiating a uniform physical dose of proton beams in SOBP is a known method. In the present invention, the affected area of the proton beam treatment target is a malignant tumor. Cancer is the main proton therapy target.
治療増感剤の患部への投与は、例えば、24時間かけてECydを静脈内に投与することにより行うことができる。投与量は、血液、尿及び身体的、神経的検査を定期的に観察し、異常値が検出されないことを持って決定することができ、1.0〜10.0 mg/m2の範囲、好ましくは2.0 mg/m2〜6.85 mg/m2の範囲とすることが適当である。 Administration of the therapeutic sensitizer to the affected area can be performed, for example, by administering ECyd intravenously over 24 hours. Dosage, blood, urine and physical periodically observe the neurological examination, can outliers decides to have none detected, a range of 1.0 to 10.0 mg / m 2, preferably 2.0 mg It is appropriate that the range is from / m 2 to 6.85 mg / m 2 .
SOBPは、患部の位置にもよるが、例えば、表皮から約20〜400mmの範囲、より好ましくは約50〜300mmであることができる。 Depending on the location of the affected area, SOBP can be, for example, in the range of about 20 to 400 mm from the epidermis, more preferably about 50 to 300 mm.
本発明の治療増感剤を用いると図6(ECyd存在下におけるRBE×物理線量の結果)に示すように、SOBP内でのRBEを調整する効果、より具体的にはSOBP内でのRBEをより一定にする効果があると共に、SOBP内の表皮に近い側のRBEを高める効果がある。このSOBP内の表皮に近い側のRBEを高める効果は、治療増感剤の種類、投与量、SOBPの条件等により変化するが、このRBEを高める効果を考慮して、本発明の方法では、陽子線の物理線量を治療増感剤不使用ときの、95%以下、好ましくは90%以下とすることができる。陽子線の物理線量を低減することで、患部周辺に存在する重要臓器に対する陽子線によるダメージを低減することが可能である。 When the therapeutic sensitizer of the present invention is used, as shown in FIG. 6 (result of RBE × physical dose in the presence of ECyd), the effect of adjusting RBE in SOBP, more specifically, RBE in SOBP It has the effect of making it more constant and the effect of increasing RBE on the side close to the epidermis in SOBP. The effect of increasing the RBE on the side close to the epidermis in SOBP varies depending on the type of therapeutic sensitizer, the dosage, the condition of SOBP, etc., but considering the effect of increasing this RBE, in the method of the present invention, The physical dose of proton beam can be 95% or less, preferably 90% or less when no therapeutic sensitizer is used. By reducing the physical dose of the proton beam, it is possible to reduce the damage caused by the proton beam to the important organ existing around the affected area.
以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.
<細胞株>
細胞にはチャイニーズハムスター肺線維芽細胞(V79)を使用した。V79は、陽子線の生物学的効果を評価するために、これまでに多くの研究で使用されている。細胞は、10%のfetal bovine serum(BioWest, Nuaille, France)が添加されたα-MEM(Life Technologies, Carlsbad, CA)培地を用いて、37℃、5% CO2の条件で培養された。
<Cell line>
Chinese hamster lung fibroblasts (V79) were used as the cells. V79 has been used in many studies so far to evaluate the biological effects of proton beams. The cells were cultured in an α-MEM (Life Technologies, Carlsbad, Calif.) Medium supplemented with 10% fetal bovine serum (BioWest, Nuaille, France) at 37 ° C. and 5% CO 2 .
<照射>
照射の6時間前に、1.6×106個の細胞をchamber slide flask(Lab-TekTM SlideFlask 170920, Thermo Scientific/Nunc, Penfield, NY)に播種した。照射の1時間前に、フラスコ内を培地、または0.4μMのECydが含まれた培地で満たした。
<Irradiation>
Six hours before irradiation, 1.6 × 10 6 cells were seeded in a chamber slide flask (Lab-Tek ™ Slide Flask 170920, Thermo Scientific / Nunc, Penfield, NY). One hour before irradiation, the flask was filled with medium or medium containing 0.4 μM ECyd.
陽子線照射は、北海道大学陽子線治療センターのProBeat RTを用いて行われた。Spread out Bragg peak(SOBP)幅は6cmとし、照射野は10×10cm2とした。照射点は、(1)位置A:入射点から5mm深、(2)位置B:SOBPの線量と比較してproximal側の95%の位置、(3)位置C:SOBP中心、(4)位置D:SOBPの線量と比較してdistal側の95%の位置の4箇所とした(図4参照)。 Proton irradiation was performed using ProBeat RT of the Hokkaido University Proton Therapy Center. The spread out Bragg peak (SOBP) width was 6 cm, and the irradiation field was 10 × 10 cm 2 . Irradiation point is (1) Position A: 5mm deep from the incident point, (2) Position B: 95% position on the proximal side compared to SOBP dose, (3) Position C: SOBP center, (4) Position D: 4 locations at 95% position on the distal side compared to the dose of SOBP (see Fig. 4).
コロニー形成法
照射後、即座に細胞をトリプシン処理により、スライドフラスコから回収した。細胞数をカウントし、6cmのディッシュに100個程度のコロニーを形成するように適当数播種した。7日間のインキュベーション後、コロニー(50個以上の細胞群)がカウントされた。
Colony formation method Immediately after irradiation, cells were collected from the slide flask by trypsinization. The number of cells was counted, and an appropriate number was seeded to form about 100 colonies on a 6 cm dish. After 7 days of incubation, colonies (more than 50 cell groups) were counted.
各線量での生存率は、照射されなかったコントロールの集落形成率(plating efficiency)を用いて計算され、各物理線量上にプロットされた。コロニー形成法から得られた生存曲線を図5に示す。生存曲線 SF = EXP(-αD-βD2)(SFは生存率であり、Dは、物理線量)は線形二次(LQ)モデルに適合された。D10(それぞれ、10%まで生存率を減少させるために必要な線量)において、relative biological effectiveness(RBE)とsensitizer effective ratio(SER)の値は評価された。各実験は3回ずつ行われた。SERを表1に示し、RBEを表2に示す。表1に示すSERの結果から分かるように、C点ではD点に比べ顕著な陽子線増加効果が得られた。表2に示すRBEの結果から分かるように、C点でのRBEは顕著な上昇を示したのに対して、D点でのRBEはほとんど変化は無かった。 Survival at each dose was calculated using the control's plating efficiency that was not irradiated and plotted on each physical dose. The survival curve obtained from the colony formation method is shown in FIG. The survival curve SF = EXP (-αD-βD 2 ) (SF is the survival rate, D is the physical dose) was fitted to a linear quadratic (LQ) model. The relative biological effectiveness (RBE) and sensitizer effective ratio (SER) values were evaluated at D 10 (dose required to reduce survival to 10%, respectively). Each experiment was performed in triplicate. SER is shown in Table 1, and RBE is shown in Table 2. As can be seen from the SER results shown in Table 1, a remarkable increase in proton beam was obtained at point C compared to point D. As can be seen from the RBE results shown in Table 2, the RBE at the C point showed a significant increase, while the RBE at the D point showed little change.
基準となるX線でのD10は8.91Gy
ECyd併用による線量分布の改善の状況を図6に示す。
ECydの効果により標的内での生物線量(RBE×物理線量)が平坦となり、均一な治療効果が期待される。陽子線の物理的線量分布の特徴は維持されたまま、SOBP中心におけるプラトー位置に対する線量比が大きくなるので、より標的に対しての線量を集中させる事が可能であると考えられる。
Fig. 6 shows the improvement of dose distribution by using ECyd together.
Due to the effect of ECyd, the biological dose (RBE x physical dose) in the target becomes flat, and a uniform treatment effect is expected. The dose ratio to the plateau position at the center of the SOBP increases while maintaining the characteristics of the physical dose distribution of the proton beam, so it is considered possible to concentrate the dose on the target.
ECydの併用によるSOBP中心におけるプラトー位置に対する線量比の向上の状況を図7に示す。前記線量比は改善し、腫瘍に対しての高線量を集中させながら、腫瘍の手前や奥側の正常組織を守る事が可能である。 Fig. 7 shows the improvement of the dose ratio with respect to the plateau position in the SOBP center by using ECyd together. The dose ratio is improved, and it is possible to protect normal tissues in front of and behind the tumor while concentrating a high dose on the tumor.
本発明は、陽子線治療に関連する分野に有用である。 The present invention is useful in fields related to proton therapy.
Claims (14)
1-(3-C-エチニル-β-D-リボフラノシル)シトシン、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロシトシン、
1-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
3-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロウラシル、
9-(3-C-エチニル-β-D-リボフラノシル)アデニン、
9-(3-C-エチニル-β-D-リボフラノシル)グアニン。 The sensitizer according to claim 3, wherein the 3'-substituted nucleoside derivative is at least one compound selected from the group consisting of the following compounds.
1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorocytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
3- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorouracil,
9- (3-C-ethynyl-β-D-ribofuranosyl) adenine,
9- (3-C-ethynyl-β-D-ribofuranosyl) guanine.
1-(3-C-エチニル-β-D-リボフラノシル)シトシン、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロシトシン、
1-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
3-(3-C-エチニル-β-D-リボフラノシル)ウラシル、
1-(3-C-エチニル-β-D-リボフラノシル)-5-フルオロウラシル、
9-(3-C-エチニル-β-D-リボフラノシル)アデニン、
9-(3-C-エチニル-β-D-リボフラノシル)グアニン。 The method according to claim 8, wherein the 3'-substituted nucleoside derivative is at least one compound selected from the group consisting of the following compounds.
1- (3-C-ethynyl-β-D-ribofuranosyl) cytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorocytosine,
1- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
3- (3-C-ethynyl-β-D-ribofuranosyl) uracil,
1- (3-C-ethynyl-β-D-ribofuranosyl) -5-fluorouracil,
9- (3-C-ethynyl-β-D-ribofuranosyl) adenine,
9- (3-C-ethynyl-β-D-ribofuranosyl) guanine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015104243A JP2016216404A (en) | 2015-05-22 | 2015-05-22 | Sensitizer for proton beam therapy and method of proton beam therapy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015104243A JP2016216404A (en) | 2015-05-22 | 2015-05-22 | Sensitizer for proton beam therapy and method of proton beam therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016216404A true JP2016216404A (en) | 2016-12-22 |
Family
ID=57580285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015104243A Pending JP2016216404A (en) | 2015-05-22 | 2015-05-22 | Sensitizer for proton beam therapy and method of proton beam therapy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016216404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023068325A1 (en) * | 2021-10-20 | 2023-04-27 |
-
2015
- 2015-05-22 JP JP2015104243A patent/JP2016216404A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023068325A1 (en) * | 2021-10-20 | 2023-04-27 | ||
WO2023068325A1 (en) * | 2021-10-20 | 2023-04-27 | 国立研究開発法人産業技術総合研究所 | Anticancer agent, prodrug of anticancer agent, method for killing cancer cells in vitro, cancer therapy method and cancer therapy device |
JP7455316B2 (en) | 2021-10-20 | 2024-03-26 | 国立研究開発法人産業技術総合研究所 | Anticancer drugs, prodrugs of anticancer drugs, methods for killing cancer cells outside the body, cancer treatment methods, and cancer treatment devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays | |
Corvò et al. | Helical tomotherapy targeting total bone marrow after total body irradiation for patients with relapsed acute leukemia undergoing an allogeneic stem cell transplant | |
Wieland et al. | IMRT for postoperative treatment of gastric cancer: covering large target volumes in the upper abdomen: a comparison of a step-and-shoot and an arc therapy approach | |
CA1176168A (en) | Enhancer of anti-tumor effect | |
EP3424561B1 (en) | Boron neutron capture treating system and alpha-amino acid-like boron trifluoride compounds for use in treating tumors | |
JP6321673B2 (en) | Radiosensitizer compounds for use in combination with radiation | |
JP2008506675A (en) | Porphyrin derivatives and their use in photon activation therapy | |
D’Andrea et al. | The systemic immunostimulatory effects of radiation therapy producing overall tumor control through the abscopal effect | |
CN107224675B (en) | Boron neutron capture therapy system | |
AU2007264665A1 (en) | Potentiator of radiation therapy | |
JP2016216404A (en) | Sensitizer for proton beam therapy and method of proton beam therapy | |
JPS6113685B2 (en) | ||
Sugie et al. | Radiobiologic effect of intermittent radiation exposure in murine tumors | |
JP2021175743A (en) | Glutamine-High Z Element Compounds for Treating Cancer | |
JP6621158B1 (en) | Radiosensitizer | |
Laster et al. | Keeping those telomeres short! an innovative intratumoral long-term drug delivery system | |
TWI401085B (en) | Contains cytosine derivatives for continuous intravenous administration with anti-tumor agents | |
JP2006520353A5 (en) | ||
Denekamp et al. | The Response of a Transplantable Tumor to Fractionated Irradiation: III. Fast Neutrons Plus the Radiosensitizer Ro-07-0582 | |
Roentgen | Biological effect of radiotherapy on cancer cells | |
JP2020143040A (en) | Radiosensitizer | |
Meyer et al. | Particle radiation therapy for gastrointestinal malignancies | |
ur Rehman et al. | Dosimetric Comparison of 3DCRT, IMRT and VMAT for Spine Radiotherapy based on Secondary Cancer Risk | |
Pignol et al. | Boron neutron capture enhancement of fast neutron for nonremoved glioblastomas: rationale of a clinical trial | |
Kim et al. | FLASH radiotherapy: bridging revolutionary mechanisms and clinical frontiers in cancer treatment– |