[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5273952B2 - Hot forging die and manufacturing method thereof - Google Patents

Hot forging die and manufacturing method thereof Download PDF

Info

Publication number
JP5273952B2
JP5273952B2 JP2007159081A JP2007159081A JP5273952B2 JP 5273952 B2 JP5273952 B2 JP 5273952B2 JP 2007159081 A JP2007159081 A JP 2007159081A JP 2007159081 A JP2007159081 A JP 2007159081A JP 5273952 B2 JP5273952 B2 JP 5273952B2
Authority
JP
Japan
Prior art keywords
hot forging
amount
forging die
oxide film
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007159081A
Other languages
Japanese (ja)
Other versions
JP2008308745A (en
Inventor
伸幸 五味
秀人 森川
哲郎 塩田
康貴 池内
明男 太田
誠 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007159081A priority Critical patent/JP5273952B2/en
Publication of JP2008308745A publication Critical patent/JP2008308745A/en
Application granted granted Critical
Publication of JP5273952B2 publication Critical patent/JP5273952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot forging mold which secures basic properties such as toughness and has superior abrasion resistance at the same time, and to provide a manufacturing method therefor. <P>SOLUTION: The hot forging mold comprises, by mass%, 0.32 to 0.42% of C, 0.3% or less of Si, 0.3 to 1.5% of Mn, 0.5% or less of Ni, 4.0 to 6.0% of Cr, 0.2 to 1.0% of V, 0.8 to 2.0% of Mo+1/2W, 0.005 to 0.04% of N, and the balance Fe with unavoidable impurities. In this case, the hot forging mold can further include, by mass%, 0.1 to 1.0% of Co, and further 0.1 to 1.0% of Cu. The hot forging mold preferably has an oxide film formed on its surface. This oxide film may be formed through heat treatment. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、熱間鍛造金型及びその製造方法に関し、更に詳しくは、優れた耐摩耗性と耐割れ性を備えた熱間鍛造金型及びその製造方法に関する。   The present invention relates to a hot forging die and a manufacturing method thereof, and more particularly, to a hot forging die having excellent wear resistance and crack resistance and a manufacturing method thereof.

熱間鍛造金型の一般的な損傷形態は、割れと摩耗の複合である。従って、耐割れ性(破壊靭性値、疲労強度)と熱間での耐摩耗性(高温強度)の向上が、型の長寿命化に不可欠となる。従来、熱間鍛造金型、熱間プレス型、ダイカスト金型、アルミニウム押出し加工用ダイス等の各種工具鋼等の用途の材料としては、JIS SKD61に代表される5Cr系熱間ダイス鋼が安価であることから多く用いられてきた。   A common form of damage in hot forging dies is a combination of cracking and wear. Therefore, improvement of crack resistance (fracture toughness value, fatigue strength) and hot wear resistance (high temperature strength) are indispensable for extending the life of the mold. Conventionally, 5Cr type hot die steel represented by JIS SKD61 is inexpensive as a material for various tool steels such as hot forging die, hot press die, die casting die, aluminum extrusion die, etc. It has been used for many reasons.

しかしながら、JIS SKD61は、V量が若干過剰であるため、これに起因して縞状偏析や靭性の異方性を大きくするという問題(特許文献1)や、製造工程で粗大なVC(一次炭化物)が晶出しやすく、疲労破壊が助長されるという問題(特許文献2)が指摘されていた。
そこで、特許文献1では、V量を低減させることにより、縞状偏析をなくし、靭性の異方性を小さくした熱間工具鋼が開示されている。また、特許文献2では、Si量を0.05%以下に低減することにより、巨大な一次炭化物が鋼中に残存せず、強度、靭性等において優れた特性を有する合金工具鋼が開示されている。また、非特許文献1では、型寿命の延長を目的として低Siかつ高Mo化した鋼が提案されている。
However, JIS SKD61 has a slightly excessive amount of V, resulting in problems such as stripe segregation and anisotropy of toughness (Patent Document 1), and coarse VC (primary carbide) in the manufacturing process. ) Is easy to crystallize, and the problem that fatigue fracture is promoted (Patent Document 2) has been pointed out.
Therefore, Patent Document 1 discloses a hot work tool steel in which stripe segregation is eliminated and toughness anisotropy is reduced by reducing the amount of V. Further, Patent Document 2 discloses an alloy tool steel having excellent characteristics in strength, toughness, etc., by preventing the amount of Si from being reduced to 0.05% or less so that a huge primary carbide does not remain in the steel. Yes. Non-Patent Document 1 proposes a steel with low Si and high Mo for the purpose of extending the mold life.

特開平5−148589JP 5-148589 特公平7−017986JP 7-017986 型技術、Vol.19,No.1(2004)、p.100Mold technology, Vol. 19, no. 1 (2004), p. 100

しかしながら、上記従来鋼による熱間鍛造金型の場合、高温の被鍛材との接触による鍛造面の軟化は、耐ヒートクラック性や耐摩耗性などを低下させる他、塑性流動の程度を大きくするという問題があった。そして、塑性流動による発熱は、さらなる軟化を引き起こし、摩耗を促進して型寿命を低下させるという問題があった。
また、非特許文献1の鋼は、耐摩耗性が改善される一方で、高Mo化の弊害として破壊靭性値が低下するという問題があった。
更に、MoやVは希少金属であり、代替材料により特性向上することが望まれる。
However, in the case of a hot forging die made of the above-mentioned conventional steel, softening of the forged surface by contact with a high temperature work material reduces heat crack resistance, wear resistance, etc., and increases the degree of plastic flow. There was a problem. And the heat_generation | fever by plastic flow caused the further softening, and there existed a problem of accelerating wear and reducing a mold life.
In addition, the steel of Non-Patent Document 1 has a problem that the fracture toughness value is lowered as an adverse effect of increasing Mo while the wear resistance is improved.
Furthermore, Mo and V are rare metals, and it is desired to improve the characteristics by using alternative materials.

本発明は、上記事情に鑑みてなされたものであり、その目的は、靭性等の基本特性を確保しつつ、耐摩耗性に優れた熱間鍛造金型及びその製造方法を提供することである。   This invention is made | formed in view of the said situation, The objective is to provide the hot forging die excellent in abrasion resistance, and its manufacturing method, ensuring basic characteristics, such as toughness. .

上記課題を解決するために、本発明に係る熱間鍛造金型は、質量%で、C:0.32〜0.42%、Si:0.05〜0.15%、Mn:0.3〜1.5%、Ni:0.2%以下、Cr:4.0〜6.0%、V:0.2〜1.0%、Mo+1/2W:0.8〜2.0%、及び、N:0.005〜0.04%を含有し、残部がFeおよび不可避的不純物からなることを要旨とする。この場合、更に、質量%で、Co:0.1〜1.0%を含有してもよく、更に、Cu:0.1〜1.0%を含有してもよい。これらの熱間鍛造金型の表面には、酸化膜が形成されていることが望ましい。 In order to solve the above-mentioned problem, the hot forging die according to the present invention is in mass%, C: 0.32 to 0.42%, Si: 0.05 to 0.15 % , Mn: 0.3 -1.5%, Ni: 0.2% or less , Cr: 4.0-6.0%, V: 0.2-1.0%, Mo + 1 / 2W: 0.8-2.0%, and , N: 0.005 to 0.04%, with the balance being Fe and inevitable impurities. In this case, it may further contain Co: 0.1 to 1.0% by mass and Cu: 0.1 to 1.0%. An oxide film is desirably formed on the surface of these hot forging dies.

上記課題を解決するために、本発明に係る熱間鍛造金型の製造方法は、質量%で、C:0.32〜0.42%、Si:0.05〜0.15%、Mn:0.3〜1.5%、Ni:0.2%以下、Cr:4.0〜6.0%、V:0.2〜1.0%、Mo+1/2W:0.8〜2.0%、及び、N:0.005〜0.04%を含有し、残部がFeおよび不可避的不純物からなる鋼を粗加工し、焼入れ焼戻しを行った後、仕上げ加工を施すことにより得られる熱間鍛造金型に、150℃〜700℃で追加の熱処理を施すことを要旨とする。この場合に用いる鋼は、更に、質量%で、Co:0.1〜1.0%を含有するものでもよく、更に、Cu:0.1〜1.0%を含有するものでもよい。 In order to solve the above-mentioned problems, the method for producing a hot forging die according to the present invention is mass%, C: 0.32 to 0.42%, Si: 0.05 to 0.15 % , Mn: 0.3-1.5%, Ni: 0.2% or less , Cr: 4.0-6.0%, V: 0.2-1.0%, Mo + 1 / 2W: 0.8-2.0 %, And N: 0.005 to 0.04%, and the steel obtained by roughing the steel consisting of Fe and unavoidable impurities, quenching and tempering, and then finishing. The gist is that the forging die is subjected to additional heat treatment at 150 ° C to 700 ° C. The steel used in this case may further contain, by mass%, Co: 0.1 to 1.0%, and may further contain Cu: 0.1 to 1.0%.

本発明に係る熱間鍛造金型は、上記成分組成を備えたものであるから、靭性等の基本特性をJIS SKD61と同等に確保しつつ、従来工具鋼より優れた耐摩耗性が得られるという効果がある。そして、熱処理により形成される酸化膜や、鍛造中の熱付加により形成される酸化膜は、密着性が良く、潤滑性が良いため、保護膜として機能し、鍛造における金型の塑性流動を緩和し、その加工発熱に伴う軟化を抑制するため、耐摩耗性を向上させるという効果がある。
本発明に係る熱間鍛造金型の製造方法は、上記成分組成を備えた鋼を粗加工し、必要な硬さに調質した後、仕上げ加工を施すことにより得られる熱間鍛造金型に、150℃〜700℃で追加の熱処理を施したものであるから、その表面にはFeO等の酸化膜が形成される。従って、本発明に係る熱間鍛造金型の製造方法によれば、上記成分組成を備えた金型が得られるから、靭性等の基本特性をJIS SKD61と同等に確保しつつ、従来法より優れた耐摩耗性が得られるという効果がある。そして、形成されたFeO等の酸化膜は、密着性が良く、潤滑性が良いため、保護膜として機能し、鍛造における金型の塑性流動を緩和し、その加工発熱に伴う軟化を抑制するため、耐摩耗性を向上させるという効果がある。
Since the hot forging die according to the present invention is provided with the above component composition, it is possible to obtain wear resistance superior to that of conventional tool steel while ensuring basic properties such as toughness equivalent to JIS SKD61. effective. And the oxide film formed by heat treatment and the oxide film formed by heat application during forging have good adhesion and good lubricity, so it functions as a protective film and alleviates the plastic flow of the mold during forging However, in order to suppress softening due to the processing heat generation, there is an effect of improving wear resistance.
The method of manufacturing a hot forging die according to the present invention is a hot forging die obtained by roughing steel having the above component composition, tempering to the required hardness, and then finishing. Since an additional heat treatment is performed at 150 to 700 ° C., an oxide film such as FeO is formed on the surface. Therefore, according to the method for producing a hot forging die according to the present invention, a die having the above component composition can be obtained. Therefore, the basic properties such as toughness are ensured to be equivalent to JIS SKD61 and superior to the conventional method. There is an effect that high wear resistance is obtained. Since the formed oxide film such as FeO has good adhesion and good lubricity, it functions as a protective film, relaxes the plastic flow of the mold during forging, and suppresses softening due to its processing heat generation. There is an effect of improving wear resistance.

本発明に係る熱間鍛造金型及びその製造方法は、希少金属であるMoやVの使用量を増加させるものではないため、環境負荷を低減することができるという効果もある。   Since the hot forging die and the manufacturing method thereof according to the present invention do not increase the amount of use of rare metals such as Mo and V, there is also an effect that an environmental load can be reduced.

以下に、本発明の一実施の形態について詳細に説明する。尚、以下の説明において、「%」は、特に説明がない限り「質量%」を意味する。
(成分組成及びその限定理由)
本発明の一実施形態に係る熱間鍛造金型用鋼は、必須元素として、以下の(1)〜(8)の元素を含む。
Hereinafter, an embodiment of the present invention will be described in detail. In the following description, “%” means “mass%” unless otherwise specified.
(Ingredient composition and reasons for limitation)
The hot forging die steel according to an embodiment of the present invention includes the following elements (1) to (8) as essential elements.

(1)C:0.32〜0.42%。
Cは、焼入れ焼戻しによりマルテンサイトの硬さ、及び、合金炭化物の析出硬化による必要な強度、硬さを得るために含有させる。そこで、C量は下限を0.32%以上とした。一方、C量の増加に伴いマルテンサイトへの過飽和固溶量が過剰となり靭性が低下する。そこで、C量は上限を0.42%以下とした。
(1) C: 0.32 to 0.42%.
C is contained in order to obtain martensite hardness by quenching and tempering and necessary strength and hardness by precipitation hardening of the alloy carbide. Therefore, the lower limit of the amount of C is set to 0.32% or more. On the other hand, as the amount of C increases, the amount of supersaturated solid solution in martensite becomes excessive and the toughness decreases. Therefore, the upper limit of the C amount is set to 0.42% or less.

(2)Si:0.30%以下。
Siは、本発明の一実施形態に係る熱間鍛造金型用鋼に最も重要な役割を持つ元素であり、摩耗に対する保護膜としての効果が高いFeO等の酸化膜を熱処理により形成させるために含有させる。FeO等の酸化膜は、具体的には、仕上げ加工を行って得られる熱間鍛造金型に対して、従来では行われていない追加の熱処理、すなわち、大気炉を用いて150℃〜700℃で追加の熱処理を行うことにより形成することができる。FeO等の酸化膜は、金型母材との密着性が良好であり、摩耗に対する保護膜としての効果が従来工具鋼に比べて高い。そのため、FeO等の酸化膜が形成された熱間鍛造金型は、耐摩耗性に優れる。尚、Si量が過剰である場合には、金型母材とFeO酸化膜の間にSiを含む酸化層であるFeSiOが形成されると考えられる。FeSiOは、保護膜であるFeOの密着性を阻害するため、FeSiOでは、保護膜としての効果は得られない。
そのため、Si量はできるだけ低減させる必要がある。そこで、Si量は上限を0.30%以下とした。被削性と耐摩耗性とのバランスを考慮すると、Si量は0.05〜0.15%が更に好ましく、0.08〜0.12%がより更に好ましい。また、有害層であるFeSiOの形成を抑制するためには、Si量は上限を0.10%以下とするのが更に好ましい。
(2) Si: 0.30% or less.
Si is an element having the most important role in the steel for hot forging die according to one embodiment of the present invention, in order to form an oxide film such as FeO having a high effect as a protective film against wear by heat treatment. Contain. Specifically, the oxide film such as FeO is an additional heat treatment not conventionally performed on a hot forging die obtained by finishing, that is, 150 ° C. to 700 ° C. using an atmospheric furnace. It can be formed by performing an additional heat treatment. An oxide film such as FeO has good adhesion to a mold base material and has a higher effect as a protective film against wear than conventional tool steel. Therefore, a hot forging die on which an oxide film such as FeO is formed is excellent in wear resistance. When the amount of Si is excessive, it is considered that FeSiO 4 that is an oxide layer containing Si is formed between the mold base material and the FeO oxide film. Since FeSiO 4 inhibits the adhesion of FeO as a protective film, the effect as a protective film cannot be obtained with FeSiO 4 .
Therefore, the amount of Si needs to be reduced as much as possible. Therefore, the upper limit of Si content is set to 0.30% or less. Considering the balance between machinability and wear resistance, the amount of Si is more preferably 0.05 to 0.15%, still more preferably 0.08 to 0.12%. Further, in order to suppress the formation of FeSiO 4 that is a harmful layer, the upper limit of the Si content is more preferably 0.10% or less.

(3)Mn:0.3〜1.5%。
Mnは、焼入れ性を向上させるため含有させる元素である。この効果を得るために、Mn量はその下限を0.3%以上とした。ただし、過剰なMn添加は、軟化抵抗を劣化させ、加えて、球状化焼鈍し処理に長時間を要し、製造性を低下させる。そこで、Mn量は上限を1.5%以下とした。
(3) Mn: 0.3 to 1.5%.
Mn is an element to be included for improving hardenability. In order to obtain this effect, the lower limit of the amount of Mn is set to 0.3% or more. However, excessive addition of Mn deteriorates the softening resistance, and in addition, it takes a long time for the spheroidizing annealing treatment and decreases the productivity. Therefore, the upper limit of the amount of Mn is set to 1.5% or less.

(4)Ni:0.5%以下。
Niは、焼入れ性および耐衝撃性を向上させるが、多量に添加すると焼鈍しに長時間を要する。そこで、Ni量は上限を0.5%以下とすることとした。また、Niが0.5%より多く添加されると、Niの濃化現象によって酸化膜が形成されにくくなるからである。金型の表面により均一な酸化膜を形成させるためにはNi量は、0.2%以下とすることが好ましい。
(4) Ni: 0.5% or less.
Ni improves hardenability and impact resistance, but if added in a large amount, it takes a long time for annealing. Therefore, the upper limit of Ni content is set to 0.5% or less. In addition, if Ni is added in an amount of more than 0.5%, it is difficult to form an oxide film due to the Ni concentration phenomenon. In order to form a uniform oxide film on the surface of the mold, the Ni content is preferably 0.2% or less.

(5)Cr:4.0〜6.0%。
Crは、焼入れ性、破壊靭性を向上させる。そこで、Cr量は下限を4.0%以上とした。一方で、Crを多量に含有させると、高温強度を極度に低下させるため、Cr量は上限を6.0%以下とした。
(5) Cr: 4.0 to 6.0%.
Cr improves hardenability and fracture toughness. Therefore, the lower limit of the Cr content is 4.0% or more. On the other hand, when a large amount of Cr is contained, the high temperature strength is extremely lowered, so the upper limit of the Cr amount is 6.0% or less.

(6)V:0.2〜1.0%
Vは、靭性に大きく影響を及ぼす元素であり、焼入れ時の結晶粒粗大化を抑制して耐衝撃性の低下を防ぐ。そこで、V量は下限を0.2%以上とした。一方、Vを多量に含有させると、ソーキングにより溶解しきれない粗大な晶出VCが残留し、疲労強度、耐衝撃性を大幅に低下させる。そこで、V量は上限を1.0%以下とした。
(6) V: 0.2 to 1.0%
V is an element that greatly affects the toughness, and suppresses the coarsening of crystal grains during quenching to prevent a decrease in impact resistance. Therefore, the lower limit of the V amount is 0.2% or more. On the other hand, when a large amount of V is contained, coarse crystallized VC that cannot be completely dissolved by soaking remains, and the fatigue strength and impact resistance are greatly reduced. Therefore, the upper limit of the V amount is 1.0% or less.

(7)Mo+1/2W:0.8〜2.0%。
このうち、Moは必須元素であるが、Wは必要に応じて含有させればよい。Moは、高温強度を向上させるのに有効な元素であるので、(Mo+1/2W)量で下限を0.8%以上とした。しかし、多量に含有させると破壊靭性を低下させるため、(Mo+1/2W)量は上限を2.0%以下とした。
(7) Mo + 1 / 2W: 0.8-2.0%.
Of these, Mo is an essential element, but W may be contained as necessary. Since Mo is an element effective for improving the high-temperature strength, the lower limit is set to 0.8% or more in the amount of (Mo + 1/2 W). However, since the fracture toughness is lowered when a large amount is contained, the upper limit of the amount of (Mo + 1 / 2W) is set to 2.0% or less.

(8)N:0.005〜0.04%。
Nは、VCNを形成する構成元素となり、これにより、結晶粒粗大化を抑制するピン留め効果が得られる。そこで、N量は下限を0.005%以上とした。一方、Nを多量に含有させると、VCNが粗大な状態で晶出する。そこで、N量は上限を0.04%以下とした。
(8) N: 0.005 to 0.04%.
N becomes a constituent element forming VCN, and thereby, a pinning effect for suppressing coarsening of crystal grains is obtained. Therefore, the lower limit of N content is set to 0.005% or more. On the other hand, when N is contained in a large amount, VCN crystallizes in a coarse state. Therefore, the upper limit of the N amount is set to 0.04% or less.

本発明の一実施形態に係る熱間鍛造金型用鋼は、更に、以下の(9)〜(10)の成分元素を任意選択元素として含むものでもよい。
(9)Co:0.1〜1.0%。
Coは、高温強度を向上させるのに有効な元素である。そのため、Co量は下限を0.1%以上とした。一方、多量に含有させると靭性を低下させる。そこで、Co量は上限を1.0%以下とした。
The hot forging die steel according to an embodiment of the present invention may further include the following component elements (9) to (10) as optional elements.
(9) Co: 0.1 to 1.0%.
Co is an element effective for improving the high-temperature strength. Therefore, the lower limit of the amount of Co is set to 0.1% or more. On the other hand, when it is contained in a large amount, the toughness is lowered. Therefore, the upper limit of the amount of Co is set to 1.0% or less.

(10)Cu:0.1〜1.0%。
Cuは、靭性に寄与する。そのため、Cu量は下限を0.1%以上とした。一方、多量に含有させると熱間加工性を低下させる。そこで、Cu量は上限を1.0%以下とした。
(10) Cu: 0.1 to 1.0%.
Cu contributes to toughness. Therefore, the lower limit of the amount of Cu is set to 0.1% or more. On the other hand, when it is contained in a large amount, hot workability is lowered. Therefore, the upper limit of the amount of Cu is set to 1.0% or less.

本発明の一実施形態に係る熱間鍛造金型用鋼は、更に、以下の(11)〜(14)の成分元素を不可避的不純物として含む。
(11)P:0.015%以下。
Pは、介在物として粒界へ析出して耐衝撃性を低下させる他、偏析の濃度勾配を大きくし、異方性を悪化させる。そこで、P量は上限を0.015%以下とした。
The hot forging die steel according to an embodiment of the present invention further includes the following component elements (11) to (14) as inevitable impurities.
(11) P: 0.015% or less.
P precipitates at the grain boundary as inclusions and lowers the impact resistance, and also increases the concentration gradient of segregation and deteriorates anisotropy. Therefore, the upper limit of the amount of P is set to 0.015% or less .

(12)S:0.01%以下。
Sは、成型加工時の被削性を向上させるが、疲労破壊の起点となる介在物を多量に生成させる。そこで、S量は上限を0.01%以下とした。
(12) S: 0.01% or less.
S improves the machinability at the time of molding, but generates a large amount of inclusions as a starting point of fatigue fracture. Therefore, the upper limit of the amount of S is set to 0.01% or less.

(13)Al:0.025%以下。
Alは、脱酸元素として有効な元素である。Alが多量になると、Al酸化物を鋼中に残存させ疲労強度を低下させる。そこで、Al量は上限を0.025%以下とした。
(13) Al: 0.025% or less.
Al is an effective element as a deoxidizing element . When the amount of Al becomes large, Al oxide remains in the steel to reduce the fatigue strength. Therefore, the upper limit of the Al amount is set to 0.025% or less.

(14)O:0.005%以下。
Oは、Mn、Alと結合して多量の酸化物を鋼中に残存させ疲労強度を低下させる。そこで、O量は上限を0.005%以下とした。
(14) O: 0.005% or less.
O combines with Mn and Al to leave a large amount of oxide in the steel and lower the fatigue strength. Therefore, the upper limit of the amount of O is set to 0.005% or less.

(製造方法)
次に本発明の一実施形態に係る熱間鍛造金型の製造方法について説明する。
本発明の一実施形態に係る熱間鍛造金型は、上記成分組成を備えた鋼を溶製し、鋼塊とした(溶解→ソーキング)後、所定の形状に熱間加工(鍛造→焼ならし→焼戻し→球状化焼き鈍し→粗加工)し、必要な硬さに調質して(焼入れ・焼戻し)、仕上げ加工(鏡面加工、従来法での金型完成)をして得られる金型に、150℃〜700℃で追加の熱処理を施すことにより得られる(金型完成)。ここで、下限を150℃としたのは、150℃未満では有効な酸化膜が形成されないからであり、上限を700℃としたのは、700℃超では軟化により十分な硬さが得られないからである。この熱処理により、熱間鍛造金型の表面にFeO等の酸化膜が形成され、得られる熱間鍛造金型に高い耐摩耗性が備わる。また、この熱処理は、熱間鍛造金型の表面に酸化膜を均一に形成させるためには、500〜700℃で1〜2時間行われることが好ましい。なぜなら、この温度域で形成される酸化膜は潤滑性・耐摩耗性に優れるものとなるからである。500〜700℃の熱処理を行うためには、大気炉内で実施することが好ましい。
(Production method)
Next, the manufacturing method of the hot forging die which concerns on one Embodiment of this invention is demonstrated.
A hot forging die according to an embodiment of the present invention is obtained by melting steel having the above component composition into a steel ingot (melting → soaking), and then hot working into a predetermined shape (forging → firing). Tempering → tempering → spheroidizing annealing → roughing), tempering to the required hardness (quenching / tempering), and finishing (mirror finishing, mold completion by conventional methods) It is obtained by performing an additional heat treatment at 150 ° C. to 700 ° C. (mold completion). Here, the lower limit is set to 150 ° C. because an effective oxide film is not formed when the temperature is lower than 150 ° C., and the upper limit is set to 700 ° C. If the temperature exceeds 700 ° C., sufficient hardness cannot be obtained due to softening. Because. By this heat treatment, an oxide film such as FeO is formed on the surface of the hot forging die, and the resulting hot forging die has high wear resistance. Moreover, this heat treatment is preferably performed at 500 to 700 ° C. for 1 to 2 hours in order to uniformly form an oxide film on the surface of the hot forging die. This is because the oxide film formed in this temperature range is excellent in lubricity and wear resistance. In order to perform the heat treatment at 500 to 700 ° C., it is preferably carried out in an atmospheric furnace.

(作用)
本発明の一実施形態に係る熱間鍛造金型は、上記成分組成を備えているため、靭性等の基本特性がJIS SKD61と同等に確保されるとともに、150℃〜700℃の熱処理や実機での熱付加をした場合には、FeO等の酸化膜が形成され、優れた耐摩耗性が得られる。
本発明の一実施形態に係る熱間鍛造金型の製造方法は、上記成分組成を備えた鋼を溶製し、鋼塊とした後、所定の形状に熱間加工し、必要な硬さに調質して仕上げ加工をして得られる金型に、150℃〜700℃で追加の熱処理を施したものであるから、FeO等の酸化膜が形成される。このようにして得られる本発明の一実施形態に係る熱間鍛造金型は、上記成分組成を備えたものであるから、靭性等の基本特性をJIS SKD61と同等に確保しつつ、従来より優れた耐摩耗性を発揮する。
FeO等の酸化膜は、密着性が良く、潤滑性が良いため、保護膜として機能し、鍛造における金型の塑性流動を緩和し、その加工発熱に伴う軟化を抑制するため、熱間鍛造金型の耐摩耗性を向上させる。尚、Si量をできる限り低減させたため、保護膜であるFeOの密着性を阻害する酸化層FeSiOは形成されない。
(Function)
Since the hot forging die according to an embodiment of the present invention has the above component composition, the basic characteristics such as toughness are ensured to be equivalent to JIS SKD61, and heat treatment at 150 ° C. to 700 ° C. or an actual machine. When heat is applied, an oxide film such as FeO is formed, and excellent wear resistance is obtained.
The manufacturing method of the hot forging die concerning one embodiment of the present invention melts the steel provided with the above-mentioned ingredient composition, makes it a steel ingot, then hot-works it into a predetermined shape, and has the required hardness. Since the mold obtained by tempering and finishing is subjected to an additional heat treatment at 150 ° C. to 700 ° C., an oxide film such as FeO is formed. Since the hot forging die according to one embodiment of the present invention thus obtained has the above-described component composition, it is superior to the conventional one while ensuring basic properties such as toughness equivalent to JIS SKD61. High wear resistance.
An oxide film such as FeO has good adhesion and good lubricity, so it functions as a protective film, relaxes plastic flow of the mold during forging, and suppresses softening due to heat generated by the process. Improve the wear resistance of the mold. Since the Si amount is reduced as much as possible, the oxide layer FeSiO 4 that inhibits the adhesion of FeO as a protective film is not formed.

以下に、本発明を実施例及び比較例により具体的に説明する。
(供試材の作製)
表1に示す各成分組成からなる鋼をアーク溶解炉にて溶製し、造塊後、鍛造により径260mmの円柱に加工し、焼ならし→焼戻し→球状化焼なましを施し、供試材とした。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Production of test materials)
Steel having each component composition shown in Table 1 is melted in an arc melting furnace, and after ingot forming, it is processed into a cylinder having a diameter of 260 mm by forging, normalizing, tempering, spheroidizing annealing, and a test A material was used.

Figure 0005273952
Figure 0005273952

(摩擦摩耗試験)
ピンオンディスク法による摩擦摩耗試験により摩擦係数を測定したのでこれについて説明する。
ディスク試験片は、以下の手順で作製した。まず、各実施例及び各比較例について、上記の供試材から径25mm、厚さ6mmの円盤を切り出し、これを加工して硬さを53HRCに調質(焼入れ(1030℃)・焼戻し(550℃〜620℃))した後、試験面を仕上げ加工(鏡面研磨)した。そして、各実施例及び各比較例について、(a)これを600 ℃の大気中で1時間保持する追加の熱処理をしたものと、(b)これに再度鏡面研磨したものとを作製し、これらをディスク試験片とした(図1参照)。
(Friction and wear test)
The friction coefficient was measured by a friction wear test by the pin-on-disk method, and this will be described.
The disk test piece was produced by the following procedure. First, for each example and each comparative example, a disk having a diameter of 25 mm and a thickness of 6 mm was cut out from the above-described test material, and this was processed and tempered to 53 HRC (quenched (1030 ° C.) and tempered (550) The test surface was finished (mirror polishing). And about each Example and each comparative example, (a) what carried out the additional heat processing which hold | maintains this in the atmosphere of 600 degreeC for 1 hour, and (b) what carried out mirror polishing again to this were produced, these Was used as a disk test piece (see FIG. 1).

ピンオンディスク法による摩擦摩耗試験は、その概要を図1に簡単に示すが、ピンとして調質したSUJ2(10R)を用い、荷重10gf、相対滑り速度100mm/sec、測定時間1500secの条件でディスク試験片を回転させることにより行った。
その結果を、表2、並びに、図2及び図3に示す。表2は、調質硬さ及び摩擦係数(平均値)をまとめて示し、図2は、実施例1及び比較例2(SKD61)についての全摩擦距離についての摩擦係数を示すグラフである。図3は、実施例1及び比較例2(SKD61)についての摩擦摩耗試験後のディスク試験片の外観写真を示す。
The outline of the friction and wear test by the pin-on-disk method is briefly shown in FIG. 1, but the disk was conditioned using SUJ2 (10R) conditioned as a pin, a load of 10 gf, a relative sliding speed of 100 mm / sec and a measurement time of 1500 sec. This was done by rotating the specimen.
The results are shown in Table 2 and FIGS. Table 2 summarizes the tempered hardness and the friction coefficient (average value), and FIG. 2 is a graph showing the friction coefficient for the total friction distance for Example 1 and Comparative Example 2 (SKD61). FIG. 3 shows an external view photograph of the disk test piece after the frictional wear test for Example 1 and Comparative Example 2 (SKD61).

(パンチ摩耗試験)
亜熱間鍛造の条件下でパンチ摩耗試験を行ったのでこれについて説明する。
パンチ試験片は、次の手順で作製した。まず、各実施例及び各比較例について、上記の供試材から径22mm、長さ114mmの円柱を切り出し、これを加工して硬さを53HRCに調質(焼入れ(1030℃)・焼戻し(550℃〜620℃))した後、仕上げ加工(ラッピング)した。そして、各実施例及び各比較例について、(a)これを600 ℃の大気中で1時間保持する追加の熱処理をしたものと、(b)これに再度ラッピングしたものとを作製し、これらをパンチ試験片とした。その外観を図4(a)に示す。
(Punch wear test)
A punch wear test was performed under sub-hot forging conditions, which will be described.
The punch test piece was produced by the following procedure. First, for each example and each comparative example, a cylinder having a diameter of 22 mm and a length of 114 mm was cut out from the above-described test material, and this was processed and tempered to 53 HRC (quenched (1030 ° C.) and tempered (550). C. to 620.degree. C.) and then finished (wrapped). And about each Example and each comparative example, (a) what carried out the additional heat processing which hold | maintains this in the atmosphere of 600 degreeC for 1 hour, and (b) what was wrapped again in this were produced, and these were made. A punch specimen was obtained. The external appearance is shown in FIG.

パンチ摩耗試験は、大同機械製NS5−10PLパーツフォーマー(140t)を用いて、図4(b)に示す二工程鍛造により行った。
この試験では、ワーク材料をS53Cとし、鍛造温度800℃、鍛造速度85spmで、ショット数5000ショットの鍛造を行い、この鍛造後のパンチ摩耗量(図5参照)を測定した。その結果を、表2に示す。
更に、鍛造温度820℃にした以外は上記パンチ摩耗試験と同じ条件で鍛造を行い、この鍛造後のパンチ摩耗量を測定した。その結果を図6に示す。
The punch wear test was performed by two-step forging shown in FIG. 4B using an NS5-10PL part former (140t) manufactured by Daido Machine.
In this test, the workpiece material was S53C, forging was performed at a forging temperature of 800 ° C., a forging speed of 85 spm, and 5000 shots, and the amount of punch wear after forging (see FIG. 5) was measured. The results are shown in Table 2.
Further, forging was performed under the same conditions as in the punch wear test except that the forging temperature was set to 820 ° C., and the amount of punch wear after this forging was measured. The result is shown in FIG.

(実型摩耗試験)
実施例1及び比較例2を実生産を行っている熱間鍛造に適用した(ただし、実施例1及び比較例2の調質硬さは、HRC45とした)。そして、図7(a)に示すハッチング部位の型の摩耗量を測定した。摩耗量の測定は、3次元形状測定機を使用して行った。鍛造前後の形状を測定し、その差を摩耗量とした。摩耗量としては、このハッチング部分で最も摩耗量の多い部位の測定値を用い、プロットした。同図(b)にその結果を示す。
(Actual wear test)
Example 1 and Comparative Example 2 were applied to hot forging in actual production (however, the tempered hardness of Example 1 and Comparative Example 2 was HRC45). Then, the amount of wear of the hatched part mold shown in FIG. 7A was measured. The amount of wear was measured using a three-dimensional shape measuring machine. The shape before and after forging was measured, and the difference was defined as the amount of wear. The amount of wear was plotted using the measured value of the portion with the largest amount of wear in the hatched portion. The result is shown in FIG.

Figure 0005273952
Figure 0005273952

(基本特性)
実施例1及び比較例2(SKD61)を対象に軸力疲労特性、平面破壊靭性値、焼戻し軟化抵抗を調べたので、その結果を、それぞれ図8(a)、(b)、(c)に示す。
(Basic characteristics)
Since the axial force fatigue characteristics, the plane fracture toughness value, and the temper softening resistance were investigated for Example 1 and Comparative Example 2 (SKD61), the results are shown in FIGS. 8A, 8B, and 8C, respectively. Show.

(評価)
(摩擦摩耗試験−評価)
表2によれば、追加の熱処理を行った実施例1〜14の摩擦係数は、再度鏡面研磨した実施例1〜14の摩擦係数よりも小さかった。このことから、実施例1〜14には、潤滑性の良い酸化膜が形成されていることがわかった。
また、実施例1〜14の摩擦係数は、比較例1、2の摩擦係数に比べて小さかった。実施例1〜14は、比較例1、2との関係では、特に、Si量を低減させている。このことから、摩擦係数は、Si量に依存し、Si量の低減に伴い減少することが確認できた。
(Evaluation)
(Friction and wear test-evaluation)
According to Table 2, the friction coefficient of Examples 1-14 which performed additional heat processing was smaller than the friction coefficient of Examples 1-14 which mirror-polished again. From this, it was found that in Examples 1 to 14, an oxide film with good lubricity was formed.
Moreover, the friction coefficient of Examples 1-14 was small compared with the friction coefficient of Comparative Examples 1 and 2. In Examples 1 to 14, the amount of Si is reduced particularly in relation to Comparative Examples 1 and 2. From this, it has been confirmed that the friction coefficient depends on the Si amount and decreases as the Si amount decreases.

図2でも同様のことがわかった。追加の熱処理により酸化膜を形成させた実施例1は、再度鏡面研磨し酸化膜を除去したものに比べて、顕著に摩擦係数が小さくなった。このことから、熱間鍛造金型に熱処理を施すと摩擦係数を小さくすることができ潤滑性が良くなることがわかった。また、追加の熱処理により酸化膜を形成させた実施例1及び比較例2は、再度鏡面研磨したものよりも摩擦係数が小さくなったが、特に、実施例1は比較例2に比べて顕著に摩擦係数が小さくなった。このことから、実施例1の成分組成からなる熱間鍛造金型に追加の熱処理を施すと特に潤滑性を高める効果が高いことが確認できた。   The same thing was found in FIG. In Example 1 in which the oxide film was formed by the additional heat treatment, the friction coefficient was remarkably reduced as compared with the case where the oxide film was removed by mirror polishing again. From this, it was found that when the hot forging die is subjected to heat treatment, the friction coefficient can be reduced and the lubricity is improved. Further, Example 1 and Comparative Example 2 in which an oxide film was formed by additional heat treatment had a smaller coefficient of friction than that obtained by mirror polishing again. In particular, Example 1 was significantly more than Comparative Example 2. The coefficient of friction has decreased. From this, it was confirmed that when the hot forging die composed of the component composition of Example 1 was subjected to additional heat treatment, the effect of improving lubricity was particularly high.

図3によれば、追加の熱処理により酸化膜を形成させた実施例1のディスク試験片の表面は剥離が生じなかったが、再度鏡面研磨し酸化膜を除去した実施例1のディスク試験片の表面はピン材によって著しく削られる。このことから、熱間鍛造金型に熱処理を施すと潤滑の効果が得られることがわかった。
また、追加の熱処理により酸化膜を形成させた比較例2は、再度鏡面研磨し酸化膜を除去した比較例2よりもディスク試験片の表面の削られる度合いが少ない。このことから、実施例1の成分組成からなる熱間鍛造金型に追加の熱処理を施すと密着性を高める効果が特に高いことがわかった。尚、再度鏡面研磨し酸化膜を除去した場合には、摩擦係数や磨耗の程度に実施例1と比較例2に殆ど差異が認められなかった。
According to FIG. 3, the surface of the disk test piece of Example 1 in which the oxide film was formed by additional heat treatment did not peel off, but the disk test piece of Example 1 in which the oxide film was removed by mirror polishing again. The surface is sharpened by the pin material. From this, it was found that the effect of lubrication can be obtained by applying heat treatment to the hot forging die.
Further, in Comparative Example 2 in which the oxide film is formed by additional heat treatment, the surface of the disk specimen is scraped less than Comparative Example 2 in which the oxide film is removed by mirror polishing again. From this, it was found that the effect of improving the adhesion is particularly high when an additional heat treatment is applied to the hot forging die having the component composition of Example 1. When the oxide film was removed by mirror polishing again, there was almost no difference between Example 1 and Comparative Example 2 in terms of the coefficient of friction and the degree of wear.

(パンチ摩耗試験−評価)
表2によれば、実施例1〜14は、追加の熱処理により酸化膜を形成させたものが、再度鏡面研磨し酸化膜を除去したものに比べて5〜10%摩耗量が減少した。このことから、熱処理を施すことにより形成される酸化膜は耐摩耗性が高いことがわかった。また、比較例1、2は、追加の熱処理により酸化膜を形成させたものでも摩耗量の減少割合が2〜3%と効果が少なかった。このことから、実施例1〜14の成分組成からなる熱間鍛造金型に追加の熱処理を施すと耐摩耗性を高める効果が特に高いことがわかった。
また、実施例1〜14は、Si量を低減させたものであるから、Si量を減少させることによって摩耗量が少なくなることもわかった。その理由は、表1によれば、実施例1及び比較例1、2のSi量は、それぞれ0.1%及び1%であるのに対し、その他の成分は、ほぼ同量だからである。
また、表2の実施例1〜14によれば、摩耗量は、C、Mo添加量の増加及びSi、Mn、Cr添加量の減少に伴い減少する傾向があることがわかった。
更に、表2によれば、いずれの実施例も比較例も調質硬さに差異がないが、図6によれば、実鍛造条件では耐摩耗性に差異が生じた。このことからも、実施例1〜14では鍛造面に生成する酸化膜に耐摩耗性や潤滑作用を高める効果があることがわかった。
(Punch wear test-evaluation)
According to Table 2, in Examples 1 to 14, the amount of wear decreased by 5 to 10% in the case where the oxide film was formed by additional heat treatment, compared with the case where the oxide film was removed by mirror polishing again. From this, it was found that the oxide film formed by heat treatment has high wear resistance. In Comparative Examples 1 and 2, even when an oxide film was formed by additional heat treatment, the reduction rate of the amount of wear was 2-3%, and the effect was small. From this, it was found that the effect of increasing the wear resistance was particularly high when an additional heat treatment was applied to the hot forging die having the composition of Examples 1 to 14.
Moreover, since Examples 1-14 reduced Si amount, it turned out that wear amount decreases by reducing Si amount. The reason is that, according to Table 1, the Si amounts of Example 1 and Comparative Examples 1 and 2 are 0.1% and 1%, respectively, while the other components are almost the same amount.
Moreover, according to Examples 1-14 of Table 2, it turned out that there is a tendency for the amount of wear to decrease with the increase in the amount of addition of C and Mo and the amount of addition of Si, Mn, and Cr.
Further, according to Table 2, there is no difference in the tempering hardness in any of the examples and the comparative examples, but according to FIG. 6, there is a difference in the wear resistance under the actual forging conditions. Also from this, in Examples 1-14, it turned out that the oxide film produced | generated on a forge surface has an effect which improves abrasion resistance and a lubrication effect | action.

(実型摩耗試験−評価)
更に、図7によれば、実施例1の鍛造数は、比較例2の鍛造数に比べて1.3倍であったが、実施例1の摩耗量は35%減少した。このことから、実施例1が比較例2に比して耐摩耗性に優れることを実生産においても確認できた。
(Actual wear test-evaluation)
Further, according to FIG. 7, the forging number of Example 1 was 1.3 times that of Comparative Example 2, but the wear amount of Example 1 was reduced by 35%. From this, it was confirmed even in actual production that Example 1 was superior in wear resistance as compared with Comparative Example 2.

以上から、実施例1〜14は、追加の熱処理により密着性・潤滑性が良い酸化膜が形成され、この酸化膜は、鍛造における金型の塑性流動を緩和し、その加工発熱に伴う軟化を抑制することにより耐摩耗性を向上させることがわかった。従って、この酸化膜は保護膜として有効であることがわかった。   From the above, in Examples 1 to 14, an oxide film having good adhesion and lubricity is formed by additional heat treatment, and this oxide film relaxes the plastic flow of the mold in forging and softens due to its processing heat generation. It was found that by suppressing it, the wear resistance was improved. Therefore, it was found that this oxide film is effective as a protective film.

(基本特性−評価)
図8(a)に示す軸力疲労特性によれば、実施例1の破断繰返し数は、同一の負荷応力で比較例2の2〜3倍となった。比較例2の疲労破面には、粗大なVCが確認される一方で、実施例1の破面には起点となるVCが認められなかった。その理由は、実施例1では比較例2に比べるとSiとVを低減したため、凝固時の晶出VCが減少且つ小径化し、後続のソーキングで完全に固溶したためと考えられる。
(Basic characteristics-evaluation)
According to the axial force fatigue characteristics shown in FIG. 8A, the number of repeated fractures in Example 1 was two to three times that in Comparative Example 2 with the same load stress. On the fatigue fracture surface of Comparative Example 2, coarse VC was confirmed, while VC starting from the fracture surface of Example 1 was not recognized. The reason for this is considered that, in Example 1, since Si and V were reduced as compared with Comparative Example 2, the crystallization VC during solidification was reduced and reduced in diameter, and was completely dissolved by subsequent soaking.

金型の早期破断、いわゆる初期の大割れは、破壊靭性値の低い型材ほど起こりやすいため、高い破壊靭性値の確保は、型材の長寿命化においては必須課題である。図8(b)に示す破壊靭性値によれば、実施例1の破壊靭性値は、比較例2の破壊靭性値とほぼ同等だった。従って、実施例1のように、比較例2に比べてSiとVを低減しても大割れが増すことは無いことが確認できた。   Since early rupture of the mold, so-called large initial crack, is more likely to occur in a mold material having a lower fracture toughness value, ensuring a high fracture toughness value is an essential issue in extending the life of the mold material. According to the fracture toughness value shown in FIG. 8 (b), the fracture toughness value of Example 1 was almost equal to the fracture toughness value of Comparative Example 2. Therefore, as in Example 1, it was confirmed that large cracks did not increase even if Si and V were reduced as compared with Comparative Example 2.

図8(c)は、実施例1及び比較例2の調質材を500℃〜700℃の温度域に加熱した後の硬さを示す。これによれば、実施例1と比較例2とでは差異が認められなかった。実施例1ではVを低減させるとはいっても、焼入れ時の結晶粒粗大化を抑制するのに十分な量を含有させているため、焼入れ組織での結晶粒の粗大化は認められなかった。また、Si含有量は固溶硬化及び二次硬化に大きく寄与するが、実施例1ではSiを低減させていても軟化抵抗が劣化しないことが確認できた。   FIG.8 (c) shows the hardness after heating the tempered material of Example 1 and Comparative Example 2 to the temperature range of 500 to 700 degreeC. According to this, there was no difference between Example 1 and Comparative Example 2. In Example 1, although the amount of V was reduced, an amount sufficient to suppress the coarsening of crystal grains during quenching was contained, so that no coarsening of crystal grains in the quenched structure was observed. Moreover, although Si content contributes greatly to solid solution hardening and secondary hardening, it has confirmed that softening resistance did not deteriorate in Example 1 even if Si was reduced.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る熱間鍛造金型及びその製造方法は、耐摩耗性及び耐割れ性に優れているため、特に、熱間鍛造金型の材料として有用であり、加えて熱間プレス型、ダイカスト金型あるいはアルミニウム押出し加工用ダイスなどの材料にも適する。従って、多くの鋼材メーカーや金型メーカーにとって産業上極めて有益である。   The hot forging die and the manufacturing method thereof according to the present invention are particularly useful as a material for hot forging dies because they are excellent in wear resistance and crack resistance, and in addition to hot press dies and die castings. It is also suitable for materials such as molds and dies for aluminum extrusion. Therefore, it is extremely useful industrially for many steel manufacturers and mold manufacturers.

ピンオンディスク法の概要を示す図である。It is a figure which shows the outline | summary of the pin-on-disk method. 実施例1及び比較例2の摩擦摩耗試験の結果を示すグラフである。It is a graph which shows the result of the friction abrasion test of Example 1 and Comparative Example 2. ピンオンディスク法による摩擦摩耗試験後の実施例1及び比較例2のディスク試験片の状態を示す外観写真である。It is an external appearance photograph which shows the state of the disk test piece of Example 1 and the comparative example 2 after the friction abrasion test by a pin on disk method. (a)パンチ試験片の外観の一部を示す図であり、(b)二工程鍛造の工程を示す図である。(A) It is a figure which shows a part of external appearance of a punch test piece, (b) It is a figure which shows the process of two process forging. パンチ摩耗量の測定方法を示す図である。It is a figure which shows the measuring method of punch wear amount. 実施例1〜14及び比較例1、2のパンチ摩耗量を示すグラフである。It is a graph which shows the amount of punch wear of Examples 1-14 and comparative examples 1 and 2. 実施例1及び比較例2の実型の摩耗量を示すグラフである。It is a graph which shows the amount of wear of the real type of Example 1 and Comparative Example 2. 実施例1及び比較例2の各種基本特性を示すグラフであり、(a)S−N曲線、(b)硬さと破壊靭性値の関係、(c)焼戻し軟化抵抗を示すグラフである。It is a graph which shows the various basic characteristics of Example 1 and Comparative Example 2, (a) SN curve, (b) Relationship between hardness and fracture toughness value, (c) Graph showing temper softening resistance.

Claims (6)

質量%で、C:0.32〜0.42%、Si:0.05〜0.15%、Mn:0.3〜1.5%、Ni:0.2%以下、Cr:4.0〜6.0%、V:0.2〜1.0%、Mo+1/2W:0.8〜2.0%、及び、N:0.005〜0.04%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする熱間鍛造金型。   In mass%, C: 0.32 to 0.42%, Si: 0.05 to 0.15%, Mn: 0.3 to 1.5%, Ni: 0.2% or less, Cr: 4.0 -6.0%, V: 0.2-1.0%, Mo + 1 / 2W: 0.8-2.0%, and N: 0.005-0.04%, the balance being Fe and A hot forging die characterized by comprising inevitable impurities. 更に、質量%で、Co:0.1〜1.0%を含有することを特徴とする請求項1に記載の熱間鍛造金型。   The hot forging die according to claim 1, further comprising Co: 0.1 to 1.0% by mass. 請求項1又は2に記載の熱間鍛造金型の表面に酸化膜が形成されていることを特徴とする熱間鍛造金型。 A hot forging die, wherein an oxide film is formed on a surface of the hot forging die according to claim 1 or 2 . 質量%で、C:0.32〜0.42%、Si:0.05〜0.15%、Mn:0.3〜1.5%、Ni:0.2%以下、Cr:4.0〜6.0%、V:0.2〜1.0%、Mo+1/2W:0.8〜2.0%、及び、N:0.005〜0.04%を含有し、残部がFeおよび不可避的不純物からなる鋼を粗加工し、焼入れ焼戻しを行った後、仕上げ加工を施すことにより得られる熱間鍛造金型に、
150℃〜700℃で追加の熱処理を施すことを特徴とする熱間鍛造金型の製造方法。
In mass%, C: 0.32 to 0.42%, Si: 0.05 to 0.15%, Mn: 0.3 to 1.5%, Ni: 0.2% or less, Cr: 4.0 -6.0%, V: 0.2-1.0%, Mo + 1 / 2W: 0.8-2.0%, and N: 0.005-0.04%, the balance being Fe and After roughly processing steel consisting of inevitable impurities, quenching and tempering, hot forging die obtained by finishing processing,
A method for producing a hot forging die, wherein an additional heat treatment is performed at 150 ° C to 700 ° C.
前記鋼は、更に、質量%で、Co:0.1〜1.0%を含有することを特徴とする請求項4に記載の熱間鍛造金型の製造方法。 The steel further contains, by mass%, Co: hot forging dies The method according to claim 4 you, characterized in that it contains 0.1 to 1.0%. 前記鋼は、更に、質量%で、Cu:0.1〜1.0%を含有することを特徴とする請求項4又は5に記載の熱間鍛造金型の製造方法。 The steel further contains, by mass%, Cu: hot forging dies The method according to claim 4 or 5, characterized in that it contains 0.1 to 1.0%.
JP2007159081A 2007-06-15 2007-06-15 Hot forging die and manufacturing method thereof Active JP5273952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159081A JP5273952B2 (en) 2007-06-15 2007-06-15 Hot forging die and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159081A JP5273952B2 (en) 2007-06-15 2007-06-15 Hot forging die and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008308745A JP2008308745A (en) 2008-12-25
JP5273952B2 true JP5273952B2 (en) 2013-08-28

Family

ID=40236601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159081A Active JP5273952B2 (en) 2007-06-15 2007-06-15 Hot forging die and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5273952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11372244B2 (en) 2017-12-25 2022-06-28 Goertek Technology Co., Ltd. Laser beam scanning display device and augmented reality glasses

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975460B2 (en) 2015-01-28 2021-04-13 Daido Steel Co., Ltd. Steel powder and mold using the same
JP7144717B2 (en) * 2018-04-02 2022-09-30 大同特殊鋼株式会社 Mold steel and mold
EP4230759A1 (en) * 2018-10-05 2023-08-23 Proterial, Ltd. Hot work tool steel and hot work tool
RU2749815C1 (en) * 2020-11-06 2021-06-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method for obtaining hardened workpieces of fasteners made of stainless austenitic steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700264B2 (en) * 1988-12-30 1998-01-19 愛知製鋼株式会社 Hot tool steel
JP3252969B2 (en) * 1991-09-03 2002-02-04 日立金属株式会社 Hot tool steel
JPH0762494A (en) * 1993-08-30 1995-03-07 Daido Steel Co Ltd Hot tool steel having excellent low cycle fatigue characteristic
JPH11156468A (en) * 1997-11-25 1999-06-15 Fuji Oozx Inc Preheating device of die for hot forging
JP2000054054A (en) * 1998-07-30 2000-02-22 Nippon Light Metal Co Ltd Aluminum-magnesium-silicon forged part excellent in brightness and its production
JP4230025B2 (en) * 1998-11-13 2009-02-25 山陽特殊製鋼株式会社 Clad mold for hot press and manufacturing method thereof
JP2005336553A (en) * 2004-05-27 2005-12-08 Daido Steel Co Ltd Hot tool steel
JP2008121032A (en) * 2006-11-08 2008-05-29 Daido Steel Co Ltd Die steel superior in spheroidizing annealing property and hardenability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11372244B2 (en) 2017-12-25 2022-06-28 Goertek Technology Co., Ltd. Laser beam scanning display device and augmented reality glasses

Also Published As

Publication number Publication date
JP2008308745A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
TWI700378B (en) Steel for mold and mold
JP2007197784A (en) Alloy steel
JP5534482B2 (en) Mold steel excellent in rust resistance and thermal conductivity and method for producing the same
JP2009242820A (en) Steel, steel for die and die using the same
JP6410515B2 (en) Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same
JP5273952B2 (en) Hot forging die and manufacturing method thereof
KR101688759B1 (en) Die steel and method for producing same
WO2013150972A1 (en) Fe-Al ALLOY PRODUCTION METHOD
JP4860774B1 (en) Cold work tool steel
TW201544609A (en) Steel for high strength bolts having excellent delayed fracture resistance and high strength bolt
WO2016075951A1 (en) Hot work tool steel
JP5437669B2 (en) Hot and hot forging die
JP7069654B2 (en) Mold repair welding material
JPWO2002077309A1 (en) Cast steel and casting mold
JP2005336553A (en) Hot tool steel
JP2008202078A (en) Hot-working die steel
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP5668942B2 (en) Die steel excellent in hole workability and suppression of machining strain and method for producing the same
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity
WO2021095831A1 (en) Hot-work tool steel having exceptional high-temperature strength and toughness
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JP3201711B2 (en) Age-hardened steel for die casting
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250