[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7223663B2 - Granular freezing apparatus and method - Google Patents

Granular freezing apparatus and method Download PDF

Info

Publication number
JP7223663B2
JP7223663B2 JP2019153013A JP2019153013A JP7223663B2 JP 7223663 B2 JP7223663 B2 JP 7223663B2 JP 2019153013 A JP2019153013 A JP 2019153013A JP 2019153013 A JP2019153013 A JP 2019153013A JP 7223663 B2 JP7223663 B2 JP 7223663B2
Authority
JP
Japan
Prior art keywords
liquefied gas
low
temperature liquefied
raw material
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153013A
Other languages
Japanese (ja)
Other versions
JP2021032476A (en
Inventor
正浩 米倉
英治 多畑
雅紀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019153013A priority Critical patent/JP7223663B2/en
Publication of JP2021032476A publication Critical patent/JP2021032476A/en
Application granted granted Critical
Publication of JP7223663B2 publication Critical patent/JP7223663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 UBMジャパン株式会社により平成30年12月1日に出版された月刊誌「食品と開発」第53巻、第12号Article 30, Paragraph 2 of the Patent Act applies Monthly magazine "Food and Development" published on December 1, 2018 by UBM Japan Co., Ltd., Vol. 53, No. 12

本発明は、粒状凍結装置及び方法に関し、詳しくは、低温液化ガスを用いて液状の原料を粒状に凍結させる装置及び方法に関する。 TECHNICAL FIELD The present invention relates to a granular freezing apparatus and method, and more particularly, to an apparatus and method for freezing liquid raw materials into granular form using cryogenic liquefied gas.

食品関連の産業分野では、液体窒素に代表される低温液化ガスを用いて液状の原料を凍結する方法又は装置として、低温液化ガスを流した樋状の流路に原料を滴下ノズルで連続的に滴下して冷却し、粒状凍結物を生成するものが知られている。とりわけ、滴下された原料の液滴同士が付着することを防止できるものとして、樋状の流路に傾斜を設けて低温液化ガスの流速を上げるとともに、流路の幅を末端に向けて徐々に狭くして低温液化ガスの深度を確保し、さらに、並列された複数の滴下ノズルの間に対応するように複数の仕切りプレートを流路に設けた粒状凍結装置が提案されている(例えば、特許文献1参照。)。 In the food-related industrial field, as a method or apparatus for freezing liquid raw materials using low-temperature liquefied gas such as liquid nitrogen, raw materials are continuously dripped into a gutter-shaped channel through which low-temperature liquefied gas is flowed. It is known to drip and cool to produce a granular frozen product. In particular, to prevent the droplets of the dropped raw material from adhering to each other, the gutter-shaped channel is inclined to increase the flow rate of the low-temperature liquefied gas, and the width of the channel is gradually increased toward the end. A granular freezing apparatus has been proposed in which a plurality of partition plates are provided in the channel so as to secure the depth of the low-temperature liquefied gas by narrowing it, and to correspond between the plurality of drip nozzles arranged in parallel (for example, patent Reference 1).

他にも、傾斜した流路を上下に分割配置して、低温液化ガスを流路の上段から下段に折り返すように流すことで流路を長くして、原料の凍結時間を長くする構成が知られている(例えば、特許文献2参照。)。 In addition, a structure is known in which an inclined channel is divided into upper and lower parts, and the low-temperature liquefied gas flows from the upper part of the channel to the lower part, thereby lengthening the channel and lengthening the freezing time of the raw material. (See Patent Document 2, for example).

特許第6327721号公報Japanese Patent No. 6327721 特開平7-8240号公報JP-A-7-8240

ところで、低温液化ガスを流した流路に原料を滴下して粒状凍結物を得る装置では、滴下した原料を芯部まで凍結させられるように、流路を十分に長くして凍結時間を稼ぐ必要がある。そのため、流路を直線状に形成すると、必要な流路が長くなりすぎて装置の長大化を招くという問題があった。 By the way, in an apparatus for obtaining frozen granules by dripping a raw material into a flow path through which a low-temperature liquefied gas is flowed, it is necessary to make the flow path long enough to obtain freezing time so that the dropped raw material can be frozen to the core. There is Therefore, if the flow path is formed in a straight line, the necessary flow path becomes too long, resulting in an increase in the size of the device.

これに対し、特許文献1に記載された装置では、滴下した原料の表面が凍結する程度の長さの流路を採用し、流路を通過して表面が凍結した原料を流路の終端部で一旦カゴに溜めてから、再度カゴごと低温液化ガスに浸漬して芯部まで凍結させるようにしている。 On the other hand, in the apparatus described in Patent Document 1, a flow path having a length that freezes the surface of the dropped raw material is adopted, and the raw material whose surface is frozen after passing through the flow path is transferred to the terminal end of the flow path. After storing it in a basket, it is immersed in the low-temperature liquefied gas together with the basket again to freeze it to the core.

しかしながら、このように表面だけが凍結した原料を一カ所に溜めておく工程があることで、これらの原料がくっつき合って塊状になるおそれがあった。また、カゴに原料を溜めている間、粒状凍結物の生産に空白期間が生じるので、粒状凍結物を連続的に生産することができなかった。 However, there is a possibility that these raw materials stick to each other and form lumps due to the step of storing the raw materials whose surface is frozen only in one place. In addition, since there is a blank period in the production of the frozen granules while the raw materials are stored in the basket, the frozen granules cannot be produced continuously.

また、特許文献2のような構成では、流路の上段から下段に落下する箇所で低温液化ガスの流れが攪乱されるので、表面のみ凍結した原料同士がその箇所で次々に衝突し合って塊状になり、しかも、その塊が肥大していき流路を塞ぐという問題が生じていた。 In addition, in the configuration of Patent Document 2, the flow of the low-temperature liquefied gas is disturbed at the point where it falls from the upper stage to the lower stage of the flow path, so the raw materials whose surfaces are frozen collide one after another at that point to form lumps. In addition, there is a problem that the mass enlarges and clogs the flow path.

そこで本発明は、低温液化ガスに滴下した原料が凍結中に塊状になることを防ぎつつ、原料の粒状凍結物を安定的かつ連続的に生産可能な粒状凍結装置及び方法を提供することを目的としている。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a granular freezing apparatus and method capable of stably and continuously producing granular frozen raw materials while preventing raw materials dripped into low-temperature liquefied gas from clumping during freezing. and

上記目的を達成するため、本発明の粒状凍結装置は、低温液化ガスを流す樋状の流路を備え、前記流路に低温液化ガスを送り出す低温液化ガス送出部と、前記流路に原料を連続的に滴下する原料滴下部と、原料の凍結物を低温液化ガスから分離する固液分離部とを備えた粒状凍結装置において、前記流路は、上流に、流路幅が狭い幅狭区間を備え、前記幅狭区間と前記幅広区間の深さは同じであり、前記原料滴下部は、前記幅狭区間の上流部に原料を滴下するように配置され、前記低温液化ガス送出部は、低温液化ガスを貯留する貯留槽と、該貯留槽から低温液化ガスを汲み上げて前記流路に送り出す揚液ポンプとを備え、前記流路は、前記揚液ポンプから低温液化ガスを受ける始端部と、U字状に折り返す折り返し部と、前記固液分離部に低温液化ガスを流す終端部とを備え、前記固液分離部により凍結物が分離された低温液化ガスが前記貯留槽に戻されるように構成され、前記終端部は前記貯留槽の直上に位置するように配置されていることを特徴としている。 In order to achieve the above object, the granular freezing apparatus of the present invention includes a gutter-shaped channel for flowing a low-temperature liquefied gas, a low-temperature liquefied gas delivery unit for delivering the low-temperature liquefied gas to the channel, and a raw material to the channel. In a granular freezing apparatus comprising a raw material dropping unit that continuously drops and a solid-liquid separation unit that separates the frozen material of the raw material from the low-temperature liquefied gas, the channel has a narrow section with a narrow channel width upstream. wherein the narrow section and the wide section have the same depth, the raw material dropping section is arranged to drop the raw material upstream of the narrow section, and the low temperature liquefied gas delivery section is a storage tank for storing the low-temperature liquefied gas; and a pump for pumping up the low-temperature liquefied gas from the storage tank and sending the low-temperature liquefied gas to the flow path, wherein the flow path receives the low-temperature liquefied gas from the pump. , a U-shaped folded portion, and a terminal portion for flowing the low-temperature liquefied gas to the solid-liquid separation portion, and the low-temperature liquefied gas from which the frozen matter is separated by the solid-liquid separation portion is returned to the storage tank. and the end portion is arranged so as to be located directly above the storage tank.

さらに、前記流路は、前記折り返し部より上流側が直線状に形成されていること、水平に配設されていることも特徴としており、前記流路全体の寸法は、深さ5~100mm、
長さ1,000~10,000mm、幅50mm以上であり、前記幅狭区間と前記幅広区間との流路幅の比が1.1~2.0倍であることも特徴としている。また、前記貯留槽及び前記揚液ポンプは外槽に覆われ、前記始端部及び前記終端部が、前記外槽に設けられた開口部に差し込まれるように配置されていることを特徴としている。
Furthermore, the flow path is characterized in that the upstream side of the folded portion is formed in a straight line, and that the flow path is arranged horizontally.
It is characterized by having a length of 1,000 to 10,000 mm and a width of 50 mm or more, and a width ratio of the narrow section to the wide section of 1.1 to 2.0 times. Further, the storage tank and the liquid pump are covered with an outer tank, and the starting end and the terminal end are arranged so as to be inserted into openings provided in the outer tank.

そして、本発明の粒状凍結装置によって原料を粒状に凍結させる粒状凍結方法は、前記流路の始端部から低温液化ガスを送り出す低温液化ガス送出工程と、低温液化ガスを流した前記流路に原料を滴下する原料滴下工程と、前記流路に滴下された原料の表面を凍結させる表面凍結工程と、表面が凍結した原料を芯部まで凍結させる芯部凍結工程と、流路の終端部で原料の凍結物を低温液化ガスから分離する固液分離工程と、凍結物が分離された低温液化ガスを前記流路の始端部に送る低温液化ガス循環工程とを含むことを特徴としている。 A granular freezing method for freezing a raw material into granules by the granular freezing apparatus of the present invention includes a low-temperature liquefied gas sending step of sending a low-temperature liquefied gas from the starting end of the flow path, and a raw material into the flow path through which the low-temperature liquefied gas flows. a raw material dropping step of dropping the raw material, a surface freezing step of freezing the surface of the raw material dropped into the flow channel, a core freezing step of freezing the raw material with the frozen surface up to the core, and a raw material at the end of the flow channel and a low-temperature liquefied gas circulation step of sending the low-temperature liquefied gas from which the frozen matter has been separated to the starting end of the flow path.

本発明の粒状凍結装置によれば、低温液化ガスを流す流路に幅狭区間があることにより、その区間を流れる低温液化ガスの液面が上昇して液体の深さが増すので、滴下した原料を流路の底面に付着させることがなく、滴下した原料の表面を凍結させることができる。また、幅狭区間より下流の幅広区間では流路の幅が広くなっていることから、原料を十分な間隔を保って流すことができるので、表面が凍結した原料が互いに衝突して塊状化することを防止し、滴下した原料を芯部まで凍結させた粒状凍結物を安定して得ることができる。 According to the granular freezing apparatus of the present invention, since the channel for flowing the low-temperature liquefied gas has a narrow section, the liquid level of the low-temperature liquefied gas flowing through the section rises and the depth of the liquid increases, so the liquid is dripped. The surface of the dropped raw material can be frozen without causing the raw material to adhere to the bottom surface of the channel. In addition, since the width of the flow path is widened in the wide section downstream from the narrow section, the raw materials can be flowed while maintaining a sufficient interval, so that the raw materials whose surfaces are frozen collide with each other and agglomerate. It is possible to stably obtain a granular frozen product in which the dropped raw material is frozen up to the core.

また、流路を、単なる直線状とせず、折り返し部を設けてU字状に形成することにより、サイズをコンパクトにできるので、十分な凍結距離を確保しながら装置の長大化を抑止できる。しかも、低温液化ガス送出部によって、流路に低温液化ガスを流すと共に、流路に流した低温液化ガスを貯留槽で回収し、揚液ポンプを駆動力として再び流路に流すことができるので、低温液化ガス供給源から低温液化ガスが供給される限り、流路に低温液化ガスを恒常的に流し続けることができる。 In addition, since the size of the flow path can be made compact by forming the flow path in a U-shape by providing a folded portion instead of a straight line, an increase in the size of the apparatus can be suppressed while ensuring a sufficient freezing distance. In addition, the low-temperature liquefied gas can be supplied to the flow path by the low-temperature liquefied gas delivery unit, and the low-temperature liquefied gas that has flowed through the flow path can be recovered in the storage tank and flowed back into the flow path using the pump as a driving force. As long as the cryogenic liquefied gas is supplied from the cryogenic liquefied gas supply source, the cryogenic liquefied gas can be continuously flowed through the flow path.

さらに、本発明の粒状凍結装置を用いた粒状凍結方法によれば、低温液化ガス送出工程と低温液化ガス循環工程とにより、流路には常に低温液化ガスが流れるように保たれ、原料滴下工程と、表面凍結工程と、芯部凍結工程と、固液分離工程と、凍結物回収工程とによる一連の作業工程により、流路に滴下した原料が流路の終端部で粒状凍結物となって、低温液化ガスから分離されて回収されるので、流路に原料を滴下し続けることで、粒状凍結物の生産を淀みなく連続的に行うことができる。 Furthermore, according to the granular freezing method using the granular freezing apparatus of the present invention, the low-temperature liquefied gas is kept flowing through the channel by the low-temperature liquefied gas delivery step and the low-temperature liquefied gas circulation step, and the raw material dropping step. , the surface freezing process, the core freezing process, the solid-liquid separation process, and the frozen material recovery process, the raw material dropped into the flow path becomes granular frozen material at the end of the flow path. Since the raw material is separated from the low-temperature liquefied gas and recovered, continuous production of the granular frozen material can be performed without stagnation by continuing to drop the raw material into the flow path.

本発明の粒状凍結方法を実施可能な粒状凍結装置の一形態例を模式的に示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side view schematically showing one embodiment of a granular freezing apparatus capable of implementing the granular freezing method of the present invention; 同じく平面図である。It is also a plan view.

図1乃至図2に示されるように、粒状凍結装置11は、液体窒素に代表される低温液化ガスを流す樋状の流路12を備えており、流路12に低温液化ガスを送り出す低温液化ガス送出部13と、流路12に原料を連続的に滴下する原料滴下部14と、原料滴下部14により流路12に滴下された原料の凍結物を低温液化ガスから分離する固液分離部15と、固液分離部15によって分離された凍結物を回収する凍結物回収部16とを備えている。また、流路12は、上蓋17aを備えた外気遮断槽17の内部に納められている。 As shown in FIGS. 1 and 2, the granular freezing apparatus 11 includes a gutter-shaped channel 12 for flowing a low-temperature liquefied gas represented by liquid nitrogen. A gas delivery unit 13, a raw material dropping unit 14 that continuously drops raw materials into the flow channel 12, and a solid-liquid separation unit that separates the frozen material dropped into the flow channel 12 by the raw material dropping unit 14 from the low-temperature liquefied gas. 15 and a frozen material recovery unit 16 that recovers the frozen material separated by the solid-liquid separation unit 15 . Further, the flow path 12 is housed inside an external air blocking tank 17 having an upper lid 17a.

流路12は、水平に配設されるとともに、低温液化ガスの流れの始めとなる始端部12aと、低温液化ガスの流れの終わりとなる終端部12bと、始端部12aから終端部12bにかけての中程でU字状に折り返す折り返し部12cとを備え、始端部12aから折り返し部12cまでの間、及び、折り返し部12cから終端部12bまでの間は、いずれも直線状に形成されている。 The flow path 12 is arranged horizontally and has a starting end 12a at which the flow of the low temperature liquefied gas begins, a terminal end 12b at which the flow of the low temperature liquefied gas ends, and from the starting end 12a to the terminal end 12b. A folded portion 12c that folds back into a U shape is provided in the middle, and the portions from the starting end portion 12a to the folded portion 12c and from the folded portion 12c to the terminal end portion 12b are formed linearly.

また、流路12は、上流に、流路幅が狭い幅狭区間12dを備え、幅狭区間12dの下流に、幅狭区間12dよりも流路幅が広い幅広区間12eを備えている。ここで、幅狭区間12dの長さは、低温液化ガスの流れの中で、滴下された原料の表面を凍結させることができる程度の長さになっている。また、幅広区間12eの流路幅は、幅狭区間12dの流路幅に対して1.1~2.0倍の範囲、好ましくは1.3~1.5倍の範囲に設定されている。 Further, the channel 12 has a narrow section 12d with a narrow channel width upstream, and a wide section 12e with a wider channel width than the narrow section 12d downstream of the narrow section 12d. Here, the length of the narrow section 12d is such that the surface of the dropped raw material can be frozen in the flow of the low-temperature liquefied gas. The width of the wide section 12e is set to be 1.1 to 2.0 times, preferably 1.3 to 1.5 times the width of the narrow section 12d. .

流路12全体の寸法は、滴下する原料の凍結しやすさや、原料滴下部14が一度に滴下する液滴の数に応じて変更可能であるが、深さは5~100mmの範囲内であり、長さは1,000~10,000mmの範囲内であり、幅は50mm以上であることが望ましい。 The overall dimensions of the flow path 12 can be changed according to the ease with which the raw material to be dropped is frozen and the number of droplets dropped by the raw material dropping section 14 at one time, but the depth is within the range of 5 to 100 mm. , the length is in the range of 1,000 to 10,000 mm, and the width is preferably 50 mm or more.

また、滴下する原料の液滴の大きさによっては、凍結時間のみならず、液滴表面に対する芯部の凍結のしやすさも変わるので、流路12の長さと共に、液滴表面を凍結させる幅狭区間12dと芯部を凍結させる幅広区間12eとの比率も変えることが望ましい。例えば、滴下する原料の液滴が小さい場合は、凍結時間が短くなり、表面が凍結すれば芯部もすぐに凍結するので、流路12を短くし、幅広区間12eを幅狭区間12dよりも短くとることが望ましい。また、滴下する原料の液滴が大きい場合は、凍結時間が長くなり、表面が凍結しても芯部がすぐに凍結するわけではないので、流路12を長くし、幅広区間12eを幅狭区間12dよりも長くとることが望ましい。 In addition, depending on the size of the droplet of the dropped material, not only the freezing time but also the ease with which the core of the droplet freezes on the surface of the droplet changes. It may also be desirable to vary the ratio of the narrow section 12d to the core frozen wide section 12e. For example, if the droplets of the dropped raw material are small, the freezing time will be short, and if the surface freezes, the core will also freeze immediately. It is desirable to keep it short. In addition, when the size of the droplet of the raw material to be dropped is large, the freezing time becomes long, and even if the surface freezes, the core does not freeze immediately. It is desirable to take longer than the section 12d.

原料滴下部14は、幅狭区間12dの上流部に原料を滴下するように配置されており、複数の滴下ノズル(図示せず)を備え、流路12に複数の液滴を同時に滴下できるように構成されている。 The raw material dropping unit 14 is arranged so as to drop the raw material upstream of the narrow section 12d, and has a plurality of dropping nozzles (not shown) so that a plurality of droplets can be dropped into the channel 12 at the same time. is configured to

外気遮断槽17は、壁面に空気が封入された空気相と、断熱材によって形成された断熱相とからなる断熱構造(図示せず)を有しているので、流路12の温度変化を抑制して流路12を流れる低温液化ガスの蒸発を抑えることができる。外気遮断槽17の上蓋17aの、原料滴下部14の直下位置には、流路12への原料の滴下が阻害されないように滴下孔17bが設けられている。 The outside air blocking tank 17 has a heat insulating structure (not shown) consisting of an air phase in which air is enclosed in the wall surface and a heat insulating phase formed by a heat insulating material, so temperature changes in the flow path 12 are suppressed. As a result, evaporation of the low-temperature liquefied gas flowing through the flow path 12 can be suppressed. A drip hole 17b is provided in an upper lid 17a of the outside air blocking tank 17 at a position directly below the raw material dripping portion 14 so that the dripping of the raw material into the flow path 12 is not hindered.

低温液化ガス送出部13は、真空断熱された底面及び壁面を有し、上面が開口した、低温液化ガスを貯留する貯留槽18と、貯留槽18から低温液化ガスを汲み上げて流路12に送り出す揚液ポンプ19と、貯留槽18に低温液化ガスを供給する、電磁弁20a付きの低温液化ガス供給源20と、貯留槽18の液面の高さを検知する液面センサー21と、液面センサー21の検知情報に応じてこの電磁弁20aを開閉して貯留槽18の液面の高さを一定に保つように制御する液面制御部22とを備えている。 The low-temperature liquefied gas delivery unit 13 has a vacuum-insulated bottom surface and wall surface, and has an open upper surface. Liquid pump 19, low temperature liquefied gas supply source 20 with solenoid valve 20a for supplying low temperature liquefied gas to storage tank 18, liquid level sensor 21 for detecting the height of liquid level in storage tank 18, liquid level A liquid level control unit 22 is provided for controlling the solenoid valve 20a to keep the level of the liquid level in the storage tank 18 constant by opening and closing the solenoid valve 20a according to the detection information of the sensor 21. FIG.

揚液ポンプ19は、動力であるモーター19aの下部に、円筒形状のケース19bが設けられたポンプであり、ケース19bの内部に配置した縦型のスクリュー(図示せず)をモーター19aで回転させることで液体を汲み上げられるように構成されている。ケース19bの下部には、低温液化ガスを流入させる流入口19cが設けられ、貯留槽18内に差し込まれるように配置されている。また、ケース19bの上部には、スクリューによってケース19b内に汲み上げられた低温液化ガスをケース19b外に吐出する吐出口19dが設けられている。したがって、揚液ポンプ19は、貯留槽18内の低温液化ガスを流入口19cから汲み上げて、吐出口19dから送り出すことができる。 The liquid pump 19 is a pump having a cylindrical case 19b under a motor 19a which is a driving force, and a vertical screw (not shown) arranged inside the case 19b is rotated by the motor 19a. It is configured so that the liquid can be pumped up by An inflow port 19c for inflowing the low-temperature liquefied gas is provided in the lower part of the case 19b and is arranged so as to be inserted into the storage tank 18 . Further, a discharge port 19d for discharging the low-temperature liquefied gas pumped into the case 19b by the screw is provided on the upper part of the case 19b. Therefore, the liquid pump 19 can pump up the low-temperature liquefied gas in the storage tank 18 from the inflow port 19c and send it out from the discharge port 19d.

貯留槽18及び揚液ポンプ19のケース19bは、内部を保冷可能な筐体である外槽23に覆われており、貯留槽18及び揚液ポンプ19内の低温液化ガスの温度を維持できるように構成されている。外槽23の一側面の上部には開口部23aが設けられており、下部には排出口23bが設けられている。開口部23aは、外気遮断槽17と接続されており、外気遮断槽17内から外槽23内に、流路12の始端部12a及び終端部12bが、開口部23aを通じて差し込まれるように配設されている。また、排出口23bの外には、上面が開口した筐体である凍結物回収部16が隣接するように配置されている。 The storage tank 18 and the case 19b of the liquid pump 19 are covered with an outer tank 23, which is a housing capable of keeping the inside cool, so that the temperature of the low-temperature liquefied gas in the storage tank 18 and the liquid pump 19 can be maintained. is configured to An opening 23a is provided in the upper part of one side surface of the outer tank 23, and a discharge port 23b is provided in the lower part. The opening 23a is connected to the external air blocking tank 17, and is arranged so that the starting end 12a and the terminal end 12b of the flow path 12 are inserted from the external air blocking tank 17 into the external tank 23 through the opening 23a. It is Further, outside the discharge port 23b, a frozen product recovery unit 16, which is a housing with an open top, is arranged adjacently.

開口部23aにおいて、流路12の始端部12aは、揚液ポンプ19の吐出口19dの直下に位置するように配置されており、流路12の終端部12bは、貯留槽18の直上に位置するように配置され、終端部12bの先には、メッシュ板15aからなる固液分離部15が取り付けられている。固液分離部15のメッシュ板15aは、上部が流路12の進行方向を遮るように垂設されるとともに、下部が傾斜して貯留槽18を避けるように排出口23bの先まで延び、外槽23の外に突き出て、凍結物回収部16の上方に至るように配設されている。 In the opening 23 a , the starting end 12 a of the flow path 12 is positioned directly below the discharge port 19 d of the liquid pump 19 , and the terminal end 12 b of the flow path 12 is positioned directly above the storage tank 18 . A solid-liquid separator 15 consisting of a mesh plate 15a is attached to the end of the terminal portion 12b. The mesh plate 15a of the solid-liquid separation unit 15 is vertically installed so that the upper part blocks the traveling direction of the flow path 12, and the lower part is inclined to extend to the end of the discharge port 23b so as to avoid the storage tank 18, and to the outside. It is arranged so as to protrude outside the tank 23 and reach above the frozen material recovery section 16 .

固液分離部15がメッシュ板15aであることから、流路12の終端部12bに流れてきた低温液化ガスは、メッシュ板15aを通過して下方に位置する貯留槽18に流下する一方で、低温液化ガスと共に流れてきた原料の粒状凍結物は、メッシュ板15aの垂直部分で受け止められて低温液化ガスから分離され、傾斜部分を転がって排出口23bに誘導され、その先にある凍結物回収部16に回収される。 Since the solid-liquid separation unit 15 is the mesh plate 15a, the low-temperature liquefied gas that has flowed to the end portion 12b of the flow path 12 passes through the mesh plate 15a and flows down to the storage tank 18 located below. The granular frozen material of the raw material that flows along with the low-temperature liquefied gas is received by the vertical portion of the mesh plate 15a, separated from the low-temperature liquefied gas, rolled on the inclined portion, and guided to the discharge port 23b, where the frozen material is recovered. Collected in the unit 16 .

したがって、揚液ポンプ19の吐出口19dから低温液化ガスが吐出されると、吐出された低温液化ガスは、流路12の始端部12aへと送り出されて流路12内を流れ、終端部12bに達すると、終端部12bから固液分離部15のメッシュ板15aを通過して貯留槽18に戻される。貯留槽18に戻された低温液化ガスは、揚液ポンプ19によって再び流路12に送り出される。 Therefore, when the low-temperature liquefied gas is discharged from the discharge port 19d of the liquid pump 19, the discharged low-temperature liquefied gas is sent to the starting end portion 12a of the flow path 12, flows through the flow path 12, and ends at the end portion 12b. , it passes through the mesh plate 15a of the solid-liquid separation section 15 from the end portion 12b and is returned to the storage tank 18. The low-temperature liquefied gas returned to the storage tank 18 is sent out to the flow path 12 again by the pump 19 .

また、液面制御部22は、液面センサー21によって貯留槽18の液面の高さが設定された下限値よりも低下したことを検知すると低温液化ガス供給源20の電磁弁20aを開くように指令を出し、液面の高さが設定された上限値に戻ったことを検知すると電磁弁20aを閉じるように指令を出すように設定されている。したがって、貯留槽18内の低温液化ガスは、液面制御部22によって所定量になるように保たれている。 Further, the liquid level controller 22 opens the solenoid valve 20a of the low temperature liquefied gas supply source 20 when the liquid level sensor 21 detects that the liquid level of the storage tank 18 has fallen below the set lower limit. , and when it is detected that the height of the liquid surface has returned to the set upper limit value, a command is issued to close the electromagnetic valve 20a. Therefore, the low-temperature liquefied gas in the storage tank 18 is kept at a predetermined level by the liquid level control section 22 .

以下、上述の粒状凍結装置11を用いた粒状凍結方法について説明する。まず、低温液化ガス送出部13において、液面制御部22が低温液化ガス供給源20から貯留槽18に、所定の液面高さになるまで低温液化ガスを供給した状態で、揚液ポンプ19を駆動させ、貯留槽18から低温液化ガスを汲み上げて流路12の始端部12aに送り出し、低温液化ガスを流路12全体に流す(低温液化ガス送出工程)。 A granular freezing method using the granular freezing apparatus 11 described above will be described below. First, in the low-temperature liquefied gas delivery unit 13, the liquid level control unit 22 supplies the low-temperature liquefied gas from the low-temperature liquefied gas supply source 20 to the storage tank 18 until the liquid level reaches a predetermined level. is driven to pump up the low temperature liquefied gas from the storage tank 18 and deliver it to the starting end portion 12a of the flow path 12 so that the low temperature liquefied gas flows through the entire flow path 12 (low temperature liquefied gas delivery step).

流路12に十分な量の低温液化ガスが流されたら、原料滴下部14から原料を滴下する(原料滴下工程)。滴下された原料は、最初に幅狭区間12dで低温液化ガスの流れに浸されることで液滴表面が凍結され、粒状になって下流に流される(表面凍結工程)。表面が凍結した原料は、幅狭区間12dを過ぎると幅広区間12eに進入し、流路12の幅方向に広がりながら流され、芯部まで凍結される(芯部凍結工程)。芯部まで凍結した原料は、流路12の終端部12bに到達すると、固液分離部15のメッシュ板15aによって低温液化ガスから分離され(固液分離工程)、それとともに、メッシュ板15aに誘導されて凍結物回収部16に送られ、粒状凍結物として回収される(凍結物回収工程)。一方、凍結物が分離された低温液化ガスは、貯留槽18に戻され、揚液ポンプ19によって再び流路12の始端部12aに送られる(低温液化ガス循環工程)。 After a sufficient amount of low-temperature liquefied gas has flowed through the flow path 12, the raw material is dropped from the raw material dropping section 14 (raw material dropping step). The dropped raw material is first immersed in the flow of the low-temperature liquefied gas in the narrow section 12d, thereby freezing the surface of the droplet, granulating it, and flowing it downstream (surface freezing step). After passing through the narrow section 12d, the raw material whose surface is frozen enters the wide section 12e, spreads in the width direction of the channel 12, and is frozen to the core (core freezing step). When the raw material frozen to the core reaches the end portion 12b of the flow path 12, it is separated from the low-temperature liquefied gas by the mesh plate 15a of the solid-liquid separation section 15 (solid-liquid separation step), and is guided to the mesh plate 15a. and sent to the frozen material recovery unit 16 to be recovered as granular frozen material (frozen material recovery step). On the other hand, the low-temperature liquefied gas from which the frozen matter has been separated is returned to the storage tank 18 and sent again to the starting end 12a of the flow path 12 by the liquid pump 19 (low-temperature liquefied gas circulation process).

本発明の粒状凍結装置11では、流路12に幅狭区間12dが設けられていることにより、その区間を流れる低温液化ガスの液面が流路幅の狭さの分だけ上昇して液体の深さが増すので、原料滴下部14から滴下された原料の液滴を流路12の底面に付着させることなく表面を凍結させて粒状化させ、低温液化ガスの流れに乗せることができる。 In the granular freezing apparatus 11 of the present invention, the channel 12 is provided with the narrow section 12d, so that the liquid level of the low-temperature liquefied gas flowing through the section rises by the narrowness of the channel width. Since the depth is increased, the droplets of the raw material dropped from the raw material dropping part 14 can be frozen and granulated on the surface without adhering to the bottom surface of the channel 12, and placed on the flow of the low-temperature liquefied gas.

また、幅狭区間12d下流の流路幅が狭いままであると、幅狭区間12dで表面のみ凍結した原料の粒同士が密集し、衝突し合って塊状化するおそれがあるが、幅狭区間12dの下流に、流路幅が広がった幅広区間12eが設けられていることにより、表面のみ凍結した原料の粒を十分な間隔を保って流すことができる。 Further, if the width of the flow path downstream of the narrow section 12d remains narrow, the grains of the raw material that are frozen only on the surface in the narrow section 12d may cluster together and collide with each other to form agglomerates. A wide section 12e having a wider flow path is provided downstream of 12d, so that grains of raw material frozen only on the surface can be flowed at sufficient intervals.

すなわち、本発明の粒状凍結装置11では、流路12に幅狭区間12dが設けられ、幅狭区間12dの下流が幅広区間12eになっていることにより、幅狭区間12dで表面が凍結した原料を、低温液化ガス中に流しつつ、その流れの中で互いに衝突し合って塊状化することを防止することができるので、滴下した原料を粒状のまま芯部まで凍結させることができ、原料の粒状凍結物を安定して得ることができる。 That is, in the granular freezing apparatus 11 of the present invention, the narrow section 12d is provided in the flow path 12, and the wide section 12e is downstream of the narrow section 12d. While flowing into the low-temperature liquefied gas, it is possible to prevent the material from colliding with each other in the flow and forming agglomerates, so that the dropped raw material can be frozen to the core while remaining granular, and the raw material can be frozen. A granular frozen product can be stably obtained.

また、流路12が略水平で高低差がほとんどないことから、貯留槽18から低温液化ガスを汲み上げる高さを低く抑えることができ、揚液ポンプ19に必要な動力を、流路12に高低差がある場合よりも削減することができる。 In addition, since the flow path 12 is substantially horizontal and has almost no height difference, the height for pumping the low-temperature liquefied gas from the storage tank 18 can be kept low. It can be reduced more than if there is a difference.

しかも、流路12を、単なる直線状とせず、折り返し部12cを設けてU字状に形成することにより、サイズをコンパクトにできるので、十分な凍結距離を確保しながら装置の長大化を抑止できる。 In addition, the size of the flow path 12 can be made compact by forming the flow path 12 in a U-shape by providing the folded portion 12c instead of in a simple linear shape, so that the size of the apparatus can be suppressed while securing a sufficient freezing distance. .

また、低温液化ガス送出部13によって、流路12に低温液化ガスを流すと共に、流路12に流した低温液化ガスを貯留槽18で回収し、揚液ポンプ19を駆動力として再び流路12に流すことができるので、低温液化ガス供給源20から低温液化ガスが供給される限り、流路12に低温液化ガスを恒常的に流し続けることができる。 In addition, the low-temperature liquefied gas is supplied to the flow path 12 by the low-temperature liquefied gas delivery unit 13, and the low-temperature liquefied gas that has flowed to the flow path 12 is recovered in the storage tank 18. Therefore, as long as the low temperature liquefied gas is supplied from the low temperature liquefied gas supply source 20 , the low temperature liquefied gas can be continuously flowed through the flow path 12 .

さらに、低温液化ガスを外槽23に覆われた貯留槽18と外気遮断槽17に覆われた流路12との間で循環させることで、低温液化ガスを蒸発しにくくすることができるので、低温液化ガスの損失を抑えて使用量を低減することが可能になる。 Furthermore, by circulating the low-temperature liquefied gas between the storage tank 18 covered with the outer tank 23 and the channel 12 covered with the outside air blocking tank 17, the low-temperature liquefied gas can be made difficult to evaporate. It is possible to suppress the loss of low-temperature liquefied gas and reduce the amount used.

そして、本発明の粒状凍結方法によれば、低温液化ガス送出工程と低温液化ガス循環工程とにより、流路12は常に低温液化ガスが流れるように保たれ、原料滴下工程と、表面凍結工程と、芯部凍結工程と、固液分離工程と、凍結物回収工程とによる一連の作業工程により、流路12に滴下した原料が流路12の終端部12bで粒状凍結物となって、低温液化ガスから分離されて回収されるので、流路12に原料を滴下し続けることで、粒状凍結物の生産を淀みなく連続的に行うことができる。 According to the granular freezing method of the present invention, the low-temperature liquefied gas is kept flowing through the channel 12 by the low-temperature liquefied gas delivery step and the low-temperature liquefied gas circulation step, and the raw material dropping step and the surface freezing step are performed. , the core portion freezing step, the solid-liquid separation step, and the frozen material recovery step, the raw material dropped into the flow path 12 becomes granular frozen material at the end portion 12b of the flow path 12, and is liquefied at a low temperature. Since the raw material is separated from the gas and recovered, continuous dripping of the raw material into the flow path 12 enables continuous production of the granular frozen material without stagnation.

なお、本発明において、粒状凍結の対象となる原料は、主に食品分野のものを想定しているが、それ以外にも、材料分野や医薬品分野のものも、粒状凍結の対象として採用可能である。また、原料滴下部に加えて、固形物を投下可能な原料投下部を設けることにより、液状原料のみならず、カットフルーツなどの固形物の凍結にも応用可能である。 In the present invention, raw materials to be frozen in granular form are mainly assumed to be those in the food field, but in addition to this, materials in the fields of materials and pharmaceuticals can also be used as targets for granular freezing. be. In addition to the raw material dropping section, by providing a raw material dropping section capable of dropping solid materials, the freezer can be applied not only to liquid raw materials but also to freezing solid materials such as cut fruits.

また、本発明は、以上の形態例に限定されることなく、発明の範囲内において種々の変更が可能である。例えば、本形態例では、流路にはU字状の折り返し部が一カ所設けられているが、流路が略水平で、始端部と終端部とが近接するように形成されていれば、折り返し部が一カ所である必要はなく、U字状の折り返し部を奇数箇所設けて、複数回折り返す形状にしてもよい。 Moreover, the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention. For example, in this embodiment, the channel has one U-shaped folded portion. It is not necessary to have one folded portion, and an odd number of U-shaped folded portions may be provided to form a shape that is folded multiple times.

11…粒状凍結装置、12…流路、12a…始端部、12b…終端部、12c…折り返し部、12d…幅狭区間、12e…幅広区間、13…低温液化ガス送出部、14…原料滴下部、15…固液分離部、15a…メッシュ板、16凍結物回収部、17…外気遮断槽、17a…上蓋、17b…滴下孔、18…貯留槽、19…揚液ポンプ、19a…モーター、19b…ケース、19c…流入口、19d…吐出口、20…低温液化ガス供給源、20a…電磁弁、21…液面センサー、22…液面制御部、23…外槽、23a…開口部、23b…排出口 DESCRIPTION OF SYMBOLS 11... Granular freezing apparatus 12... Flow path 12a... Starting end part 12b... Terminating part 12c... Folding part 12d... Narrow width section 12e... Wide width section 13... Low-temperature liquefied gas delivery part 14... Raw material dropping part , 15 Solid-liquid separation section 15a Mesh plate 16 Frozen matter recovery section 17 External air shielding tank 17a Top cover 17b Drip hole 18 Storage tank 19 Lifting pump 19a Motor 19b Case 19c Inlet 19d Discharge port 20 Low-temperature liquefied gas supply source 20a Solenoid valve 21 Liquid level sensor 22 Liquid level controller 23 Outer tank 23a Opening 23b …Vent

Claims (6)

低温液化ガスを流す樋状の流路を備え、前記流路に低温液化ガスを送り出す低温液化ガス送出部と、前記流路に原料を連続的に滴下する原料滴下部と、原料の凍結物を低温液化ガスから分離する固液分離部とを備えた粒状凍結装置において、
前記流路は、上流に、流路幅が狭い幅狭区間を備え、該幅狭区間の下流に、該幅狭区間よりも流路幅が広い幅広区間を備え、前記幅狭区間と前記幅広区間の深さは同じであり、前記原料滴下部は、前記幅狭区間の上流部に原料を滴下するように配置され、
前記低温液化ガス送出部は、低温液化ガスを貯留する貯留槽と、該貯留槽から低温液化ガスを汲み上げて前記流路に送り出す揚液ポンプとを備え、
前記流路は、前記揚液ポンプから低温液化ガスを受ける始端部と、U字状に折り返す折り返し部と、前記固液分離部に低温液化ガスを流す終端部とを備え、前記固液分離部により凍結物が分離された低温液化ガスが前記貯留槽に戻されるように構成され、
前記終端部は前記貯留槽の直上に位置するように配置されていることを特徴とする粒状凍結装置。
A low-temperature liquefied gas delivery unit that supplies the low-temperature liquefied gas to the channel, a raw material dropping unit that continuously drops the raw material into the channel, and a frozen material of the raw material. A granular freezing device comprising a solid-liquid separation unit for separating from a low-temperature liquefied gas,
The flow path includes a narrow section having a narrow flow path width upstream, and a wide section having a wider flow path width than the narrow section downstream of the narrow section. The sections have the same depth, and the raw material dropping section is arranged to drop the raw material upstream of the narrow section,
The low-temperature liquefied gas delivery unit includes a storage tank for storing the low-temperature liquefied gas, and a pump for pumping up the low-temperature liquefied gas from the storage tank and sending it to the flow path,
The flow path includes a beginning portion for receiving the low-temperature liquefied gas from the liquid pump, a U-shaped folded portion, and a terminal portion for flowing the low-temperature liquefied gas to the solid-liquid separation portion. The low-temperature liquefied gas from which the frozen matter is separated is returned to the storage tank,
The granular freezing apparatus, wherein the end portion is positioned directly above the storage tank.
前記流路は、前記折り返し部より上流側が直線状に形成されていることを特徴とする請求項1記載の粒状凍結装置。 2. The granular freezing apparatus according to claim 1, wherein the channel is formed linearly on the upstream side of the folded portion. 前記流路は、水平に配設されていることを特徴とする請求項1又は2記載の粒状凍結装置。 3. The granular freezing apparatus according to claim 1, wherein said flow path is arranged horizontally. 前記流路全体の寸法は、深さ5~100mm、長さ1,000~10,000mm、幅50mm以上であり、前記幅狭区間と前記幅広区間との流路幅の比が1.1~2.0倍であることを特徴とする請求項1乃至3のいずれか1項記載の粒状凍結装置。 The overall dimensions of the channel are 5 to 100 mm in depth, 1,000 to 10,000 mm in length, and 50 mm or more in width, and the ratio of the channel width between the narrow section and the wide section is 1.1 to 1.1. 4. The granular freezing apparatus according to any one of claims 1 to 3, wherein the magnification is 2.0 times. 前記貯留槽及び前記揚液ポンプは外槽に覆われ、
前記始端部及び前記終端部が、前記外槽に設けられた開口部に差し込まれるように配置されていることを特徴とする請求項1乃至4のいずれか1項記載の粒状凍結装置。
The storage tank and the liquid pump are covered with an outer tank,
5. The granular freezing apparatus according to any one of claims 1 to 4, wherein said starting end and said terminal end are arranged so as to be inserted into an opening provided in said outer tank.
請求項1乃至5のいずれか1項に記載された粒状凍結装置によって原料を粒状に凍結させる粒状凍結方法であって、
前記流路の始端部から低温液化ガスを送り出す低温液化ガス送出工程と、
低温液化ガスを流した前記流路に原料を滴下する原料滴下工程と、
前記流路に滴下された原料の表面を凍結させる表面凍結工程と、
表面が凍結した原料を芯部まで凍結させる芯部凍結工程と、
流路の終端部で原料の凍結物を低温液化ガスから分離する固液分離工程と、
凍結物が分離された低温液化ガスを前記流路の始端部に送る低温液化ガス循環工程とを含むことを特徴とする粒状凍結方法。
A granular freezing method for freezing a raw material in granular form by the granular freezing apparatus according to any one of claims 1 to 5,
a low-temperature liquefied gas delivery step of delivering low-temperature liquefied gas from the starting end of the flow path;
a raw material dropping step of dropping a raw material into the channel through which the low-temperature liquefied gas is flowed;
a surface freezing step of freezing the surface of the raw material dropped into the channel;
A core portion freezing step of freezing the surface frozen raw material up to the core portion;
a solid-liquid separation step of separating the frozen material of the raw material from the low-temperature liquefied gas at the terminal end of the flow path;
and a low-temperature liquefied gas circulation step of sending the low-temperature liquefied gas from which the frozen matter has been separated to the beginning end of the flow path.
JP2019153013A 2019-08-23 2019-08-23 Granular freezing apparatus and method Active JP7223663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019153013A JP7223663B2 (en) 2019-08-23 2019-08-23 Granular freezing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153013A JP7223663B2 (en) 2019-08-23 2019-08-23 Granular freezing apparatus and method

Publications (2)

Publication Number Publication Date
JP2021032476A JP2021032476A (en) 2021-03-01
JP7223663B2 true JP7223663B2 (en) 2023-02-16

Family

ID=74675685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153013A Active JP7223663B2 (en) 2019-08-23 2019-08-23 Granular freezing apparatus and method

Country Status (1)

Country Link
JP (1) JP7223663B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180009A (en) 1998-12-10 2000-06-30 Showa Tansan Co Ltd Freezing equipment for liquid and the like

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157966A (en) * 1986-12-20 1988-06-30 Kokusai Gurume Kk Instantaneous freezing of processed foods and apparatus therefor
JPH078240A (en) * 1993-06-24 1995-01-13 Nippon Sanso Kk Apparatus for freezing article
JPH09310943A (en) * 1996-05-23 1997-12-02 Nippon Sanso Kk Method and device for solidifying liquid material in granular form

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180009A (en) 1998-12-10 2000-06-30 Showa Tansan Co Ltd Freezing equipment for liquid and the like

Also Published As

Publication number Publication date
JP2021032476A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US3913349A (en) Ice maker with swing-out ice cube system
US4408654A (en) Accumulator for storing heat or cold
TWI473957B (en) Oil separator
US11543179B2 (en) Heat exchange mechanism for removing contaminants from a hydrocarbon vapor stream
US20190360736A1 (en) Ice making assemblies and methods for making clear ice
JPS6082765A (en) Ice machine
CN109997007B (en) Control method of water purifier
CN1429329A (en) Cryogenic processor for liquid feed preparation of free-flowing frozen product
RU2731426C2 (en) Method for removing co2 from a contaminated hydrocarbon feed stream
JP7223663B2 (en) Granular freezing apparatus and method
US7565809B2 (en) Circulation-type liquid helium reliquefaction apparatus with contaminant discharge function, method of discharging contaminant from the apparatus, and refiner and transfer tube both of which are used for the apparatus
US9395113B2 (en) Nucleator for generating ice crystals for seeding water droplets in snow-making systems
US3305320A (en) Purification of aluminum nitrate by alternate melting and crystallization
EA025716B1 (en) Method for water purification by crystallization method and heat exchange reservoir (embodiments) therefor
US3164968A (en) Method and apparatus for removing ice from an ice making machine
CN109533777A (en) A kind of Masterbatch automatic cooling device
KR101306140B1 (en) Freezing Unit of Ice Making and Ice Manufacturing Method using The Same
US20090108481A1 (en) Method and system for pelletizing sulfur
JP2007038074A (en) Concentration device, crystallizer and concentration crystallization system equipped with them
JPH09310943A (en) Method and device for solidifying liquid material in granular form
CN114040810A (en) Water filtration and recycling system for ice maker
JP2019032153A (en) Ice maker with ejection mechanism
JP2010214375A (en) Crystallizer, crystallization method, and concentration crystallization system
US9933197B2 (en) Vertical counter-flow immersion freezer
JPH0794939B2 (en) Ice storage method for heat storage

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7223663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150