JP7452172B2 - Method for manufacturing hot forged materials - Google Patents
Method for manufacturing hot forged materials Download PDFInfo
- Publication number
- JP7452172B2 JP7452172B2 JP2020055805A JP2020055805A JP7452172B2 JP 7452172 B2 JP7452172 B2 JP 7452172B2 JP 2020055805 A JP2020055805 A JP 2020055805A JP 2020055805 A JP2020055805 A JP 2020055805A JP 7452172 B2 JP7452172 B2 JP 7452172B2
- Authority
- JP
- Japan
- Prior art keywords
- hot forging
- hot
- mold
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 164
- 238000000034 method Methods 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000005242 forging Methods 0.000 claims description 220
- 229910045601 alloy Inorganic materials 0.000 claims description 88
- 239000000956 alloy Substances 0.000 claims description 88
- 238000010438 heat treatment Methods 0.000 claims description 85
- 229910052735 hafnium Inorganic materials 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 15
- 229910052726 zirconium Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 11
- 239000000314 lubricant Substances 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 239000010687 lubricating oil Substances 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 35
- 230000007547 defect Effects 0.000 description 31
- 230000003647 oxidation Effects 0.000 description 19
- 238000007254 oxidation reaction Methods 0.000 description 19
- 238000007792 addition Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 238000010275 isothermal forging Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 230000005496 eutectics Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001050 lubricating effect Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000006082 mold release agent Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- -1 oxides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005324 grain boundary diffusion Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Forging (AREA)
Description
本発明は、加熱した金型を用いて行われる熱間鍛造材の製造方法に関する。 The present invention relates to a method for manufacturing a hot forged material using a heated die.
耐熱合金の鍛造において、鍛造用素材は変形抵抗を低くするため所定の温度に加熱される。耐熱合金は高温でも高い強度を有するため、その鍛造に用いる熱間鍛造用金型には高温での高い機械的強度が必要とされる。また、熱間鍛造において熱間鍛造用金型の温度が室温と同程度である場合、抜熱により鍛造用素材の加工性が低下するため、例えばAlloy718やTi合金等の難加工性材の鍛造は、素材とともに熱間鍛造用金型を加熱して行われる。従って、熱間鍛造用金型は、鍛造用素材が加熱される温度と同じかもしくはそれに近い高温で、高い機械的強度を有したものでなければならない。この要求を満たす熱間鍛造用金型として、大気中での金型温度1000℃以上の熱間鍛造に使用できるNi基超耐熱合金が提案されている(例えば、特許文献1~3参照)。
難加工性材の熱間鍛造には、鍛造用素材と近い温度に加熱した金型を用いて、例えば0.01~0.1/sec程度のひずみ速度で鍛造するホットダイ鍛造や、鍛造用素材と等温に加熱した金型を用いることでホットダイ鍛造より遅い、例えば0.001/sec以下のひずみ速度での鍛造が可能な恒温鍛造が適用される。特許文献1乃至3で提案されたNi基超耐熱合金製の金型を用いて大気中で行う熱間鍛造として、恒温鍛造の実施例が非特許文献1に、ホットダイ鍛造の実施例が特許文献4に示されている。熱間鍛造材を最終形状に近い形状とすることで歩留り向上と加工費低減が可能となるため、鍛造用素材費の点では、熱間鍛造材に金型による抜熱に伴う不均一変形部が存在しない恒温鍛造が有利である。一方、金型の温度が低い程金型の高温強度が高くなり型寿命が向上するため、金型費の点では、金型温度が比較的低いホットダイ鍛造が有利である。熱間鍛造材の組織に影響を及ぼすひずみ速度等の鍛造条件が許容範囲であるならば、ホットダイ鍛造と恒温鍛造との選択では、これらの費用に設備費や鍛造工程数等に依存する作業費などを加えた製造費が低い方が選ばれる。
In forging heat-resistant alloys, the forging material is heated to a predetermined temperature in order to reduce deformation resistance. Since heat-resistant alloys have high strength even at high temperatures, hot forging dies used for forging them are required to have high mechanical strength at high temperatures. In addition, in hot forging, if the temperature of the hot forging die is about the same as room temperature, the workability of the forging material decreases due to heat removal, so for example, forging of difficult-to-work materials such as Alloy 718 and Ti alloy This is done by heating a hot forging die together with the raw material. Therefore, a hot forging die must have high mechanical strength at a high temperature that is the same as or close to the temperature at which the forging material is heated. As a hot forging die that satisfies this requirement, a Ni-based super heat-resistant alloy that can be used for hot forging in the atmosphere at a die temperature of 1000° C. or higher has been proposed (see, for example, Patent Documents 1 to 3).
Hot forging of difficult-to-process materials includes hot die forging, which uses a mold heated to a temperature close to that of the forging material, and forges at a strain rate of, for example, 0.01 to 0.1/sec, and forging materials. By using a mold heated isothermally, isothermal forging is applied, which allows forging at a strain rate slower than hot die forging, for example, 0.001/sec or less. As for hot forging performed in the atmosphere using a die made of Ni-based super heat-resistant alloy proposed in Patent Documents 1 to 3, an example of isothermal forging is shown in Non-Patent Document 1, and an example of hot die forging is shown in Patent Document 1. 4. By making the hot forged material into a shape close to the final shape, it is possible to improve the yield and reduce processing costs.In terms of forging material costs, the hot forged material has uneven deformation due to heat removal by the die. Isothermal forging is advantageous because it does not exist. On the other hand, the lower the temperature of the mold, the higher the high-temperature strength of the mold and the longer the life of the mold. Therefore, hot die forging, which has a relatively low mold temperature, is advantageous in terms of mold cost. If the forging conditions such as strain rate that affect the structure of the hot forged material are within the allowable range, when choosing between hot die forging and isothermal forging, there are operating costs that depend on equipment costs and the number of forging processes in addition to these costs. The one with the lowest manufacturing cost including the following will be selected.
特許文献2の実施例において従来合金として示されているMar-M200等のNi基超耐熱合金を金型に用いた場合、実機での難加工性材のホットダイ鍛造における一般的な金型の上限温度は金型寿命の点から900℃程度である。難加工性材の一般的な加熱温度は1000~1150℃であるため、金型温度は熱間鍛造用素材より100~250℃低い。熱間鍛造材を最終形状に近い形状とするためには金型温度と熱間鍛造用素材の温度差は小さい方が有利であり、特許文献1~3で提案されているような、高温強度に優れ、金型耐用寿命の点で有利なNi基超耐熱合金をホットダイ鍛造の金型に適用することで、熱間鍛造用素材との温度差を小さくすることができる。金型温度を向上させることによる効果を十分に得るために、この場合の金型温度は950℃以上である必要がある。
加熱炉内で加熱した熱間鍛造用素材の表面付近の温度は搬送中に低下する。熱間鍛造用素材と金型加熱温度の差が小さい場合、搬送中に表面付近が温度低下した熱間鍛造用素材を下型に載置すると、熱間鍛造用素材の表面付近の温度は金型の加熱温度未満となる。この状態で熱間鍛造すると、熱間鍛造中に上型と下型(一対の上型と下型のことを「金型」と記す)と接触する熱間鍛造用素材の上下底面付近では金型によって加熱されることで温度が複熱する一方、金型と接触していない熱間鍛造用素材の側面は温度が低下したままとなる。このような温度むらのある状態で熱間鍛造を行うと、変形抵抗の比較的低い上下底面付近が優先的に変形することによる、熱間鍛造材の側面におけるダブルバレリング状の鍛造欠陥の生じる可能性が高くなる。なお、本発明で言う上下底面とは、熱間鍛造用素材の上型と接する面、及び下型と接する面のことを言う。また、本発明で言うダブルバレリング状の鍛造欠陥とは、円柱状の鍛造用素材に対する一般的な据込み鍛造後の鍛造材の側面において、熱間鍛造用素材が外周方向に曲面状に膨出することで生じるバレリング部が上下底面付近に生じることでできる、鍛造材の側面における楕円状の凹みのことを言う。図1に、熱間鍛造工程も含め、本発明で言うダブルバレリング状の鍛造欠陥を図示する。
一般的には、この鍛造欠陥が生じると、熱間鍛造材における最終形状以外の切り捨て部分の体積が増加するため歩留まりが低下する。
When a Ni-based super heat-resistant alloy such as Mar-M200, which is shown as a conventional alloy in the example of Patent Document 2, is used in a mold, the upper limit of a general mold in hot die forging of difficult-to-process materials on an actual machine The temperature is about 900°C from the viewpoint of mold life. The general heating temperature for difficult-to-work materials is 1000 to 1150°C, so the mold temperature is 100 to 250°C lower than the hot forging material. In order to make the hot-forged material into a shape close to the final shape, it is advantageous to have a smaller temperature difference between the mold temperature and the hot-forged material. By applying a Ni-based super heat-resistant alloy, which has excellent properties and is advantageous in terms of mold service life, to a mold for hot die forging, the temperature difference with the hot forging material can be reduced. In order to fully obtain the effect of increasing the mold temperature, the mold temperature in this case needs to be 950° C. or higher.
The temperature near the surface of the hot forging material heated in the heating furnace decreases during transportation. If the difference between the heating temperature of the hot forging material and the mold heating temperature is small, if the hot forging material whose temperature near the surface has decreased during transportation is placed on the lower die, the temperature near the surface of the hot forging material will be lower than that of the metal. The temperature will be lower than the heating temperature of the mold. If hot forging is performed in this state, metal will be generated near the top and bottom surfaces of the hot forging material that come into contact with the upper and lower dies (a pair of upper and lower dies are referred to as "molds") during hot forging. While the temperature of the hot forging material increases due to heating by the mold, the temperature of the side surface of the hot forging material that is not in contact with the mold remains low. When hot forging is performed under such temperature unevenness, the areas near the top and bottom surfaces, where deformation resistance is relatively low, are preferentially deformed, resulting in double barreling-like forging defects on the sides of the hot forged material. More likely. Note that the upper and lower bottom surfaces in the present invention refer to the surfaces of the hot forging material that are in contact with the upper mold and the surfaces that are in contact with the lower mold. In addition, the double barreling forging defect referred to in the present invention refers to the hot forging material expanding in a curved shape in the outer circumferential direction on the side surface of the forging material after general upsetting forging of a cylindrical forging material. It refers to an elliptical depression on the side surface of a forged material, which is created by the barreling part that occurs near the top and bottom surfaces of the forged material. FIG. 1 illustrates the double barreling-like forging defect referred to in the present invention, including the hot forging process.
Generally, when this forging defect occurs, the volume of the cut-off portion other than the final shape in the hot forged material increases, resulting in a decrease in yield.
先述した課題は特に大型の鍛造材を得る場合に顕著になる傾向がある。そのため、高温強度に優れた、金型耐用寿命で有利なNi基超耐熱合金を金型に適用したホットダイ鍛造では、金型材の変更とともに、ダブルバレリング状の鍛造欠陥の生じない製造方法を適用する必要が有る。
そのための第1の方法として、熱間鍛造用素材の表面温度の搬送中の低下は搬送時間の短縮により抑制可能である。しかしながら、金型温度900℃以下の一般的なホットダイ鍛造でも搬送時間の短縮は図られている。そのため、搬送時間の短縮以外の方法を検討する方が効果的である。
特許文献4には、鍛造用素材を鍛造温度以上の融点を有する金属材で被覆して鍛造するホットダイ鍛造が示されている。この方法を用いれば金型温度950℃以上でもダブルバレリング状の鍛造欠陥が生じないホットダイ鍛造を実施できる可能性がある。しかし、この特許文献4の方法では鍛造前の熱間鍛造用素材への被覆と鍛造後の被覆除去工程が必要となり、生産性が低下する。
金型温度が950℃以上のホットダイ鍛造において、生産性の低下を招かずにダブルバレリング状の鍛造欠陥の発生を防止する熱間鍛造材の製造方法の提案は見当たらないのが現実である。
本発明の目的は、ダブルバレリング状の鍛造欠陥の発生を防止可能な熱間鍛造材の製造方法を提供することである。
The above-mentioned problems tend to become particularly noticeable when large-sized forged materials are obtained. Therefore, in hot die forging, which uses a Ni-based super heat-resistant alloy for the mold, which has excellent high-temperature strength and is advantageous in terms of mold life, in addition to changing the mold material, a manufacturing method that does not cause double barreling-like forging defects is applied. There is a need to do so.
As a first method for this purpose, a decrease in the surface temperature of the hot forging material during transportation can be suppressed by shortening the transportation time. However, even in general hot die forging where the mold temperature is 900° C. or lower, the conveyance time can be shortened. Therefore, it is more effective to consider methods other than shortening the transportation time.
Patent Document 4 discloses hot die forging in which a forging material is coated with a metal material having a melting point higher than the forging temperature and then forged. If this method is used, it is possible to carry out hot die forging without causing double barreling defects even when the die temperature is 950° C. or higher. However, the method of Patent Document 4 requires coating the hot forging material before forging and removing the coating after forging, which reduces productivity.
The reality is that in hot die forging where the mold temperature is 950° C. or higher, there has been no proposal for a method for producing hot forged materials that prevents double barreling defects from occurring without reducing productivity.
An object of the present invention is to provide a method for manufacturing a hot forged material that can prevent double barreling defects from occurring.
本発明者は、金型温度が950℃以上であるホットダイ鍛造におけるダブルバレリング状の鍛造欠陥の発生を検討し、ダブルバレリング状の鍛造欠陥を抑制できる温度条件を見出し本発明に到達した。
すなわち本発明は、上型と下型の両方がNi基超耐熱合金製であり、熱間鍛造用素材を前記下型と前記上型とにより大気中で押圧することにより熱間鍛造材とする熱間鍛造工程を含む熱間鍛造材の製造方法において、前記熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する素材加熱工程と、前記上型と前記下型を950~1075℃の範囲内の加熱温度に加熱する金型加熱工程と、マニピュレータにより前記熱間鍛造用素材を前記加熱炉内から前記下型上まで搬送する搬送工程とを含み、且つ、前記熱間鍛造用素材の加熱温度から前記上型と前記下型の加熱温度を引いた値が75℃以上であり、且つ、前記熱間鍛造工程での熱間鍛造中の熱間鍛造用素材のひずみ速度が常に0.001/sec以上である熱間鍛造材の製造方法である。
また、前記Ni基超耐熱合金の組成は、質量%で、W:7.0~16.0%、Mo:1.0~11.0%、Al:5.0~7.5%、選択元素として、Cr:7.5%以下、Ta:7.0%以下、Ti:7.0%以下、Nb:7.0%以下、Co:15.0%以下、C:0.25%以下、B:0.05%以下、N:0.015%以下、Zr:0.8%以下、Hf:0.8%以下、希土類元素:0.2%以下、Y:0.2%以下、Mg:0.03%以下、Ca:0.03%以下、残部はNi及び不可避的不純物であることが好ましい。
また、前記熱間鍛造用素材が前記加熱炉内で前記加熱温度に加熱される前に、前記熱間鍛造用素材の表面に液体潤滑剤の塗布による潤滑被覆を設けることが好ましい。
The present inventor investigated the occurrence of double barreling-like forging defects in hot die forging where the mold temperature is 950° C. or higher, found temperature conditions that can suppress double-barreling-like forging defects, and arrived at the present invention.
That is, in the present invention, both the upper mold and the lower mold are made of a Ni-based super heat-resistant alloy, and the hot forging material is pressed in the atmosphere by the lower mold and the upper mold to form a hot forged material. In the method for producing a hot forged material including a hot forging step, a material heating step of heating the hot forging material to a heating temperature within a range of 1025 to 1150° C. in a heating furnace; A mold heating step of heating the mold to a heating temperature within a range of 950 to 1075° C., and a conveyance step of conveying the hot forging material from the inside of the heating furnace to above the lower mold by a manipulator, and A value obtained by subtracting the heating temperatures of the upper mold and the lower mold from the heating temperature of the hot forging material is 75° C. or higher, and the hot forging material is used during hot forging in the hot forging step. This is a method for producing a hot forged material in which the strain rate is always 0.001/sec or more.
Further, the composition of the Ni-based superheat-resistant alloy is, in mass%, W: 7.0 to 16.0%, Mo: 1.0 to 11.0%, Al: 5.0 to 7.5%, selected Elements: Cr: 7.5% or less, Ta: 7.0% or less, Ti: 7.0% or less, Nb: 7.0% or less, Co: 15.0% or less, C: 0.25% or less , B: 0.05% or less, N: 0.015% or less, Zr: 0.8% or less, Hf: 0.8% or less, rare earth elements: 0.2% or less, Y: 0.2% or less, It is preferable that Mg: 0.03% or less, Ca: 0.03% or less, and the balance is Ni and inevitable impurities.
Further, it is preferable that a lubrication coating is provided on the surface of the hot forging material by applying a liquid lubricant before the hot forging material is heated to the heating temperature in the heating furnace.
本発明によればダブルバレリング状の鍛造欠陥の発生を防止することができる。 According to the present invention, it is possible to prevent double barreling-like forging defects from occurring.
以下に、本発明の実施形態を詳しく説明する。
<熱間鍛造用素材>
最初に、本発明の熱間鍛造材の製造方法で用いる熱間鍛造用素材(以下、素材ともいう)について説明する。
本発明は難加工性材からなる熱間鍛造用素材を熱間鍛造する熱間鍛造材の製造方法に好適である。難加工性材としてはNiを主成分とするNi基超耐熱合金やTiを主成分とするTi合金等が代表的である。なお、本発明で言う主成分とは、質量%で最も含有量の高い元素のことを指す。熱間鍛造用素材の形状と内部組織は特に限定しないが、一般的に熱間鍛造用素材として好適な形状や内部組織であればよい。なお、本発明で言う「Ni基超耐熱合金」とは、超合金、耐熱超合金、superalloyとも称される600℃以上の高温領域で使用されるNi基の合金であって、γ’などの析出相によって強化される合金を言う。
本発明における熱間鍛造用素材の形状は、ダブルバレリング状の鍛造欠陥の発生を防止する点から、熱間鍛造用素材を金型に載置した時の素材の高さを素材の最大幅(直径)で割った値が3.0以下であることが好ましく、2.8以下であることがより好ましく、2.5以下であることが特に好ましい。この値が3.0を超えると、ダブルバレリング状の鍛造欠陥の他に、座屈などの別の鍛造欠陥の生じる可能性が高くなるからである。
また、熱間鍛造用素材の表面は、スケールが形成された表面状態でも良いが、潤滑剤を均一に塗布するため、機械加工後に脱脂洗浄した金属面であることが好ましい。
Embodiments of the present invention will be described in detail below.
<Material for hot forging>
First, a hot forging material (hereinafter also referred to as raw material) used in the method for producing a hot forging material of the present invention will be described.
INDUSTRIAL APPLICATION This invention is suitable for the manufacturing method of the hot forging material which hot forges the raw material for hot forging which consists of a difficult-to-process material. Typical examples of difficult-to-process materials include Ni-based super heat-resistant alloys containing Ni as a main component and Ti alloys containing Ti as a main component. Note that the term "main component" as used in the present invention refers to the element having the highest content in mass %. The shape and internal structure of the material for hot forging are not particularly limited, but any shape or internal structure that is generally suitable for a material for hot forging may be used. In addition, the "Ni-based super heat-resistant alloy" as used in the present invention is a Ni-based alloy, also called superalloy, heat-resistant superalloy, or superalloy, which is used in a high temperature range of 600°C or higher, and includes γ', etc. Refers to an alloy that is strengthened by precipitated phases.
In order to prevent the occurrence of double barreling-like forging defects, the shape of the hot forging material in the present invention is determined by setting the height of the material when it is placed in the mold to the maximum width of the material. The value divided by (diameter) is preferably 3.0 or less, more preferably 2.8 or less, and particularly preferably 2.5 or less. This is because if this value exceeds 3.0, there is a high possibility that other forging defects such as buckling will occur in addition to double barreling defects.
Further, the surface of the material for hot forging may have a surface state in which scale is formed, but in order to uniformly apply the lubricant, it is preferably a metal surface that has been degreased and cleaned after machining.
また、熱間鍛造時においては、熱間鍛造用素材表面と金型が高温且つ高い応力負荷状態で接触するため、成形荷重の低減、金型と鍛造用素材間の拡散結合による焼き付き防止、金型の摩耗の抑制等のため潤滑剤ないしは離型剤が用いられる。本発明のような、大気中での金型温度950℃以上での熱間鍛造では、潤滑剤ないしは離型剤として、グラファイト系の潤滑剤、窒化硼素系の離型剤、ガラス系の潤滑剤兼離型剤等が使用される。
本発明では、成形荷重低減の点と塗布作業性の点から、水などの分散剤にガラスフリットを分散させたガラス系液体潤滑剤を使用することが好ましい。ガラスフリットは、成形荷重低減の点で有利な粘度を有するホウケイ酸ガラスであることが好ましい。また、熱間鍛造用素材と金型における酸化腐食を助長する化学反応を抑制する点から、この液体潤滑剤のガラスのアルカリ成分含有量は低い方が好ましい。
前述したガラス系液体潤滑剤は、例えば、熱間鍛造用素材全面へのスプレー、刷毛塗り、浸漬による塗布や、金型表面へのスプレー、刷毛塗りなどにより、熱間鍛造用素材の表面に付与され、熱間鍛造用素材と金型の間に供給される。このうち、潤滑被膜の厚さの制御の点からスプレーによる塗布が塗布方法として最も好ましい。潤滑剤を塗布する前の熱間鍛造用素材は、液体潤滑剤に含まれる水等の分散剤の揮発を促進するため、塗布作業の前に室温以上の温度に加熱されていても良い。
塗布によるガラス系潤滑被膜の厚さは、熱間鍛造中における連続的な潤滑膜の形成のため100μm以上が好ましい。100μm未満では潤滑膜が部分的に破損し、熱間鍛造用素材と金型の直接接触による潤滑性の悪化に加え、金型の摩耗や焼き付きが生じやすくなるおそれがある。また、熱間鍛造用素材の搬送中の温度低下を抑制する点では、潤滑被膜の厚さは厚い方が好ましい。しかし、潤滑被膜の厚さが厚すぎると、複雑な形状の型彫り面を有する金型を用いた鍛造の場合、ガラスの型彫り面への堆積による鍛造品の寸法公差外れが生じるおそれがある。そのため、潤滑被膜の厚さは500μm以下であることが好ましい。
In addition, during hot forging, the surface of the hot forging material and the die come into contact with each other at high temperatures and high stress loads. A lubricant or mold release agent is used to suppress mold wear. In hot forging in the air at a mold temperature of 950°C or higher, as in the present invention, graphite-based lubricants, boron nitride-based mold release agents, glass-based lubricants are used as lubricants or mold release agents. A mold release agent is also used.
In the present invention, it is preferable to use a glass-based liquid lubricant in which glass frit is dispersed in a dispersant such as water, from the viewpoint of reducing molding load and coating workability. The glass frit is preferably borosilicate glass, which has an advantageous viscosity in terms of reducing molding load. Further, from the viewpoint of suppressing chemical reactions that promote oxidative corrosion between the hot forging material and the mold, it is preferable that the alkali component content of the glass in this liquid lubricant be low.
The glass-based liquid lubricant mentioned above can be applied to the surface of the hot forging material by, for example, spraying, brushing, or dipping the entire surface of the hot forging material, or spraying or brushing the mold surface. and supplied between the hot forging material and the die. Among these, spray coating is the most preferred coating method from the viewpoint of controlling the thickness of the lubricating film. The hot forging material before the lubricant is applied may be heated to a temperature higher than room temperature before the application operation in order to promote volatilization of a dispersant such as water contained in the liquid lubricant.
The thickness of the glass-based lubricant film formed by coating is preferably 100 μm or more in order to form a continuous lubricant film during hot forging. If the thickness is less than 100 μm, the lubricating film may be partially damaged, and in addition to deterioration of lubricity due to direct contact between the hot forging material and the die, there is a risk that the die may be more likely to wear out or seize. Further, from the viewpoint of suppressing a temperature drop during transportation of the material for hot forging, it is preferable that the lubricating film be thick. However, if the lubricating film is too thick, when forging is performed using a mold with a complexly shaped die surface, there is a risk that the forged product will fall out of dimensional tolerance due to glass deposits on the die surface. . Therefore, the thickness of the lubricating film is preferably 500 μm or less.
<金型>
次に本発明で用いる金型について説明する。本発明でいう「金型」とは、上下一対の上型と下型とを言う。
本発明で用いる金型の材質は、高温強度に優れ金型耐用寿命の点で有利なNi基超耐熱合金とする。高温強度に優れた金型の材質として、Ni基超耐熱合金の他にもファインセラミックスやMo基合金をあげることができる。しかし、ファインセラミックス製の金型は、そのコストが高額である。また、Mo基合金製の金型であると、不活性雰囲気で使用しなければならないため専用の大規模かつ特殊な設備が必要となる。そのため、これらはNi基超耐熱合金に比べ製造コストの点で不利である。前記の理由から本発明で用いる金型の材質をNi基超耐熱合金とする。
前記高温強度に優れたNi基超耐熱合金の中でも、下記で説明する合金組成を有するNi基超耐熱合金は高温圧縮強度が優れているだけなく、高温の大気雰囲気中においても熱間鍛造用の金型として十分に使用できるだけの強度を有する合金である。
以下に、好ましい熱間鍛造用金型用のNi基超耐熱合金の組成について説明する。なお、化学組成の単位は質量%である。好ましいNi基超耐熱合金の組成は、質量%で、W:7.0~16.0%、Mo:1.0~11.0%、Al:5.0~7.5%、選択元素として、Cr:7.5%以下、Ta:7.0%以下、Ti:7.0%以下、Nb:7.0%以下、Co:15.0%以下、C:0.25%以下、B:0.05%以下、N:0.01%以下、Zr:0.8%以下、Hf:0.8%以下、希土類元素:0.2%以下、Y:0.2%以下、Mg:0.03%以下、Ca:0.03%以下、残部はNi及び不可避的不純物である。
<Mold>
Next, the mold used in the present invention will be explained. The term "mold" as used in the present invention refers to a pair of upper and lower molds.
The material of the mold used in the present invention is a Ni-based super heat-resistant alloy that has excellent high-temperature strength and is advantageous in terms of mold life. In addition to Ni-based super heat-resistant alloys, fine ceramics and Mo-based alloys can be used as mold materials with excellent high-temperature strength. However, molds made of fine ceramics are expensive. Furthermore, if the mold is made of a Mo-based alloy, it must be used in an inert atmosphere, which requires dedicated large-scale and special equipment. Therefore, these are disadvantageous in terms of manufacturing cost compared to Ni-based super heat-resistant alloys. For the above reasons, the material of the mold used in the present invention is a Ni-based super heat-resistant alloy.
Among the Ni-based super heat-resistant alloys that have excellent high-temperature strength, the Ni-based super heat-resistant alloys having the alloy composition described below not only have excellent high-temperature compressive strength but also are suitable for hot forging even in high-temperature atmospheric atmospheres. This alloy has sufficient strength to be used as a mold.
The composition of a preferable Ni-based super heat-resistant alloy for hot forging molds will be explained below. Note that the unit of chemical composition is mass %. The preferred composition of the Ni-based superheat-resistant alloy is, in mass%, W: 7.0 to 16.0%, Mo: 1.0 to 11.0%, Al: 5.0 to 7.5%, and as selected elements. , Cr: 7.5% or less, Ta: 7.0% or less, Ti: 7.0% or less, Nb: 7.0% or less, Co: 15.0% or less, C: 0.25% or less, B : 0.05% or less, N: 0.01% or less, Zr: 0.8% or less, Hf: 0.8% or less, rare earth elements: 0.2% or less, Y: 0.2% or less, Mg: 0.03% or less, Ca: 0.03% or less, the remainder being Ni and inevitable impurities.
<W:7.0~16.0%>
Wは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNi3Alを基本型とするガンマプライム相(γ’相)にも固溶して合金の高温強度を高める。一方、Wは、耐酸化性を低下させる作用や、TCP(Topologically Close Packed)相等の有害相を析出しやすくする作用を有する。高温強度を高め、且つ、耐酸化性の低下と有害相の析出をより抑制する観点から、本発明におけるNi基超耐熱合金中のWの含有量は7.0~16.0%とする。Wの効果をより確実に得るための好ましい下限は10.0%であり、好ましいWの上限は15.0%であり、更に好ましい上限は12.0%であり、より好ましくは11.0%である。
<Mo:1.0~11.0%>
Moは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNi3Alを基本型とするガンマプライム相にも固溶して合金の高温強度を高める。一方、Moは、耐酸化性を低下させる作用を有する。高温強度を高め、且つ、耐酸化性の低下をより抑制する観点から、本発明におけるNi基超耐熱合金中のMoの含有量は1.0~11.0%とする。なお、Wと後述するTa、Ti、Nbの添加に伴うTCP相等の有害相の析出を抑制するため、Wと後述するTa、Ti、Nb含有量との兼ね合いで好ましいMoの下限を設定するのが好ましく、Taを含有する場合のMoの効果をより確実に得るための好ましい下限は2.5%であり、更に好ましい下限は4.0%であり、より好ましくは4.5%である。一方、Ta、Ti、Nbを含有しない場合のMoの好ましい下限は7.0%とすると良く、更に好ましい下限は9.5%である。また、好ましいMoの上限は10.5であり、更に好ましい上限は、10.2%である。
<Al:5.0~7.5%>
Alは、Niと結合してNi3Alからなるガンマプライム相を析出し、合金の高温強度を高め、合金の表面にアルミナの被膜を生成し、合金に耐酸化性を付与する作用を有する。一方、Alの含有量が多過ぎると、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もある。耐酸化性及び高温強度を高める観点から、本発明におけるNi基超耐熱合金中のAlの含有量は5.0~7.5%とする。Alの効果をより確実に得るための好ましい下限は5.5%であり、更に好ましい下限は6.1%である。また、好ましいAlの上限は6.7%であり、更に好ましい上限は6.5%である。
<W: 7.0-16.0%>
W is dissolved in solid solution in the austenite matrix and also in the gamma prime phase (γ' phase) whose basic form is Ni 3 Al, which is a precipitation strengthening phase, thereby increasing the high temperature strength of the alloy. On the other hand, W has the effect of lowering the oxidation resistance and the effect of making harmful phases such as TCP (Topologically Close Packed) phase more likely to precipitate. From the viewpoint of increasing high-temperature strength and further suppressing deterioration in oxidation resistance and precipitation of harmful phases, the content of W in the Ni-based superheat-resistant alloy in the present invention is set to 7.0 to 16.0%. In order to more reliably obtain the effect of W, a preferable lower limit is 10.0%, a preferable upper limit of W is 15.0%, an even more preferable upper limit is 12.0%, and more preferably 11.0%. It is.
<Mo: 1.0-11.0%>
Mo is dissolved in solid solution in the austenite matrix and also in the gamma prime phase whose basic form is Ni 3 Al, which is a precipitation-strengthening phase, thereby increasing the high-temperature strength of the alloy. On the other hand, Mo has the effect of reducing oxidation resistance. From the viewpoint of increasing high-temperature strength and further suppressing deterioration of oxidation resistance, the content of Mo in the Ni-based superheat-resistant alloy in the present invention is set to 1.0 to 11.0%. In addition, in order to suppress the precipitation of harmful phases such as TCP phase due to the addition of W and Ta, Ti, and Nb, which will be described later, a preferable lower limit of Mo should be set in consideration of W and the contents of Ta, Ti, and Nb, which will be described later. is preferable, and in order to more reliably obtain the effect of Mo when Ta is contained, the preferable lower limit is 2.5%, the more preferable lower limit is 4.0%, and more preferably 4.5%. On the other hand, when Ta, Ti, and Nb are not contained, the preferable lower limit of Mo is 7.0%, and the more preferable lower limit is 9.5%. Further, a preferable upper limit of Mo is 10.5%, and a more preferable upper limit is 10.2%.
<Al: 5.0-7.5%>
Al combines with Ni to precipitate a gamma prime phase consisting of Ni 3 Al, increases the high temperature strength of the alloy, forms an alumina film on the surface of the alloy, and has the effect of imparting oxidation resistance to the alloy. On the other hand, if the Al content is too high, the eutectic gamma prime phase is excessively produced, which also has the effect of lowering the high temperature strength of the alloy. From the viewpoint of increasing oxidation resistance and high-temperature strength, the Al content in the Ni-based superheat-resistant alloy in the present invention is set to 5.0 to 7.5%. In order to more reliably obtain the effect of Al, the preferable lower limit is 5.5%, and the more preferable lower limit is 6.1%. Further, a preferable upper limit of Al is 6.7%, and a more preferable upper limit is 6.5%.
<Cr:7.5%以下>
本発明におけるNi基超耐熱合金は、Crを含有することができる。Crは、合金表面もしくは内部におけるアルミナの連続層の形成を促進し、合金の耐酸化性を向上させる作用を有する。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、耐酸化性の重要性が比較的低くCrの添加は必須でないため、本発明におけるNi基超耐熱合金ではCrは必要に応じて添加される。なお、不純物としての含有を妨げない。また、Crの添加が必要な場合は、7.5%を超える範囲のCrの添加は1000℃以上における合金の圧縮強度も低下させるため避けなければならない。Crの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は1.3%であり、好ましいCrの上限は3.0%である。
<Ta:7.0%以下>
本発明におけるNi基超耐熱合金は、Taを含有することができる。Taは、Ni3Alからなるガンマプライム相にAlサイトを置換する形で固溶して合金の高温強度を高めるとともに、合金表面に形成された酸化物皮膜の密着性と耐酸化性を高め、合金の耐酸化性を向上させる作用を有する。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、耐酸化性と高温強度の重要性が比較的低いためTaの添加は必須でない。加えて、Taは高価あり、多量に添加すると金型費が高額となる。そのため、本発明におけるNi基超耐熱合金では、Taは必要に応じて添加される。なお、不純物としての含有を妨げない。また、Taの添加が必要な場合は、Taの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Taの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTaの上限は6.5%である。なお、後述するTi乃至はNbとともにTaを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
<Cr: 7.5% or less>
The Ni-based superheat-resistant alloy in the present invention can contain Cr. Cr promotes the formation of a continuous layer of alumina on or inside the alloy, and has the effect of improving the oxidation resistance of the alloy. The dimensional tolerance of hot forged materials is larger than that of isothermal forging, and in the case of hot die forging where the mold heating temperature is low, the importance of oxidation resistance is relatively low and the addition of Cr is not essential. In the Ni-based super heat-resistant alloy, Cr is added as necessary. Note that this does not prevent its inclusion as an impurity. Further, if it is necessary to add Cr, addition of Cr in an amount exceeding 7.5% must be avoided since it also reduces the compressive strength of the alloy at temperatures above 1000°C. A preferable lower limit for reliably obtaining the effect of Cr is 0.5%, a more preferable lower limit is 1.3%, and a preferable upper limit of Cr is 3.0%.
<Ta: 7.0% or less>
The Ni-based superheat-resistant alloy in the present invention can contain Ta. Ta solidly dissolves in the gamma prime phase consisting of Ni 3 Al by replacing Al sites, increasing the high temperature strength of the alloy, and increasing the adhesion and oxidation resistance of the oxide film formed on the alloy surface. It has the effect of improving the oxidation resistance of the alloy. Compared to isothermal forging, the dimensional tolerance of hot forged materials is larger, and in the case of hot die forging where the mold heating temperature is low, the importance of oxidation resistance and high temperature strength is relatively low, so the addition of Ta is not essential. In addition, Ta is expensive, and if a large amount is added, the mold cost will be high. Therefore, in the Ni-based superheat-resistant alloy according to the present invention, Ta is added as necessary. Note that this does not prevent its inclusion as an impurity. In addition, if it is necessary to add Ta, if the Ta content is too high, it will tend to precipitate harmful phases such as TCP phase, or excessively generate eutectic gamma prime phase, reducing the high-temperature strength of the alloy. Since it also has some effects, it is necessary to avoid adding it in an amount exceeding 7.0%. A preferable lower limit for reliably obtaining the effect of Ta is 0.5%, and a more preferable lower limit is 2.5%. A preferable upper limit of Ta is 6.5%. In addition, when Ta is contained together with Ti or Nb, which will be described later, if the total content of these elements is large, high-temperature strength will decrease due to precipitation of harmful phases and excessive formation of eutectic gamma prime phase. The total content of these elements is preferably 7.0% or less.
<Ti:7.0%以下>
本発明におけるNi基超耐熱合金は、Tiを含有することができる。Tiは、Taと同様にNi3Alからなるガンマプライム相にAlサイトを置換する形で固溶して、合金の高温強度を高める。また、Taに比べて安価な元素であるため金型コストの点で有利である。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためTiの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Tiは必要に応じて添加される。なお、不純物としての含有を妨げない。また、Tiの添加が必要な場合は、Tiの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Tiの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTiの上限は6.5%である。なお、先述したTa乃至は後述するNbとともにTiを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
<Nb:7.0%以下>
本発明におけるNi基超耐熱合金は、Nbを含有することができる。Nbは、Ta、Tiと同様にNi3Alからなるガンマプライム相にAlサイトを置換する形で固溶して、合金の高温強度を高める。また、Taに比べて安価な元素であるため金型コストの点で有利である。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためNbの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Nbは必要に応じて添加される。なお、不純物としての含有を妨げない。また、Nbの添加が必要な場合は、Nbの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Nbの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTiの上限は6.5%である。なお、先述したTa乃至はTiとともにNbを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
<Co:15.0%以下>
本発明におけるNi基超耐熱合金は、Coを含有することができる。Coは、オーステナイトマトリックスに固溶し、合金の高温強度を高める。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためCoの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Coは必要に応じて添加される。なお、不純物としての含有を妨げない。また、Coの含有量が多すぎると、CoはNiに比べて高価な元素であるため金型コストを高め、また、TCP相等の有害相を析出し易くする作用もある。そのため、15.0%を超える範囲の添加は避けなければならない。Coの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましい上限は13.0%である。
<Ti: 7.0% or less>
The Ni-based superheat-resistant alloy in the present invention can contain Ti. Similar to Ta, Ti dissolves in the gamma prime phase composed of Ni 3 Al by substituting Al sites, thereby increasing the high-temperature strength of the alloy. Furthermore, since it is a cheaper element than Ta, it is advantageous in terms of mold cost. Compared to isothermal forging, the dimensional tolerance of hot forged materials is larger, and in the case of hot die forging where the mold heating temperature is low, the importance of high temperature strength is relatively low, so the addition of Ti is not essential. Therefore, in the Ni-based superheat-resistant alloy according to the present invention, Ti is added as necessary. Note that this does not prevent its inclusion as an impurity. In addition, if it is necessary to add Ti, if the Ti content is too high, it will tend to precipitate harmful phases such as TCP phase, or it will generate excessive eutectic gamma prime phase, reducing the high-temperature strength of the alloy. Since it also has some effects, it is necessary to avoid adding it in an amount exceeding 7.0%. A preferable lower limit for reliably obtaining the effect of Ti is 0.5%, and a more preferable lower limit is 2.5%. A preferable upper limit of Ti is 6.5%. In addition, when Ti is contained together with the above-mentioned Ta or the below-mentioned Nb, if the total content of these elements is large, the high-temperature strength will decrease due to precipitation of harmful phases and excessive formation of eutectic gamma prime phase. Therefore, the total content of these elements is preferably 7.0% or less.
<Nb: 7.0% or less>
The Ni-based superheat-resistant alloy in the present invention can contain Nb. Like Ta and Ti, Nb dissolves in the gamma prime phase consisting of Ni 3 Al by substituting Al sites, thereby increasing the high-temperature strength of the alloy. Furthermore, since it is a cheaper element than Ta, it is advantageous in terms of mold cost. Compared to isothermal forging, the dimensional tolerance of hot forged materials is larger, and in the case of hot die forging where the mold heating temperature is low, the importance of high temperature strength is relatively low, so the addition of Nb is not essential. Therefore, in the Ni-based superheat-resistant alloy according to the present invention, Nb is added as necessary. Note that this does not prevent its inclusion as an impurity. In addition, if it is necessary to add Nb, if the Nb content is too high, it will tend to precipitate harmful phases such as TCP phase or excessively generate eutectic gamma prime phase, reducing the high-temperature strength of the alloy. Since it also has some effects, it is necessary to avoid adding it in an amount exceeding 7.0%. A preferable lower limit for reliably obtaining the effect of Nb is 0.5%, and a more preferable lower limit is 2.5%. A preferable upper limit of Ti is 6.5%. In addition, when Nb is contained together with the above-mentioned Ta or Ti, if the total content of these elements is large, high-temperature strength will decrease due to precipitation of harmful phases and excessive formation of eutectic gamma prime phase. The total content of these elements is preferably 7.0% or less.
<Co: 15.0% or less>
The Ni-based superheat-resistant alloy in the present invention can contain Co. Co dissolves in the austenite matrix and increases the high temperature strength of the alloy. Compared to isothermal forging, the dimensional tolerance of hot forged materials is larger, and in the case of hot die forging where the mold heating temperature is low, the importance of high temperature strength is relatively low, so the addition of Co is not essential. Therefore, in the Ni-based superheat-resistant alloy of the present invention, Co is added as necessary. Note that this does not prevent its inclusion as an impurity. Moreover, if the content of Co is too high, since Co is an expensive element compared to Ni, the cost of the mold will increase, and it will also have the effect of making harmful phases such as TCP phase more likely to precipitate. Therefore, addition of more than 15.0% must be avoided. A preferable lower limit for reliably obtaining the effect of Co is 0.5%, and a more preferable lower limit is 2.5%. The preferred upper limit is 13.0%.
<C及びB>
本発明におけるNi基超耐熱合金は、C、Bから選択される1種または2種の元素を含有することができる。C、Bは、合金の結晶粒界の強度を向上させ、高温強度や延性を高める。そのため、本発明におけるNi基超耐熱合金では、C、Bから選択される1種または2種の元素も必要に応じて添加される。なお、不純物としての含有を妨げない。また、C、Bの含有量が多すぎると、粗大な炭化物やホウ化物が形成され、合金の強度を低下させる作用もある。合金の結晶粒界の強度を高め、粗大な炭化物やホウ化物の形成を抑制する観点から、本発明におけるCの含有量の上限は0.25%、Bの含有量の上限は0.05%である。Cの効果を確実に得るための好ましい下限は0.005%であり、更に好ましい下限は0.01%である。また、好ましい上限は0.15%である。Bの効果を確実に得るための好ましい下限は0.005%であり、更に好ましい下限は0.01%である。また、好ましい上限は0.03%である。
経済性や高温強度が特に必要とされる場合はCのみを添加することが好ましく、延性が特に必要とされる場合はBのみを添加することが好ましい。高温強度と延性の両者が特に必要とされる場合は、CとBを同時に添加することが好ましい。
<N>
Nは、先述したTiとCを含有する場合、意図的に含有されることが好ましい。これは、Tiとともに形成した窒化物が結晶構造の似ているMC炭化物の析出核として作用する事で、MC炭化物を好ましい形状としつつ微細に分散させ、引張強度を高めるからである。一方、Nの含有量が多くなりすぎると、Nに由来するミクロポロシティが過度に発生し引張強度が低下する。そのため、本発明におけるNの含有量は0.015%以下とする。TiとCを含有する場合は、引張強度を高めるため0.0006%以上含有する事が好ましく、0.001%以上であることが更に好ましい。また、好ましいNの上限は0.009%であり、更に好ましい上限は0.008%である。
<C and B>
The Ni-based superheat-resistant alloy in the present invention can contain one or two elements selected from C and B. C and B improve the strength of the grain boundaries of the alloy, increasing high temperature strength and ductility. Therefore, in the Ni-based superheat-resistant alloy according to the present invention, one or two elements selected from C and B are also added as necessary. Note that this does not prevent its inclusion as an impurity. Furthermore, if the content of C and B is too large, coarse carbides and borides are formed, which also has the effect of reducing the strength of the alloy. From the viewpoint of increasing the strength of the grain boundaries of the alloy and suppressing the formation of coarse carbides and borides, the upper limit of the C content in the present invention is 0.25%, and the upper limit of the B content is 0.05%. It is. A preferable lower limit for reliably obtaining the effect of C is 0.005%, and a more preferable lower limit is 0.01%. Moreover, a preferable upper limit is 0.15%. A preferable lower limit for reliably obtaining the effect of B is 0.005%, and a more preferable lower limit is 0.01%. Further, a preferable upper limit is 0.03%.
When economy and high-temperature strength are particularly required, it is preferable to add only C, and when ductility is particularly required, it is preferable to add only B. When both high temperature strength and ductility are particularly required, it is preferable to add C and B at the same time.
<N>
When containing Ti and C mentioned above, it is preferable that N is intentionally contained. This is because the nitrides formed together with Ti act as precipitation nuclei of MC carbides having a similar crystal structure, giving the MC carbides a desirable shape and finely dispersing them, thereby increasing the tensile strength. On the other hand, if the N content becomes too large, microporosity derived from N will occur excessively and the tensile strength will decrease. Therefore, the N content in the present invention is set to 0.015% or less. When Ti and C are contained, the content is preferably 0.0006% or more, more preferably 0.001% or more, in order to increase the tensile strength. Further, a preferable upper limit of N is 0.009%, and a more preferable upper limit is 0.008%.
<その他の任意の添加元素>
本発明におけるNi基超耐熱合金は、Zr、Hf、希土類元素、Y、Ca及びMgから選択される1種または2種以上の元素を含有することができる。なお、不純物としての含有を妨げない。Zr、Hf、希土類元素、Yは、合金表面に形成される酸化物被膜の結晶粒界への偏析によりその粒界での金属イオンと酸素の拡散を抑制する。この粒界拡散の抑制は、酸化物被膜の成長速度を低下させ、また、酸化物被膜の剥離を促進するような成長機構を変化させることで酸化物被膜と合金との密着性を向上させる。すなわち、これらの元素は、前述した酸化物被膜の成長速度の低下と酸化物被膜の密着性の向上によって合金の耐酸化性を向上させる作用を有する。
また、合金中にはS(硫黄)が不純物として少なからず含有される。このSは、合金表面に形成される酸化物被膜と合金との界面への偏析とそれらの化学結合の阻害により酸化物被膜の密着性を低下させる。Ca及びMgは、Sと硫化物を形成し、Sの偏析を防止することで酸化物被膜の密着性を向上させ、合金の耐酸化性を向上させる作用を有する。
なお、前記希土類元素のなかでもLaを用いるのが好ましい。Laは耐酸化性の向上の効果が大きいためである。Laは前述した拡散の抑制に加えてSの偏析を防止する作用も有し、且つ、それらの作用が優れているため、希土類元素のなかではLaを選択するのが良い。また、YにおいてもLaと同じ作用効果を奏するためYの添加も好ましく、LaとYを含む2種以上を用いるのが特に好ましい。
耐酸化性に加えて優れた機械的特性も必要な場合は、HfまたはZrを用いるのが好ましく、Hfを用いるのが特に好ましい。また、Hfを添加する場合は、HfはSの偏析を防止する作用が小さいため、Hfに加えてMgを同時に添加すると耐酸化性がより向上する。そのため、耐酸化性とともに機械的特性がもとめられる場合は、HfとMgを含む2種以上の元素を用いるのが更に好ましい。
<Other optional additive elements>
The Ni-based superheat-resistant alloy in the present invention can contain one or more elements selected from Zr, Hf, rare earth elements, Y, Ca, and Mg. Note that this does not prevent its inclusion as an impurity. Zr, Hf, rare earth elements, and Y suppress the diffusion of metal ions and oxygen at the grain boundaries by segregation to the grain boundaries of the oxide film formed on the alloy surface. Suppression of this grain boundary diffusion reduces the growth rate of the oxide film, and also improves the adhesion between the oxide film and the alloy by changing the growth mechanism that promotes peeling of the oxide film. That is, these elements have the effect of improving the oxidation resistance of the alloy by reducing the growth rate of the oxide film and improving the adhesion of the oxide film.
Further, the alloy contains a considerable amount of S (sulfur) as an impurity. This S decreases the adhesion of the oxide film by segregation at the interface between the oxide film formed on the alloy surface and the alloy and by inhibiting the chemical bonding thereof. Ca and Mg form sulfides with S and have the effect of improving the adhesion of the oxide film and improving the oxidation resistance of the alloy by preventing segregation of S.
Note that among the rare earth elements, it is preferable to use La. This is because La has a large effect of improving oxidation resistance. In addition to suppressing the above-mentioned diffusion, La also has the effect of preventing the segregation of S, and these effects are excellent, so that La is preferably selected from among the rare earth elements. Further, since Y also exhibits the same effects as La, addition of Y is also preferable, and it is particularly preferable to use two or more types containing La and Y.
If good mechanical properties are required in addition to oxidation resistance, it is preferable to use Hf or Zr, particularly preferably Hf. Further, when adding Hf, since Hf has a small effect of preventing segregation of S, oxidation resistance is further improved by adding Mg in addition to Hf at the same time. Therefore, when mechanical properties as well as oxidation resistance are required, it is more preferable to use two or more elements including Hf and Mg.
前述したZr、Hf、希土類元素、Y、Ca及びMgの元素の添加量が多すぎると、Ni等との金属間化合物を過度に生成して合金の靱性を低下させるため、これらの任意の添加元素は好適な含有量とすることが好ましい。また、Zr、HfはCとともに炭化物を形成し、引張強度を高める。
以上のことから、本発明におけるZr、Hfのそれぞれの含有量の上限は0.8%である。Zr、Hfのそれぞれの含有量の好ましい上限は0.5%であり、さらに好ましくは0.2%であり、より好ましくは0.15%である。Cを含有しない場合、Zr及びHfの好ましい上限は0.2%であり、より好ましくは0.1%である。
希土類元素、YはZr、Hfよりも靱性を低める作用が高いため、本発明におけるこれらの元素のそれぞれの含有量の上限は0.2%であり、好ましい上限は0.1%であり、さらに好ましくは0.05%であり、より好ましくは0.02%である。Zr、Hf、希土類元素、Yを含有させる場合の好ましい下限は0.001%である。Zr、Hf、希土類元素、Yの含有の効果を十分に発揮する好ましい下限は0.005%であり、更に好ましくは0.01%以上含有するのがよい。
また、Ca及びMgについては合金に含有される不純物Sと硫化物を形成させるために必要な量のみ含有すればよいため、Ca及びMgの含有量はそれぞれ0.03%以下とする。好ましい上限は0.02%であり、さらに好ましくは0.01%である。一方、それぞれMg添加による効果をより確実に発揮させるには0.005%を下限とするのがよい。また、MgはCaに比べて靭性や延性を低下させる作用が小さいため、S含有量が少なく、これらの元素を多量に含有する必要がない場合は、Mgのみを単独で用いることが好ましい。
以上説明する添加元素以外はNi及び不可避的不純物である。本発明におけるNi基超耐熱合金においてNiはガンマ相を構成する主要元素であるとともに、Al、Ta、Ti、Nb、Mo、Wとともにガンマプライム相を構成する。また、不可避的不純物としては、P、N、O、S、Si、Mn、Fe、Cu等が想定され、Ni基合金用として通常使用している炉でインゴットを鋳造した場合はVやReやRuが想定される。P、O、Sはそれぞれ0.003%以下であれば含有されていてもかまわなく、また、Si、Mn、Fe、Cu、V、Re、Ruはそれぞれ0.5%以下であれば含有されていてもかまわない。また、本発明のNi基合金は、Ni基耐熱合金と呼ぶこともできる。なお、前記不可避的不純物元素のうち、特にSについては0.015%以下とするのが好ましく、0.0010以下とするのが更に好ましい。
If the amounts of the above-mentioned Zr, Hf, rare earth elements, Y, Ca, and Mg are too large, intermetallic compounds with Ni etc. will be formed excessively and the toughness of the alloy will decrease, so these arbitrary additions are not recommended. It is preferable that the elements are contained in suitable amounts. In addition, Zr and Hf form carbides together with C to increase tensile strength.
From the above, the upper limit of each content of Zr and Hf in the present invention is 0.8%. The preferable upper limit of the content of each of Zr and Hf is 0.5%, more preferably 0.2%, and even more preferably 0.15%. When not containing C, the preferable upper limit of Zr and Hf is 0.2%, more preferably 0.1%.
Since the rare earth element Y has a higher effect of lowering toughness than Zr and Hf, the upper limit of the content of each of these elements in the present invention is 0.2%, the preferable upper limit is 0.1%, and Preferably it is 0.05%, more preferably 0.02%. When containing Zr, Hf, rare earth elements, and Y, the preferable lower limit is 0.001%. The preferred lower limit for fully exhibiting the effects of containing Zr, Hf, rare earth elements, and Y is 0.005%, and more preferably 0.01% or more.
Moreover, since it is sufficient to contain only the amount of Ca and Mg necessary to form sulfide with the impurity S contained in the alloy, the contents of Ca and Mg are each 0.03% or less. A preferable upper limit is 0.02%, more preferably 0.01%. On the other hand, in order to more reliably exhibit the effects of Mg addition, the lower limit is preferably 0.005%. Further, since Mg has a smaller effect of reducing toughness and ductility than Ca, it is preferable to use only Mg alone when the S content is low and there is no need to contain a large amount of these elements.
The additive elements other than those described above are Ni and unavoidable impurities. In the Ni-based superheat-resistant alloy according to the present invention, Ni is a main element constituting the gamma phase, and together with Al, Ta, Ti, Nb, Mo, and W constitutes the gamma prime phase. In addition, unavoidable impurities are assumed to be P, N, O, S, Si, Mn, Fe, Cu, etc., and if the ingot is cast in a furnace normally used for Ni-based alloys, V, Re, etc. Ru is assumed. P, O, and S may be contained as long as they are each 0.003% or less, and Si, Mn, Fe, Cu, V, Re, and Ru may be contained as long as they are each 0.5% or less. It doesn't matter if you stay there. Further, the Ni-based alloy of the present invention can also be called a Ni-based heat-resistant alloy. Note that, among the unavoidable impurity elements, the content of S in particular is preferably 0.015% or less, and more preferably 0.0010% or less.
ところで、本発明で用いる金型の形状は制限されず、熱間鍛造用素材乃至は熱間鍛造材の形状に応じた形状を選択してよい。
また、本発明では、作業性の向上等の点から、必要に応じて金型の成形面または側面の少なくとも一方の面を、酸化防止剤の塗布層を有する面とすることができる。これにより、高温での大気中の酸素と金型の母材の接触による金型表面の酸化とそれに伴うスケール飛散を防止し、作業環境の劣化及び形状劣化を防止できる。前述した酸化防止剤は、窒化物、酸化物、炭化物の何れか1種類以上でなる無機材料であることが好ましい。これは、窒化物や酸化物や炭化物の塗布層により緻密な酸素遮断膜を形成し、金型母材の酸化を防ぐためである。なお、塗布層は窒化物、酸化物、炭化物の何れかの単層でもよいし、窒化物、酸化物、炭化物の何れか2種以上の組み合わせの積層構造であってもよい。更に、塗布層は窒化物、酸化物、炭化物の何れか2種以上からなる混合物であってもよい。
By the way, the shape of the mold used in the present invention is not limited, and the shape may be selected depending on the shape of the hot forging material or the hot forging material.
Further, in the present invention, from the viewpoint of improving workability, at least one of the molding surface or side surface of the mold can be coated with an antioxidant coating layer, if necessary. This prevents oxidation of the mold surface due to contact between atmospheric oxygen and the base material of the mold at high temperatures and the accompanying scale scattering, thereby preventing deterioration of the working environment and deterioration of the shape. The aforementioned antioxidant is preferably an inorganic material made of one or more of nitrides, oxides, and carbides. This is to form a dense oxygen-blocking film using a coating layer of nitride, oxide, or carbide to prevent oxidation of the mold base material. The coating layer may be a single layer of nitride, oxide, or carbide, or may have a laminated structure of a combination of two or more of nitride, oxide, and carbide. Furthermore, the coating layer may be a mixture of two or more of nitrides, oxides, and carbides.
次に、「素材加熱工程」と「金型加熱工程」について説明する。上述したダブルバレリング状の鍛造欠陥を防止するには、(1)熱間鍛造用素材の加熱温度、(2)金型の加熱温度及び(3)それらの温度差が非常に重要となる。
本発明者は、金型温度が950℃以上であるホットダイ鍛造におけるダブルバレリング状の鍛造欠陥の発生を検討し、発生の主因が、搬送中の熱間鍛造用素材表面付近における温度低下と金型による素材の上下底面付近の復熱とによる熱間鍛造中の素材上下底面付近の優先的な変形であることを知見した。従って、前述の(1)~(3)を適切に管理することが重要となる。
<素材加熱工程>
上述した熱間鍛造用素材を用いて、その熱間鍛造用素材を所定の温度に加熱する。以降の工程は図2にその一例を例示する。金型加熱工程と素材加熱工程はそれぞれ同時進行で行ってもよい。しかし、搬送工程はこれらの工程が全て完了した後に行われ、鍛造工程はこの搬送工程が完了した後に行われる。
熱間鍛造用素材は、加熱炉を用いて目的とする素材温度まで加熱される。本発明では、熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する。この加熱によって、熱間鍛造用素材の温度は加熱温度となる。加熱時間は、熱間鍛造用素材全体が均一な温度となる時間以上であればよい。加熱温度の下限については、熱間鍛造装置(熱間プレス機)への搬送中の熱間鍛造用素材表面付近における温度低下を見越してやや高めの1025℃とする。加熱温度が1025℃未満であるとダブルバレリング状の鍛造欠陥が生じやすくなる。一方、1150℃を超える温度となると、熱間鍛造用素材の金属組織が粗大化する問題が生じる。なお、実際の加熱温度は、熱間鍛造用素材の材質に応じて1025~1150℃の範囲内で決定すると良い。
Next, the "material heating process" and the "mold heating process" will be explained. In order to prevent the above-mentioned double barreling-like forging defects, (1) the heating temperature of the hot forging material, (2) the heating temperature of the mold, and (3) the temperature difference therebetween are very important.
The present inventor investigated the occurrence of double barreling-like forging defects in hot die forging where the die temperature is 950°C or higher, and found that the main cause of the occurrence was a temperature drop near the surface of the hot forging material during transportation and a It was found that deformation occurs preferentially near the top and bottom surfaces of the material during hot forging due to recuperation of heat near the top and bottom surfaces of the material due to the die. Therefore, it is important to appropriately manage the above-mentioned (1) to (3).
<Material heating process>
Using the hot forging material described above, the hot forging material is heated to a predetermined temperature. An example of the subsequent steps is illustrated in FIG. The mold heating step and the material heating step may be performed simultaneously. However, the transport process is performed after all of these processes are completed, and the forging process is performed after this transport process is completed.
The material for hot forging is heated to the desired material temperature using a heating furnace. In the present invention, a material for hot forging is heated in a heating furnace to a heating temperature within the range of 1025 to 1150°C. This heating brings the temperature of the hot forging material to the heating temperature. The heating time may be longer than the time at which the entire hot forging material reaches a uniform temperature. The lower limit of the heating temperature is set at 1025° C., which is slightly higher, in anticipation of a temperature drop near the surface of the material for hot forging during transportation to a hot forging device (hot press machine). If the heating temperature is less than 1025°C, double barreling-like forging defects are likely to occur. On the other hand, if the temperature exceeds 1150° C., a problem arises in that the metal structure of the hot forging material becomes coarse. Note that the actual heating temperature is preferably determined within the range of 1025 to 1150°C depending on the material of the hot forging material.
<金型加熱工程>
本発明においては熱間鍛造に用いる金型についても950~1075℃の範囲内の加熱温度に加熱する。この加熱によって、金型の温度は加熱温度となる。このとき、上記の好ましい組成を有するNi基超耐熱合金製の金型であると大気中で目的の温度まで加熱することができる。金型の加熱温度を950~1075℃としたのはホットダイ鍛造を行うのに必要な温度であることと、ダブルバレリング状の鍛造欠陥を防止するためである。この950~1075℃の範囲外ではダブルバレリング状の鍛造欠陥が生じるおそれがある。金型の加熱においては、少なくとも金型の押圧面の表面温度が目的の温度となっていれば良い。
そして、熱間鍛造用素材の加熱温度から前記金型の加熱温度を引いた値が75℃以上となるようにする。熱間鍛造用素材の加熱温度から金型の加熱温度を差し引いた温度差が75℃未満の場合、熱間鍛造用素材を下型に載置した時、搬送中の温度低下により熱間鍛造用素材の表面付近の温度が金型表面の温度未満となる。この状態で鍛造を行うと、熱間鍛造中に熱間鍛造用素材の上下底面付近では金型の熱によって復熱する一方、復熱されない熱間鍛造用素材の側面の表面付近では温度が上下底面付近に比べて低くなり、温度むらとそれに伴う変形抵抗の差が生じ、変形抵抗の比較的低い上下底面付近が優先的に変形することによって、ダブルバレリング状の鍛造欠陥が生じることになる。そのため、熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度が金型表面の温度以上となるように、熱間鍛造用素材の加熱温度から金型の加熱温度を差し引いた温度差を75℃以上として、意図的に両者に温度差を設けてダブルバレリング状の鍛造欠陥の発生を防止する。
なお、金型の加熱については、加熱炉、誘導加熱及び抵抗加熱等で所定の温度に加熱した金型を熱間鍛造装置へ搬送する方法、熱間鍛造装置に備えた加熱炉、誘導加熱装置及び抵抗加熱装置等で所定の温度に加熱する方法、または、これらを組み合わせる方法により、所定の温度とすれば良い。また、金型の加熱は熱間鍛造工程の押圧開始直前まで加熱しておくのが好ましい。なお、熱間鍛造中も上型または/及び下型を加熱し続けることが可能であれば、熱間鍛造中も金型を加熱しておくと、ホットダイ鍛造を連続する場合に、鍛造条件を一定とすることができ、安定した生産が行なえる。
<Mold heating process>
In the present invention, the mold used for hot forging is also heated to a heating temperature within the range of 950 to 1075°C. This heating brings the temperature of the mold to the heating temperature. At this time, if the mold is made of a Ni-based super heat-resistant alloy having the above-mentioned preferred composition, it can be heated to the target temperature in the atmosphere. The heating temperature of the mold was set to 950 to 1075° C. because this is the temperature necessary to perform hot die forging and to prevent double barreling-like forging defects. Outside this range of 950 to 1075°C, double barreling-like forging defects may occur. In heating the mold, it is sufficient that at least the surface temperature of the pressing surface of the mold reaches the desired temperature.
Then, the value obtained by subtracting the heating temperature of the mold from the heating temperature of the hot forging material is set to be 75° C. or higher. If the temperature difference obtained by subtracting the heating temperature of the mold from the heating temperature of the hot forging material is less than 75℃, when the hot forging material is placed on the lower mold, the temperature will drop during transportation and the hot forging The temperature near the surface of the material becomes lower than the temperature of the mold surface. If forging is performed in this state, during hot forging, the heat from the mold will recuperate near the top and bottom of the hot forging material, while the temperature will rise and fall near the side surface of the hot forging material where no recuperation occurs. The temperature becomes lower than that near the bottom, resulting in uneven temperature and the resulting difference in deformation resistance, and the areas near the top and bottom, where deformation resistance is relatively low, are preferentially deformed, resulting in double barreling-like forging defects. . Therefore, when the material for hot forging is placed on the lower mold, the temperature near the surface of the material for hot forging is higher than the temperature of the surface of the mold. The temperature difference after subtracting the temperature is set to 75° C. or more to intentionally create a temperature difference between the two to prevent double barreling-like forging defects from occurring.
Regarding the heating of the mold, there are methods of heating the mold to a predetermined temperature using a heating furnace, induction heating, resistance heating, etc., and then transporting the mold to a hot forging device, a heating furnace provided in the hot forging device, and an induction heating device. The predetermined temperature may be set by heating to a predetermined temperature using a resistance heating device or the like, or by a combination of these methods. Further, it is preferable to heat the mold until immediately before the start of pressing in the hot forging process. In addition, if it is possible to continue heating the upper die and/or lower die during hot forging, heating the die during hot forging will allow you to adjust the forging conditions when continuing hot die forging. It can be kept constant and stable production can be performed.
<搬送工程>
熱間鍛造用素材は、目的とする温度に加熱された後、マニピュレータによって加熱された下型上まで搬送される。一般的に、熱間鍛造用素材の搬送に使用されるマニピュレータとして、熱間鍛造用素材を左右から挟んで把持するための一対の挟持指を有し、且つ、所定の重量の把持と搬送が可能であるものが使用され、本発明でも同様の機能を有するマニピュレータを使用することが好ましい。
なお、マニピュレータでの搬送については、ダブルバレリング状の鍛造欠陥の発生を抑制する点からは搬送時間は短い方が好ましい。本発明の前記温度差の条件に加えて、搬送中の温度低下を抑制するため、マニピュレータの挟持部に熱間鍛造用素材の側面を覆うカバーを有する把持治具を取り付けることで、ダブルバレリング状の鍛造欠陥の発生をより確実に防止することができる。
また、前記熱間鍛造用素材を把持する把持治具を950℃以上で、且つ、前記熱間鍛造用素材加熱温度マイナス50℃~プラス100℃の温度範囲内に加熱しておき、その把持治具を用いて熱間鍛造用素材を搬送することが好ましい。これは、適当な温度に加熱した把持治具によりマニピュレータの挟持指との接触や搬送中の熱間鍛造用素材側面の大気への暴露による熱間鍛造用素材表面の温度低下が抑制でき、より確実にダブルバレリング状の鍛造欠陥の発生を抑制することができる。
<熱間鍛造工程>
それぞれ前述した所定の温度に加熱した熱間鍛造用素材及び金型(下型と上型)を用いて熱間鍛造する。熱間鍛造は、熱間鍛造用素材を下型上に載置し、その熱間鍛造用素材を下型と上型とにより大気中で押圧することにより行われる。これにより、ダブルバレリング状の鍛造欠陥の発生を防止した熱間鍛造材を得ることができる。熱間鍛造の作業時間が長いと、熱間鍛造用素材と金型との加熱温度の間に温度差を設けても、熱間鍛造の作業中に上下底面付近が復熱する一方で熱間鍛造用素材の側面の温度が低下してダブルバレリング状の鍛造欠陥が発生する。ダブルバレリング状の鍛造欠陥を防止するため、熱間鍛造中の熱間鍛造用素材のひずみ速度が常に0.001/sec以上である必要がある。ダブルバレリング状の鍛造欠陥をより確実に防止するためには、ひずみ速度が常に0.005/sec以上であることが好ましく、常に0.01/sec以上であることがより好ましい。
<Transportation process>
After the hot forging material is heated to a target temperature, it is conveyed by a manipulator to a position above the heated lower die. Generally, a manipulator used to transport hot forging materials has a pair of gripping fingers for gripping the hot forging materials from the left and right sides, and is capable of gripping and transporting a predetermined weight. Those that are possible are used, and it is preferred in the present invention to use manipulators with similar functions.
In addition, regarding conveyance by a manipulator, the shorter the conveyance time, the better from the viewpoint of suppressing the occurrence of double barreling-like forging defects. In addition to the above-mentioned temperature difference condition of the present invention, in order to suppress the temperature drop during conveyance, double barreling The occurrence of such forging defects can be more reliably prevented.
Further, the gripping jig for gripping the hot forging material is heated to 950°C or higher and within the temperature range of minus 50°C to +100°C, which is the heating temperature of the hot forging material, and the gripping jig is It is preferable to transport the hot forging material using a tool. This is because the gripping jig heated to an appropriate temperature can suppress the temperature drop on the surface of the hot forging material due to contact with the manipulator's gripping fingers or exposure of the side surface of the hot forging material to the atmosphere during transportation. It is possible to reliably suppress the occurrence of double barreling-like forging defects.
<Hot forging process>
Hot forging is performed using hot forging materials and dies (lower die and upper die) heated to the predetermined temperatures described above. Hot forging is performed by placing a hot forging material on a lower mold and pressing the hot forging material in the atmosphere with the lower mold and the upper mold. Thereby, it is possible to obtain a hot forged material in which double barreling-like forging defects are prevented from occurring. If the hot forging operation time is long, even if a temperature difference is created between the heating temperature of the hot forging material and the mold, the upper and lower bottom areas will regenerate during the hot forging operation, while the hot forging The temperature of the side surface of the forging material decreases, causing a double barreling-like forging defect. In order to prevent double barreling-like forging defects, the strain rate of the hot forging material during hot forging must always be 0.001/sec or more. In order to more reliably prevent double barreling-like forging defects, the strain rate is preferably always 0.005/sec or more, and more preferably always 0.01/sec or more.
以下の実施例で本発明をさらに詳しく説明する。
まず、本発明で使用される金型材として好ましいNi基超耐熱合金についての実施例を示す。真空溶解にて表1に示すNi基超耐熱合金のインゴットを製造した。表1に示す組成を有するNi基超耐熱合金は、表2に示すような優れた高温圧縮強度の特性を有するものである。なお、表1に示すインゴットに含有されているP、Oはそれぞれ0.003%以下であった。また、Si、Mn、Feはそれぞれ0.03%以下である。
表2に示す高温圧縮強度(圧縮耐力)は1100℃での歪速度10-3/secの条件で行ったものである。この条件で300MPa以上あれば熱間鍛造用の金型として十分な強度を有すると言える。表2に示す表1に示した組成のNi基超耐熱合金の圧縮耐力は、最も高い値で489MPa、最も低い値で332MPaである。そのため、これら全てが熱間鍛造用の金型として十分な強度を有することがわかる。なお、No.1については歪速度10-2/secと歪速度10-1/secの試験条件でも試験を行い、前者での値は570MPa、後者での値は580MPaであり、歪速度の比較的大きな条件でも優れた圧縮耐力を有することを確認した。また、表1に示した組成の1100℃以下の温度で用いた場合の高温圧縮強度は、表2に示した値以上となる。
この表1に示したNi基超耐熱合金から、代表例としてNo.1の組成の上型と下型とを作製した。
The invention will be explained in more detail in the following examples.
First, examples of Ni-based super heat-resistant alloys that are preferable as mold materials used in the present invention will be shown. Ingots of Ni-based super heat-resistant alloys shown in Table 1 were manufactured by vacuum melting. The Ni-based super heat-resistant alloy having the composition shown in Table 1 has excellent high-temperature compressive strength properties as shown in Table 2. In addition, the P and O contained in the ingot shown in Table 1 were each 0.003% or less. Moreover, Si, Mn, and Fe are each 0.03% or less.
The high-temperature compressive strength (compressive yield strength) shown in Table 2 was measured at a strain rate of 10 -3 /sec at 1100°C. Under these conditions, if it is 300 MPa or more, it can be said that it has sufficient strength as a mold for hot forging. The compressive yield strength of the Ni-based superheat-resistant alloy having the composition shown in Table 1 shown in Table 2 is 489 MPa at the highest value and 332 MPa at the lowest value. Therefore, it can be seen that all of these have sufficient strength as a mold for hot forging. In addition, No. 1 was also tested under the test conditions of strain rate 10 -2 /sec and strain rate 10 -1 /sec, and the value in the former was 570 MPa and the value in the latter was 580 MPa, and even under conditions of relatively high strain rate. It was confirmed that it has excellent compressive yield strength. Further, the high-temperature compressive strength of the composition shown in Table 1 when used at a temperature of 1100° C. or lower is equal to or higher than the value shown in Table 2.
Among the Ni-based superheat-resistant alloys shown in Table 1, No. An upper mold and a lower mold having the composition No. 1 were produced.
表1のNo.1に示したNi基超耐熱合金製の金型(下型と上型)を用いて、金型加熱温度約1000℃、熱間鍛造用素材加熱温度約1100℃のホットダイ鍛造を大気中で行った。
熱間鍛造用素材はNi基超耐熱合金からなり、熱間鍛造用素材の高温圧縮強度は表1に示したNi基超耐熱合金以下である。また、その形状は直径約300mm、高さ約600mmの円柱であり、熱間鍛造用素材の表面を機械加工し、その機械加工面に対して、ホウケイ酸ガラスのフリットを含有した液体ガラス系潤滑剤を刷毛塗りにより塗布し、400μm程度の厚みで潤滑材を被覆した。その後、熱間鍛造用素材と金型を所定の温度に加熱した。
No. of Table 1 Using the Ni-based super heat-resistant alloy molds (lower mold and upper mold) shown in 1, hot die forging was performed in the air at a mold heating temperature of approximately 1000°C and a hot forging material heating temperature of approximately 1100°C. Ta.
The hot forging material is made of a Ni-based super heat-resistant alloy, and the high-temperature compressive strength of the hot forging material is less than or equal to that of the Ni-based super heat-resistant alloy shown in Table 1. The shape is a cylinder with a diameter of about 300 mm and a height of about 600 mm.The surface of the hot forging material is machined, and the machined surface is lubricated with liquid glass containing borosilicate glass frit. The lubricant was applied by brushing to a thickness of about 400 μm. Thereafter, the hot forging material and the die were heated to a predetermined temperature.
熱間鍛造用素材及び搬送に用いる把持治具の温度が1100℃に、金型の温度が1000℃に到達した後、加熱した熱間鍛造用素材を前記把持治具を用いたマニピュレータによって加熱炉から取り出して下型上に載置した。その後、下型と上型とにより熱間鍛造用素材を押圧するホットダイ鍛造を行った。圧縮率は約70%程度である。また、ひずみ速度は常に0.001/sec以上であり、鍛造作業を通しておおむね0.01/secである。最大荷重は約4000トンであった。なお、熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度は金型表面の温度以上であった。金型の加熱は熱間鍛造の押圧中も行なった。
また、比較のため、金型加熱温度を1040℃とし、他は同じ条件であるホットダイ鍛造を行った。金型加熱温度を1000℃とした場合の熱間鍛造用素材と金型加熱温度の差は約100℃、金型加熱温度を1040℃とした場合は約60℃である。比較例の熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度は金型表面の温度未満であった。
図3(a)に、本発明例の熱間鍛造用素材と金型との加熱温度の差が約100℃の条件のホットダイ鍛造により製造した熱間鍛造材の外観の概念図を、図3(b)に、比較例の熱間鍛造用素材と金型との加熱温度の差が約60℃の条件のホットダイ鍛造により製造した熱間鍛造材の外観の概念図を示す。
本発明例と比較例との違いは金型加熱温度のみであり、両者の生産性はほぼ同等であるにもかかわらず、図3(a)と(b)から明らかなように、本発明の温度条件を適用したホットダイ鍛造により、鍛造欠陥の生じない熱間鍛造材を得ることができる。
After the temperature of the hot forging material and the gripping jig used for transportation reaches 1100°C and the temperature of the mold reaches 1000°C, the heated hot forging material is transferred to a heating furnace by a manipulator using the gripping jig. It was taken out and placed on the lower mold. After that, hot die forging was performed in which the hot forging material was pressed using a lower die and an upper die. The compression ratio is about 70%. Further, the strain rate is always 0.001/sec or more, and is approximately 0.01/sec throughout the forging operation. The maximum load was approximately 4000 tons. Note that when the hot forging material was placed on the lower mold, the temperature near the surface of the hot forging material was higher than the temperature of the mold surface. The mold was heated also during hot forging.
For comparison, hot die forging was carried out under the same conditions except that the mold heating temperature was 1040°C. The difference between the hot forging material and the mold heating temperature when the mold heating temperature is 1000°C is about 100°C, and when the mold heating temperature is 1040°C, it is about 60°C. When the hot forging material of the comparative example was placed on the lower mold, the temperature near the surface of the hot forging material was lower than the temperature of the mold surface.
FIG. 3(a) is a conceptual diagram of the appearance of a hot forged material manufactured by hot die forging under conditions in which the difference in heating temperature between the hot forging material and the die of the present invention is about 100°C. (b) shows a conceptual diagram of the appearance of a hot forged material manufactured by hot die forging under conditions in which the difference in heating temperature between the hot forged material and the mold is approximately 60° C. in a comparative example.
The difference between the inventive example and the comparative example is only the mold heating temperature, and although the productivity of the two is almost the same, as is clear from FIGS. 3(a) and 3(b), the inventive example By hot die forging under temperature conditions, it is possible to obtain a hot forged material without forging defects.
Claims (3)
前記熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する素材加熱工程と、
前記上型と前記下型を950~1075℃の範囲内の加熱温度に加熱する金型加熱工程と、
マニピュレータにより前記熱間鍛造用素材を前記下型上まで搬送するとき、前記マニピュレータの挟持部に前記熱間鍛造用素材を把持する把持治具を取り付けて、前記把持治具は前記熱間鍛造用素材の側面を覆うカバーを有し、前記把持治具を950℃以上で、且つ、前記熱間鍛造用素材加熱温度マイナス50℃~プラス100℃の温度範囲内に加熱しておき、前記把持治具を用いて大気に暴露された熱間鍛造用素材を搬送する搬送工程と、
を含み、
前記熱間鍛造用素材の加熱温度から前記上型と前記下型の加熱温度を引いた値が75℃以上であり、前記熱間鍛造工程での熱間鍛造中の熱間鍛造用素材のひずみ速度が常に0.001/sec以上であることを特徴とする熱間鍛造材の製造方法。 Both the upper mold and the lower mold are made of Ni-based super heat-resistant alloy, and the hot forging process is performed in which the hot forging material is pressed in the atmosphere by the lower mold and the upper mold to form a hot forged material. In the method of manufacturing hot forged material including,
a material heating step of heating the hot forging material to a heating temperature within a range of 1025 to 1150° C. in a heating furnace;
a mold heating step of heating the upper mold and the lower mold to a heating temperature within a range of 950 to 1075°C;
When the hot forging material is conveyed to above the lower mold by a manipulator, a gripping jig for gripping the hot forging material is attached to the clamping part of the manipulator, and the gripping jig is configured to transport the hot forging material to the upper die. The gripping jig has a cover that covers the side surface of the material, and the gripping jig is heated to 950°C or higher and within a temperature range of -50°C to +100°C, which is the heating temperature of the hot forging material. a conveyance process of conveying the hot forging material exposed to the atmosphere using a tool ;
including;
The value obtained by subtracting the heating temperature of the upper mold and the lower mold from the heating temperature of the hot forging material is 75° C. or higher, and the strain of the hot forging material during hot forging in the hot forging step A method for producing a hot forged material, characterized in that the speed is always 0.001/sec or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019065238 | 2019-03-29 | ||
JP2019065238 | 2019-03-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020163470A JP2020163470A (en) | 2020-10-08 |
JP7452172B2 true JP7452172B2 (en) | 2024-03-19 |
Family
ID=72716798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020055805A Active JP7452172B2 (en) | 2019-03-29 | 2020-03-26 | Method for manufacturing hot forged materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7452172B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115698350B (en) * | 2020-05-26 | 2024-02-13 | 株式会社博迈立铖 | Ni-based alloy for hot die and die for hot forging using the same |
CN113909462A (en) * | 2021-10-14 | 2022-01-11 | 浙江久立特材科技股份有限公司 | Rapid hot demolding method for cast ingot |
WO2024058101A1 (en) * | 2022-09-14 | 2024-03-21 | 株式会社プロテリアル | Die for hot forging and production method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084118A1 (en) | 2002-10-31 | 2004-05-06 | Raymond Edward Lee | Quasi-isothermal forging of a nickel-base superalloy |
JP2014213362A (en) | 2013-04-26 | 2014-11-17 | 株式会社神戸製鋼所 | Hot forging method |
JP2016068134A (en) | 2014-09-30 | 2016-05-09 | 日立金属株式会社 | Forging mold and method for manufacturing the same |
WO2016152982A1 (en) | 2015-03-25 | 2016-09-29 | 日立金属株式会社 | PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY |
JP2017094392A (en) | 2015-09-17 | 2017-06-01 | ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH | METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2659833B2 (en) * | 1989-12-02 | 1997-09-30 | 株式会社神戸製鋼所 | Hot forging method for Ni-base superalloys |
-
2020
- 2020-03-26 JP JP2020055805A patent/JP7452172B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040084118A1 (en) | 2002-10-31 | 2004-05-06 | Raymond Edward Lee | Quasi-isothermal forging of a nickel-base superalloy |
JP2014213362A (en) | 2013-04-26 | 2014-11-17 | 株式会社神戸製鋼所 | Hot forging method |
JP2016068134A (en) | 2014-09-30 | 2016-05-09 | 日立金属株式会社 | Forging mold and method for manufacturing the same |
WO2016152982A1 (en) | 2015-03-25 | 2016-09-29 | 日立金属株式会社 | PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY |
JP2017094392A (en) | 2015-09-17 | 2017-06-01 | ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH | METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES |
Also Published As
Publication number | Publication date |
---|---|
JP2020163470A (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6635326B2 (en) | Manufacturing method of hot forgings | |
JP7452172B2 (en) | Method for manufacturing hot forged materials | |
US11555229B2 (en) | High-strength aluminum alloy laminated molding and production method therefor | |
JP5175470B2 (en) | Magnesium alloy material and method for producing the same | |
JP6252704B2 (en) | Method for producing Ni-base superalloy | |
JPS60228659A (en) | Malleable improvement for nickel base superalloy | |
US10875080B2 (en) | Method of producing forged product | |
CN110337335B (en) | Method for producing hot forged material | |
JP6631862B2 (en) | Manufacturing method of hot forging | |
JP6646885B2 (en) | Manufacturing method of hot forging dies and forged products | |
JP7452170B2 (en) | Method for manufacturing hot forged materials | |
WO2017057453A1 (en) | Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging | |
JP5273952B2 (en) | Hot forging die and manufacturing method thereof | |
JP2007100666A (en) | High strength titanium alloy engine valve for automobile | |
JP2017064741A (en) | Hot forging die | |
JP4679942B2 (en) | Ni-based overlaying powder for molds used hot and hot molds | |
Lozares et al. | Semisolid forging of 250 automotive spindles of S48C steel | |
JP6784954B2 (en) | Hot forging dies and methods for manufacturing forged products using them | |
JP4302300B2 (en) | Die casting machine parts for casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7452172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |