JP7238158B2 - Maltotriose-producing amylase mutants that produce maltotriose with high specificity - Google Patents
Maltotriose-producing amylase mutants that produce maltotriose with high specificity Download PDFInfo
- Publication number
- JP7238158B2 JP7238158B2 JP2021557729A JP2021557729A JP7238158B2 JP 7238158 B2 JP7238158 B2 JP 7238158B2 JP 2021557729 A JP2021557729 A JP 2021557729A JP 2021557729 A JP2021557729 A JP 2021557729A JP 7238158 B2 JP7238158 B2 JP 7238158B2
- Authority
- JP
- Japan
- Prior art keywords
- maltotriose
- series
- amino acid
- mutant
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/90—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、高い特異性でマルトトリオースを生産するマルトトリオース生成アミラーゼの突然変異体に関し、遺伝子工学および酵素工学の分野に属する。 The present invention relates to mutants of maltotriose-producing amylases that produce maltotriose with high specificity, and belongs to the fields of genetic engineering and enzyme engineering.
マルトトリオース(Maltotriose、α-D-Glc-(1→4)-α-D-Glc-(1→4)-D-Glc、G3と略称する。)は、α-(1→4)グリコシド結合を介して3つのグルコース単位が結合してなる機能性オリゴ糖に属する。その分子式はC18H32O16であり、相対分子量は504.438であり、密度は1.8±0.1g・cm-3であり、融点は132-135℃であり、常温で白色固体粉末である。G3は、様々な優れた物理・化学的特性および生理学的特性を有し、また、虫歯を防ぐ特徴、低い甘味度、低い粘度、低いカロリー、結晶抵抗性、および低い浸透圧の特徴を有する消化可能な栄養甘味料であり、冷凍食品の冷凍温度を変化させるとともに、熱処理食品の中でメイラード反応によって引き起こされる褐変量を制御するために使用することができる。G3は、高い保湿能力を提供して、過度的な乾燥および低い水分活動度を防止し、微生物の汚染を制御しやすく、強い安定性を持っており、デンプンの老化(starch retrogradation)に対する強い阻害剤である。G3は、食品、飲料、化学工業、医薬等の産業において幅広く利用されている。市場上のG3製品はほとんど日本から来たものである。日本食品化工株式会社の「フジオリゴ#360」、日本コーンスターチ(株)の「新型マルトオリゴ糖」、日本三菱ケミカルフーズ株式会社の「直鎖オリゴ糖origo」、群栄化学工業株式会社の「ピュアトース」は、いずれも主成分がG3である。 Maltotriose (abbreviated as Maltotriose, α-D-Glc-(1→4)-α-D-Glc-(1→4)-D-Glc, G3) is an α-(1→4) glycoside It belongs to functional oligosaccharides consisting of three glucose units linked via bonds. Its molecular formula is C18H32O16, its relative molecular weight is 504.438, its density is 1.8±0.1 g·cm −3 , its melting point is 132-135° C., and it is a white solid powder at normal temperature. G3 has various excellent physico-chemical and physiological properties, and also has caries-preventing characteristics, low sweetness, low viscosity, low calorie, crystal resistance, and low osmotic pressure. It is a possible nutritive sweetener and can be used to modify the freezing temperature of frozen foods as well as control the amount of browning caused by the Maillard reaction in thermally processed foods. G3 provides high moisturizing capacity to prevent excessive dryness and low water activity, easy to control microbial contamination, has strong stability and strong inhibition against starch retrogradation. is an agent. G3 is widely used in industries such as food, beverage, chemical industry, and medicine. Most of the G3 products on the market come from Japan. Nippon Shokuhin Kako Co., Ltd.'s "Fujioligo#360", Nippon Corn Starch Co., Ltd.'s "New Maltooligosaccharide", Nippon Mitsubishi Chemical Foods Co., Ltd.'s "Linear Oligosaccharide Origo", and Gunei Chemical Industry Co., Ltd.'s "Pure Tose" are , the main component of which is G3.
マルトトリオース生成アミラーゼ(EC 3.2.1.116、maltotriose forming α-amylase、AmyAと略称される)は、遺伝子tfaによりコードされ、マルトトリオース生成能を有するα-アミラーゼである。AmyAは、デンプンやデキストリンを基質として、糖鎖中のα-(1→4)グリコシド結合をエンドカッティングまたはエキソカッティングにより加水分解し、マルトトリオースと少量の副生物を生成する。この酵素を発見することは、G3の調製のための新規な知見を提供する。 Maltotriose-forming amylase (EC 3.2.1.116, maltotriose forming α-amylase, abbreviated as AmyA) is an α-amylase encoded by the gene tfa and capable of forming maltotriose. Using starch or dextrin as a substrate, AmyA hydrolyzes α-(1→4) glycosidic bonds in sugar chains by end-cutting or exo-cutting to produce maltotriose and a small amount of by-products. Finding this enzyme provides new knowledge for the preparation of G3.
現在、G3の製造プロセスは化学法と酵素法の2つに分けられている。化学法はプルラン(pullulan)を出発原料とし、アセチル化、脱アセチル化の二つのステップによりG3を調製することができる。この二つのステップの反応では、濃硫酸、石油エーテル、メタノール及びナトリウムメトキシド等のハイリスクな試薬が必要であり、ステップが短く、操作が簡単であるが、基質のコストが高く、環境に対する害が大きい。酵素法は、環境に優しく、省エネで、かつ効率的・安全的な代替法としては、生産コストを著しく低減し、製品品質を向上させ、消費者の需要を満たすことができ、マルトトリオース産業の持続可能な発展を推進する原動力である。酵素法による調製は使用される酵素の違いによって、2種類に分けられている。第一種の酵素法はプルランをプルラナーゼにより加水分解し、医薬グレードのG3(純度99%以上)を連続的かつ自動化で調製できるが、この方法には基質のコストが高いという問題がある。デンプンは、プルランと比較して、豊富で天然の再生可能な資源であり、米、トウモロコシ、小麦、水稲、ジャガイモ及びキャッサバなどの多くの重要な食用作物の種子、根、または塊茎の主な貯蔵炭水化物であり、より経済的である。マルトデキストリンは、デンプンを糊化させた後にα-アミラーゼを添加して液化させた生成物である。α-アミラーゼの作用により、マルトデキストリンは重合度が低く、溶解度が大きく、他の酵素が働くことに有利である。第二種の方法はAmyAを主な酵素とし、デンプンやマルトデキストリンなどの安価な原料を基質としてG3を生成する方法である。一般的に、脱分枝のために反応系にプルラナーゼを添加する必要がある。しかし、現在、AmyAには、副生物であるグルコースやマルトースが多く、分離精製の難しさやコストが増加する問題がある。従って、分子修飾等の手段によりG3特異性の高いAmyAを取得することで、G3の生産量を向上させ、生産プロセスを簡略化し、生産コストを低減することができる。 Currently, the manufacturing process of G3 is divided into two, chemical method and enzymatic method. The chemical method uses pullulan as a starting material, and G3 can be prepared by two steps of acetylation and deacetylation. This two-step reaction requires high-risk reagents such as concentrated sulfuric acid, petroleum ether, methanol and sodium methoxide, is short in steps and simple to operate, but has high substrate costs and is harmful to the environment. is large. As an environmentally friendly, energy-saving, efficient and safe alternative, the enzymatic method can significantly reduce production costs, improve product quality, and meet consumer demand for the maltotriose industry. is the driving force behind the sustainable development of The enzymatic preparation is divided into two types according to the difference in the enzymes used. The first enzymatic method hydrolyzes pullulan with pullulanase and can continuously and automatically prepare pharmaceutical grade G3 (purity of 99% or more), but this method has the problem of high substrate cost. Starch is an abundant, natural and renewable resource compared to pullulan and is the primary storage of seeds, roots or tubers of many important food crops such as rice, maize, wheat, rice, potato and cassava. Carbohydrate and more economical. Maltodextrin is the product of gelatinizing starch and then liquefying it with the addition of α-amylase. Due to the action of α-amylase, maltodextrin has a low degree of polymerization and high solubility, which is advantageous for the action of other enzymes. The second method is a method of producing G3 using AmyA as the main enzyme and inexpensive raw materials such as starch and maltodextrin as substrates. Generally, it is necessary to add pullulanase to the reaction system for debranching. At present, however, AmyA contains many by-products such as glucose and maltose, and there are problems such as difficulty in separation and purification and an increase in cost. Therefore, by obtaining AmyA with high G3 specificity by means of molecular modification or the like, it is possible to improve the production amount of G3, simplify the production process, and reduce the production cost.
本発明は、上記従来の問題点を解決するために、マルトトリオース生成アミラーゼの突然変異体を提供する。本発明で使用される、サーモビフィダ・フスカ(Thermobifida fusca) NTU22由来のマルトトリオース生成アミラーゼTfAmyAは、酵素変換反応の初期段階でG1-G3の生成物を生成して一種のエンドヌクレアーゼに属しているので、TfAmyAがG3を生産する際の、基質に対する収率を低下させるとともに、分離精製の難しさも増加させる。したがって、該酵素のG3生産能と特異性をさらに高めることは、G3の生産コストの低減と生産の大規模化に有利である。 The present invention provides mutants of maltotriose-producing amylase to solve the above conventional problems. The maltotriose-producing amylase TfAmyA from Thermobifida fusca NTU22 used in the present invention belongs to a class of endonucleases producing G1-G3 products at the initial stage of the enzymatic conversion reaction. Therefore, when TfAmyA produces G3, the yield relative to the substrate decreases and the difficulty of separation and purification increases. Therefore, further enhancing the G3-producing ability and specificity of the enzyme is advantageous for reducing the production cost of G3 and increasing the scale of production.
本発明は、高い特異性でマルトトリオースを生産するマルトトリオース生成アミラーゼの突然変異体であって、親TfAmyAに対してカルボキシル基末端がトランケートされたか、又はトランケートされた突然変異体であるアミノ酸の47番目、101番目、103番目、153番目のいずれか一つの位置にあるアミノ酸を突然変異させてなる突然変異体を提供する。 The present invention provides mutants of maltotriose-producing amylases that produce maltotriose with high specificity, which are carboxyl-terminally truncated or truncated mutants relative to the parent TfAmyA amino acids 47, 101, 103, or 153 of any one amino acid is mutated.
本発明の一実施態様において、前記親TfAmyAのアミノ酸配列は、配列番号1で示されるものである。 In one embodiment of the invention, the amino acid sequence of said parental TfAmyA is that shown in SEQ ID NO:1.
本発明の一実施態様は、以下の(a)-(e)のいずれかに示す突然変異体である:
(a)親の451-572番目のアミノ酸がトランケートされ、アミノ酸配列が配列番号4で示された突然変異体;
(b)配列番号4で示されるアミノ酸配列において、47番目のロイシンをリジンまたはアルギニンに突然変異させて得られ、それぞれL47K、L47Rと命名された突然変異体;
(c)配列番号4で示されるアミノ酸配列において、101番目のグリシンをセリン、トレオニン、アスパラギン酸、アスパラギン、グルタミン酸、またはグルタミンに突然変異させて得られ、それぞれG101S、G101T、G101D、G101N、G101E、G101Qと命名された突然変異体;
(d)配列番号4で示されるアミノ酸配列において、103番目のグリシンをヒスチジンに突然変異させて得られ、G103Hと命名された突然変異体;
(e)配列番号4で示されるアミノ酸配列において、153番目のグリシンをセリン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミン、またはヒスチジンに突然変異させて得られた突然変異体をそれぞれG153S、G153D、G153N、G153E、G153Q、G153Hと命名された突然変異体。
One embodiment of the present invention is a mutant according to any of (a)-(e) below:
(a) a mutant in which amino acids 451-572 of the parent are truncated and whose amino acid sequence is shown in SEQ ID NO:4;
(b) mutants obtained by mutating leucine at position 47 to lysine or arginine in the amino acid sequence shown by SEQ ID NO: 4 and named L47K and L47R, respectively;
(c) G101S, G101T, G101D, G101N, G101E, obtained by mutating glycine at position 101 to serine, threonine, aspartic acid, asparagine, glutamic acid, or glutamine in the amino acid sequence shown in SEQ ID NO: 4, respectively; a mutant named G101Q;
(d) A mutant named G103H obtained by mutating glycine at position 103 to histidine in the amino acid sequence shown in SEQ ID NO: 4;
(e) mutants obtained by mutating glycine at position 153 to serine, aspartic acid, asparagine, glutamic acid, glutamine, or histidine in the amino acid sequence shown in SEQ ID NO: 4, respectively, G153S, G153D, G153N, Mutants named G153E, G153Q, G153H.
本発明は、前記突然変異体をコードする遺伝子を提供する。 The present invention provides genes encoding said mutants.
本発明は、前記遺伝子を有している、pETシリーズ、Duetシリーズ、pGEXシリーズ、pHY300シリーズ、pHY300PLKシリーズ、pPIC3Kシリーズ又はpPIC9Kシリーズのいずれか一つである組換え発現ベクターを提供する。 The present invention provides a recombinant expression vector of any one of pET series, Duet series, pGEX series, pHY300 series, pHY300PLK series, pPIC3K series or pPIC9K series, which contains the gene.
本発明は、前記突然変異体を発現するか、又は前記遺伝子を有する微生物細胞を提供する。 The present invention provides microbial cells expressing said mutant or carrying said gene.
本発明の一実施形態において、前記微生物細胞は、原核細胞または真核細胞である。 In one embodiment of the invention, said microbial cell is a prokaryotic or eukaryotic cell.
本発明は、マルトトリオースの生産特異性を向上させる方法であって、デキストリンを基質とし、前記突然変異体を触媒として、マルトトリオースを生産する方法を提供する。 The present invention provides a method for improving the production specificity of maltotriose, wherein dextrin is used as a substrate and the mutant is used as a catalyst to produce maltotriose.
本発明の一実施形態において、前記デキストリンは米、トウモロコシ、小麦、水稲、ジャガイモ、サツマイモ、葛根及び/またはキャッサバを原料としている。 In one embodiment of the present invention, the dextrin is sourced from rice, corn, wheat, paddy rice, potato, sweet potato, arrowroot and/or cassava.
本発明はさらに、前記突然変異体、前記遺伝子、前記組換え発現ベクター、前記微生物細胞、又はマルトトリオースの生産特異性を高める方法を用いて、マルトトリオースを調製するための使用を提供する。 The present invention further provides a use for preparing maltotriose using said mutant, said gene, said recombinant expression vector, said microbial cell, or a method for increasing the specificity of maltotriose production. .
本発明は、TfAmyAに対してトランケーション突然変異と部位特異的突然変異を行ったことにより、様々な突然変異体が得られて、マルトトリオース生成アミラーゼの活性が増加し、生成物中のマルトトリオースの割合が向上し、マルトトリオースの後続の精製プロセスの簡略化、及び生産の大規模化を実現するために有利であり、しかもマルトトリオースの生産コストを著しく低減でき、広い工業的応用の見込みがある。 In the present invention, truncation and site-directed mutagenesis were performed on TfAmyA to obtain various mutants, which increased the activity of maltotriose-producing amylase and increased the activity of maltotriose-producing amylase. The ose ratio is improved, which is advantageous for simplifying the subsequent purification process of maltotriose and realizing large-scale production, and can significantly reduce the production cost of maltotriose, and has a wide industrial application. is expected.
図1はトランケートされる前及びトランケートされた後のSDS-PAGEの図であり、図aは野生型であり、図bはトランケートされた後の突然変異体である。 FIG. 1 is an illustration of SDS-PAGE before and after truncation, panel a is the wild type and panel b is the mutant after truncation.
以下、本開示に係る発明について、具体的な実施形態をもとに説明する。本開示に係る発明は、以下の実施形態に限定されるものではない。 Hereinafter, the invention according to the present disclosure will be described based on specific embodiments. The invention according to the present disclosure is not limited to the following embodiments.
実施例に記載する培地配合は、以下の通りである。
LB培地(g/L):ペプトン 10、酵母エキス 5、NaCl 10。
TB培地(g/L):ペプトン 10、酵母粉末 24、グリセロール 5、K2HPO4・3H2O 16.43、KH2PO4 2.31。
The media formulations described in the examples are as follows.
LB medium (g/L): peptone 10, yeast extract 5, NaCl 10.
TB medium (g/L): peptone 10, yeast powder 24, glycerol 5, K2HPO4.3H2O 16.43, KH2PO4 2.31.
実施例に記載のプルラナーゼは、デンプンの脱分枝効果を有する、脱分枝酵素の一種である。 The pullulanase described in the examples is a type of debranching enzyme that has a debranching effect on starch.
実施例中のG3含有量の測定方法:
酵素変換した試料を沸騰している水浴に10分間、置いて、12000r・min-1で10分間、遠心分離し、さらに最終濃度50%(体積比)のアセトニトリルで共沈殿させ、2時間放置した後、12000r・min-1で10分間、遠心分離し、上清を取り、シリンジで0.22μM濾過膜を通した。移動相を、アセトニトリル:水(74:26)の割合にて調製し、Agilent 1200 HPLCクロマトグラフィーおよびHYPERSIL APS2 アミノカラムを用いて、カラム温度を40℃、流速を0.8mL・min-1に設定して、試料を測定した。吸収ピーク面積とマルトトリオース標準品のピーク面積からマルトトリオースの生成量を算出した。
Method for measuring G3 content in Examples:
The enzymatically converted sample was placed in a boiling water bath for 10 minutes, centrifuged at 12000 rmin −1 for 10 minutes, co-precipitated with 50% final concentration (by volume) of acetonitrile, and left for 2 hours. After that, it was centrifuged at 12000 r·min −1 for 10 minutes, and the supernatant was taken and passed through a 0.22 μM filtration membrane with a syringe. The mobile phase was prepared in a ratio of acetonitrile:water (74:26) using an Agilent 1200 HPLC chromatography and a HYPERSIL APS2 amino column, setting the column temperature to 40°C and the flow rate to 0.8 mL min -1 . and measured the sample. The amount of maltotriose produced was calculated from the absorption peak area and the peak area of the maltotriose standard product.
実施例1:トランケート体酵素の調製
1)トランケート体ベクターと野生型ベクターの構築
1.Thermobifida fusca NTU22由来のマルトトリオース生成アミラーゼのアミノ酸配列及びヌクレオチド配列(ヌクレオチド配列は配列番号2で示される)に基づき、トランケートされた後の遺伝子断片Tftfa-ΔML(ヌクレオチド配列は配列番号3で示される)と、ベクターpET20b(+)(発現ベクター上に、遺伝子発現を開始させるシグナルペプチドを有する)とを、シームレスクローニング酵素Exnase II(Vazyme Biotech Co.,Ltd)により連結し、組換えプラスミドpET20b(+)-Tftfa-ΔMLが構築された。
2.ヌクレオチド配列が配列番号2で示される遺伝子断片を上記同様の方法でベクターpET20b(+)と連結し、組換えプラスミドpET20b(+)-Tftfaが構築された。
Example 1: Preparation of truncated enzyme 1) Construction of truncated vector and wild type vector Based on this, the truncated gene fragment Tftfa-ΔML (nucleotide sequence is shown in SEQ ID NO: 3) and the vector pET20b(+) (having a signal peptide that initiates gene expression on the expression vector) were seamlessly combined. Ligation was performed with the cloning enzyme Exnase II (Vazyme Biotech Co., Ltd.) to construct the recombinant plasmid pET20b(+)-Tftfa-ΔML.
2. The gene fragment whose nucleotide sequence is represented by SEQ ID NO: 2 was ligated with the vector pET20b(+) in the same manner as above to construct the recombinant plasmid pET20b(+)-Tftfa.
2)トランケート体酵素と野生型酵素の発現及び精製
1.組換えプラスミドpET20b(+)-Tftfa-ΔMLを宿主大腸菌BL21(DE3)のコンピテントセルに転換し、37℃で12時間~14時間培養してシングルコロニーを増殖させてから、シングルコロニーを抽出し、配列決定の検証を行った;正しいと検証された陽性転換体をLB液体培地(アンピシリン100μg/mLを含む)に接種し、37℃、200rpmで8-10時間培養し、シード発酵ブロスを5%接種量でTB液体培地(アンピシリン100μg/mL及びグリシン7.5g/Lを含む)に接種した;大腸菌を37℃のシェーカーでOD600=0.6-0.8まで培養し、最終濃度0.134mMのIPTGを添加して細胞外発現を誘導し、さらに25℃のシェーカーで発酵培養を48時間続けた後、発酵ブロスを4℃で、10000gで15分間、遠心分離し、菌体を除去し、上清を採集し、精製して、精製されたトランケート体酵素を得た。
2.組換えプラスミドpET20b(+)-Tftfaを、ステップ1.と同様の方法で宿主大腸菌BL21(DE3)のコンピテントセルに転換し、かつ培養、誘導して、精製された野生型酵素を得た。
2) Expression and purification of truncated and wild-
2. The recombinant plasmid pET20b(+)-Tftfa was transformed into competent cells of the host E. coli BL21(DE3) in the same manner as in
実施例2:突然変異体酵素の調製
1)部位特異的突然変異
プラスミドpET20b(+)-Tftfa-ΔMLを鋳型として、合成した突然変異プライマーを用いてPCRを行い、突然変異体を構築する。
Example 2: Preparation of Mutant Enzymes 1) Site-directed mutagenesis Using the plasmid pET20b(+)-Tftfa-ΔML as a template, PCR is performed using synthesized mutagenesis primers to construct mutants.
PCR系:2×Phanta Max Master Mix 25μL、鋳型 1μL、上流プライマー 2μL、下流プライマー 2μL、ddH2O 20μL。PCRパラメーターは以下の通りである。すなわち、94℃で4分間の予備変性;PCRサイクルに入った:98℃で10秒間の変性、55℃で30秒間のアニール、72℃での伸長(時間の長さは増幅断片の長さから計算して、1000bp・min-1)、25-30回サイクルした;最後に72℃で10分間の保温、4℃での保温。PCR産物をDpn I(Fermentas社)で消化し、大腸菌JM109のコンピテントセルに転換し、転換されたコンピテントセルをLB固体培地(アンピシリン100μg/mLを含む)で一晩培養した後、シングルコロニーを抽出してLB液体培地(アンピシリン100μg/mLを含む)で培養し、その後、プラスミドを抽出し、配列決定を行った。
PCR system: 2x Phanta
2)突然変異体酵素の発現及び精製
正しく突然変異したと配列決定されたプラスミドを宿主大腸菌BL21(DE3)のコンピテントセルに転換し、転換された宿主大腸菌BL21(DE3)のシングルコロニーを抽出してLB液体培地(アンピシリン100μg/mLを含む)において37℃、200rpmで8~10時間培養し、シード発酵ブロスを5%接種量でTB液体培地(アンピシリン100μg/mL及びグリシン7.5g/Lを含む)に接種した;大腸菌を37℃のシェーカーでOD600=0.6-0.8まで培養し、最終濃度0.134mMのIPTGを添加して細胞外発現を誘導し、さらに25℃のシェーカーで発酵培養を48時間続けた後、発酵ブロスを4℃で、10000gで15分間、遠心分離し、菌体を除去し、上清を採集し、かつ精製して、精製された突然変異体酵素を得た。
2) Expression and Purification of Mutant Enzymes Correctly mutated and sequenced plasmids were transformed into competent cells of host E. coli BL21(DE3) and single colonies of transformed host E. coli BL21(DE3) were extracted. The seed fermentation broth was cultured at 5% inoculum in LB liquid medium (containing 100 μg/mL ampicillin and 7.5 g/L glycine) in LB liquid medium (containing 100 μg/mL ampicillin) for 8-10 hours at 37°C. E. coli was cultured on a 37°C shaker to OD600 = 0.6-0.8, IPTG was added to a final concentration of 0.134 mM to induce extracellular expression, and then placed on a 25°C shaker to induce extracellular expression. After continuing the fermentation culture for 48 hours, the fermentation broth is centrifuged at 10000 g for 15 minutes at 4° C. to remove the cells, the supernatant is collected and purified to yield the purified mutant enzyme. Obtained.
実施例3:マルトトリオース生成アミラーゼの酵素活性測定
酵素活性測定はDNS法を用い、系は次の通りである。
基質調製:1質量%濃度で可溶性澱粉を相応なバッファに懸濁させて、加熱撹拌し、糊化させた。
反応系: ブランク組:基質 1mL(2g/100mL可溶性澱粉)+バッファ 1mL。
対照組:基質 1mL+バッファ 0.9mL+適当な倍率に希釈した酵素液 0.1mL。
Example 3: Enzyme activity measurement of maltotriose-forming amylase Enzyme activity was measured using the DNS method, and the system is as follows.
Substrate preparation: Soluble starch at a concentration of 1% by weight was suspended in a corresponding buffer, heated and stirred to gelatinize.
Reaction system: Blank set: 1 mL substrate (2 g/100 mL soluble starch) + 1 mL buffer.
Control group: 1 mL of substrate + 0.9 mL of buffer + 0.1 mL of appropriately diluted enzyme solution.
基質及びバッファ成分を事前に栓付き試験管に投入し、恒温水槽に入れて10分間インキュベートした。酵素を適当な倍率に希釈し、対照ペアへ添加して、反応を行った。10分間を正確にカウントした。10分間後、3mLのDNSを添加し、すべての栓付き試験管を、沸騰水を持っている鍋に同時に置いて、7分間を正確にカウントし、素早く取り出して氷浴槽に入れて冷却した。低温に下げた後、10mLのH2Oを加えてよく混合した。酵素活性は、540nm分光光度計を用いて相応的にブランクを除いた吸光値Abs540を測定し、検量線に代入して算出したものである。 Substrate and buffer components were preloaded into stoppered test tubes and placed in a constant temperature water bath to incubate for 10 minutes. Enzymes were diluted appropriately and added to control pairs to perform reactions. 10 minutes were accurately counted. After 10 minutes, 3 mL of DNS was added, all stoppered tubes were placed simultaneously in a pan with boiling water to accurately count 7 minutes, quickly removed and placed in an ice bath to cool. After cooling down, 10 mL of H2O was added and mixed well. The enzymatic activity was calculated by measuring the absorbance value Abs540 with the corresponding blank removed using a 540 nm spectrophotometer and substituting it into the standard curve.
検量線:上記の系により、異なるグルコース濃度でAbs540と還元糖濃度との関係を測定して、その線形回帰式を検量線とする。 Calibration curve: Using the above system, measure the relationship between Abs540 and reducing sugar concentration at different glucose concentrations, and use the linear regression equation as the calibration curve.
酵素活性は、1分間当たり1μmolの還元糖を放出するのに必要な酵素量を酵素活性単位(U)と定義する。 Enzyme activity is defined as the amount of enzyme required to release 1 μmol of reducing sugar per minute as an enzyme activity unit (U).
25℃のシェーカーで発酵培養を48時間続けた後、上清を採集し、野生型酵素及び突然変異体酵素のシェーカーでの酵素活性を測定した。その結果を表1に示す。トランケート体TfAmyA-ΔMLの酵素活性は大きく変化せず、L47、G103の突然変異の酵素活性が向上した以外に、G101番目およびG153番目の突然変異は、多くの酵素活性が減少しているか、わずかに減少している。 After 48 hours of fermentation culture in a shaker at 25° C., the supernatant was collected and the enzymatic activity in the shaker of the wild-type and mutant enzymes was determined. Table 1 shows the results. The enzymatic activity of the truncated TfAmyA-ΔML did not change significantly, and in addition to the improved enzymatic activity of the L47 and G103 mutations, the G101 and G153 mutations reduced or slightly reduced the enzymatic activity. has decreased to
実施例4:HPLC法によるマルトトリオース生成量の分析
DE値5-7の5質量%濃度のマルトデキストリン溶液(pH5.5)を調製し、それぞれ一定量のマルトトリオース生成アミラーゼの野生酵素及び突然変異酵素を加え、それらのエンザイム量は60U・g-1基質であり、プルラナーゼをエンザイム量32U・g-1基質で反応系に添加し、回転数150rpm、温度55℃の水浴のシェーカーに置いて、11時間反応させた。試料を採取し、沸騰した水浴で10分間煮て、酵素を失活させ、遠心分離により上清を取り、生成物溶液が得られた。生成物溶液500μLをアセトニトリルと1:1にて混合し、室温で2時間放置して、高分子量のデキストリン又は限界デキストリンを沈殿させ、次いで12000rpmで20分間遠心分離し、上清をシリンジで0.22μM濾過膜を通して、HPLC分析が可能な試料を得た。移動相を、アセトニトリル:水(74:26)の割合で調製し、Agilent1200 HPLCクロマトグラフィーおよびHYPERSIL APS2 アミノカラムを用いて、カラム温度40℃および流速0.8mL・min-1に設定して、試料を測定した。吸収ピーク面積とG3標準品のピーク面積とからG3の生成量を算出した。
Example 4: Analysis of maltotriose production amount by HPLC method A maltodextrin solution (pH 5.5) with a concentration of 5% by weight with a DE value of 5-7 was prepared, and a fixed amount of the wild enzyme of maltotriose-producing amylase and Mutant enzymes were added with an enzyme amount of 60 U·g −1 substrate, and pullulanase with an enzyme amount of 32 U·g −1 substrate was added to the reaction system and placed in a water bath shaker at a rotation speed of 150 rpm and a temperature of 55°C. and reacted for 11 hours. A sample was taken, boiled in a boiling water bath for 10 minutes to deactivate the enzyme, and the supernatant was removed by centrifugation to obtain the product solution. 500 μL of the product solution was mixed 1:1 with acetonitrile and allowed to stand at room temperature for 2 hours to precipitate high molecular weight or limit dextrins, then centrifuged at 12000 rpm for 20 minutes and the supernatant was 0. HPLC-analysable samples were obtained through a 22 μM filtration membrane. The mobile phase was prepared in a ratio of acetonitrile:water (74:26) using an Agilent 1200 HPLC chromatography and a HYPERSIL APS2 amino column, setting the column temperature to 40°C and the flow rate to 0.8 mL min -1 , and the sample was measured. The amount of G3 produced was calculated from the absorption peak area and the peak area of the G3 standard product.
野生型酵素及び突然変異体酵素の酵素変換分析結果を表2に示す。トランケート体TfAmyA-ΔMLは、G3の収率を向上させ、G3の比率もわずかに向上した。G103の突然変異G103VおよびG103P以外に、その他のL47、G101、G103およびG153の突然変異は、酵素変換産物のG3の比率を顕著に向上させた。単一突然変異体はG3の特異性を高め、生成物中の他の糖を減少させ、主生成物G3を増加させた。ここで、比率とは、生成物中のG3の質量濃度と生成物全体の質量濃度との比をいう。収率とは、生成物のG3の質量濃度と基質の質量濃度との比を指す。 Table 2 shows the enzymatic conversion assay results for the wild-type and mutant enzymes. Truncated TfAmyA-ΔML improved the yield of G3 and slightly improved the proportion of G3. Besides the G103 mutations G103V and G103P, the other L47, G101, G103 and G153 mutations significantly enhanced the G3 ratio of enzymatic conversion products. A single mutant increased the specificity of G3, reduced other sugars in the product, and increased the major product G3. Here, the ratio refers to the ratio of the mass concentration of G3 in the product to the mass concentration of the entire product. Yield refers to the ratio of the mass concentration of G3 in the product to the mass concentration of the substrate.
本発明の好ましい実施例が前述のように開示されているが、これに限定されることはない。本発明の主旨と範囲から逸脱しない限り、当業者による様々な設計変更及び改変は本発明の権利範囲に含まれる。したがって、本発明の権利範囲は、当該特許請求の範囲で定義した内容主旨に基づくものである。 While preferred embodiments of the present invention have been disclosed above, they are not so limited. Various design changes and modifications made by those skilled in the art fall within the scope of the present invention without departing from the spirit and scope of the present invention. Accordingly, the scope of the present invention shall be based on the subject matter defined in the appended claims.
Claims (10)
下記(a)-(c)のいずれか一つであることを特徴とする、マルトトリオース生成アミラーゼの突然変異体:
(a)配列番号4で示されるアミノ酸配列において、101番目のグリシンがセリン、トレオニン、アスパラギン酸、アスパラギン、グルタミン酸、またはグルタミンに突然変異されている;
(b)配列番号4で示されるアミノ酸配列において、103番目のグリシンがヒスチジンに突然変異されている;
(c)配列番号4で示されるアミノ酸配列において、153番目のグリシンがセリン、アスパラギン酸、アスパラギン、グルタミン酸、グルタミンまたはヒスチジンに突然変異されている。 In the amino acid sequence shown by SEQ ID NO: 4, the parent is a maltotriose-generating amylase, and an amino acid at any one of the 101st, 103rd, and 153rd positions of the parent is mutated,
A mutant of maltotriose-producing amylase, characterized by being any one of the following (a) to (c):
(a) in the amino acid sequence shown in SEQ ID NO: 4, glycine at position 101 is mutated to serine, threonine, aspartic acid, asparagine, glutamic acid, or glutamine;
(b) in the amino acid sequence shown in SEQ ID NO: 4, glycine at position 103 is mutated to histidine;
(c) in the amino acid sequence shown in SEQ ID NO: 4, glycine at position 153 is mutated to serine, aspartic acid, asparagine, glutamic acid, glutamine or histidine;
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010507573.9A CN111718921B (en) | 2020-06-05 | 2020-06-05 | Maltotriamylase mutant |
CN202010507573.9 | 2020-06-05 | ||
PCT/CN2020/103021 WO2021243821A1 (en) | 2020-06-05 | 2020-07-20 | Maltotriose amylase mutant for producing maltotriose at high specificity |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022539641A JP2022539641A (en) | 2022-09-13 |
JP7238158B2 true JP7238158B2 (en) | 2023-03-13 |
Family
ID=72566096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021557729A Active JP7238158B2 (en) | 2020-06-05 | 2020-07-20 | Maltotriose-producing amylase mutants that produce maltotriose with high specificity |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7238158B2 (en) |
CN (1) | CN111718921B (en) |
WO (1) | WO2021243821A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457058B (en) * | 2021-10-19 | 2024-05-14 | 安徽农业大学 | Mutation improvement method and application of alpha amylase for feed |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014200656A1 (en) | 2013-06-13 | 2014-12-18 | Danisco Us Inc. | Alpha-amylase from streptomyces umbrinus |
WO2018222990A1 (en) | 2017-06-02 | 2018-12-06 | Novozymes A/S | Improved yeast for ethanol production |
WO2020023411A1 (en) | 2018-07-25 | 2020-01-30 | Novozymes A/S | Enzyme-expressing yeast for ethanol production |
WO2020076697A1 (en) | 2018-10-08 | 2020-04-16 | Novozymes A/S | Enzyme-expressing yeast for ethanol production |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192A (en) * | 1993-02-26 | 1995-01-06 | Nichiden Kagaku Kk | Production of starch sugar |
EP1710303A1 (en) * | 1998-02-27 | 2006-10-11 | Novozymes A/S | Amylolytic enzyme variants |
EP2546338A1 (en) * | 2008-01-02 | 2013-01-16 | Danisco US Inc. | A process of obtaining ethanol without glucoamylase using pseudomonas saccharophila g4-amylase and variants thereof |
BRPI0913378A2 (en) * | 2008-06-06 | 2015-09-01 | Danisco Us Inc | Glucose production from starch using bacillus subtilis alpha-amylase |
JP2012016309A (en) * | 2010-07-08 | 2012-01-26 | Hayashibara Biochem Lab Inc | Maltotriose-forming amylase, production method and use thereof |
US20150299622A1 (en) * | 2012-11-05 | 2015-10-22 | Novozymes A/S | Enzyme Compositions Enabling Re-use of Water in Laundry |
CN103695387B (en) * | 2013-12-18 | 2015-05-06 | 广西大学 | Saccharomonospora viridis maltose alpha-amylase mutant and application thereof |
CN104531636B (en) * | 2015-01-19 | 2017-02-22 | 江南大学 | Mutant of maltogenic amylase and preparation method of mutant |
KR101706451B1 (en) * | 2015-04-22 | 2017-02-15 | 동아대학교 산학협력단 | Maltotrios-Producing Amylase derived from Microbulbifer sp. and the Process for Producing Maltotrios therewith |
CN110157688B (en) * | 2019-05-31 | 2020-12-01 | 江南大学 | Linear maltooligosaccharide-producing enzyme mutant with improved maltopentaose production capacity |
-
2020
- 2020-06-05 CN CN202010507573.9A patent/CN111718921B/en active Active
- 2020-07-20 WO PCT/CN2020/103021 patent/WO2021243821A1/en active Application Filing
- 2020-07-20 JP JP2021557729A patent/JP7238158B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014200656A1 (en) | 2013-06-13 | 2014-12-18 | Danisco Us Inc. | Alpha-amylase from streptomyces umbrinus |
WO2018222990A1 (en) | 2017-06-02 | 2018-12-06 | Novozymes A/S | Improved yeast for ethanol production |
WO2020023411A1 (en) | 2018-07-25 | 2020-01-30 | Novozymes A/S | Enzyme-expressing yeast for ethanol production |
WO2020076697A1 (en) | 2018-10-08 | 2020-04-16 | Novozymes A/S | Enzyme-expressing yeast for ethanol production |
Non-Patent Citations (1)
Title |
---|
Definition: Thermobifida fusca strain NTU22 alpha-amylase (amy13) gene, complete cds.,Database DDBJ/EMBL/GenBank [online],Accession No. DQ473479,2009年,[retrieved on 2022-10-17],https://www.ncbi.nlm.nih.gov/nuccore/DQ473479 |
Also Published As
Publication number | Publication date |
---|---|
WO2021243821A1 (en) | 2021-12-09 |
JP2022539641A (en) | 2022-09-13 |
CN111718921B (en) | 2022-03-25 |
CN111718921A (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111424047B (en) | 4, 6-alpha-glucosyltransferase and application thereof in production of resistant dextrin | |
JP6706636B2 (en) | New applications of maltotriosyltransferase | |
AU2007339488A1 (en) | Novel slowly digestible storage carbohydrate | |
JP5828589B2 (en) | Industrial production method of branched glucan having cyclic structure | |
WO2021169096A1 (en) | Method for coupling multiple enzymes to produce maltodextrin having single degree of polymerization | |
JP4187305B2 (en) | Thermostable amylomaltase | |
CA3025953C (en) | Method of producing alpha glucans containing alpha 1-3 linked d-glucose units, and alpha glucans | |
JP7238158B2 (en) | Maltotriose-producing amylase mutants that produce maltotriose with high specificity | |
CN109486791B (en) | Preparation and application of maltogenic amylase mutant | |
Ye et al. | Expression and characterization of 1, 4-α-glucan branching enzyme from Microvirga sp. MC18 and its application in the preparation of slowly digestible starch | |
CN112553270A (en) | Method for preparing alpha-1, 3 glycosidic bond modified low-calorie dextrin | |
CN112553271A (en) | Preparation method of low-calorie dextrin containing alpha-1, 2 glycosidic bonds | |
JP2000316581A (en) | Production of cyclic glucan by highly thermotolerant branching enzyme | |
CN108026185A (en) | Branched alpha-glucan | |
CN109370973B (en) | Maltogenic amylase producing strain | |
CN109439641B (en) | Application of maltogenic amylase production strain | |
Zheng et al. | Deletion of α-amylase genes via CRISPR/Cas9 decreases the side effects of hydrolysis towards nonreducing maltoheptaose preparation | |
CN109251912B (en) | Method for increasing yield of maltogenic amylase | |
CN114317565A (en) | Starch branching enzyme from myxobacteria, gene thereof, engineering bacterium containing gene and application thereof | |
CN109439607B (en) | Application of maltogenic amylase production strain | |
WO2020057476A1 (en) | Application of trehalase in fermentative production | |
CN109321481B (en) | Bacterial strain for producing maltogenic amylase | |
CN109486792B (en) | Preparation and application of maltogenic amylase mutant | |
CN116334159A (en) | Method for improving yield of maltotetraose | |
EP3757209A1 (en) | Enzymatic production of levan-based, prebiotic fructooligosaccharides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211221 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7238158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |