JP7316116B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP7316116B2 JP7316116B2 JP2019121117A JP2019121117A JP7316116B2 JP 7316116 B2 JP7316116 B2 JP 7316116B2 JP 2019121117 A JP2019121117 A JP 2019121117A JP 2019121117 A JP2019121117 A JP 2019121117A JP 7316116 B2 JP7316116 B2 JP 7316116B2
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- current
- circuit
- source
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Description
Iref=(Vgs1-Vgs2)/R
Iref=1/2×μnCox・(W/L)(Vgs1-VTH)2 …(2)
Iref=1/2×μnCox・(n・W/L)(Vgs2-VTH)2 …(3)
μn: NMOSトランジスタの移動度
Cox: 単位面積当たりの容量
W/L: ゲート幅とゲート長の比
VTH: しきい値電圧
√(2Iref/μnCoxK)=Vgs1-VTH …(4)
√(2Iref/μnCox・nK)=Vgs2-VTH …(5)
図2は、実施の形態1に係る基準電流源100の回路図である。基準電流源100は、第1トランジスタM1、第2トランジスタM2、第3トランジスタM3、第4トランジスタM4、カレントミラー回路110、抵抗Rを備える。
η: サブスレッショルド係数
k: ボルツマン定数
q: 電子電荷
T: 絶対温度
ρ: 抵抗温度係数
Vb-Vgs3=VR1
Vb-Vgs4=VR2
VR1+Vgs1-Vgs2=VR2A
Vgs1=Vgs2
したがって、VR1=VR2A
R=R0+ρT …(14)
R0は、T=0のときの抵抗値である。
図3は、実施例1.1に係る基準電流源100Aの回路図である。実施例1.1に係る基準電流源100Aは、第5トランジスタM5を備える。第5トランジスタM5は、第3経路116上の第4トランジスタM4より低電位側に設けられ、その一端(ソース)は接地ライン104と接続される。第5トランジスタM5には、第4トランジスタM4に流れる電流(m+1)×Irefと、第2トランジスタM2に流れる電流Irefの合計電流(m+2)×Irefが流れる。
図6は、実施例1.2に係る基準電流源100Bの回路図である。実施例1.2では、図3のトランジスタM5が省略され、第4トランジスタM4のソースが接地ライン104と接続される。すなわち第4トランジスタM4のゲートソース間電圧Vgs4が、バイアス電圧Vbに対応する。
実施の形態では、第1トランジスタM1、第2トランジスタM2をNMOSトランジスタで構成したがその限りでなく、バイポーラトランジスタで構成してもよい。この場合、それらのサイズが等しければ、ベースエミッタ間電圧Vbe1,Vbe2は等しくなるため、式(8)が成り立つ。
カレントミラー回路110の構成は特に限定されない。カレントミラー回路110は、バイポーラトランジスタで構成してもよい。また、ワイドラーカレントミラー、ウィルソンカレントミラーなど、その他のカレントミラー回路を採用してもよい。
実施例1.1や1.2では、m=1の場合を説明したがその限りでなく、mは任意に決めることができる。式(15)に示されるように、mをパラメータとして、基準電流Irefを調節できる。たとえば第3トランジスタM3と第4トランジスタM4のサイズを等しくし(K3=K4)、mのみによって基準電流Irefを最適化してもよいし、サイズとmの両方にもとづいて、基準電流Irefを最適化してもよい。
実施の形態の構成において、N型とP型を相互に置換して、天地を反転した回路も、本発明の範囲に含まれる。
実施の形態2では、基準電流源の起動回路について説明する。実施の形態2で説明する起動回路は、実施の形態1で説明した基準電流源100と組み合わせることが可能であるが、実施の形態1とは別の基準電流源と組み合わせもよい。
実施の形態2には以下の技術思想が開示される。
(項目2.1)
基準電流源の起動回路であって、
電源ラインと接地ラインの間に設けられ、起動時において前記電源ラインから前記接地ラインに第1電流が流れるとともに、前記第1電流に応じた第2電流を前記基準電流源に供給する第1回路と、
前記第2電流に応じた第3電流が流れると、前記第2電流がゼロになるように前記第1回路に作用する第2回路と、
前記第2電流に応じた第4電流によって充電されるキャパシタと、
を備え、
前記第1回路は、前記キャパシタの電圧が上昇すると、前記第1回路に流れる前記第1電流が遮断されるよう構成される。
(項目2.2)
前記第1回路は、前記第1電流の経路上に設けられ、ゲートに前記キャパシタの電圧が印加される第1遮断トランジスタを含むことを特徴とする項目2.1に記載の起動回路。
(項目2.3)
前記第2回路は、前記キャパシタの電圧が上昇すると、前記第2回路に流れる前記第3電流が遮断されるように構成されることを特徴とする項目2.1または2.2に記載の起動回路。
(項目2.4)
前記第2回路は、前記第3電流の経路上に設けられ、ゲートに前記キャパシタの電圧が印加される第2遮断トランジスタを含むことを特徴とする項目2.3に記載の起動回路。
(項目2.5)
前記第1回路は、
電源ラインと接地ラインの間に設けられ、ゲートがバイアスされた第1トランジスタと、
前記第1トランジスタに流れる前記第1電流をコピーし、前記第2電流を生成する第1カレントミラー回路と、
を含むことを特徴とする項目2.1から2.4のいずれかに記載の起動回路。
(項目2.6)
前記第2回路は、前記第3電流をコピーして第5電流を生成する第2カレントミラー回路を含み、前記第5電流が前記第1カレントミラー回路からシンクされることを特徴とする項目2.5に記載の起動回路。
(項目2.7)
ゲートに前記キャパシタの電圧が印加され、前記第2カレントミラー回路のゲートと接続される第3遮断トランジスタをさらに備えることを特徴とする項目2.6に記載の起動回路。
(項目2.8)
前記第2カレントミラー回路は、前記第3電流に比例する第6電流によって前記キャパシタへの充電を制限することを特徴とする項目2.6または2.7に記載の起動回路。
(項目2.9)
基準電流源の起動回路であって、
第1端が接地されたキャパシタと、
ゲートが接地された第1トランジスタと、
ソースが接地され、ゲートドレイン間が前記第1トランジスタのドレインと接続された第2トランジスタと、
ソースが接地され、ゲートが前記第2トランジスタのゲートと接続され、ドレインが前記基準電流源のトランジスタのゲートおよびドレインと接続された第3トランジスタと、
ソースが電源ラインと接続され、ドレインが前記第1トランジスタのソースと接続され、ゲートに前記キャパシタの第2端の電圧が印加される第4トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続された第5トランジスタと、
ソースが接地され、ゲートドレイン間が接続された第6トランジスタと、
ソースが接地され、ゲートが前記第6トランジスタのゲートと接続され、ドレインが前記第2トランジスタのドレインと接続された第7トランジスタと、
ソースが前記第5トランジスタのドレインと接続され、ドレインが前記第6トランジスタのドレインと接続され、ゲートに前記キャパシタの前記第2端の電圧が印加された第8トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続され、ドレインが前記キャパシタの前記第2端と接続された第9トランジスタと、
を備えることを特徴とする起動回路。
(項目2.10)
ソースが接地され、ドレインが前記第6トランジスタのゲートと接続され、ゲートに前記キャパシタの前記第2端の電圧が印加される第10トランジスタをさらに備えることを特徴とする項目2.9に記載の起動回路。
(項目2.11)
ソースが接地され、ドレインが前記キャパシタの前記第2端と接続され、ゲートが前記第6トランジスタのゲートと接続される第11トランジスタをさらに備えることを特徴とする項目2.9または2.10に記載の起動回路。
(項目2.12)
ドレインが接地され、ソースが前記キャパシタの前記第2端と接続され、ゲートが前記電源ラインと接続される第12トランジスタをさらに備えることを特徴とする項目2.9から2.10のいずれかに記載の起動回路。
(項目2.13)
基準電流源と、
項目2.1から2.12のいずれかに記載の起動回路と、
を備えることを特徴とする半導体集積回路。
実施の形態3では、演算増幅器について説明する。
第2定電流回路26は、バイアス回路23によって定電流I_pが流れるようにバイアスされる。第2テイル電流源16の電流はゼロであり、第3トランジスタM3、第4トランジスタM4の電流はいずれもゼロである。したがって、カスコード電流Ioは、定電流I_pと等しい。
高電圧領域では、第2テイル電流源16によって、第2入力差動対12にテイル電流2×I2が供給される。第3トランジスタM3、第4トランジスタM4それぞれに、電流I2が流れる。したがって、カスコード電流Ioは、I_pよりもI2だけ減少する。
図18は、実施例3.1に係る補正回路90の回路図である。補正回路90は、定電流源92、トランジスタM201~M206を含む。定電流源92は、定電流2I1を生成する。定電流源92は、実施の形態1あるいは実施の形態2で説明した基準電流源の技術を用いて構成してもよい。
図21は、実施例3.2に係る演算増幅器1Dの回路図である。この実施例において、バイアス電流I_p0は、切り替え回路30の状態と連動して変化する。
実施の形態3では、バイアス回路23に流れるバイアス電流Ip_0を変化させることにより、第2定電流回路26が生成する電流I_pを変化させたがその限りでない。たとえば、補正回路90は、トランジスタM9とM11の接続ノード、M10とM12の接続ノードそれぞれに、電流Iauxをソースするように構成してもよい。ただし、この場合、ソースする2系統の電流Iauxにバラツキがあると、追加の入力オフセット電圧が導入されるおそれがある。実施の形態3で説明したバイアス電流Ip_0を変化させる手法によれば、追加の入力オフセット電圧が生じないという利点がある。
実施の形態3には以下の技術思想が開示される。
(項目3.1)
第1入力電圧を受ける反転入力端子および第2入力電圧を受ける非反転入力端子と、
前記反転入力端子および非反転入力端子と接続される第1極性の第1入力差動対と、
前記反転入力端子および非反転入力端子と接続される第2極性の第2入力差動対と、
前記第1入力差動対に第1テイル電流を供給する第1テイル電流源と、
前記第2入力差動対に第2テイル電流を供給する第2テイル電流源と、
前記第1入力差動対の差動電流、前記第2入力差動対の差動電流を、出力電圧に変換する出力段であり、前記第1入力差動対の差動電流を折り返す第1定電流回路と、前記第1定電流回路により折り返された第1折り返し差動電流の経路に設けられる第1ゲート接地回路と、前記第2入力差動対の差動電流を折り返す第2定電流回路と、前記第2定電流回路により折り返された第2折り返し差動電流の経路に設けられる第2ゲート接地回路と、を含む出力段と、
前記第1入力電圧および前記第2入力電圧に応じて、前記第1定電流回路、前記第2定電流回路の少なくとも一方に流れる電流を補正する補正回路と、
を備えることを特徴とする演算増幅器。
(項目3.2)
前記第1定電流回路と前記第2定電流回路の一方は、バイアス電流に比例した電流を生成する定電流源であり、
前記補正回路は、前記第1入力電圧および前記第2入力電圧に応じて、前記バイアス電流を変化させることを特徴とする項目3.1に記載の演算増幅器。
(項目3.3)
前記バイアス電流は、所定の基準電流と、前記第1入力電圧および前記第2入力電圧に応じた補助電流と、を合成した電流であることを特徴とする項目3.2に記載の演算増幅器。
(項目3.4)
前記第1入力電圧および前記第2入力電圧に応じて、前記第1テイル電流と前記第2テイル電流を動的に変化させる切り替え回路をさらに備えることを特徴とする項目3.2または3.3に記載の演算増幅器。
(項目3.5)
前記バイアス電流は、前記切り替え回路の状態と連動していることを特徴とする項目3.4に記載の演算増幅器。
(項目3.6)
前記補正回路は、
定電流を生成する定電流源と、
ソースが前記定電流源と接続され、ゲートに前記第1入力電圧を受ける第1検出トランジスタと、
ソースが前記定電流源と接続され、ゲートに前記第2入力電圧を受ける第2検出トランジスタと、
ソースが前記定電流源と接続され、ゲートがバイアスされた第3検出トランジスタと、
を含み、前記補助電流は、前記第3検出トランジスタに流れる電流に応じていることを特徴とする項目3.2から3.4のいずれかに記載の演算増幅器。
実施の形態3では、実施の形態4と同様に、演算増幅器について説明する。再び図13を参照する。本発明者らは、図13の演算増幅器1Rについて検討した結果、以下の課題を認識するに至った。
図25は、実施例4.1に係る演算増幅器1Aの回路図である。演算増幅器1Aは、切り替え回路30を備える。切り替え回路30は、第1入力電圧Vpおよび第2入力電圧Vnに応じて、第1テイル電流Itpと第2テイル電流Itnを動的に変化させる。具体的には、上述の低電圧領域においては、第2テイル電流Itnを実質的にゼロとし、高電圧領域においては、第1テイル電流Itpを実質的にゼロとする。切り替え回路30は、遷移領域においては、同相入力電圧VCMに応じて第1テイル電流Itpと第2テイル電流Itnを連続的に変化させ、高電圧範囲と低電圧領域をシームレスに繋いでもよい。
図31は、変形例4.1に係る演算増幅器1Bの回路図である。演算増幅器1Bの構成、動作について、図25の演算増幅器1Aとの相違点を説明する。図25の演算増幅器1Aでは、第1補正信号Sc1が、同相入力電圧VCMに応じて変化していた。これに対して、図31の演算増幅器1Bでは、補正回路40Bの第1補正部42Bが生成する第1補正信号Sc1は、同相入力電圧VCMに依存せず一定である。
変形例4.1では、第1補正電流を一定として、第2補正電流を同相入力電圧に応じて動的に変化させたがその限りでない。その反対に、第2補正電流を一定として、第1補正電流を同相入力電圧に応じて動的に変化させてもよい。
図35~図37を参照して、変形例4.3に係る演算増幅器1Cを説明する。図35は、変形例4.3に係る演算増幅器1Cの回路図である。図35の演算増幅器1Cと図26の演算増幅器1Aの相違点を説明する。第1補正部42Cは、下側回路21CのトランジスタM6,M5それぞれのドレインの電圧Vu,Vvを変化させる。第2補正部44Cは、上側回路22CのトランジスタM9,M10それぞれのドレインの電圧Vx,Vyを変化させる。
実施の形態4には以下の技術思想が開示される。
第1入力電圧を受ける反転入力端子および第2入力電圧を受ける非反転入力端子と、
前記反転入力端子および非反転入力端子と接続される第1極性の第1入力差動対と、
前記反転入力端子および非反転入力端子と接続される第2極性の第2入力差動対と、
前記第1入力差動対に第1テイル電流を供給する第1テイル電流源と、
前記第2入力差動対に第2テイル電流を供給する第2テイル電流源と、
前記第1入力差動対に流れる差動電流、前記第2入力差動対に流れる差動電流を、出力電圧に変換する出力段と、
前記第1入力電圧および前記第2入力電圧に応じて、前記出力段の状態を動的に変化させる補正回路と、
を備えることを特徴とする演算増幅器。
(項目4.2)
前記出力段は、電源ラインと接地ラインの間に縦積みされる上側回路と下側回路を含み、
前記補正回路は、前記第1入力差動対がアクティブであるとき、前記下側回路の状態を調節し、前記第2入力差動対がアクティブであるとき、前記上側回路の状態を調節することを特徴とする項目4.1に記載の演算増幅器。
(項目4.3)
前記出力段は、
前記第1入力差動対の差動電流を折り返す第1定電流回路と、
前記第1定電流回路によって折り返される差動電流の経路に設けられる第1ゲート接地回路と、
前記第2入力差動対の差動電流を折り返す第2定電流回路と、
前記第2定電流回路によって折り返される差動電流の経路に設けられる第2ゲート接地回路と、
を含み、
前記補正回路は、前記第1入力電圧および前記第2入力電圧に応じて、前記第1定電流回路と前記第2定電流回路の状態を調整することを特徴とする項目4.1または4.2に記載の演算増幅器。
(項目4.4)
前記補正回路は、
前記第1定電流回路に第1補正電流を供給する第1補正部と、
前記第2定電流回路に第2補正電流を供給する第2補正部と、
を含むことを特徴とする項目4.3に記載の演算増幅器。
(項目4.5)
前記第1補正部は、
第1基準電流を生成する第1電流源と、
前記第1入力電圧がゲートに入力される第1トランジスタと、
前記第1トランジスタと並列に設けられ、前記第2入力電圧がゲートに入力される第2トランジスタと、
を含み、前記第1補正電流は、前記第1トランジスタおよび前記第2トランジスタに流れる電流に応じていることを特徴とする項目4.4に記載の演算増幅器。
(項目4.6)
前記第1入力電圧および前記第2入力電圧に応じて、前記第1テイル電流と前記第2テイル電流を動的に変化させる切り替え回路をさらに備えることを特徴とする項目4.1から4.5のいずれかに記載の演算増幅器。
(項目4.7)
前記補正回路は、前記切り替え回路の状態と連動して、前記出力段の状態を調節することを特徴とする項目4.6に記載の演算増幅器。
(項目4.8)
第1入力電圧を受ける反転入力端子および第2入力電圧を受ける非反転入力端子と、
前記反転入力端子および非反転入力端子と接続される第1入力差動対と、
前記反転入力端子および非反転入力端子と接続される第2入力差動対と、
前記第1入力差動対に第1テイル電流を供給する第1テイル電流源と、
前記第2入力差動対に第2テイル電流を供給する第2テイル電流源と、
前記第1入力電圧および前記第2入力電圧に応じて、前記第1テイル電流と前記第2テイル電流を動的に変化させる切り替え回路と、
第1入力差動対に接続される下側回路および第2入力差動対と接続される上側回路を含む出力段と、
前記第1入力電圧および前記第2入力電圧に応じた第1補正電流を前記下側回路に供給するとともに、前記切り替え回路の状態に応じた第2補正電流を前記上側回路に供給する補正回路と、
を備えることを特徴とする演算増幅器。
(項目4.9)
第1入力電圧を受ける反転入力端子および第2入力電圧を受ける非反転入力端子と、
前記反転入力端子および非反転入力端子と接続される第1入力差動対と、
前記反転入力端子および非反転入力端子と接続される第2入力差動対と、
前記第1入力差動対に第1テイル電流を供給する第1テイル電流源と、
前記第2入力差動対に第2テイル電流を供給する第2テイル電流源と、
前記第1入力電圧および前記第2入力電圧に応じて、前記第1テイル電流と前記第2テイル電流を動的に変化させる切り替え回路と、
前記第1入力差動対の差動電流を折り返す第1定電流回路と、
前記第1定電流回路によって折り返される差動電流の経路に設けられる第1ゲート接地回路と、
前記第2入力差動対の差動電流を折り返す第2定電流回路と、
前記第2定電流回路によって折り返される差動電流の経路に設けられる第2ゲート接地回路と、
前記切り替え回路と連動して、前記第1定電流回路、前記第2定電流回路に、第1補正電流、第2補正電流を供給する補正回路と、
を備えることを特徴とする演算増幅器。
102 電源ライン
104 接地ライン
110 カレントミラー回路
112 第1経路
114 第2経路
116 第3経路
C1 キャパシタ
M1 第1トランジスタ
M2 第2トランジスタ
M3 第3トランジスタ
M4 第4トランジスタ
M5 第5トランジスタ
M6 第6トランジスタ
R 抵抗
Claims (10)
- 基準電流源と、
起動回路と、
を備え、
前記基準電流源は、
制御端子同士が接続された第1トランジスタと第2トランジスタと、
第1トランジスタを含む第2経路に前記第2トランジスタを含む第1経路に流れる電流と同量の電流を供給し、それとは別の第3経路に、第1経路の電流の所定数倍の電流量の電流を供給するカレントミラー回路と、
前記第3経路上に設けられ、そのソースが前記第1トランジスタの一端と接続される第3トランジスタと、
前記第3経路上の前記第3トランジスタより低電位側に設けられ、ゲートが前記第3トランジスタのゲートと共通に接続される第4トランジスタと、
前記第4トランジスタのソースと前記第2トランジスタの一端の間に設けられた抵抗と、
を備え、
前記起動回路は、
電源ラインと接地ラインの間に設けられ、起動時において前記電源ラインから前記接地ラインに第1電流が流れるとともに、前記第1電流に応じた第2電流を前記基準電流源に供給する第1回路と、
前記第2電流に応じた第3電流が流れると、前記第2電流がゼロになるように前記第1回路に作用する第2回路と、
前記第2電流に応じた第4電流によって充電されるキャパシタと、
を含み、
前記第1回路は、前記キャパシタの電圧が上昇すると、前記第1回路に流れる前記第1電流が遮断されるよう構成されることを特徴とする半導体装置。 - 基準電流源と、
起動回路と、
を備え、
前記基準電流源は、
制御端子同士が接続された第1トランジスタと第2トランジスタと、
第1トランジスタを含む第2経路に前記第2トランジスタを含む第1経路に流れる電流と同量の電流を供給し、それとは別の第3経路に、第1経路の電流の所定数倍の電流量の電流を供給するカレントミラー回路と、
前記第3経路上に設けられ、そのソースが前記第1トランジスタの一端と接続される第3トランジスタと、
前記第3経路上の前記第3トランジスタより低電位側に設けられ、ゲートが前記第3トランジスタのゲートと共通に接続される第4トランジスタと、
前記第4トランジスタのソースと前記第2トランジスタの一端の間に設けられた抵抗と、
を備え、
前記起動回路は、
第1端が接地されたキャパシタと、
ゲートが接地された第1トランジスタと、
ソースが接地され、ゲートドレイン間が前記第1トランジスタのドレインと接続された第2トランジスタと、
ソースが接地され、ゲートが前記第2トランジスタのゲートと接続され、ドレインが前記基準電流源のトランジスタのゲートおよびドレインと接続された第3トランジスタと、
ソースが電源ラインと接続され、ドレインが前記第1トランジスタのソースと接続され、ゲートに前記キャパシタの第2端の電圧が印加される第4トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続された第5トランジスタと、
ソースが接地され、ゲートドレイン間が接続された第6トランジスタと、
ソースが接地され、ゲートが前記第6トランジスタのゲートと接続され、ドレインが前記第2トランジスタのドレインと接続された第7トランジスタと、
ソースが前記第5トランジスタのドレインと接続され、ドレインが前記第6トランジスタのドレインと接続され、ゲートに前記キャパシタの前記第2端の電圧が印加された第8トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続され、ドレインが前記キャパシタの前記第2端と接続された第9トランジスタと、
を含むことを特徴とする半導体装置。 - 前記基準電流源の前記第3トランジスタおよび前記第4トランジスタはサブスレッショルド領域で動作することを特徴とする請求項1または2に記載の半導体装置。
- 前記基準電流源は、前記第3経路上の前記第4トランジスタより低電位側に設けられた第5トランジスタをさらに備え、
前記第5トランジスタの制御端子の電圧が、前記第3トランジスタおよび前記第4トランジスタのゲートに供給されることを特徴とする請求項1から3のいずれかに記載の半導体装置。 - 前記基準電流源の前記カレントミラー回路は、
前記第1トランジスタと接続される第6トランジスタと、
前記第2トランジスタと接続される第7トランジスタと、
前記第3経路と接続される第8トランジスタと、
を含むことを特徴とする請求項1から4のいずれかに記載の半導体装置。 - 基準電流源と、
起動回路と、
を備え、
前記基準電流源は、
制御端子同士が接続された第1トランジスタと第2トランジスタと、
第1トランジスタを含む第2経路に前記第2トランジスタを含む第1経路に流れる電流と同量の電流を供給し、それとは別の第3経路に、第1経路の電流の所定数倍の電流量の電流を供給するカレントミラー回路と、
前記第3経路上に直列に設けられ、それぞれのゲートが共通に接続される複数のMOSトランジスタと、
を備え、
前記第1トランジスタの一端は、前記複数のMOSトランジスタのひとつの一端と接続され、前記第2トランジスタの一端は、抵抗を介して、前記複数のMOSトランジスタの別のひとつの一端と接続され、
前記起動回路は、
電源ラインと接地ラインの間に設けられ、起動時において前記電源ラインから前記接地ラインに第1電流が流れるとともに、前記第1電流に応じた第2電流を前記基準電流源に供給する第1回路と、
前記第2電流に応じた第3電流が流れると、前記第2電流がゼロになるように前記第1回路に作用する第2回路と、
前記第2電流に応じた第4電流によって充電されるキャパシタと、
を含み、
前記第1回路は、前記キャパシタの電圧が上昇すると、前記第1回路に流れる前記第1電流が遮断されるよう構成されることを特徴とする半導体装置。 - 基準電流源と、
起動回路と、
を備え、
前記基準電流源は、
制御端子同士が接続された第1トランジスタと第2トランジスタと、
第1トランジスタを含む第2経路に前記第2トランジスタを含む第1経路に流れる電流と同量の電流を供給し、それとは別の第3経路に、第1経路の電流の所定数倍の電流量の電流を供給するカレントミラー回路と、
前記第3経路上に直列に設けられ、それぞれのゲートが共通に接続される複数のMOSトランジスタと、
を備え、
前記第1トランジスタの一端は、前記複数のMOSトランジスタのひとつの一端と接続され、前記第2トランジスタの一端は、抵抗を介して、前記複数のMOSトランジスタの別のひとつの一端と接続され、
前記起動回路は、
第1端が接地されたキャパシタと、
ゲートが接地された第1トランジスタと、
ソースが接地され、ゲートドレイン間が前記第1トランジスタのドレインと接続された第2トランジスタと、
ソースが接地され、ゲートが前記第2トランジスタのゲートと接続され、ドレインが前記基準電流源のトランジスタのゲートおよびドレインと接続された第3トランジスタと、
ソースが電源ラインと接続され、ドレインが前記第1トランジスタのソースと接続され、ゲートに前記キャパシタの第2端の電圧が印加される第4トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続された第5トランジスタと、
ソースが接地され、ゲートドレイン間が接続された第6トランジスタと、
ソースが接地され、ゲートが前記第6トランジスタのゲートと接続され、ドレインが前記第2トランジスタのドレインと接続された第7トランジスタと、
ソースが前記第5トランジスタのドレインと接続され、ドレインが前記第6トランジスタのドレインと接続され、ゲートに前記キャパシタの前記第2端の電圧が印加された第8トランジスタと、
ソースが前記電源ラインと接続され、ゲートが前記基準電流源の前記トランジスタの前記ゲートおよび前記ドレインと接続され、ドレインが前記キャパシタの前記第2端と接続された第9トランジスタと、
を含むことを特徴とする半導体装置。 - 前記基準電流源の前記第1トランジスタと前記第2トランジスタのサイズは等しいことを特徴とする請求項1から7のいずれかに記載の半導体装置。
- 前記基準電流源の前記第1トランジスタおよび前記第2トランジスタはFET(Field Effect Transistor)であることを特徴とする請求項1から8のいずれかに記載の半導体装置。
- 前記基準電流源の前記第1トランジスタおよび前記第2トランジスタはバイポーラトランジスタであることを特徴とする請求項1から8のいずれかに記載の半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/535,372 US10754369B2 (en) | 2018-08-10 | 2019-08-08 | Reference current source and semiconductor device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018152034 | 2018-08-10 | ||
JP2018152034 | 2018-08-10 | ||
JP2018160987 | 2018-08-30 | ||
JP2018160987 | 2018-08-30 | ||
JP2018162933 | 2018-08-31 | ||
JP2018162933 | 2018-08-31 | ||
JP2018167945 | 2018-09-07 | ||
JP2018167945 | 2018-09-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020042776A JP2020042776A (ja) | 2020-03-19 |
JP7316116B2 true JP7316116B2 (ja) | 2023-07-27 |
Family
ID=69798480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019121117A Active JP7316116B2 (ja) | 2018-08-10 | 2019-06-28 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7316116B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7323473B2 (ja) * | 2020-01-31 | 2023-08-08 | ローム株式会社 | 基準電流源回路 |
CN113110682B (zh) * | 2021-03-15 | 2022-06-07 | 西安理工大学 | 一种具有快速开启功能的ptat电流源 |
CN118235100A (zh) | 2021-12-24 | 2024-06-21 | 罗姆股份有限公司 | 电流生成电路及半导体集成电路 |
CN116520928B (zh) * | 2023-07-03 | 2023-11-03 | 芯天下技术股份有限公司 | 一种参考电流快速建立电路及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002149250A (ja) | 2000-11-14 | 2002-05-24 | Denso Corp | 定電流回路 |
US20070075766A1 (en) | 2005-09-30 | 2007-04-05 | Texas Instruments Deutschland Gmbh | Cmos reference current source |
JP2011186593A (ja) | 2010-03-05 | 2011-09-22 | Renesas Electronics Corp | 電流源回路および半導体装置 |
JP2012048709A (ja) | 2010-07-30 | 2012-03-08 | Handotai Rikougaku Kenkyu Center:Kk | 基準電流源回路 |
JP2017062616A (ja) | 2015-09-24 | 2017-03-30 | ローム株式会社 | 基準電流源回路および半導体集積回路 |
-
2019
- 2019-06-28 JP JP2019121117A patent/JP7316116B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002149250A (ja) | 2000-11-14 | 2002-05-24 | Denso Corp | 定電流回路 |
US20070075766A1 (en) | 2005-09-30 | 2007-04-05 | Texas Instruments Deutschland Gmbh | Cmos reference current source |
JP2011186593A (ja) | 2010-03-05 | 2011-09-22 | Renesas Electronics Corp | 電流源回路および半導体装置 |
JP2012048709A (ja) | 2010-07-30 | 2012-03-08 | Handotai Rikougaku Kenkyu Center:Kk | 基準電流源回路 |
JP2017062616A (ja) | 2015-09-24 | 2017-03-30 | ローム株式会社 | 基準電流源回路および半導体集積回路 |
Also Published As
Publication number | Publication date |
---|---|
JP2020042776A (ja) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7316116B2 (ja) | 半導体装置 | |
JP4937865B2 (ja) | 定電圧回路 | |
US8890503B2 (en) | Step-down power supply circuit | |
US7714645B2 (en) | Offset cancellation of a single-ended operational amplifier | |
JP2010218543A (ja) | ボルテージレギュレータ | |
JP2011198093A (ja) | 基準電圧回路および半導体集積回路 | |
TWI801414B (zh) | 用於生成一恆定電壓參考位準的方法和電路 | |
JP2015203945A (ja) | 電流生成回路、それを備えたバンドギャップリファレンス回路及び半導体装置 | |
US10613570B1 (en) | Bandgap circuits with voltage calibration | |
JP2008067188A (ja) | 差動増幅回路及びその差動増幅回路を使用した充電制御装置 | |
JP2009087203A (ja) | 定電流源回路 | |
WO2019150744A1 (ja) | 補正電流出力回路及び補正機能付き基準電圧回路 | |
US10754369B2 (en) | Reference current source and semiconductor device | |
US7148672B1 (en) | Low-voltage bandgap reference circuit with startup control | |
JP4058334B2 (ja) | ヒステリシスコンパレータ回路 | |
WO2011016153A1 (ja) | 基準電圧生成回路 | |
JP2004234619A (ja) | 定電圧回路 | |
CN201041642Y (zh) | 一种带负反馈的电源偏置电路 | |
US6940338B2 (en) | Semiconductor integrated circuit | |
US20190187739A1 (en) | Current generation circuit | |
US7633281B2 (en) | Reference current circuit for adjusting its output current at a low power-supply voltage | |
TW202046041A (zh) | 電壓產生器 | |
JP5040397B2 (ja) | 基準電圧回路 | |
JP2018197975A (ja) | 過電流保護回路 | |
KR100997391B1 (ko) | 차동신호 생성회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7316116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |