JP7382726B2 - Tube body inclination measuring device - Google Patents
Tube body inclination measuring device Download PDFInfo
- Publication number
- JP7382726B2 JP7382726B2 JP2019043627A JP2019043627A JP7382726B2 JP 7382726 B2 JP7382726 B2 JP 7382726B2 JP 2019043627 A JP2019043627 A JP 2019043627A JP 2019043627 A JP2019043627 A JP 2019043627A JP 7382726 B2 JP7382726 B2 JP 7382726B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- measuring instrument
- main body
- inclination
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 12
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 13
- 238000004804 winding Methods 0.000 description 11
- 238000009412 basement excavation Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000000630 rising effect Effects 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- A Measuring Device Byusing Mechanical Method (AREA)
Description
本発明は、管体の傾き計測装置に関する。 The present invention relates to a tube inclination measuring device.
地盤を掘削することなく地盤に埋設された管体の傾きを計測する方法として、例えば管体の内部へ計測器本体を挿入し、計測器本体に設けられた検出手段によって計測器本体の傾きを検出することで管体の傾きを計測する方法が知られている。例えば特許文献1には、縦穴(管体)内で縦穴計測体(計測器本体)を移動させながら、縦穴計測体(計測器本体)に内設されたジャイロ及び加速度計によって縦穴(管体)の管路位置を計測する計測装置が開示されている。 As a method of measuring the inclination of a pipe buried in the ground without excavating the ground, for example, the measuring instrument body is inserted into the pipe body, and the inclination of the measuring instrument body is detected by the detection means provided in the measuring instrument body. A method of measuring the inclination of a tube body by detecting the inclination is known. For example, in Patent Document 1, while moving the vertical hole measuring body (measuring device main body) within the vertical hole (tubular body), a gyro and an accelerometer installed in the vertical hole measuring body (measuring device main body) are used to measure the vertical hole (tubular body). A measuring device for measuring the position of a pipe is disclosed.
特許文献1に開示されている計測装置では、縦穴計測体の軸の傾きを縦穴の傾きとして推定するため、縦穴計測体の軸と縦穴の中心軸とが一致するように、縦穴内において縦穴計測体を適切な位置に保持する必要がある。 In the measuring device disclosed in Patent Document 1, in order to estimate the inclination of the axis of the vertical hole measuring body as the inclination of the vertical hole, the vertical hole measurement is performed in the vertical hole so that the axis of the vertical hole measuring body and the central axis of the vertical hole coincide. It is necessary to hold the body in the proper position.
しかし、引用文献1に開示されている計測装置では、縦穴計測体の基端に接続されたケーブル(ワイヤ)を滑車やケーブルリールを介してケーブル巻取機で巻取ることで、縦穴内において縦穴計測体を移動させている。このため、特に縦穴の上端部において、ケーブル巻取機によってケーブルを巻取る際、ケーブルに生じた張力によって縦穴計測体の軸が縦穴の中心軸からずれ、縦穴の管路位置の計測精度が低下する虞があった。 However, in the measuring device disclosed in Cited Document 1, by winding the cable (wire) connected to the base end of the vertical hole measuring body with a cable winding machine via a pulley or cable reel, The measurement object is being moved. For this reason, when the cable is wound up by a cable winding machine, especially at the upper end of the vertical hole, the tension generated in the cable causes the axis of the vertical hole measuring body to shift from the central axis of the vertical hole, reducing the accuracy of measuring the pipe position of the vertical hole. There was a risk that it would happen.
本発明は上記事実に鑑み、計測器本体の軸が管体の中心軸からずれることを抑制することで、管体の傾きの計測精度を高めることができる管体の傾き計測装置を提供することを目的とする。 In view of the above-mentioned facts, the present invention provides a tube inclination measuring device that can improve the accuracy of measuring the inclination of the tube by suppressing the axis of the measuring instrument body from shifting from the central axis of the tube. With the goal.
第一態様の管体の傾き計測装置は、地盤に埋設された管体の内部へワイヤで吊下げられて挿入される計測器本体と、前記計測器本体に設けられ、前記管体の内周壁に当接して前記管体の中心軸に前記計測器本体の軸を合わせる位置決め機構と、前記計測器本体に設けられ、鉛直線に対する前記計測器本体の軸の傾きを検出する検出手段と、前記管体の長手方向への前記ワイヤの移動を許容しつつ、前記ワイヤを平面視において前記管体の中心軸上に保持する保持部材と、を有する。 The pipe body inclination measurement device of the first aspect includes a measuring device body that is suspended and inserted into the pipe body buried in the ground by a wire, and a measuring device provided on the measuring device body and installed on the inner circumferential wall of the pipe body. a positioning mechanism that aligns the axis of the measuring instrument main body with the central axis of the tube by coming into contact with the pipe; a detection means provided on the measuring instrument main body for detecting the inclination of the axis of the measuring instrument main body with respect to a vertical line; and a holding member that holds the wire on the central axis of the tubular body in plan view while allowing movement of the wire in the longitudinal direction of the tubular body.
上記構成によれば、地盤に埋設された管体の内部へ挿入され、位置決め機構によって管体の中心軸に軸が合わせられた計測器本体の軸の傾きを、検出手段によって検出することで、管体の傾きを計測することができる。 According to the above configuration, the detection means detects the inclination of the axis of the measuring instrument body, which is inserted into the interior of the pipe buried in the ground and whose axis is aligned with the central axis of the pipe by the positioning mechanism. The inclination of the tube can be measured.
ここで、計測器本体を吊下げるワイヤは、保持部材によって平面視において管体の中心軸上に保持されている。このため、特に管体の上端部において、ワイヤを巻取る際に計測器本体の軸が管体の中心軸からずれることを抑制することができ、管体の傾きの計測精度を高めることができる。 Here, the wire that hangs the measuring instrument body is held by a holding member on the central axis of the tube body in plan view. For this reason, it is possible to suppress the axis of the measuring instrument body from shifting from the central axis of the tube when winding the wire, especially at the upper end of the tube, and it is possible to improve the accuracy of measuring the inclination of the tube. .
第二態様の管体の傾き計測装置は、請求項1に記載の管体の傾き計測装置であって、前記位置決め機構は、前記管体の内周壁に当接して転動する回転部材と、前記計測器本体の外周面に固定され、前記回転部材を支持する弾性部材と、を有する。 A tubular body inclination measuring device according to a second aspect is the tubular body inclination measuring device according to claim 1, wherein the positioning mechanism includes a rotating member that rolls in contact with an inner circumferential wall of the tubular body; and an elastic member fixed to the outer circumferential surface of the measuring instrument main body and supporting the rotating member.
上記構成によれば、回転部材と弾性部材とによって位置決め機構が構成されている。このため、弾性部材によって計測器本体を付勢して計測器本体の軸を管体の中心軸に合わせつつ、回転部材によって計測器本体を管体の長手方向に沿ってスムーズに移動させることができる。 According to the above configuration, the positioning mechanism is configured by the rotating member and the elastic member. Therefore, while the elastic member biases the measuring instrument body to align the axis of the measuring instrument body with the central axis of the tube, the rotating member can smoothly move the measuring instrument body along the longitudinal direction of the tube. can.
第三態様の管体の傾き計測装置は、請求項1又は2に記載の管体の傾き計測装置であって、前記保持部材は、前記管体の上端口部に差し込まれる筒部と、前記筒部から径方向内側に張り出し、前記上端口部に固定される鍔部と、前記鍔部に傾倒可能に取付けられた複数のアームと、前記アームの端部に設けられ、前記ワイヤを挟持して前記ワイヤを前記管体の中心軸上に位置決めするローラと、を有する。 A tubular body inclination measuring device according to a third aspect is the tubular body inclination measuring device according to claim 1 or 2, wherein the holding member includes a cylindrical portion inserted into an upper end mouth portion of the tubular body; a flange projecting radially inward from the cylindrical portion and fixed to the upper end opening; a plurality of arms tiltably attached to the flange; and a plurality of arms provided at the ends of the arms and configured to clamp the wire. and a roller for positioning the wire on the central axis of the tubular body.
上記構成によれば、保持部材の筒部から径方向内側に張り出す鍔部に、端部にローラが設けられた複数のアームが取付けられている。このため、筒部を管体の上端口部に固定し、アームを傾倒させてローラによってワイヤを挟持することで、ワイヤを管体の中心軸上に位置決めすることができる。 According to the above configuration, the plurality of arms each having a roller at the end thereof are attached to the flange portion which projects radially inward from the cylindrical portion of the holding member. Therefore, the wire can be positioned on the central axis of the tube by fixing the cylindrical portion to the upper end of the tube, tilting the arms, and holding the wire between the rollers.
本発明に係る管体の傾き計測装置によれば、計測器本体の軸が管体の中心軸からずれることを抑制することで、管体の傾きの計測精度を高めることができる。 According to the tube inclination measuring device according to the present invention, the accuracy of measuring the inclination of the tube can be improved by suppressing the axis of the measuring instrument body from shifting from the central axis of the tube.
以下、本発明の実施形態の一例における管体の傾き計測装置について、図1~図5を用いて説明する。なお、図中において、矢印Xは管体、計測器本体の長手方向、又は鉛直方向を指し、矢印Yは管体、計測器本体の径方向、又は水平方向を指す。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A tube inclination measuring device according to an example of an embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In addition, in the figure, the arrow X points to the longitudinal direction or the vertical direction of the tube or the measuring device main body, and the arrow Y points to the radial direction or the horizontal direction of the tube or the measuring device main body.
(構造)
図1に示すように、本実施形態の傾き計測装置10の傾き計測対象である管体12は、例えば鋼管からなる掘削ロッドであり、外周面に螺旋状の攪拌翼14(図5参照)が形成されている。本実施形態では、管体12は、内管16と、内管16の外側に設けられた外管18とを有する二重管とされており、地盤Gに鉛直方向に埋設されているとともに、上端口部12Aが地盤G上に露出している。
(structure)
As shown in FIG. 1, the tubular body 12, which is the object of inclination measurement by the inclination measuring device 10 of this embodiment, is a drilling rod made of, for example, a steel pipe, and has spiral stirring blades 14 (see FIG. 5) on its outer peripheral surface. It is formed. In this embodiment, the pipe body 12 is a double pipe having an inner pipe 16 and an outer pipe 18 provided outside the inner pipe 16, and is buried vertically in the ground G. The upper end opening 12A is exposed above the ground G.
なお、管体12は二重管には限らず、一重管や三重管であってもよい。また、管体12は、掘削ロッドに限らず、水道管等の配管であってもよい。さらに、管体12の埋設方向は、鉛直方向に限らず、鉛直方向及び水平方向に対して傾斜して埋設されていてもよい。 Note that the tube body 12 is not limited to a double tube, but may be a single tube or a triple tube. Further, the pipe body 12 is not limited to a drilling rod, but may be a pipe such as a water pipe. Furthermore, the direction in which the tubular body 12 is buried is not limited to the vertical direction, but may be buried at an angle with respect to the vertical direction and the horizontal direction.
傾き計測装置10は、計測器本体20と、計測器本体20に設けられた位置決め機構22と、計測器本体20に設けられた検出手段24と、管体12の上端口部12Aに設けられた保持部材26と、を有している。 The tilt measuring device 10 includes a measuring device body 20, a positioning mechanism 22 provided in the measuring device main body 20, a detection means 24 provided in the measuring device main body 20, and a top end opening 12A of the tube body 12. It has a holding member 26.
計測器本体20は、例えば長手方向の長さが1m程度とされた円筒状の部材であり、外径が管体12の内管16の内径より小さくされている。なお、計測器本体20の長さや外径は、傾き計測対象である管体12の長さや内径に合わせて適宜定められる。 The measuring instrument main body 20 is a cylindrical member having a longitudinal length of about 1 m, for example, and its outer diameter is smaller than the inner diameter of the inner tube 16 of the tube body 12. Note that the length and outer diameter of the measuring instrument main body 20 are determined as appropriate in accordance with the length and inner diameter of the tube body 12 that is the object of inclination measurement.
また、計測器本体20の長手方向一端部(上端部)における中心部には、ワイヤ28の一端部が固定されており、計測器本体20は、ワイヤ28で吊下げられて管体12の内管16の内部に挿入されている。ワイヤ28の他端部は、地盤G上に設置された滑車30を介してワイヤ巻取機32に巻掛けられており、ワイヤ巻取機32でワイヤ28を巻取ることで、計測器本体20を引上げることが可能となっている。 Further, one end of a wire 28 is fixed to the center of one longitudinal end (upper end) of the measuring instrument main body 20, and the measuring instrument main body 20 is suspended by the wire 28 inside the tube body 12. It is inserted inside the tube 16. The other end of the wire 28 is wound around a wire winding machine 32 via a pulley 30 installed on the ground G, and by winding the wire 28 with the wire winding machine 32, the measuring instrument main body 20 It is possible to raise the
また、計測器本体20の外周面20Aには、管体12の内管16の内周壁に当接して管体12の中心軸Pに計測器本体20の軸を合わせる位置決め機構22が設けられている。図2(A)~図2(C)に示すように、位置決め機構22は、回転機構としての一対のタイヤ34と、一対のタイヤ34を支持する弾性部材としての板ばね36と、で構成されている。 Further, a positioning mechanism 22 is provided on the outer circumferential surface 20A of the measuring instrument main body 20 to align the axis of the measuring instrument main body 20 with the central axis P of the tubular body 12 by coming into contact with the inner circumferential wall of the inner tube 16 of the tubular body 12. There is. As shown in FIGS. 2(A) to 2(C), the positioning mechanism 22 includes a pair of tires 34 as a rotating mechanism and a leaf spring 36 as an elastic member that supports the pair of tires 34. ing.
本実施形態では、計測器本体20の外周面20Aの四方にそれぞれ設けられた4つの位置決め機構22によってユニットが構成されており、この位置決め機構22のユニットが計測器本体20の長手方向に間隔をあけて複数(本実施形態では2組)設けられている。なお、ユニットを構成する位置決め機構22の数は、少なくとも3つであればよく、6つ以上とされていてもよい。また、ユニットの数も、計測器本体20の長手方向の長さによって適宜定められる。 In this embodiment, a unit is constituted by four positioning mechanisms 22 provided on each side of the outer circumferential surface 20A of the measuring instrument main body 20, and the units of the positioning mechanisms 22 are arranged at intervals in the longitudinal direction of the measuring instrument main body 20. A plurality of (two sets in this embodiment) are provided at intervals. Note that the number of positioning mechanisms 22 constituting the unit may be at least three, and may be six or more. Further, the number of units is also appropriately determined depending on the length of the measuring instrument main body 20 in the longitudinal direction.
板ばね36は、例えば金属製の薄板であり、計測器本体20の長手方向に沿って外周面20Aに平行に延び、長手方向中央部が計測器本体20の外周面20Aに固定されている。一方、板ばね36の長手方向両端部は計測器本体20の外周面20Aに固定されておらず、板ばね36の長手方向両端部と計測器本体20の外周面20Aとの間に隙間が形成されている。これにより、板ばね36の長手方向両端部が自由端とされ、計測器本体20の径方向内側に向かって弾性変形可能となっている。 The leaf spring 36 is, for example, a thin metal plate, extends parallel to the outer circumferential surface 20A along the longitudinal direction of the measuring instrument main body 20, and has a longitudinal center portion fixed to the outer circumferential surface 20A of the measuring instrument main body 20. On the other hand, both ends of the leaf spring 36 in the longitudinal direction are not fixed to the outer peripheral surface 20A of the measuring instrument main body 20, and a gap is formed between both ends of the leaf spring 36 in the longitudinal direction and the outer peripheral surface 20A of the measuring instrument main body 20. has been done. As a result, both ends of the leaf spring 36 in the longitudinal direction are free ends, and can be elastically deformed toward the inside of the measuring instrument main body 20 in the radial direction.
また、一対のタイヤ34は、板ばね36の長手方向両端部における径方向外側の面、すなわち計測器本体20に対向する面とは反対側の面に、固定部材38を介してそれぞれ回転軸周りに回転可能に固定されている。 Further, the pair of tires 34 are attached to the radially outer surfaces of both longitudinal ends of the leaf spring 36, that is, to the surface opposite to the surface facing the measuring instrument main body 20, through fixing members 38, respectively, around the rotation axis. Rotatably fixed.
図2(B)に示すように、板ばね36の非弾性変形時には、タイヤ34の径方向外側における外周面は、計測器本体20の外周面20Aから突出する位置、すなわち計測器本体20の外周面20Aより径方向外側の位置とされている。一方、図2(C)に示すように、板ばね36の弾性変形時には、タイヤ34の径方向外側における外周面は、計測器本体20の外周面20Aと略同一面上とされている。 As shown in FIG. 2(B), when the leaf spring 36 is inelastically deformed, the outer peripheral surface of the tire 34 on the outside in the radial direction is at a position protruding from the outer peripheral surface 20A of the measuring device main body 20, that is, the outer peripheral surface of the measuring device main body 20. It is positioned radially outward from the surface 20A. On the other hand, as shown in FIG. 2C, when the leaf spring 36 is elastically deformed, the outer circumferential surface of the tire 34 on the outside in the radial direction is substantially on the same plane as the outer circumferential surface 20A of the measuring instrument main body 20.
これにより、図1に示すように、計測器本体20を管体12の内管16の内部に挿入した際、内管16の内周壁と計測器本体20の外周面20Aとの隙間に合わせて板ばね36が弾性変形し、タイヤ34が管体12の内管16の内周壁に当接して転動する。 As a result, when the measuring instrument body 20 is inserted into the inner tube 16 of the tube body 12, as shown in FIG. The leaf spring 36 is elastically deformed, and the tire 34 comes into contact with the inner circumferential wall of the inner tube 16 of the tube body 12 and rolls.
また、計測器本体20内には、鉛直線に対する計測器本体20の軸の傾きを検出する検出手段24が設けられている。本実施形態では、検出手段24は、ジャイロセンサ40と、加速度センサ42と、で構成されている。ジャイロセンサ40は、計測器本体20の軸周りの回転運動(角速度)を検出するセンサであり、加速度センサ42は、計測器本体20の傾きや直線運動(加速度)を検出するセンサである。 Furthermore, a detection means 24 is provided within the measuring instrument main body 20 to detect the inclination of the axis of the measuring instrument main body 20 with respect to the vertical line. In this embodiment, the detection means 24 includes a gyro sensor 40 and an acceleration sensor 42. The gyro sensor 40 is a sensor that detects the rotational movement (angular velocity) of the measuring instrument main body 20 around the axis, and the acceleration sensor 42 is a sensor that detects the inclination or linear movement (acceleration) of the measuring instrument main body 20.
また、計測器本体20は、例えばジャイロセンサ40が検出した角速度と、加速度センサ42が検出した加速度と、を記憶する図示しないメモリを備えている。傾き計測作業後に、例えば地盤G上に設けられた図示しない外部装置(コンピュータ等)に内蔵された演算部によって、計測器本体20のメモリに記憶された角速度と加速度とを読み取ることで、計測器本体20の姿勢角(傾き)が算出される。 The measuring instrument body 20 also includes a memory (not shown) that stores, for example, the angular velocity detected by the gyro sensor 40 and the acceleration detected by the acceleration sensor 42. After the inclination measurement work, for example, by reading the angular velocity and acceleration stored in the memory of the measuring instrument main body 20 by a calculation unit built in an external device (such as a computer) (not shown) installed on the ground G, the measuring instrument The attitude angle (tilt) of the main body 20 is calculated.
なお、ジャイロセンサ40と加速度センサ42とによって計測器本体20の姿勢角(傾き)を算出する方法としては、公知の方法を用いることができ、例えば演算部が計測器本体20に内蔵されている構成としてもよい。また、検出手段24としては、ジャイロセンサ40及び加速度センサ42の他、傾斜計等の公知の検出手段を用いることも可能である。 Note that a known method can be used to calculate the attitude angle (inclination) of the measuring instrument main body 20 using the gyro sensor 40 and the acceleration sensor 42; for example, a calculation unit is built in the measuring instrument main body 20. It may also be a configuration. Further, as the detection means 24, in addition to the gyro sensor 40 and the acceleration sensor 42, it is also possible to use a known detection means such as an inclinometer.
また、管体12の上端口部12Aには、管体12の長手方向へのワイヤ28の移動を許容しつつ、ワイヤ28を平面視において管体12の中心軸P上に保持する保持部材26が設けられている。図3(A)、図3(B)に示すように、保持部材26は、管体12の上端口部12Aに差し込まれる筒部44と、筒部44から径方向内側に張り出す鍔部46と、鍔部46に取付けられた一対のアーム48と、一対のアーム48の上端部にそれぞれ設けられた一対のローラ50、52と、を有している。 Further, a holding member 26 is provided at the upper end opening 12A of the tube body 12 to hold the wire 28 on the central axis P of the tube body 12 in a plan view while allowing the wire 28 to move in the longitudinal direction of the tube body 12. is provided. As shown in FIGS. 3(A) and 3(B), the holding member 26 includes a cylindrical portion 44 that is inserted into the upper end opening 12A of the tube body 12, and a flange portion 46 that protrudes radially inward from the cylindrical portion 44. , a pair of arms 48 attached to the collar 46, and a pair of rollers 50 and 52 provided at the upper ends of the pair of arms 48, respectively.
筒部44は、上端及び下端が開放されており、内径が管体12の外管18の外径より大きくされている。また、筒部44の外周面には、周方向に沿って間隔をあけて複数の雌ねじ穴44Aが形成されており、この雌ねじ穴44Aに螺合されたねじ54によって管体12の外管18を締付けることで、筒部44が管体12の外管18に固定されている。 The cylindrical portion 44 is open at its upper and lower ends, and has an inner diameter larger than the outer diameter of the outer tube 18 of the tube body 12. Further, a plurality of female screw holes 44A are formed on the outer circumferential surface of the cylindrical portion 44 at intervals along the circumferential direction, and the outer tube 18 of the tube body 12 is screwed into the female screw holes 44A by screws 54. By tightening, the cylindrical portion 44 is fixed to the outer tube 18 of the tubular body 12.
鍔部46は、筒部44の上端に接合された円板状の部材であり、鍔部46の中心部には、貫通孔56が形成されている。貫通孔56の内径は、計測器本体20(図1参照)の外径より大きくされており、貫通孔56は、計測器本体20を内管16の内部に挿入する際の挿入孔として用いられる。 The flange portion 46 is a disc-shaped member joined to the upper end of the cylindrical portion 44 , and a through hole 56 is formed in the center of the flange portion 46 . The inner diameter of the through hole 56 is larger than the outer diameter of the measuring instrument main body 20 (see FIG. 1), and the through hole 56 is used as an insertion hole when inserting the measuring instrument main body 20 into the inner tube 16. .
また、鍔部46の下面における貫通孔56の外周には、全周にわたって筒部44側(下側)に突出するガイド部58が形成されている。ガイド部58の外径は、管体12の内管16の内径より小さくされており、鍔部46を管体12の上端口部12Aに載置した際に、ガイド部58が内管16の内部に挿入される。なお、鍔部46は、鍔部46の下面及びガイド部58に沿った形状のカラー60を介して管体12の上端口部12A上に載置されており、筒部44を介して管体12に固定されている。 Further, a guide portion 58 is formed on the outer periphery of the through hole 56 on the lower surface of the flange portion 46 so as to protrude toward the cylindrical portion 44 side (lower side) over the entire circumference. The outer diameter of the guide portion 58 is smaller than the inner diameter of the inner tube 16 of the tube body 12, and when the collar portion 46 is placed on the upper end opening 12A of the tube body 12, the guide portion 58 is made smaller than the inner diameter of the inner tube 16 of the tube body 12. inserted inside. The flange 46 is placed on the upper end opening 12A of the tube 12 via a collar 60 shaped along the lower surface of the flange 46 and the guide portion 58. It is fixed at 12.
一対のアーム48は、鍔部46の上部において、貫通孔56を挟んで対向する位置にそれぞれ設けられている。アーム48は、立面視で略L字形状とされており、鍔部46の上面から上方に立上がる立上がり部48Aと、立上がり部48Aの上端から径方向内側に延出する延出部48Bと、を有している。 The pair of arms 48 are provided in the upper part of the flange 46 at positions facing each other with the through hole 56 interposed therebetween. The arm 48 has a substantially L-shape when viewed from above, and includes a rising portion 48A rising upward from the upper surface of the collar portion 46, and an extending portion 48B extending radially inward from the upper end of the rising portion 48A. ,have.
アーム48の下端部、すなわち立上がり部48Aの下端部は、鍔部46の上面に固定部材62を介して回転軸周りに回転可能に固定されている。これにより、アーム48が非傾倒状態(図3参照)と、径方向外側に傾倒した傾倒状態(図4参照)とに変形可能とされている。なお、一対のアーム48同士は、例えばコイルばね64によって互いに繋がれており、コイルばね64によって径方向内側に付勢されている。 The lower end portion of the arm 48, that is, the lower end portion of the rising portion 48A, is fixed to the upper surface of the collar portion 46 via a fixing member 62 so as to be rotatable around the rotation axis. Thereby, the arm 48 can be deformed into a non-tilted state (see FIG. 3) and a tilted state (see FIG. 4) in which it is tilted outward in the radial direction. Note that the pair of arms 48 are connected to each other by, for example, a coil spring 64, and are urged inward in the radial direction by the coil spring 64.
一対のアーム48の上端部、すなわち延出部48Bの先端部には、それぞれローラ50、52が取り付けられている。ローラ50、52は、互いに回転軸周りに回転可能とされており、アーム48の非傾倒状態(図3に示す状態)において、径方向内側における外周面が互いに接するように配置されている。 Rollers 50 and 52 are attached to the upper ends of the pair of arms 48, that is, to the tips of the extension portions 48B, respectively. The rollers 50 and 52 are mutually rotatable around rotational axes, and are arranged so that their radially inner outer circumferential surfaces are in contact with each other when the arm 48 is not tilted (the state shown in FIG. 3).
また、図3(B)に示すように、一方のローラ52の外周面には、ワイヤ28が挿通される溝52Aが形成されており、アーム48の非傾倒状態では、溝52Aに挿通されたワイヤ28を一対のローラ50、52で挟持することで、ワイヤ28が管体12の中心軸P上に位置決めされる。 Further, as shown in FIG. 3(B), a groove 52A through which the wire 28 is inserted is formed on the outer peripheral surface of one of the rollers 52, and when the arm 48 is not tilted, the wire 28 is inserted into the groove 52A. By sandwiching the wire 28 between the pair of rollers 50 and 52, the wire 28 is positioned on the central axis P of the tubular body 12.
一方、図4(A)、図4(B)に示すように、アーム48の傾倒状態では、アーム48が径方向外側に傾倒することにより、一対のローラ50、52間の距離が広がり、一対のローラ50、52の径方向内側における外周面の間に隙間が形成される。この隙間は、貫通孔56の内径より大きくされており、計測器本体20が貫通孔56に挿入される際に、ローラ50、52が計測器本体20と接触しない構成となっている。 On the other hand, as shown in FIGS. 4(A) and 4(B), when the arm 48 is in the tilted state, the distance between the pair of rollers 50 and 52 increases as the arm 48 tilts outward in the radial direction. A gap is formed between the radially inner outer peripheral surfaces of the rollers 50 and 52. This gap is larger than the inner diameter of the through hole 56, so that the rollers 50 and 52 do not come into contact with the measuring device main body 20 when the measuring device main body 20 is inserted into the through hole 56.
(計測方法)
次に、本実施形態の傾き計測装置10を用いて管体12の傾きを計測する手順について説明する。
(Measurement method)
Next, a procedure for measuring the inclination of the tubular body 12 using the inclination measuring device 10 of this embodiment will be described.
まず、図5(A)に示すように、地盤G上に設置されたオーガ機やパイルドライバ等の杭打ち装置66によって、管体12を回転させながら地盤Gに打ち込み、地盤Gに掘削孔68を形成する。また、掘削孔68内に図示しないセメントミルクを注入し、掘削土とセメントミルクとを混合撹拌する。 First, as shown in FIG. 5(A), the pipe body 12 is driven into the ground G while rotating using a piling device 66 such as an auger or a pile driver installed on the ground G, and an excavated hole 68 is inserted into the ground G. form. Further, cement milk (not shown) is injected into the excavated hole 68, and the excavated soil and cement milk are mixed and stirred.
このとき、例えば地盤G上に設置された光学式測定装置70によって地盤G上における管体12の傾きを計測し、管体12の鉛直度を管理しながら管体12を地盤Gに打ち込む。なお、光学式測定装置70は必須の構成ではなく、例えば目視によって管体12の鉛直度を管理しながら管体12を地盤Gに打ち込む構成としてもよい。 At this time, the inclination of the tubular body 12 on the ground G is measured by, for example, an optical measuring device 70 installed on the ground G, and the tubular body 12 is driven into the ground G while controlling the verticality of the tubular body 12. Note that the optical measuring device 70 is not an essential configuration, and may be configured to drive the tube 12 into the ground G while controlling the verticality of the tube 12 visually, for example.
一般的に、地盤Gに掘削孔68を形成する場合には、複数の管体12を切継ぎしながら掘削を行っていく。このため、本実施形態では、図5(B)に示すように、1本の管体12の地盤Gへの挿入が終わり、次の管体12を切継ぐタイミングで管体12の傾きを計測する。 Generally, when forming an excavation hole 68 in the ground G, excavation is performed while cutting and connecting a plurality of pipe bodies 12. Therefore, in this embodiment, as shown in FIG. 5(B), the inclination of the pipe body 12 is measured at the timing when the insertion of one pipe body 12 into the ground G is finished and the next pipe body 12 is cut and connected. do.
具体的には、図1に示すように、まず、地盤G上に露出している管体12の上端口部12Aに、保持部材26を設置する。そして、図4(A)に示すように、アーム48を傾倒させて一対のローラ50、52間に隙間をあけ、セメントミルクが充填された管体12の内管16の内部に、貫通孔56を介して計測器本体20を挿入する。 Specifically, as shown in FIG. 1, the holding member 26 is first installed at the upper end opening 12A of the tube body 12 exposed above the ground G. Then, as shown in FIG. 4A, the arm 48 is tilted to create a gap between the pair of rollers 50 and 52, and a through hole 56 is inserted into the inner tube 16 of the tube body 12 filled with cement milk. Insert the measuring instrument main body 20 through.
その後、ワイヤ巻取機32(図1、図5参照)からワイヤ28を繰出しながら計測器本体20を管体12の下端部(掘削孔68の底部)まで落とす。そして、図3(A)に示すように、アーム48を非傾倒状態に戻し、一対のローラ50、52によってワイヤ28を挟持する。 Thereafter, the measuring instrument main body 20 is dropped to the lower end of the tube body 12 (the bottom of the excavation hole 68) while the wire 28 is fed out from the wire winder 32 (see FIGS. 1 and 5). Then, as shown in FIG. 3A, the arm 48 is returned to the non-tilted state, and the wire 28 is held between the pair of rollers 50 and 52.
次に、管体12の下端部において、計測器本体20を30秒程度静止させながら、ジャイロセンサ40及び加速度センサ42(図1参照)によって計測器本体20の傾きを検出する。その後、図1に示すように、ワイヤ巻取機32によってワイヤ28を巻取ることで、管体12内において計測器本体20を引上げ、計測器本体20を引上げながら、ジャイロセンサ40及び加速度センサ42によって計測器本体20の傾きを検出する。 Next, while the measuring device main body 20 is kept stationary for about 30 seconds at the lower end of the tube body 12, the inclination of the measuring device main body 20 is detected by the gyro sensor 40 and the acceleration sensor 42 (see FIG. 1). Thereafter, as shown in FIG. 1, the wire 28 is wound up by the wire winding machine 32 to pull up the measuring instrument main body 20 within the tube body 12, and while the measuring instrument main body 20 is being pulled up, the gyro sensor 40 and the acceleration sensor 42 are pulled up. The inclination of the measuring instrument main body 20 is detected.
なお、ワイヤ巻取機32によってワイヤ28を巻取る際、ワイヤ28を挟持する一対のローラ50、52がそれぞれ回転することで、ワイヤ28は、管体12の中心軸P上に位置決めされた状態で管体12の長手方向に沿って移動する。 Note that when the wire 28 is wound up by the wire winding machine 32, the pair of rollers 50 and 52 that sandwich the wire 28 rotate, so that the wire 28 is positioned on the central axis P of the tubular body 12. It moves along the longitudinal direction of the tube body 12.
計測器本体20を管体12の上端部まで引上げた後、上端部において計測器本体20を再び30秒程度静止させながら、ジャイロセンサ40及び加速度センサ42によって計測器本体20の傾きを検出する。このように、管体12の下端部及び上端部でそれぞれ計測器本体20を静止させることで、ジャイロセンサ40及び加速度センサ42によって検出された計測器本体20の傾きを較正(キャリブレーション)する。その後、計測器本体20を管体12から引き抜く。 After the measuring instrument main body 20 is pulled up to the upper end of the tube body 12, the measuring instrument main body 20 is again held still at the upper end for about 30 seconds, and the tilt of the measuring instrument main body 20 is detected by the gyro sensor 40 and the acceleration sensor 42. In this way, by keeping the measuring instrument main body 20 stationary at the lower and upper ends of the tube body 12, respectively, the inclination of the measuring instrument main body 20 detected by the gyro sensor 40 and the acceleration sensor 42 is calibrated. Thereafter, the measuring instrument main body 20 is pulled out from the tube body 12.
管体12の傾き計測完了後、図5(C)に示すように、切継いだ管体12を杭打ち装置66によって回転させながら地盤Gに打ち込み、地盤Gに掘削孔68を形成していく。そして、図5(D)に示すように、管体12が着底して掘削孔68の形成が完了したタイミングで、再び計測器本体20を用いて上述の手順で管体12の傾きを計測する。 After measuring the inclination of the pipe body 12, as shown in FIG. 5(C), the cut and spliced pipe body 12 is driven into the ground G while being rotated by a pile driving device 66, and an excavation hole 68 is formed in the ground G. . Then, as shown in FIG. 5(D), at the timing when the tube body 12 reaches the bottom and the formation of the excavation hole 68 is completed, the inclination of the tube body 12 is measured again using the measuring instrument body 20 in the above-described procedure. do.
2回目の管体12の傾き計測完了後、図5(E)に示すように、管体12を切離しながら管体12を掘削孔68から引き抜く。なお、管体12の傾き計測のタイミングは、上述した切継ぎ時及び着底時の2つに限らず、例えば図5(E)に示す管体12を切離すタイミングで管体12の傾きを計測してもよい。 After the second measurement of the inclination of the tubular body 12 is completed, the tubular body 12 is pulled out from the excavation hole 68 while being separated, as shown in FIG. 5(E). Note that the timing of measuring the inclination of the tubular body 12 is not limited to the above-mentioned two timings of cutting and joining and bottoming out. You can also measure it.
(作用、効果)
本実施形態の傾き計測装置10によれば、計測器本体20に検出手段24が設けられている。このため、地盤Gに埋設された管体12の内部へ計測器本体20を挿入し、検出手段24によって計測器本体20の軸の傾きを検出することで、管体12の傾きを計測することができる。
(action, effect)
According to the inclination measuring device 10 of this embodiment, the detecting means 24 is provided in the measuring device main body 20. Therefore, the inclination of the tube body 12 can be measured by inserting the measuring device body 20 into the inside of the tube body 12 buried in the ground G and detecting the inclination of the axis of the measuring device body 20 by the detection means 24. I can do it.
また、検出手段24として、ジャイロセンサ40及び加速度センサ42を用いているため、例えば傾斜計を用いる構成と比較して、計測時間を短縮することができるとともに、計測精度を高めることができる。 Further, since the gyro sensor 40 and the acceleration sensor 42 are used as the detection means 24, the measurement time can be shortened and the measurement accuracy can be improved, compared to, for example, a configuration using an inclinometer.
また、本実施形態によれば、計測器本体20に位置決め機構22が設けられているため、計測器本体20の軸を管体12の中心軸Pに合わせることができ、計測器本体20の傾き計測精度を高めることができる。 Furthermore, according to the present embodiment, since the measuring device main body 20 is provided with the positioning mechanism 22, the axis of the measuring device main body 20 can be aligned with the central axis P of the tube body 12, and the inclination of the measuring device main body 20 can be adjusted. Measurement accuracy can be improved.
特に、本実施形態によれば、管体12内管16の内周壁に当接して転動するタイヤ34と、計測器本体20の外周面20Aに固定されてタイヤ34を支持する板ばね36と、によって位置決め機構22が構成されている。このため、板ばね36によって計測器本体20を付勢して計測器本体20の軸を管体12の中心軸Pに合わせつつ、タイヤ34によって計測器本体20を管体12の長手方向に沿ってスムーズに移動させることができる。 In particular, according to the present embodiment, the tire 34 that rolls in contact with the inner peripheral wall of the inner tube 16 of the tube body 12, and the leaf spring 36 that is fixed to the outer peripheral surface 20A of the measuring instrument main body 20 and supports the tire 34. , the positioning mechanism 22 is configured. For this reason, the leaf spring 36 biases the measuring instrument main body 20 to align the axis of the measuring instrument main body 20 with the central axis P of the tube 12, and the tire 34 moves the measuring instrument main body 20 along the longitudinal direction of the tube 12. can be moved smoothly.
また、図1に示すように、ワイヤ巻取機32によってワイヤ28を巻取る際、一般的に、ワイヤ28には滑車30方向に張力Tがかかる。特に管体12の上端部では、この張力Tによって計測器本体20の上端部が滑車30方向に引張られ、計測器本体20の軸が管体12の中心軸Pからずれ易い。上述したように、管体12の上端部では、計測器本体20の傾きの較正(キャリブレーション)が行われるため、計測器本体20の軸が管体12の中心軸Pからずれると、計測結果に誤差が生じる。 Further, as shown in FIG. 1, when the wire 28 is wound up by the wire winding machine 32, a tension T is generally applied to the wire 28 in the direction of the pulley 30. Particularly at the upper end of the tube 12, this tension T pulls the upper end of the measuring device main body 20 toward the pulley 30, and the axis of the measuring device main body 20 tends to deviate from the central axis P of the tube 12. As described above, since the tilt of the measuring device body 20 is calibrated at the upper end of the tube body 12, if the axis of the measuring device body 20 deviates from the central axis P of the tube body 12, the measurement result will be distorted. An error occurs.
ここで、本実施形態によれば、計測器本体20を吊下げるワイヤ28が、保持部材26によって平面視において管体12の中心軸P上に保持されている。このため、ワイヤ28を巻取る際にワイヤ28に滑車30方向に張力Tがかかった場合であっても、ワイヤ28が管体12の径方向にずれ動くことを抑制することができる。 According to the present embodiment, the wire 28 for suspending the measuring instrument body 20 is held by the holding member 26 on the central axis P of the tubular body 12 in plan view. Therefore, even if tension T is applied to the wire 28 in the direction of the pulley 30 when winding the wire 28, it is possible to suppress the wire 28 from shifting in the radial direction of the tubular body 12.
これにより、特に管体12の上端部において、計測器本体20の軸が管体12の中心軸Pからずれることを抑制することができ、計測器本体20の傾きの計測精度、すなわち管体12の傾きの計測精度を高めることができる。 As a result, it is possible to suppress the axis of the measuring instrument body 20 from shifting from the central axis P of the tubular body 12, especially at the upper end of the tubular body 12. The accuracy of measuring the slope of can be improved.
また、本実施形態によれば、筒部44と、鍔部46と、一対のアーム48と、アーム48の上端部に取付けられた一対のローラ50、52と、によって保持部材26が構成されている。このため、筒部44を管体12の上端口部12Aに固定し、アーム48を傾倒させてローラ50、52によってワイヤ28を挟持することで、管体12の長手方向へのワイヤ28の移動を許容しつつ、ワイヤ28を管体12の中心軸P上に位置決めすることができる。 Further, according to the present embodiment, the holding member 26 is constituted by the cylindrical portion 44, the collar portion 46, the pair of arms 48, and the pair of rollers 50 and 52 attached to the upper end portion of the arm 48. There is. Therefore, by fixing the cylindrical portion 44 to the upper end opening 12A of the tube body 12, tilting the arm 48, and holding the wire 28 between the rollers 50 and 52, the wire 28 can be moved in the longitudinal direction of the tube body 12. The wire 28 can be positioned on the central axis P of the tubular body 12 while allowing this.
また、一方のローラ52の外周面に溝52Aが形成されているため、ワイヤ28を溝52Aに挿通させることで、一対のローラ50、52によってワイヤ28の径方向外側を全周にわたって囲むことができる。これにより、単に一対のローラ50、52の外周面同士でワイヤ28を両側から挟込む構成と比較して、ローラ50、52の外周面に沿ってワイヤ28が径方向にずれ動くことを抑制することができる。 Further, since a groove 52A is formed on the outer circumferential surface of one of the rollers 52, by inserting the wire 28 into the groove 52A, the wire 28 can be surrounded by the pair of rollers 50 and 52 over the entire circumference. can. This suppresses the wire 28 from shifting in the radial direction along the outer circumferential surfaces of the rollers 50 and 52, compared to a configuration in which the wire 28 is simply sandwiched between the outer circumferential surfaces of the pair of rollers 50 and 52 from both sides. be able to.
また、本実施形態では、保持部材26の鍔部46の中心部に貫通孔56が形成されているため、保持部材26を管体12の上端口部12Aに固定した状態であっても、管体12の内部に計測器本体20を挿入することが可能となる。 Further, in this embodiment, since the through hole 56 is formed in the center of the flange portion 46 of the holding member 26, even when the holding member 26 is fixed to the upper end opening 12A of the tube body 12, the tube It becomes possible to insert the measuring instrument main body 20 inside the body 12.
また、本実施形態では、管体12の切継ぎ時と着底時の2つのタイミングで管体12の傾きを計測している。このため、例えば切継ぎ時に管体12の傾きを計測することで、掘削孔68の形成途中で管体12の角度を修正することができ、着底時に管体12の傾きを計測することで、掘削孔68の出来高を確認することができる。 Furthermore, in this embodiment, the inclination of the tube 12 is measured at two timings: when the tube 12 is cut and connected and when it bottoms out. Therefore, for example, by measuring the inclination of the tubular body 12 at the time of cutting and joining, the angle of the tubular body 12 can be corrected during the formation of the excavation hole 68, and by measuring the inclination of the tubular body 12 at the time of bottoming. , the output of the drilling hole 68 can be confirmed.
さらに、管体12を切継ぐタイミングで管体12の傾きを計測するため、切継ぎ用の次の管体12を準備している合間に管体12の傾きを計測することができる。これにより、傾きの計測によって管体12の地盤Gへの打込み作業が中断することを抑制することができ、施工時間が増加することを抑制することができる。 Furthermore, since the inclination of the tube 12 is measured at the timing of cutting and connecting the tube 12, the inclination of the tube 12 can be measured while preparing the next tube 12 for cutting and connecting. Thereby, it is possible to prevent the work of driving the pipe body 12 into the ground G from being interrupted due to measurement of the inclination, and it is possible to suppress an increase in construction time.
(その他の実施形態)
以上、本発明について実施形態の一例について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能である。
(Other embodiments)
Although an example of an embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various other embodiments are possible within the scope of the present invention.
例えば、上記実施形態では、位置決め機構22が板ばね36とタイヤ34とで構成されていた。しかし、位置決め機構22は、少なくとも計測器本体20の軸を管体12の中心軸Pに合わせた状態で計測器本体20を管体12内で長手方向に移動可能に保持する構成とされていればよく、実施形態の構成に限らない。 For example, in the embodiment described above, the positioning mechanism 22 was composed of the leaf spring 36 and the tire 34. However, the positioning mechanism 22 is configured to hold the measuring instrument body 20 movably in the longitudinal direction within the tube body 12 with at least the axis of the measuring instrument body 20 aligned with the central axis P of the tube body 12. However, the configuration is not limited to the configuration of the embodiment.
また、保持部材26も、少なくともワイヤ28を管体12の中心軸P上に位置決めすることができる構成とされていればよく、実施形態の構成に限らない。例えば、保持部材の鍔部に外周部から中心部へ延びるスリットを形成しておき、管体12に計測器本体20を挿入した後で、スリットにワイヤ28を通して管体12の上端口部12Aに保持部材を固定する構成としてもよい。 Furthermore, the holding member 26 is not limited to the configuration of the embodiment, as long as it can at least position the wire 28 on the central axis P of the tubular body 12. For example, a slit extending from the outer periphery to the center is formed in the flange of the holding member, and after inserting the measuring instrument main body 20 into the tube 12, the wire 28 is passed through the slit and inserted into the upper end opening 12A of the tube 12. The holding member may be fixed.
10 傾き計測装置
12 管体
12A 上端口部
20 計測器本体
20A 外周面
22 位置決め機構
24 検出手段
26 保持部材
28 ワイヤ
34 タイヤ(回転部材の一例)
36 板ばね(弾性部材の一例)
44 筒部
46 鍔部
48 アーム
50、52 ローラ
G 地盤
P 中心軸
10 Tilt measuring device 12 Pipe body 12A Upper end opening 20 Measuring device main body 20A Outer peripheral surface 22 Positioning mechanism 24 Detecting means 26 Holding member 28 Wire 34 Tire (an example of a rotating member)
36 Leaf spring (an example of an elastic member)
44 Cylindrical portion 46 Flange portion 48 Arms 50, 52 Roller G Ground P Central axis
Claims (4)
前記計測器本体に設けられ、前記管体の内周壁に当接して前記管体の中心軸に前記計測器本体の軸を合わせる位置決め機構と、
前記計測器本体に設けられ、鉛直線に対する前記計測器本体の軸の傾きを検出する検出手段と、
前記管体の中心軸上に配置され、前記管体の長手方向への前記ワイヤの移動を許容しつつ、前記ワイヤを平面視において前記管体の中心軸上に保持する保持部材と、
を備え、
前記保持部材は、前記管体の上端口部に設けられ、
前記保持部材は、
前記管体の上端口部に差し込まれる筒部と、
前記筒部から径方向内側に張り出し、前記上端口部に固定される鍔部と、
前記鍔部に傾倒可能に取付けられた複数のアームと、
前記アームの端部に設けられ、前記ワイヤを挟持して前記ワイヤを前記管体の中心軸上に位置決めするローラと、
を有する、
管体の傾き計測装置。 The main body of the measuring instrument is suspended by a wire and inserted into the inside of a pipe buried in the ground;
a positioning mechanism that is provided on the measuring instrument main body and comes into contact with an inner circumferential wall of the tubular body to align the axis of the measuring instrument main body with the central axis of the tubular body;
a detection means provided on the measuring instrument body and detecting the inclination of the axis of the measuring instrument main body with respect to a vertical line;
a holding member that is disposed on the central axis of the tubular body and holds the wire on the central axis of the tubular body in plan view while allowing movement of the wire in the longitudinal direction of the tubular body;
Equipped with
The holding member is provided at the upper end opening of the tube,
The holding member is
a cylindrical portion inserted into the upper end opening of the tube;
a flange projecting radially inward from the cylindrical portion and fixed to the upper end opening;
a plurality of arms tiltably attached to the flange;
a roller provided at an end of the arm to sandwich the wire and position the wire on the central axis of the tubular body;
has,
A device for measuring the inclination of a tube body.
前記管体の内周壁に当接して転動する回転部材と、
前記計測器本体の外周面に固定され、前記回転部材を支持する弾性部材と、
を有する、請求項1に記載の管体の傾き計測装置。 The positioning mechanism includes:
a rotating member that rolls in contact with the inner circumferential wall of the tube;
an elastic member fixed to the outer peripheral surface of the measuring instrument body and supporting the rotating member;
The tube inclination measuring device according to claim 1, comprising:
前記板ばねの長手方向中央部が前記外周面に固定され、
前記板ばねの長手方向両端部の自由端に前記回転部材が設けられている、
請求項2に記載の管体の傾き計測装置。 The elastic member is a leaf spring arranged along the insertion direction of the measuring instrument main body,
A longitudinal center portion of the leaf spring is fixed to the outer peripheral surface,
The rotating member is provided at the free ends of both longitudinal ends of the leaf spring,
The tube inclination measuring device according to claim 2.
請求項1~請求項3のいずれか1項に記載の管体の傾き計測装置。
The detection means includes a gyro sensor and an acceleration sensor.
The tube body inclination measuring device according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019043627A JP7382726B2 (en) | 2019-03-11 | 2019-03-11 | Tube body inclination measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019043627A JP7382726B2 (en) | 2019-03-11 | 2019-03-11 | Tube body inclination measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020148476A JP2020148476A (en) | 2020-09-17 |
JP7382726B2 true JP7382726B2 (en) | 2023-11-17 |
Family
ID=72430473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019043627A Active JP7382726B2 (en) | 2019-03-11 | 2019-03-11 | Tube body inclination measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7382726B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113803586B (en) * | 2021-09-03 | 2023-05-30 | 杭州国家水电站大坝安全和应急工程技术中心有限公司 | Device capable of enabling inclinometry probe to horizontally rotate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150810A (en) | 2008-12-25 | 2010-07-08 | Nishimatsu Constr Co Ltd | Implement and method for measuring inclination |
JP2013231647A (en) | 2012-04-27 | 2013-11-14 | Toa Harbor Works Co Ltd | Drilling position measuring probe |
CN208219650U (en) | 2018-01-11 | 2018-12-11 | 杭州西南检测技术股份有限公司 | A kind of tubular pole inclinometer locating guide device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2825333B2 (en) * | 1990-10-09 | 1998-11-18 | 株式会社レアックス | Integral cone mirror for hole wall observation and lifting sonde using this |
JP2733597B2 (en) * | 1991-11-26 | 1998-03-30 | 日本航空電子工業株式会社 | Inclinometer |
JP3012458B2 (en) * | 1994-08-30 | 2000-02-21 | 株式会社クボタ | Posture measurement method of cylindrical body |
JPH08313251A (en) * | 1995-05-16 | 1996-11-29 | Raito Kogyo Co Ltd | Measuring-system calibration apparatus and method of measuring hole bend |
JPH10281763A (en) * | 1997-04-07 | 1998-10-23 | Shimadzu Corp | Inclination meter |
-
2019
- 2019-03-11 JP JP2019043627A patent/JP7382726B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150810A (en) | 2008-12-25 | 2010-07-08 | Nishimatsu Constr Co Ltd | Implement and method for measuring inclination |
JP2013231647A (en) | 2012-04-27 | 2013-11-14 | Toa Harbor Works Co Ltd | Drilling position measuring probe |
CN208219650U (en) | 2018-01-11 | 2018-12-11 | 杭州西南检测技术股份有限公司 | A kind of tubular pole inclinometer locating guide device |
Also Published As
Publication number | Publication date |
---|---|
JP2020148476A (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0508393B1 (en) | Pipe movement detection method in a wellbore and system | |
JP7382726B2 (en) | Tube body inclination measuring device | |
JP2009002809A (en) | Hole wall measuring device | |
JP2008063867A (en) | Soil improving equipment and excavating construction method | |
US9464518B2 (en) | Method and device for producing and measuring a borehole | |
JP2013096814A (en) | Inclinometer | |
JP3621174B2 (en) | Verticalness measuring device | |
CN105241421A (en) | Method for measuring slope of pipe pile | |
JP3742936B2 (en) | Method and apparatus for measuring excavation accuracy of underground excavator | |
JP4495716B2 (en) | Trench wall equipment | |
JPH11107278A (en) | Method and device for pressing in and drawing out pile | |
JP7209295B2 (en) | LINEAR OBJECT INSTALLATION DEVICE AND LINEAR OBJECT INSTALLATION METHOD | |
JP2014238309A (en) | Deviation amount measurement device for drilling bit | |
CN114061403A (en) | BIM-based project supervision monitoring system | |
JP7504837B2 (en) | Hole wall shape identification system | |
JP7015090B2 (en) | Drilling rod with deformation detector | |
JP4230400B2 (en) | Drilling tip position measurement system in borehole depth drilling and measurement method using the same | |
JP7547651B2 (en) | Measuring device and removal device having the measuring device | |
JP6912803B2 (en) | Pile penetration measurement method and pile penetration measurement tool | |
JPH08232573A (en) | Equipment and method for detcting place of excavation and underground excavation method | |
CA1189317A (en) | Instruments for monitoring the direction of a borehole | |
JPH0521483B2 (en) | ||
JP3538685B2 (en) | Excavator displacement measurement device | |
JP2001271343A (en) | Porous wall measuring device and porous wall measuring method | |
JP3062046B2 (en) | Rolling measurement device and method for vertical excavator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230118 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20230118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230330 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230928 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20231010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7382726 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |