[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7205664B2 - Fe electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe electroplated steel sheet - Google Patents

Fe electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe electroplated steel sheet Download PDF

Info

Publication number
JP7205664B2
JP7205664B2 JP2022511993A JP2022511993A JP7205664B2 JP 7205664 B2 JP7205664 B2 JP 7205664B2 JP 2022511993 A JP2022511993 A JP 2022511993A JP 2022511993 A JP2022511993 A JP 2022511993A JP 7205664 B2 JP7205664 B2 JP 7205664B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
cold
rolled steel
electroplated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022511993A
Other languages
Japanese (ja)
Other versions
JPWO2021200412A1 (en
Inventor
俊佑 山本
麻衣 青山
友輔 奥村
叡 奥村
克弥 星野
宗生 松下
克利 ▲高▼島
正貴 木庭
洋一 牧水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2021200412A1 publication Critical patent/JPWO2021200412A1/ja
Application granted granted Critical
Publication of JP7205664B2 publication Critical patent/JP7205664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は,Fe系電気めっき鋼板,電着塗装鋼板,自動車部品,および電着塗装鋼板の製造方法に関し,より具体的には,化成処理性に優れるとともに,塩温水浸漬試験により評価される塗装後耐食性に優れ,かつ溶接部における耐抵抗溶接割れ特性にも優れるFe系電気めっき鋼板,並びに,該Fe系電気めっき鋼板を用いた電着塗装鋼板,自動車部品,および電着塗装鋼板の製造方法に関する。 The present invention relates to a method for producing Fe-based electroplated steel sheets, electrodeposition coated steel sheets, automobile parts, and electrodeposition coated steel sheets. Fe-based electroplated steel sheet with excellent post-corrosion resistance and excellent resistance weld cracking resistance in welds, and method for producing electrodeposition coated steel sheet, automobile parts, and electrodeposition coated steel sheet using said Fe-based electroplated steel sheet Regarding.

近年,地球環境を保護する観点から,自動車の燃費改善が強く求められている。また,衝突時における乗員の安全を確保する観点から,自動車の安全性向上も強く要求されている。これらの要求に応えるためには,自動車車体の軽量化と高強度化とを両立する必要があり,自動車部品の素材となる冷延鋼板においては,高強度化による薄肉化が積極的に進められている。しかし,自動車部品の多くは,鋼板を成形加工して製造されることから,これらの鋼板には,高い強度に加えて,優れた成形性が求められる。 In recent years, from the viewpoint of protecting the global environment, there is a strong demand for improving the fuel efficiency of automobiles. Also, from the viewpoint of ensuring the safety of passengers in the event of a collision, there is a strong demand for improved safety of automobiles. In order to meet these demands, it is necessary to achieve both weight reduction and high strength for automobile bodies. ing. However, since many automobile parts are manufactured by forming steel sheets, these steel sheets are required to have excellent formability in addition to high strength.

冷延鋼板の強度を高めるには種々の方法があるが,冷延鋼板の成形性を大きく損なわずに高強度化を図ることができる方法としては,Si添加による固溶強化が挙げられる。しかし,冷延鋼板に多量のSi,特に0.5質量%以上のSiを添加した場合には,スラブ加熱時,熱間圧延後,あるいは冷間圧延後の焼鈍時に,鋼板表面にSiO2,Si-Mn系複合酸化物等のSi含有酸化物が形成されることが知られている。このSi含有酸化物は,鋼板の化成処理性を著しく低下させるため,Siを多く含む高強度冷延鋼板は,化成処理性に劣る。またSiを多く含む高強度冷延鋼板は,電着塗装後の塩温水浸漬試験において,通常の鋼板に比べて塗膜剥離を起こし易く,塗装後耐食性に劣るという問題がある。There are various methods for increasing the strength of cold-rolled steel sheets, but solid-solution strengthening by the addition of Si can be cited as a method that can increase the strength of cold-rolled steel sheets without significantly impairing the formability. However, when a large amount of Si, especially 0.5% by mass or more of Si, is added to the cold-rolled steel sheet, SiO 2 , It is known that Si-containing oxides such as Si—Mn-based composite oxides are formed. Since this Si-containing oxide significantly lowers the chemical conversion treatability of the steel sheet, the high-strength cold-rolled steel sheet containing a large amount of Si is inferior in chemical conversion treatability. In addition, high-strength cold-rolled steel sheets containing a large amount of Si have problems in that the paint film peels more easily than ordinary steel sheets in a salt water immersion test after electrodeposition coating, and the corrosion resistance after coating is inferior.

また,自動車部品の製造において,プレス成型された部品は抵抗溶接(スポット溶接)により組み合わせることが多い。抵抗溶接される部品が高強度亜鉛めっき鋼板を含んでいる場合,抵抗溶接時に,溶接部近傍に残留応力が生成した状態で,めっき層の亜鉛が溶融して結晶粒界に拡散侵入することで,液体金属脆化(Liquid Metal Embrittlement:LME)が起き,鋼板に粒界割れ(LME割れ)が生じてしまうことが懸念される。特に溶接用の電極が鋼板に対して角度がついた状態で溶接が行われると,残留応力が増加して割れが生成する虞がある。残留応力は鋼板の高強度化に伴い増大すると考えられるため,鋼板の高強度化に伴うLME割れの発生が懸念される。高強度鋼板が亜鉛めっき層を有さない鋼板であっても,溶接される相手側の鋼板が亜鉛めっき鋼板であると,その亜鉛めっき層が溶融してしまうため,亜鉛めっき層を有さない鋼板においてもLME割れが起こりうることが問題である。 In the manufacture of automobile parts, press-molded parts are often assembled by resistance welding (spot welding). When the parts to be resistance-welded include high-strength galvanized steel sheets, zinc in the coating layer melts and diffuses into the grain boundaries in the presence of residual stress in the vicinity of the weld during resistance welding. , Liquid Metal Embrittlement (LME) occurs, and intergranular cracking (LME cracking) occurs in the steel sheet. In particular, if welding is performed with the welding electrode angled with respect to the steel plate, residual stress may increase and cracks may occur. Since the residual stress is considered to increase as the strength of the steel sheet increases, there is concern about the occurrence of LME cracking as the strength of the steel sheet increases. Even if the high-strength steel sheet does not have a galvanized layer, if the steel sheet on the other side to be welded is a galvanized steel sheet, the galvanized layer will melt, so it does not have a galvanized layer. The problem is that LME cracking can also occur in steel sheets.

以上より,化成処理性,塗装後耐食性,および板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性(以下,単に「溶接部における耐抵抗溶接割れ特性」とも称する)に優れる高強度鋼板が求められている。 From the above, it is excellent in chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance at welds when the sheet pair is a galvanized steel sheet (hereinafter simply referred to as "resistance weld cracking resistance at welds"). There is a demand for high-strength steel sheets.

従来,上記問題に対する改善策が報告されている。例えば,特許文献1においては,熱延時にスラブを1200℃以上の温度で加熱し,高圧でデスケーリングし,酸洗前に熱延鋼板の表面を砥粒入りナイロンブラシで研削し,9%塩酸槽に2回浸漬して酸洗を行い,鋼板表面のSi濃度を低下させることで,化成処理性に優れた高強度冷延鋼板を製造する方法が提案されている。また,特許文献2においては,母材の表面から5.0μm以上の深さまで,結晶粒界の少なくとも一部が酸化物に被覆された内部酸化層を有し,かつ,前記母材の表面から5.0μmの深さまでの領域において,前記酸化物の粒界被覆率が60%以上である鋼板が開示されている。さらに,特許文献3においては,冷延鋼板を非酸化性雰囲気で加熱焼鈍した後,酸洗により0.5g/m2以上溶解させ,次いで付着量1~5g/m2のZn-Fe合金を電気めっきする鋼板が開示されている。Conventionally, measures for improving the above problem have been reported. For example, in Patent Document 1, during hot rolling, a slab is heated at a temperature of 1200 ° C. or higher, descaled at a high pressure, and before pickling, the surface of the hot rolled steel plate is ground with an abrasive nylon brush, and 9% hydrochloric acid is applied. A method has been proposed for manufacturing a high-strength cold-rolled steel sheet with excellent chemical convertibility by immersing the steel sheet in a tank twice for pickling to reduce the Si concentration on the surface of the steel sheet. In addition, in Patent Document 2, from the surface of the base material to a depth of 5.0 μm or more, at least a part of the grain boundary has an internal oxide layer coated with oxide, and from the surface of the base material A steel sheet is disclosed in which the grain boundary coverage of the oxide is 60% or more in a region up to a depth of 5.0 μm. Furthermore, in Patent Document 3, after heat-annealing a cold-rolled steel sheet in a non-oxidizing atmosphere, 0.5 g/m 2 or more is melted by pickling, and then a Zn-Fe alloy with an adhesion amount of 1 to 5 g/m 2 is applied. An electroplating steel sheet is disclosed.

特許第3990349号公報Japanese Patent No. 3990349 特許第6388099号公報Japanese Patent No. 6388099 特開2015-89946号公報JP 2015-89946 A

しかしながら,特許文献1に記載された高強度冷延鋼板においては,冷間圧延前に鋼板表面のSi濃度を低減しても,冷間圧延後の焼鈍によって鋼板表面にSi含有酸化物が形成されるため,塗装後耐食性の改善は望めない。また,特許文献2に記載された鋼板においては,粒界の密着性が弱く,塩温水浸漬試験により評価される塗装後耐食性が不十分となることが判明した。さらに,特許文献3に記載された鋼板においては,化成処理性および塗装後耐食性が改善されるものの,耐抵抗溶接割れ特性の課題については何ら言及がされていない。 However, in the high-strength cold-rolled steel sheet described in Patent Document 1, even if the Si concentration on the steel sheet surface is reduced before cold rolling, Si-containing oxides are formed on the steel sheet surface by annealing after cold rolling. Therefore, improvement in corrosion resistance after painting cannot be expected. In addition, it has been found that the steel sheet described in Patent Document 2 has weak adhesion at grain boundaries and insufficient post-coating corrosion resistance as evaluated by a salt water immersion test. Further, in the steel sheet described in Patent Document 3, although the chemical conversion treatability and corrosion resistance after painting are improved, the problem of resistance weld cracking resistance is not mentioned at all.

このように,Siを多量に含有している高強度冷延鋼板(以下,Si含有冷延鋼板とも称する)においては,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性をいずれも高い水準で満足することは困難であり,これらの特性をいずれも高い水準で満足する鋼板は開発されていないのが実情である。 In this way, high-strength cold-rolled steel sheets containing a large amount of Si (hereafter also referred to as Si-containing cold-rolled steel sheets) are expected to improve their chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking at welds. It is difficult to satisfy both of these properties at a high level, and the actual situation is that no steel sheet has been developed that satisfies all of these properties at a high level.

本発明は,Si含有冷延鋼板が抱える上記問題点に鑑みてなされたものであり,その目的は,化成処理性に優れるとともに,塩温水浸漬試験により評価される塗装後耐食性に優れ,かつ溶接部における耐抵抗溶接割れ特性にも優れる鋼板を提供することにある。 The present invention has been made in view of the above-mentioned problems of Si-containing cold-rolled steel sheets. To provide a steel sheet which is also excellent in resistance weld cracking resistance in a part.

本発明者らは,上記課題を解決すべく,鋭意検討を重ねた結果,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性をいずれも高い水準で満足するためには,冷間圧延後,連続焼鈍したSi含有冷延鋼板の表面に,Fe系電気めっき層を片面あたりの付着量:15.0g/m2以上で形成してFe系電気めっき鋼板とすることが重要であることを見出した。Fe系電気めっき層を鋼板表面に形成することで,焼鈍時に鋼板表面に形成されたSi含有酸化物を完全に被覆して,化成処理性および塗装後耐食性を向上させることができる。さらに本発明者らは,軟質なFe系電気めっき層をSi含有冷延鋼板の片面あたりの付着量:15.0g/m2以上で形成することで,溶接時に鋼板表面に印加される応力を緩和するとともに,Fe系電気めっき層が固溶Si欠乏層として働いてSi固溶による靭性低下を抑制し,溶接部における耐抵抗溶接割れ特性を向上させることができることを見出し,本発明を完成させた。In order to solve the above problems, the present inventors have made extensive studies and found that, in order to satisfy all of the high levels of chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking in the weld zone, cold steel is required. After cold rolling, it is important to form an Fe-based electroplating layer on the surface of the Si-containing cold-rolled steel sheet that has been continuously annealed so that the coating amount per side is 15.0 g/m 2 or more to obtain an Fe-based electroplating steel sheet. I found something. By forming an Fe-based electroplating layer on the steel sheet surface, it is possible to completely cover the Si-containing oxides formed on the steel sheet surface during annealing, thereby improving chemical conversion treatability and corrosion resistance after painting. Furthermore, the present inventors have found that by forming a soft Fe-based electroplating layer with a deposition amount of 15.0 g/m 2 or more per side of the Si-containing cold-rolled steel sheet, the stress applied to the steel sheet surface during welding can be reduced. In addition to the relaxation, the Fe-based electroplating layer acts as a solid-solution Si-deficient layer to suppress the decrease in toughness due to Si solid-solution, and to improve the resistance weld cracking resistance of the weld zone. rice field.

本発明は,上記知見に基づいてなされたものである。すなわち,本発明の要旨構成は以下の通りである。 The present invention has been made based on the above findings. That is, the gist and configuration of the present invention are as follows.

[1]Siを0.5質量%以上3.0質量%以下含有するSi含有冷延鋼板と,
前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が15.0g/m2以上であるFe系電気めっき層とを有する,Fe系電気めっき鋼板。
[1] A Si-containing cold-rolled steel sheet containing 0.5% by mass or more and 3.0% by mass or less of Si,
An Fe-based electroplated steel sheet, comprising: an Fe-based electroplated layer having a coating amount of 15.0 g/m 2 or more per side formed on at least one side of the Si-containing cold-rolled steel sheet.

[2] 前記Fe系電気めっき層と前記Si含有冷延鋼板との界面において前記Fe系電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%以下である,前記[1]に記載のFe系電気めっき鋼板。 [2] The proportion of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is 50% or less. The Fe-based electroplated steel sheet according to [1].

[3] 前記Fe系電気めっき層の片面あたりの付着量が,25g/m2以上である,前記[1]または[2]に記載のFe系電気めっき鋼板。[3] The Fe-based electroplated steel sheet according to [1] or [2], wherein the Fe-based electroplated layer has an adhesion amount per one side of 25 g/m 2 or more.

[4] 前記Si含有冷延鋼板は,前記Siに加えて,質量%で,
C:0.8%以下,
Mn:1.0%以上12.0%以下,
P:0.1%以下,
S:0.03%以下,
N:0.010%以下および
Al:1.0%以下を含有し,残部がFeおよび不可避的不純物からなる成分組成を有する,前記[1]から[3]のいずれか1項に記載のFe系電気めっき鋼板。
[4] The Si-containing cold-rolled steel sheet contains, in addition to the Si,
C: 0.8% or less,
Mn: 1.0% or more and 12.0% or less,
P: 0.1% or less,
S: 0.03% or less,
Fe according to any one of [1] to [3] above, which contains N: 0.010% or less and Al: 1.0% or less, with the balance being Fe and inevitable impurities. system electroplated steel sheet.

[5] 前記成分組成がさらに,質量%で,
B:0.005%以下,
Ti:0.2%以下,
Cr:1.0%以下,
Cu:1.0%以下,
Ni:1.0%以下,
Mo:1.0%以下,
Nb:0.20%以下,
V:0.5%以下,
Sb:0.200%以下,
Ta:0.1%以下,
W:0.5%以下,
Zr:0.1%以下,
Sn:0.20%以下,
Ca:0.005%以下,
Mg:0.005%以下および
REM:0.005%以下
からなる群から選ばれる1種または2種以上を含有する,前記[4]に記載のFe系電気めっき鋼板。
[5] Further, the component composition is mass%,
B: 0.005% or less,
Ti: 0.2% or less,
Cr: 1.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.20% or less,
V: 0.5% or less,
Sb: 0.200% or less,
Ta: 0.1% or less,
W: 0.5% or less,
Zr: 0.1% or less,
Sn: 0.20% or less,
Ca: 0.005% or less,
The Fe-based electroplated steel sheet according to [4] above, containing one or more selected from the group consisting of Mg: 0.005% or less and REM: 0.005% or less.

[6] 前記Fe系電気めっき層は,B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み,残部はFeおよび不可避的不純物からなる成分組成を有する,前記[1]から[5]のいずれか1項に記載のFe系電気めっき鋼板。 [6] The Fe-based electroplating layer is one or more selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co The Fe-based electroplated steel sheet according to any one of [1] to [5], having a chemical composition containing 10% by mass or less of the elements in total, with the balance being Fe and unavoidable impurities.

[7] 冷延鋼板と,
前記冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が15.0g/m2以上であるFe系電気めっき層とを有する,Fe系電気めっき鋼板。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
[7] a cold-rolled steel sheet;
An Fe-based electroplated steel sheet, comprising: an Fe-based electroplated layer formed on at least one side of the cold-rolled steel sheet and having an adhesion amount per side of 15.0 g/m 2 or more.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.

[8] 前記[1]から[7]のいずれか1項に記載のFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成処理皮膜上に形成された電着塗装皮膜とをさらに有する,電着塗装鋼板。 [8] A chemical conversion coating formed on the Fe-based electroplated steel sheet according to any one of [1] to [7] in contact with the Fe-based electroplating layer, and on the chemical conversion coating An electrodeposition coated steel sheet further having an electrodeposition coating film formed on the

[9] 前記[8]に記載の電着塗装鋼板を少なくとも一部に用いてなる,自動車部品。 [9] Automobile parts at least partly using the electrodeposition coated steel sheet according to [8].

[10] 前記[1]から[7]のいずれか1項に記載のFe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,
前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,
を含む,電着塗装鋼板の製造方法。
[10] The Fe-based electroplated steel sheet according to any one of [1] to [7] is subjected to a chemical conversion treatment without additional plating treatment, and the Fe-based electroplated layer is contacted and chemically treated. a chemical conversion step for obtaining a chemically treated steel sheet on which a treatment film is formed;
an electrodeposition coating step of subjecting the chemically treated steel sheet to an electrodeposition coating process to obtain an electrodeposition coated steel sheet having an electrodeposition coating film formed on the chemical conversion coating;
A method for manufacturing an electrodeposition coated steel sheet, including

[11] Siを0.5質量%以上3.0質量%以下含有するSi含有焼鈍前冷延鋼板を焼鈍してSi含有冷延鋼板とし,
次いで,前記Si含有冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が15.0g/m2以上のFe系電気めっき層が少なくとも片面に形成されたFe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
[11] An Si-containing cold-rolled steel sheet containing 0.5% by mass or more and 3.0% by mass or less of Si is annealed to form a Si-containing cold-rolled steel sheet,
Next, the Si-containing cold-rolled steel sheet is subjected to Fe-based electroplating to obtain an Fe-based electroplated steel sheet having an Fe-based electroplating layer with a deposition amount of 15.0 g/m 2 or more per side formed on at least one side. , a method for producing a Fe-based electroplated steel sheet.

[12] 焼鈍前冷延鋼板を焼鈍して冷延鋼板とし,
次いで,前記冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が15.0g/m2以上のFe系電気めっき層が少なくとも片面に形成されたFe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
[12] Annealing the pre-annealed cold-rolled steel sheet to obtain a cold-rolled steel sheet,
Then, the cold-rolled steel sheet is subjected to Fe-based electroplating to obtain an Fe-based electroplated steel sheet having an Fe-based electroplating layer formed on at least one side with a deposition amount of 15.0 g/m 2 or more per side. A method for producing a system electroplated steel sheet.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.

[13] B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を,前記Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるように含有するFe系電気めっき浴を用いて,前記Fe系電気めっきを施す,前記[11]または[12]に記載のFe系電気めっき鋼板の製造方法。 [13] One or more elements selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co are added to the Fe-based electric The above [11] or [12], wherein the Fe-based electroplating is performed using an Fe-based electroplating bath containing such elements that the total content of these elements in the plating layer is 10% by mass or less. A method for producing a Fe-based electroplated steel sheet.

本発明によれば,化成処理性に優れるとともに,塩温水浸漬試験により評価される塗装後耐食性に優れ,かつ板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性にも優れるSi含有冷延鋼板,および該Si含有冷延鋼板を用いた自動車部品を提供することができる。 According to the present invention, in addition to being excellent in chemical conversion treatability, it is also excellent in post-painting corrosion resistance as evaluated by a salt water immersion test, and is also excellent in resistance weld cracking resistance in welds when the sheet assembly partner is a galvanized steel sheet. A Si-containing cold-rolled steel sheet and an automobile part using the Si-containing cold-rolled steel sheet can be provided.

Fe系電気めっき鋼板の断面の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline|summary of the cross section of Fe-type electroplating steel plate. 発明例No.43のFe系電気めっき層およびSi含有冷延鋼板の界面の観察像を示す図である。Invention Example No. 43 is a diagram showing an observation image of the interface between the Fe-based electroplating layer of No. 43 and the Si-containing cold-rolled steel sheet. 発明例No.46のFe系電気めっき層およびSi含有冷延鋼板の界面の観察像を示す図である。Invention Example No. 46 is a diagram showing an observation image of the interface between the Fe-based electroplating layer of No. 46 and the Si-containing cold-rolled steel sheet. 結晶方位が一体化している割合を測定するための観察用サンプルの概要を示す(a)斜視図および(b)A-A断面図である。FIG. 2 (a) is a perspective view and (b) is a cross-sectional view taken along line AA, showing an outline of an observation sample for measuring the ratio of crystal orientation integration. 結晶方位が一体化している割合の評価方法を説明するための図であり,(a)SIM像のFe系電気めっき層およびSi含有冷延鋼板の界面に境界線を描画した図,(b)2値処理した画像に境界線および判定領域を描画した図,並びに(c)上記(b)の四角で囲った箇所の拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a method for evaluating the ratio of integrated crystal orientations, (a) a diagram in which a boundary line is drawn at the interface between an Fe-based electroplating layer and a Si-containing cold-rolled steel sheet in a SIM image, (b) FIG. 4C is an enlarged view of the area enclosed by the square in FIG. 発明例No.43において,Fe系電気めっき層およびSi含有冷延鋼板の界面の2値処理後に境界線および判定領域を描画した画像を示す図である。Invention Example No. 43 is a diagram showing an image in which a boundary line and a determination region are drawn after the binary processing of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in FIG. 発明例No.46において,Fe系電気めっき層およびSi含有冷延鋼板の界面の2値処理後に境界線および判定領域を描画した画像を示す図である。Invention Example No. 46 is a diagram showing an image in which a boundary line and a determination region are drawn after binary processing of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in 46. FIG. (a)は溶接部における耐抵抗溶接割れ特性の評価方法について説明するための図,(b)上図は同評価における溶接後の板組の上面図,及び下図は上図のB-B断面図である。(a) is a diagram for explaining the evaluation method of resistance weld cracking resistance in the weld zone, (b) the upper diagram is the top view of the plate assembly after welding in the same evaluation, and the lower diagram is the BB cross section of the upper diagram. It is a diagram.

上述したLME割れは,大きく「電極と接する表面で発生する割れ(以下,表面割れ)」と「鋼板間においてコロナボンド近傍で発生する割れ(以下,内割れ)」とに分類することができる。表面割れは,スパッタが発生するような高電流域での抵抗溶接において起こりやすいことが知られており,スパッタが発生しない適正な電流範囲内とすることで表面割れの抑制が可能である。一方で,内割れは抵抗溶接時の電流をスパッタが発生しない適正な範囲内としても起こる。また,表面割れが製造工程における外観検査で発見されやすいのに対し,内割れは外観検査で発見されにくい。これらの理由から,LME割れの中でも,内割れが特に大きな課題となる。溶接用の電極が鋼板に対して角度がついた状態で抵抗溶接が行われると,残留応力が増加して内割れが生成する虞がある。残留応力は鋼板の高強度化に伴い増大すると考えられるため,鋼板の高強度化に伴う内割れの発生が懸念される。本開示においては,耐抵抗溶接割れ特性の中でも,特にこの内割れを防ぐ特性を向上することができる。 The above-mentioned LME cracks can be broadly classified into "cracks that occur on the surface in contact with the electrode (hereinafter referred to as surface cracks)" and "cracks that occur near the corona bond between steel sheets (hereinafter referred to as inner cracks)". It is known that surface cracks are likely to occur in resistance welding in a high current range where spatter is generated. Surface cracks can be suppressed by setting the current within an appropriate range where spatter does not occur. On the other hand, internal cracking occurs even when the current during resistance welding is set within an appropriate range where spatter does not occur. In addition, while surface cracks are easily discovered by visual inspection in the manufacturing process, internal cracks are difficult to be discovered by visual inspection. For these reasons, among LME cracks, inner cracks pose a particularly large problem. If resistance welding is performed with the welding electrode angled with respect to the steel sheet, residual stress may increase and internal cracking may occur. Residual stress is thought to increase as the strength of steel sheets increases. In the present disclosure, it is possible to improve the resistance weld cracking resistance property, especially the property to prevent this internal cracking.

以下,本発明の実施形態について説明する。
なお,以下の説明において,Si含有冷延鋼板の成分組成の各元素の含有量,めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり,特に断らない限り単に「%」で示す。また,本明細書中において,「~」を用いて表される数値範囲は,「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また,本明細書において,鋼板が「高強度」であるとは,JIS Z 2241(2011)に準拠して測定した鋼板の引張強さTSが590MPa以上であることを意味する。
An embodiment of the present invention will be described below.
In the following explanation, the content of each element in the chemical composition of the Si-containing cold-rolled steel sheet and the unit of the content of each element in the coating layer composition are both "% by mass", and unless otherwise specified, simply " %”. In addition, in this specification, a numerical range expressed using "-" means a range including the numerical values described before and after "-" as lower and upper limits. Further, in this specification, the steel sheet having "high strength" means that the steel sheet has a tensile strength TS of 590 MPa or more measured according to JIS Z 2241 (2011).

[実施形態1]
図1に,本実施形態に係るFe系電気めっき鋼板1の断面の概要を示す。図1に示すように,Fe系電気めっき鋼板1は,Si含有冷延鋼板2の少なくとも片面に,Fe系電気めっき層3を有する。まず,Si含有冷延鋼板の成分組成について説明する。
[Embodiment 1]
FIG. 1 shows an overview of a cross section of a Fe-based electroplated steel sheet 1 according to this embodiment. As shown in FIG. 1, an Fe-based electroplated steel sheet 1 has an Fe-based electroplated layer 3 on at least one side of a Si-containing cold-rolled steel sheet 2 . First, the chemical composition of the Si-containing cold-rolled steel sheet will be described.

Si:0.5%以上3.0%以下
Siは,加工性を大きく損なうことなく,固溶により鋼の強度を高める効果(固溶強化能)が大きいため,鋼板の高強度化を達成するのに有効な元素である。一方で,Siは化成処理性や塗装後耐食性,および溶接部における耐抵抗溶接割れ特性に悪影響を及ぼす元素でもある。Siを鋼板の高強度化を達成するために添加する場合には,0.5%以上の添加が必要である。また,Siが0.5%未満では,化成処理性および溶接部における耐抵抗溶接割れ特性に特に問題は生じず,本発明を適用する必要性に乏しい。一方,Siの含有量が3.0%を超えると,熱間圧延性および冷間圧延性が大きく低下し,生産性に悪影響を及ぼしたり,鋼板自体の延性の低下を招いたりする。よって,Siは0.5%以上3.0%以下の範囲で添加する。Si量は,好ましくは0.7%以上,より好ましくは0.9%以上とする。また,Si量は,好ましくは2.5%以下,より好ましくは2.0%以下,さらに好ましくは1.7%以下とする。
Si: 0.5% or more and 3.0% or less Si has a large effect of increasing the strength of steel through solid solution (solution strengthening ability) without significantly impairing workability, so it achieves high strength steel sheets. is an effective element for On the other hand, Si is also an element that adversely affects chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance in welds. When Si is added to increase the strength of the steel sheet, it must be added in an amount of 0.5% or more. Also, if the Si content is less than 0.5%, there is no particular problem with the chemical conversion treatability and the resistance weld cracking resistance of the weld zone, and there is little need to apply the present invention. On the other hand, if the Si content exceeds 3.0%, the hot-rollability and cold-rollability are greatly deteriorated, adversely affecting the productivity and causing a decrease in the ductility of the steel sheet itself. Therefore, Si is added in the range of 0.5% to 3.0%. The amount of Si is preferably 0.7% or more, more preferably 0.9% or more. Also, the Si content is preferably 2.5% or less, more preferably 2.0% or less, and still more preferably 1.7% or less.

本実施形態に係るSi含有冷延鋼板は,Siを上記範囲で含有することを必須の要件とするが,その他の成分については,通常の冷延鋼板が有する組成範囲であれば許容することができ,特に制限されるものではない。ただし,本実施形態のSi含有冷延鋼板を,引張強さ(TS)590MPa以上の高強度とする場合には,以下の成分組成とすることが好ましい。 The Si-containing cold-rolled steel sheet according to the present embodiment must contain Si within the above range, but the other components may be allowed within the composition range of ordinary cold-rolled steel sheets. possible and not particularly limited. However, when the Si-containing cold-rolled steel sheet of the present embodiment is to have a high tensile strength (TS) of 590 MPa or more, the following chemical composition is preferable.

C:0.8%以下(0%を含まない)
Cは,鋼組織としてマルテンサイトなどを形成させることで加工性を向上する。Cを含有させる場合,良好な溶接性を得るため,C量は0.8%以下とすることが好ましく,0.30%以下とすることがより好ましい。Cの下限は特に限定されないが,良好な加工性を得るためにはC量は0%超であることが好ましく,0.03%以上とすることがより好ましく,0.05%以上含有させることがさらに好ましい。
C: 0.8% or less (excluding 0%)
C improves workability by forming martensite or the like as a steel structure. When C is contained, the amount of C is preferably 0.8% or less, more preferably 0.30% or less, in order to obtain good weldability. The lower limit of C is not particularly limited, but in order to obtain good workability, the amount of C is preferably more than 0%, more preferably 0.03% or more, and 0.05% or more. is more preferred.

Mn:1.0%以上12.0%以下
Mnは,鋼を固溶強化して高強度化するとともに,焼入性を高め,残留オーステナイト,ベイナイト,およびマルテンサイトの生成を促進する作用を有する元素である。このような効果は,Mnを1.0%以上添加することで発現する。一方,Mn量が12.0%以下であれば,コストの上昇を招かずに上記効果が得られる。よって,Mn量は1.0%以上とすることが好ましく,12.0%以下とすることが好ましい。Mn量は1.3%以上とすることがより好ましく,1.5%以上とすることがさらに好ましく,1.8%以上とすることが最も好ましい。また,Mn量は3.5%以下とすることがより好ましく,3.3%以下とすることがさらに好ましい。
Mn: 1.0% or more and 12.0% or less Mn enhances the strength of the steel by solid-solution strengthening, increases hardenability, and promotes the formation of retained austenite, bainite, and martensite. is an element. Such an effect is exhibited by adding 1.0% or more of Mn. On the other hand, if the Mn content is 12.0% or less, the above effect can be obtained without increasing the cost. Therefore, the Mn content is preferably 1.0% or more and preferably 12.0% or less. The Mn content is more preferably 1.3% or more, still more preferably 1.5% or more, and most preferably 1.8% or more. Also, the Mn content is more preferably 3.5% or less, and more preferably 3.3% or less.

P:0.1%以下(0%を含まない)
Pの含有量を抑制することで,溶接性の低下を防ぐことができる。さらにPが粒界に偏析することを防いで,延性,曲げ性,および靭性が劣化することを防ぐことができる。
また,Pを多量に添加すると,フェライト変態を促進することで結晶粒径も大きくなってしまう。そのため,P量は0.1%以下とすることが好ましい。Pの下限は特に限定されず,生産技術上の制約から0%超であり得,0.001%以上であり得る。
P: 0.1% or less (excluding 0%)
By suppressing the P content, deterioration of weldability can be prevented. Furthermore, the segregation of P at the grain boundaries can be prevented, and the deterioration of ductility, bendability and toughness can be prevented.
Also, when a large amount of P is added, the grain size increases due to the promotion of ferrite transformation. Therefore, it is preferable that the amount of P is 0.1% or less. The lower limit of P is not particularly limited, and may be more than 0% and may be 0.001% or more due to restrictions on production technology.

S:0.03%以下(0%を含まない)
S量は0.03%以下とすることが好ましく,0.02%以下とすることがより好ましい。S量を抑制することで,溶接性の低下を防ぐとともに,熱間時の延性の低下を防いで,熱間割れを抑制し,表面性状を著しく向上することができる。さらに,S量を抑制することで,不純物元素として粗大な硫化物を形成することにより,鋼板の延性,曲げ性,伸びフランジ性の低下を防ぐことができる。これらの問題はS量が0.03%を超えると顕著となり,Sの含有量は極力低減することが好ましい。Sの下限は特に限定されず,生産技術上の制約から0%超であり得,0.0001%以上であり得る。
S: 0.03% or less (excluding 0%)
The S content is preferably 0.03% or less, more preferably 0.02% or less. By suppressing the S content, it is possible to prevent deterioration of weldability, prevent deterioration of ductility during hot working, suppress hot cracking, and significantly improve surface properties. Furthermore, by suppressing the amount of S, coarse sulfides are formed as impurity elements, thereby preventing deterioration of the ductility, bendability, and stretch-flangeability of the steel sheet. These problems become conspicuous when the S content exceeds 0.03%, and it is preferable to reduce the S content as much as possible. The lower limit of S is not particularly limited, and may be more than 0% or 0.0001% or more due to production technology restrictions.

N:0.010%以下(0%を含まない)
Nの含有量は0.010%以下とすることが好ましい。Nの含有量を0.010%以下とすることで,NがTi,Nb,Vと高温で粗大な窒化物を形成することでTi,Nb,V添加による鋼板の高強度化の効果が損なわれることを防ぐことができる。また,Nの含有量を0.010%以下とすることで靭性の低下も防ぐことができる。さらに,Nの含有量を0.010%以下とすることで,熱間圧延中にスラブ割れ,表面疵が発生することを防ぐことができる。Nの含有量は,好ましくは0.005%以下であり,より好ましくは0.003%以下であり,さらに好ましくは0.002%以下である。Nの含有量の下限は特に限定されず,生産技術上の制約から0%超であり得,0.0005%以上であり得る。
N: 0.010% or less (excluding 0%)
The N content is preferably 0.010% or less. When the N content is 0.010% or less, N forms coarse nitrides with Ti, Nb, and V at high temperatures, impairing the effect of increasing the strength of the steel sheet by adding Ti, Nb, and V. can be prevented. Further, by setting the N content to 0.010% or less, it is possible to prevent deterioration of toughness. Furthermore, by setting the N content to 0.010% or less, it is possible to prevent the occurrence of slab cracks and surface defects during hot rolling. The N content is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.002% or less. The lower limit of the N content is not particularly limited, and may be more than 0% due to production technology restrictions, and may be 0.0005% or more.

Al:1.0%以下(0%を含まない)
Alは熱力学的に最も酸化しやすいため,SiおよびMnに先だって酸化し,SiおよびMnの鋼板最表層での酸化を抑制し,SiおよびMnの鋼板内部での酸化を促進する効果がある。この効果はAl量が0.01%以上で得られる。一方,Al量が1.0%を超えるとコストアップになる。したがって,添加する場合,Al量は1.0%以下とすることが好ましい。Al量は0.1%以下とすることがより好ましい。Alの下限は特に限定されず,0%超であり得,0.001%以上であり得る。
Al: 1.0% or less (excluding 0%)
Since Al is thermodynamically most oxidizable, it oxidizes before Si and Mn, and has the effect of suppressing the oxidation of Si and Mn in the outermost layer of the steel sheet and promoting the oxidation of Si and Mn inside the steel sheet. This effect is obtained when the amount of Al is 0.01% or more. On the other hand, if the amount of Al exceeds 1.0%, the cost increases. Therefore, when Al is added, the amount of Al is preferably 1.0% or less. More preferably, the Al content is 0.1% or less. The lower limit of Al is not particularly limited, and may be over 0% and may be 0.001% or more.

成分組成はさらに,任意で,B:0.005%以下,Ti:0.2%以下,Cr:1.0%以下,Cu:1.0%以下,Ni:1.0%以下,Mo:1.0%以下,Nb:0.20%以下,V:0.5%以下,Sb:0.200%以下,Ta:0.1%以下,W:0.5%以下,Zr:0.1%以下,Sn:0.20%以下,Ca:0.005%以下,Mg:0.005%以下およびREM:0.005%以下からなる群から選ばれる1種または2種以上を含有し得る。 The component composition is further optionally B: 0.005% or less, Ti: 0.2% or less, Cr: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, Mo: 1.0% or less, Nb: 0.20% or less, V: 0.5% or less, Sb: 0.200% or less, Ta: 0.1% or less, W: 0.5% or less, Zr: 0.5% or less. 1% or less, Sn: 0.20% or less, Ca: 0.005% or less, Mg: 0.005% or less, and REM: 0.005% or less obtain.

B:0.005%以下
Bは鋼の焼入れ性を向上させるのに有効な元素である。焼入れ性を向上するためには,B量は0.0003%以上とすることが好ましく,0.0005%以上とすることがより好ましい。しかし,Bを過度に添加すると成形性が低下するため,B量は0.005%以下とすることが好ましい。
B: 0.005% or less B is an effective element for improving the hardenability of steel. In order to improve hardenability, the B content is preferably 0.0003% or more, more preferably 0.0005% or more. However, if B is added excessively, the moldability is lowered, so the B content is preferably 0.005% or less.

Ti:0.2%以下
Tiは鋼の析出強化に有効である。Tiの下限は特に限定されないが,強度調整の効果を得るためには,0.005%以上とすることが好ましい。しかし,Tiを過度に添加すると,硬質相が過大となり,成形性が低下するため,Tiを添加する場合,Ti量は0.2%以下とすることが好ましく,0.05%以下とすることがより好ましい。
Ti: 0.2% or less Ti is effective for precipitation strengthening of steel. Although the lower limit of Ti is not particularly limited, it is preferably 0.005% or more in order to obtain the effect of adjusting the strength. However, if Ti is added excessively, the hard phase becomes excessively large and the formability deteriorates. is more preferred.

Cr:1.0%以下
Cr量は0.005%以上とすることが好ましい。Cr量を0.005%以上とすることで,焼き入れ性を向上し,強度と延性とのバランスを向上することができる。添加する場合,コストアップを防ぐ観点から,Cr量は1.0%以下とすることが好ましい 。
Cr: 1.0% or less The Cr content is preferably 0.005% or more. By setting the Cr content to 0.005% or more, the hardenability can be improved, and the balance between strength and ductility can be improved. When adding Cr, the amount of Cr is preferably 1.0% or less from the viewpoint of preventing cost increase.

Cu:1.0%以下
Cu量は0.005%以上とすることが好ましい。Cu量を0.005%以上とすることで,残留γ相の形成を促進することができる。また,Cu量を添加する場合,コストアップを防ぐ観点から,Cu量は1.0%以下とすることが好ましい。
Cu: 1.0% or less The amount of Cu is preferably 0.005% or more. By setting the amount of Cu to 0.005% or more, the formation of the residual γ phase can be promoted. Moreover, when Cu content is added, the Cu content is preferably 1.0% or less from the viewpoint of preventing cost increase.

Ni:1.0%以下
Ni量は0.005%以上とすることが好ましい。Ni量を0.005%以上とすることで,残留γ相の形成を促進することができる。また,Niを添加する場合,コストアップを防ぐ観点から,Ni量は1.0%以下とすることが好ましい。
Ni: 1.0% or less The Ni content is preferably 0.005% or more. By setting the Ni content to 0.005% or more, the formation of the residual γ phase can be promoted. Moreover, when Ni is added, the amount of Ni is preferably 1.0% or less from the viewpoint of preventing cost increase.

Mo:1.0%以下
Mo量は0.005%以上とすることが好ましい。Mo量を0.005%以上とすることで,強度調整の効果を得ることができる。また,Moを添加する場合,コストアップを防ぐ観点から,Mo量は1.0%以下が好ましい。
Mo: 1.0% or less Mo content is preferably 0.005% or more. By setting the Mo amount to 0.005% or more, the strength adjustment effect can be obtained. Moreover, when Mo is added, the amount of Mo is preferably 1.0% or less from the viewpoint of preventing cost increase.

Nb:0.20%以下
Nbは,0.005%以上含有することで強度向上の効果が得られる。また,Nbを含有する場合,コストアップを防ぐ観点から,Nb量は0.20%以下とすることが好ましい。
Nb: 0.20% or less When the Nb content is 0.005% or more, the effect of improving the strength can be obtained. Moreover, when Nb is contained, the amount of Nb is preferably 0.20% or less from the viewpoint of preventing cost increase.

V:0.5%以下
Vは,0.005%以上含有することで強度向上の効果が得られる。また,Vを含有する場合,コストアップを防ぐ観点から,V量は0.5%以下とすることが好ましい。
V: 0.5% or less When the V content is 0.005% or more, the effect of improving the strength can be obtained. Moreover, when V is contained, the amount of V is preferably 0.5% or less from the viewpoint of preventing cost increase.

Sb:0.200%以下
Sbは鋼板表面の窒化,酸化,あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。Sbは,鋼板表面の窒化および酸化を抑制することで,鋼板表面においてマルテンサイトの生成量が減少するのを防止し,鋼板の疲労特性および表面品質を改善する。このような効果を得るために,Sb量は0.001%以上とすることが好ましい。一方,良好な靭性を得るためには,Sb量は0.200%以下とすることが好ましい。
Sb: 0.200% or less Sb can be contained from the viewpoint of suppressing nitridation, oxidation, or decarburization in a region of several tens of microns on the steel sheet surface caused by oxidation of the steel sheet surface. Sb suppresses nitridation and oxidation of the steel sheet surface, thereby preventing a decrease in the amount of martensite formed on the steel sheet surface and improving the fatigue properties and surface quality of the steel sheet. In order to obtain such effects, the Sb content is preferably 0.001% or more. On the other hand, in order to obtain good toughness, the Sb content is preferably 0.200% or less.

Ta:0.1%以下
Taは,0.001%以上含有することで強度向上の効果が得られる。また,Taを含有する場合,コストアップを防ぐ観点から,Ta量は0.1%以下とすることが好ましい。
Ta: 0.1% or less When the Ta content is 0.001% or more, the effect of improving the strength can be obtained. Moreover, when Ta is contained, the amount of Ta is preferably 0.1% or less from the viewpoint of preventing cost increase.

W:0.5%以下
Wは,0.005%以上含有することで強度向上の効果が得られる。また,Wを含有する場合,コストアップを防ぐ観点から,W量は0.5%以下とすることが好ましい。
W: 0.5% or less When the W content is 0.005% or more, the effect of improving the strength can be obtained. Moreover, when W is contained, the amount of W is preferably 0.5% or less from the viewpoint of preventing cost increase.

Zr:0.1%以下
Zrは,0.0005%以上含有することで強度向上の効果が得られる。また,Zrを含有する場合,コストアップを防ぐ観点から,Zr量は0.1%以下とすることが好ましい。
Zr: 0.1% or less When the Zr content is 0.0005% or more, the effect of improving the strength can be obtained. Moreover, when Zr is contained, the amount of Zr is preferably 0.1% or less from the viewpoint of preventing cost increase.

Sn:0.20%以下
Snは脱窒,脱硼等を抑制して,鋼の強度低下抑制に有効な元素である。こうした効果を得るにはそれぞれ0.002%以上とすることが好ましい。一方,良好な耐衝撃性を得るために,Sn量は0.20%以下とすることが好ましい。
Sn: 0.20% or less Sn is an element that suppresses denitrification, deboronization, etc., and is effective in suppressing a decrease in strength of steel. In order to obtain such an effect, it is preferable that each content be 0.002% or more. On the other hand, in order to obtain good impact resistance, the Sn content is preferably 0.20% or less.

Ca:0.005%以下
Caは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,良好な延性を得る観点から,Ca量は0.005%以下とすることが好ましい。
Ca: 0.005% or less By containing 0.0005% or more of Ca, it is possible to control the morphology of sulfides and improve ductility and toughness. Moreover, from the viewpoint of obtaining good ductility, the Ca content is preferably 0.005% or less.

Mg:0.005%以下
Mgは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,Mgを含有する場合,コストアップを防ぐ観点から,Mg量は0.005%以下とすることが好ましい。
Mg: 0.005% or less By containing 0.0005% or more of Mg, it is possible to control the morphology of sulfides and improve ductility and toughness. Moreover, when Mg is contained, the amount of Mg is preferably 0.005% or less from the viewpoint of preventing cost increase.

REM:0.005%以下
REMは,0.0005%以上含有することで硫化物の形態を制御し,延性,靭性を向上させることができる。また,REMを含有する場合,良好な靭性を得る観点から,REM量は0.005%以下とすることが好ましい。
REM: 0.005% or less By containing 0.0005% or more of REM, it is possible to control the morphology of sulfides and improve ductility and toughness. Moreover, when REM is contained, the amount of REM is preferably 0.005% or less from the viewpoint of obtaining good toughness.

本実施形態のSi含有冷延鋼板は,上記成分以外の残部はFeおよび不可避的不純物である。 In the Si-containing cold-rolled steel sheet of this embodiment, the balance other than the above components is Fe and unavoidable impurities.

次に,上述したSi含有冷延鋼板の少なくとも片面に形成されたFe系電気めっき層について説明する。
Fe系電気めっき層:15.0g/m2以上
片面あたりの付着量が15.0g/m2以上のFe系電気めっき層を有することで,焼鈍時に鋼板表面に形成されたSi含有酸化物層を被覆して化成処理性および塗装後耐食性を向上させることができる。また,Fe系電気めっき層は軟質であるため,溶接時に鋼板表面に付与される応力を緩和することができ,抵抗溶接部の残留応力を低減することにより,溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性を向上させることができていると考えられる(応力緩和効果)。さらに,Fe系電気めっき層はSi欠乏層として働くため,Si固溶による溶接部の靭性低下を抑制し,溶接部における耐抵抗溶接割れ特性に優れた鋼板を得ることができる。片面あたりの付着量が15.0g/m2以上のFe系電気めっき層により溶接部における耐抵抗溶接割れ特性が向上するメカニズムは明らかではないが,鋼板表面における固溶Si量が多い場合には溶接部で靭性が低下して溶接部における耐抵抗溶接割れ特性が劣化するものと考えられる。これに対し,一定量以上のFe系電気めっき層を鋼板表面に有する場合,該Fe系電気めっき層が固溶Si欠乏層として働き,溶接部に固溶するSiが減少するため,溶接部の靭性の低下が抑制されて溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性が改善すると考えられる(靭性低下抑制効果)。また,焼鈍後にFe系電気めっき層を施すことにより,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化する割合を低減することができる。そのため,溶解した亜鉛めっき層がFe系電気めっき鋼板の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入することを防ぐことができ,溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性を改善することができると考えられる(亜鉛の粒界侵入抑制効果)。これらFe系電気めっき層付与による応力緩和効果,靭性低下抑制効果,および亜鉛の粒界侵入抑制効果の耐抵抗溶接割れ特性への寄与は複雑ゆえ定量的には明らかではないが,複合的に作用して耐抵抗溶接割れ特性を改善しているものと考えられる。Fe系電気めっき層の片面あたりの付着量が3g/m2以上であれば,優れた化成処理性および塗装後耐食性が得られるが,溶接部における耐抵抗溶接割れ特性を向上させる効果を生じさせるためには,Fe系電気めっき層の片面あたりの付着量を15.0g/m2以上とすることが必要である。Fe系電気めっき層の片面あたりの付着量の上限は特に限定されないが,コストの観点から,Fe系電気めっき層の片面あたりの付着量を60g/m2以下とすることが好ましい。Fe系電気めっき層の付着量は,好ましくは15g/m2超,より好ましくは17g/m2以上,さらに好ましくは20g/m2以上,最も好ましくは25g/m2以上,あるいは30g/m2以上とする。Fe系電気めっき鋼板は,好ましくはSi含有冷延鋼板の表裏両面にFe系電気めっき層を有する。Fe系電気めっき層の付着量を25g/m2以上とすることで,溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性が特に良好となる。
Next, the Fe-based electroplating layer formed on at least one side of the Si-containing cold-rolled steel sheet described above will be described.
Fe-based electroplating layer: 15.0 g/m 2 or more By having an Fe-based electroplating layer with a deposition amount of 15.0 g/m 2 or more per side, a Si-containing oxide layer is formed on the surface of the steel sheet during annealing. can be coated to improve chemical conversion treatability and corrosion resistance after painting. In addition, since the Fe-based electroplating layer is soft, it can relax the stress applied to the steel sheet surface during welding. In particular, it is considered that the property of preventing inner cracks can be improved (stress relaxation effect). Furthermore, since the Fe-based electroplating layer functions as a Si-deficient layer, it is possible to suppress deterioration in the toughness of the weld zone due to Si solid solution, and to obtain a steel sheet with excellent resistance weld cracking resistance in the weld zone. Although the mechanism by which the Fe-based electroplating layer with a coating weight per side of 15.0 g/ m2 or more improves the resistance weld cracking resistance of welds is not clear, when the amount of solid-solution Si on the steel sheet surface is large, It is considered that the toughness of the weld zone is lowered and the resistance weld cracking resistance of the weld zone is deteriorated. On the other hand, when the steel sheet surface has a Fe-based electroplating layer of a certain amount or more, the Fe-based electroplating layer acts as a solid solution Si depleted layer, and the amount of Si solid solution in the weld decreases. It is thought that the reduction in toughness is suppressed and the resistance weld cracking resistance of the weld zone, especially the resistance to internal cracking, is improved (effect of suppressing deterioration in toughness). In addition, by applying an Fe-based electroplating layer after annealing, the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet to be integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet can be reduced. can be reduced. Therefore, it is possible to prevent the dissolved galvanized layer from entering the grain boundaries of the Si-containing cold-rolled steel sheet via the grain boundaries of the Fe-based electroplated steel sheet, and the resistance weld cracking resistance at the weld zone, especially It is thought that the property of preventing inner cracks can be improved (zinc intergranular penetration suppression effect). The effects of these Fe-based electroplating layers on the stress relaxation effect, toughness reduction suppression effect, and grain boundary penetration suppression effect of zinc are not quantitatively clarified because of their complexity, but they act in combination. As a result, the resistance weld crack resistance is considered to be improved. If the deposition amount per side of the Fe-based electroplating layer is 3 g/m 2 or more, excellent chemical conversion treatability and corrosion resistance after painting can be obtained, but it has the effect of improving resistance weld cracking resistance in welds. For this purpose, it is necessary to set the deposition amount per side of the Fe-based electroplating layer to 15.0 g/m 2 or more. Although the upper limit of the amount of the Fe-based electroplating layer attached per side is not particularly limited, from the viewpoint of cost, the amount of the Fe-based electroplating layer attached per side is preferably 60 g/m 2 or less. The adhesion amount of the Fe-based electroplating layer is preferably over 15 g/m 2 , more preferably 17 g/m 2 or more, still more preferably 20 g/m 2 or more, most preferably 25 g/m 2 or more, or 30 g/m 2 . That's it. The Fe-based electroplated steel sheet preferably has an Fe-based electroplated layer on both front and back surfaces of the Si-containing cold-rolled steel sheet. By setting the adhesion amount of the Fe-based electroplating layer to 25 g/m 2 or more, the resistance weld cracking resistance at the weld zone, particularly the resistance to internal cracking, becomes particularly good.

なお,Fe系電気めっき層の厚みは,以下の通り測定する。Fe系電気めっき鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込み,断面埋め込みサンプルとする。同断面の任意の3か所を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて加速電圧15kV,およびFe系電気めっき層の厚みに応じて倍率2000~10000倍で観察し,3視野の厚みの平均値に鉄の比重を乗じることによってFe系電気めっき層の片面あたりの付着量に換算する。 The thickness of the Fe-based electroplating layer is measured as follows. A sample having a size of 10×15 mm is taken from an Fe-based electroplated steel sheet and embedded in a resin to obtain a cross-sectional embedded sample. Any three places in the same cross section are observed using a scanning electron microscope (SEM) at an acceleration voltage of 15 kV and a magnification of 2000 to 10000 times depending on the thickness of the Fe-based electroplating layer. By multiplying the average value of the thickness by the specific gravity of iron, it is converted into the adhesion amount per one side of the Fe-based electroplating layer.

Fe系電気めっき層としては,純Feの他,Fe-B合金,Fe-C合金,Fe-P合金,Fe-N合金,Fe-O合金,Fe-Ni合金,Fe-Mn合金,Fe-Mo合金,Fe-W合金等の合金めっき層が使用できる。Fe系電気めっき層の成分組成は特に限定されないが,B,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み,残部はFeおよび不可避的不純物からなる成分組成とすることが好ましい。Fe以外の元素の量を合計で10質量%以下とすることで,電解効率の低下を防ぎ,低コストでFe系電気めっき層を形成することができる。Fe-C合金の場合,Cの含有量は0.08質量%以下とすることが好ましい。 As the Fe-based electroplating layer, in addition to pure Fe, Fe--B alloy, Fe--C alloy, Fe--P alloy, Fe--N alloy, Fe--O alloy, Fe--Ni alloy, Fe--Mn alloy, Fe-- Alloy plating layers such as Mo alloys and Fe--W alloys can be used. The component composition of the Fe-based electroplating layer is not particularly limited, but is selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. Alternatively, it is preferable to have a component composition containing two or more elements in a total of 10% by mass or less, with the balance being Fe and unavoidable impurities. By setting the total amount of elements other than Fe to 10% by mass or less, it is possible to prevent a decrease in electrolysis efficiency and form an Fe-based electroplating layer at low cost. In the case of Fe--C alloy, the C content is preferably 0.08% by mass or less.

なお,本実施形態に係るFe系電気めっき鋼板は,表面にFe系電気めっき以外のめっき層を有さないことが好ましい。Fe系電気めっき鋼板が表面にFe系電気めっき以外のめっき層を有さないことで,防錆用途としての亜鉛めっき鋼板が過剰に必要とされない部品,あるいは腐食環境がマイルドで過剰な防錆が必要とされない環境下で用いられる部品を,低コストで提供できる。 In addition, it is preferable that the Fe-based electroplated steel sheet according to the present embodiment does not have a plating layer other than the Fe-based electroplating on the surface. Since the Fe-based electroplated steel sheet does not have a plating layer other than the Fe-based electroplating on the surface, it is used for parts that do not require excessive galvanized steel sheets for rust prevention purposes, or for parts that do not require excessive galvanized steel sheets for rust prevention, or where the corrosion environment is mild and excessive rust prevention is possible. Parts that are used in environments where they are not required can be provided at low cost.

Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は特に限定されないが,50%以下であり得る。本実施形態においては,Si含有冷延鋼板に対して焼鈍を施した後にFe系電気めっきを施し,その後焼鈍を行わないため,Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化する割合が低い。そのため,溶解した亜鉛めっき鋼板がFe系電気めっき鋼板の結晶粒界を経由してSi含有冷延鋼板の結晶粒界に侵入することを防ぐことが期待でき,ひいては溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性をより向上することが期待できる。本実施形態に係るFe系電気めっき鋼板は,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合が,30%以下であり得,25%以下であり得る。 The ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is not particularly limited, but may be 50% or less. In the present embodiment, since the Si-containing cold-rolled steel sheet is annealed and then Fe-based electroplated, and then not annealed, the crystal orientation of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet are integrated. low rate of conversion. Therefore, it is expected that the melted galvanized steel sheet will be prevented from entering the grain boundary of the Si-containing cold-rolled steel sheet via the grain boundary of the Fe-based electroplated steel sheet. In particular, it can be expected that the property of preventing inner cracks will be further improved. In the Fe-based electroplated steel sheet according to the present embodiment, the crystal orientation of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet is integrated at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet. It can be 30% or less, and can be 25% or less.

ここで,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,以下のように測定する。Fe系電気めっき鋼板から10×10mmサイズのサンプルを採取する。該サンプルの任意の1箇所を集束イオンビーム(Focused Ion Beam:FIB)装置にて加工し,T断面(鋼板の圧延直角方向に対して平行かつ鋼板表面に垂直な断面)方向に対して45°の角度をつけた,圧延直角方向30μm幅,T断面方向に対して45°方向の長さが50μmの45°断面を1箇所に形成して,観察用サンプルとする。図4に,該観察用サンプルの概要を示す。図4(a)は,観察用サンプルの斜視図である。図4(b)は,図4(a)に示す観察用サンプルのA-A断面図である。次いで,走査イオン顕微鏡(Scanning Ion Microscope:SIM)を用いて該観察用サンプルの45°断面の中央部を倍率5000倍で観察し,幅1024×高さ943ピクセル,8ビットのSIM像を撮影する。3箇所に作製した45°断面毎に撮像したSIM像から,以下の式(1)に基づいて,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求める。なお,小数点以下は切り上げとする。
(Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合)=(Fe系電気めっき層とSi含有冷延鋼板との界面のうち,Fe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している箇所の長さ)÷(観察視野での界面の長さ)×100・・・(1)
Here, the ratio at which the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is measured as follows. A sample of 10×10 mm size is taken from a Fe-based electroplated steel sheet. An arbitrary point of the sample is processed with a focused ion beam (FIB) device, and the T cross section (a cross section parallel to the rolling direction of the steel plate and perpendicular to the steel plate surface) direction is 45 °. A 45° section having a width of 30 μm in the direction perpendicular to the rolling direction and a length of 50 μm in the direction of 45° with respect to the T section direction is formed at one location to obtain a sample for observation. FIG. 4 shows an overview of the observation sample. FIG. 4(a) is a perspective view of an observation sample. FIG. 4(b) is a cross-sectional view of the observation sample shown in FIG. 4(a) taken along the line AA. Then, using a scanning ion microscope (SIM), the central part of the 45 ° cross section of the observation sample is observed at a magnification of 5000 times, and an 8-bit SIM image of width 1024 × height 943 pixels is taken. . From the SIM images taken at each 45° section prepared at three locations, based on the following formula (1), the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet is Obtain the ratio of the crystal orientation integrated with the rolled steel sheet. The decimal point is rounded up.
(Percentage at which the crystal orientation of the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet is integrated at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet) = (Fe-based electroplated layer and Si-containing cold-rolled steel sheet Of the interface with the steel sheet, the length of the portion where the crystal orientation of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated) ÷ (the length of the interface in the observation field) × 100 (1 )

なお,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化しているか否かは,画像処理で判断する。図5を用いて,結晶方位が一体化している割合の評価方法を説明する。まず,図5(a)に示すように,前述したSIM像のFe系電気めっき層とSi含有冷延鋼板との界面に,走査型電子顕微鏡(Scanning Electron Microscope:SIM)を用いて境界線Bを描画する。次いで,前境界線を描画した像とは別に,SIM像を画像処理した像を作製する。具体的には,まず撮像した幅1024×高さ943ピクセル,8ビットのSIM像に対し,ソーベルフィルタにより結晶粒界を強調する。続いて,結晶粒界を強調した画像にガウスフィルタ(半径(R):10ピクセル)により平滑化処理を行なう。次いで,平滑化処理後の画像に二値化処理(閾値:17)を行う。引き続き,界面を描画した像の境界線Bを,二値化処理した像に転写する。その後,図5(b)に示すように,2値処理後の画像において,境界線Bを中心とする幅40ピクセルの判定領域(図5(b)のL1およびL2によって囲まれる領域)を二値化処理した像上の境界線Bに沿うように描画する。境界線Bの長さのうち,該判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面(二値化処理した像上の白黒の境界)が存在しない長さの合計を,結晶方位が一体化している長さとみなす。ここで,境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計は,以下の通り求める。説明のために,図5(c)に,図5(b)の四角で囲った箇所の拡大図を示す。まず,図5(c)に示すように境界線Bの法線二本(図5(c)においては,l1およびl2,並びにl3およびl4)によって,白黒いずれか一色のみが含まれるよう判定領域を略矩形に区分できる箇所を判定領域全域について探す。次いで,該箇所における境界線と二本の法線との交点同士の最大距離を,判定領域全域について合計して,境界線の長さのうち判定領域内にFe系電気めっき層とSi含有冷延鋼板との界面が存在しない長さの合計とする。Image processing is used to determine whether the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet are integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet. Using FIG. 5, a method for evaluating the ratio of integrated crystal orientations will be described. First, as shown in FIG. 5(a), the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in the SIM image described above was scanned with a scanning electron microscope (SIM), and a boundary line B was observed. to draw. Next, an image is produced by performing image processing on the SIM image separately from the image in which the front boundary line is drawn. Specifically, first, grain boundaries are emphasized using a Sobel filter for an 8-bit SIM image of width 1024×height 943 pixels. Subsequently, the image in which the grain boundaries are emphasized is smoothed by a Gaussian filter (radius (R): 10 pixels). Next, binarization processing (threshold value: 17) is performed on the image after the smoothing processing. Subsequently, the boundary line B of the image representing the interface is transferred to the binarized image. After that, as shown in FIG. 5(b), in the image after the binary processing, the determination area with a width of 40 pixels centered on the boundary line B (the area surrounded by L 1 and L 2 in FIG. 5(b)) is drawn along the boundary line B on the binarized image. Of the length of the boundary line B, the total length where there is no interface (black and white boundary on the binarized image) between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet in the judgment area, It is regarded as the length over which the crystal orientations are integrated. Here, among the lengths of the boundary lines, the sum of the lengths in which the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet does not exist in the determination region is obtained as follows. For the sake of explanation, FIG. 5(c) shows an enlarged view of the part surrounded by a square in FIG. 5(b). First, as shown in Fig. 5(c), the two normals to boundary line B (l 1 and l 2 and l 3 and l 4 in Fig. 5(c)) include only one color, either black or white. The entire determination area is searched for locations where the determination area can be divided into substantially rectangular shapes so that the determination area can be divided. Next, the maximum distance between the intersections of the boundary line and the two normal lines at that point is totaled over the entire judgment area, and the Fe-based electroplating layer and the Si-containing cold It is the total length where there is no interface with the rolled steel sheet.

図2に,後述する実施例の発明例No.43についての,Fe系電気めっき層およびSi含有冷延鋼板の界面のSIM像を示す。該SIM像を上述したように画像処理して2値処理した後の画像を,図6に示す。発明例No.43においては,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,6%であった。また,図3に,後述する実施例の発明例No.46についての,Fe系電気めっき層およびSi含有冷延鋼板の界面のSIM像を示す。該SIM像を上述したように画像処理して2値処理した後の画像を,図7に示す。発明例No.46においては,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合は,10%であった。 FIG. 2 shows invention example No. 2 of an embodiment to be described later. 43 shows a SIM image of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet for No. 43. FIG. 6 shows an image after the SIM image is subjected to image processing and binary processing as described above. Invention Example No. In No. 43, the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet being integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet was 6%. FIG. 3 shows a SIM image of the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet for Invention Example No. 46, which will be described later. FIG. 7 shows an image after the SIM image is subjected to image processing and binary processing as described above. In Invention Example No. 46, the ratio of the crystal orientations of the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet being integrated at the interface between the Fe-based electroplating layer and the Si-containing cold-rolled steel sheet was 10%. rice field.

<Fe系電気めっき鋼板の製造方法>
次に,Fe系電気めっき鋼板の製造方法を説明する。
一実施形態に係るFe系電気めっき鋼板の製造方法は,Siを0.5質量%以上3.0質量%以下含有するSi含有焼鈍前冷延鋼板を焼鈍してSi含有冷延鋼板とし,
次いで,前記Si含有冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が15.0g/m2以上のFe系電気めっき層が少なくとも片面に形成されたFe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法であり得る。
<Method for producing Fe-based electroplated steel sheet>
Next, a method for manufacturing an Fe-based electroplated steel sheet will be described.
A method for producing an Fe-based electroplated steel sheet according to one embodiment comprises annealing a pre-annealed cold-rolled steel sheet containing Si containing 0.5% by mass or more and 3.0% by mass or less of Si to obtain a cold-rolled steel sheet containing Si,
Next, the Si-containing cold-rolled steel sheet is subjected to Fe-based electroplating to obtain an Fe-based electroplated steel sheet having an Fe-based electroplating layer with a deposition amount of 15.0 g/m 2 or more per side formed on at least one side. , a method for producing an Fe-based electroplated steel sheet.

まず,Siを0.5質量%以上3.0質量%以下含有するSi含有焼鈍前冷延鋼板を製造する。Si含有焼鈍前冷延鋼板の製造方法は,通常の冷延鋼板の製造方法に従うことができる。一例において,Si含有焼鈍前冷延鋼板は,上述した成分組成を有する鋼スラブに熱間圧延を施して熱延板とし,次いで該熱延板に酸洗を施し,次いで,熱延板に冷間圧延を施してSi含有焼鈍前冷延鋼板とすることによって製造する。 First, a Si-containing pre-annealing cold-rolled steel sheet containing 0.5% by mass or more and 3.0% by mass or less of Si is produced. The manufacturing method of the Si-containing pre-annealed cold-rolled steel sheet can follow the manufacturing method of a normal cold-rolled steel sheet. In one example, the Si-containing pre-annealed cold-rolled steel sheet is obtained by hot-rolling a steel slab having the chemical composition described above to obtain a hot-rolled sheet, then pickling the hot-rolled sheet, and then cooling the hot-rolled sheet. It is produced by subjecting it to rolling to obtain a Si-containing pre-annealed cold-rolled steel sheet.

次いで,Fe系電気めっき処理を施す前に,Si含有焼鈍前冷延鋼板を焼鈍して,Si含有冷延鋼板とする。焼鈍の条件は特に限定されないが,一例においては,露点:30℃以下,水素濃度:1.0体積%以上30.0体積%以下の還元性雰囲気中で,650℃以上900℃以下の温度域で30秒以上600秒以下保持した後に冷却する焼鈍工程を行なって,Si含有冷延鋼板を得る。焼鈍工程は,圧延工程によって生じた冷延鋼板の歪を除去し,組織を再結晶させることで,鋼板強度を高めるために行う。 Next, the Si-containing pre-annealed cold-rolled steel sheet is annealed to obtain a Si-containing cold-rolled steel sheet before being subjected to Fe-based electroplating. The annealing conditions are not particularly limited, but in one example, in a reducing atmosphere with a dew point of 30°C or less and a hydrogen concentration of 1.0% by volume or more and 30.0% by volume or less, the temperature range is 650°C or more and 900°C or less. Annealing step of cooling is performed after holding for 30 seconds or more and 600 seconds or less to obtain a Si-containing cold-rolled steel sheet. Annealing is performed to remove the strain in the cold-rolled steel sheet caused by the rolling process and recrystallize the structure, thereby increasing the strength of the steel sheet.

水素濃度:1.0体積%以上30.0体積%以下
一例において,焼鈍工程は,水素濃度が1.0体積%以上30.0体積%以下の還元性雰囲気中で行い得る。水素は,焼鈍工程中のSi含有焼鈍前冷延鋼板表面のFeの酸化を抑制し,鋼板表面を活性化するために必要である。水素濃度が1.0体積%以上であれば,鋼板表面のFeが酸化することによりFe系電気めっき層の密着性が劣化することを回避することができる。よって,焼鈍工程は水素濃度1.0体積%以上の還元性雰囲気にて行うことが好ましく,2.0体積%以上の還元性雰囲気にて行うことがより好ましい。焼鈍工程における水素濃度の上限は特に限定されないが,コストの観点から,水素濃度は30.0体積%以下とすることが好ましく,20.0体積%以下とすることがより好ましい。焼鈍雰囲気の水素以外の残部は,窒素とすることが好ましい。
Hydrogen concentration: 1.0% by volume or more and 30.0% by volume or less In one example, the annealing step can be performed in a reducing atmosphere with a hydrogen concentration of 1.0% by volume or more and 30.0% by volume or less. Hydrogen is necessary to suppress the oxidation of Fe on the surface of the Si-containing cold-rolled steel sheet before annealing during the annealing process and to activate the steel sheet surface. If the hydrogen concentration is 1.0% by volume or more, it is possible to avoid deterioration of adhesion of the Fe-based electroplating layer due to oxidation of Fe on the surface of the steel sheet. Therefore, the annealing step is preferably performed in a reducing atmosphere with a hydrogen concentration of 1.0% by volume or more, more preferably in a reducing atmosphere with a hydrogen concentration of 2.0% by volume or more. Although the upper limit of the hydrogen concentration in the annealing step is not particularly limited, from the viewpoint of cost, the hydrogen concentration is preferably 30.0% by volume or less, more preferably 20.0% by volume or less. The remainder of the annealing atmosphere other than hydrogen is preferably nitrogen.

露点:30℃以下
一例において,焼鈍工程は,焼鈍雰囲気の露点を30℃以下として行い得る。焼鈍工程において,焼鈍雰囲気の露点を30℃以下とすることで,Si含有焼鈍前冷延鋼板表面の酸化を防ぎ,Fe系電気めっき層の密着性をより向上することができるため,焼鈍雰囲気の露点は30℃以下とすることが好ましい。焼鈍雰囲気の露点は,より好ましくは20℃以下である。焼鈍雰囲気の露点の下限は特に定めないが,-80℃未満は工業的に実現が困難であるため,-80℃以上とする。焼鈍雰囲気の露点は好ましくは-55℃以上である。
Dew point: 30°C or less In one example, the annealing step can be performed with the dew point of the annealing atmosphere being 30°C or less. In the annealing process, by setting the dew point of the annealing atmosphere to 30°C or less, oxidation of the surface of the Si-containing cold-rolled steel sheet before annealing can be prevented and the adhesion of the Fe-based electroplating layer can be further improved. The dew point is preferably 30°C or less. The dew point of the annealing atmosphere is more preferably 20°C or less. Although the lower limit of the dew point of the annealing atmosphere is not specified, it is set to -80°C or higher because it is industrially difficult to achieve a dew point of less than -80°C. The dew point of the annealing atmosphere is preferably -55°C or higher.

650℃以上900℃以下の温度域での保持時間:30秒以上600秒以下
焼鈍工程において,650℃以上900℃以下の温度域での保持時間を,30秒以上600秒以下とすることが好ましい。当該温度域での保持時間を30秒以上とすることで,Si含有焼鈍前冷延鋼板表面に形成したFeの自然酸化膜を好適に除去し,後に形成するFe系電気めっき層の直下に酸化膜が形成されることを防いで,Fe系電気めっき層の密着性を向上することができる。よって,当該温度域での保持時間は30秒以上とすることが好ましい。当該温度域での保持時間の上限は特に定めないが,生産性の観点から,当該温度域での保持時間は600秒以下とすることが好ましい。
Holding time in the temperature range of 650°C to 900°C: 30 seconds to 600 seconds In the annealing step, the holding time in the temperature range of 650°C to 900°C is preferably 30 seconds to 600 seconds. . By setting the holding time in the temperature range to 30 seconds or more, the natural oxide film of Fe formed on the surface of the Si-containing cold-rolled steel sheet before annealing is suitably removed, and the Fe-based electroplating layer to be formed later is oxidized directly below. The adhesion of the Fe-based electroplating layer can be improved by preventing the formation of a film. Therefore, it is preferable to set the retention time in the temperature range to 30 seconds or longer. Although the upper limit of the holding time in the temperature range is not particularly defined, the holding time in the temperature range is preferably 600 seconds or less from the viewpoint of productivity.

Si含有焼鈍前冷延鋼板の最高到達温度:650℃以上900℃以下
Si含有焼鈍前冷延鋼板の最高到達温度は特に限定されないが,650℃以上900℃以下とすることが好ましい。Si含有焼鈍前冷延鋼板の最高到達温度を650℃以上とすることで,鋼板組織の再結晶が好適に進み,好適な強度を得ることができる。また,鋼板表面に形成したFeの自然酸化膜を好適に還元させ,Fe系電気めっき層の密着性がより向上する。また,Si含有焼鈍前冷延鋼板の最高到達温度が900℃以下であれば,鋼中のSi及びMnの拡散速度が極端に増加することを防ぎ,鋼板表面へのSi及びMnの拡散を防ぐことができるため,Fe系電気めっき層の密着性がより向上する。また,最高到達温度が900℃以下であれば,熱処理炉の炉体ダメージを防ぐことができ,コストダウンすることもできる。よって,Si含有焼鈍前冷延鋼板の最高到達温度は900℃以下とすることが好ましい。なお,上記最高到達温度は,Si含有焼鈍前冷延鋼板の表面にて測定された温度を基準とする。
Maximum temperature reached by Si-containing cold-rolled steel sheet before annealing: 650°C or higher and 900°C or lower The maximum temperature reached by the Si-containing cold-rolled steel plate before annealing is not particularly limited, but is preferably 650°C or higher and 900°C or lower. By setting the maximum temperature of the Si-containing pre-annealed cold-rolled steel sheet to 650°C or higher, recrystallization of the steel sheet structure favorably proceeds, and a suitable strength can be obtained. In addition, the natural oxide film of Fe formed on the surface of the steel sheet is preferably reduced, and the adhesion of the Fe-based electroplating layer is further improved. In addition, if the maximum temperature of the Si-containing cold-rolled steel sheet before annealing is 900 ° C or less, it prevents the diffusion rate of Si and Mn in the steel from increasing extremely, and prevents the diffusion of Si and Mn to the steel sheet surface. Therefore, the adhesion of the Fe-based electroplating layer is further improved. Moreover, if the highest temperature reached is 900° C. or less, damage to the furnace body of the heat treatment furnace can be prevented, and the cost can be reduced. Therefore, the maximum temperature reached by the Si-containing pre-annealed cold-rolled steel sheet is preferably 900° C. or less. The maximum temperature reached is based on the temperature measured on the surface of the Si-containing pre-annealed cold-rolled steel sheet.

次いで,Si含有冷延鋼板の表面にFe系電気めっき処理を施す。Fe系電気めっき処理方法は特に限定されない。例えば,Fe系電気めっき浴としては硫酸浴,塩酸浴あるいは両者の混合などが適用できる。 Then, the surface of the Si-containing cold-rolled steel sheet is subjected to Fe-based electroplating. The Fe-based electroplating method is not particularly limited. For example, as the Fe-based electroplating bath, a sulfuric acid bath, a hydrochloric acid bath, or a mixture of both can be applied.

通電開始前のFe系電気めっき浴中のFeイオン含有量は,Fe2+として0.5mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が,Fe2+として0.5mol/L以上であれば,十分なFe付着量を得ることができる。また,十分なFe付着量を得るために,通電開始前のFe系電気めっき浴中のFeイオン含有量は,2.0mol/L以下とすることが好ましい。The Fe ion content in the Fe-based electroplating bath before the start of energization is preferably 0.5 mol/L or more as Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 0.5 mol/L or more as Fe 2+ , a sufficient Fe deposition amount can be obtained. Further, in order to obtain a sufficient Fe deposition amount, it is preferable that the Fe ion content in the Fe-based electroplating bath before the start of energization is 2.0 mol/L or less.

また,Fe系電気めっき浴中にはFeイオン,並びにB,C,P,N,O,Ni,Mn,Mo,Zn,W,Pb,Sn,Cr,V及びCoからなる群から選ばれる少なくとも一種の元素を含有することができる。Fe系電気めっき浴中でのこれらの元素の合計含有量は,Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるようにすることが好ましい。なお,金属元素は金属イオンとして含有すればよく,非金属元素はホウ酸,リン酸,硝酸,有機酸等の一部として含有することができる。また,硫酸鉄めっき液中には,硫酸ナトリウム,硫酸カリウム等の伝導度補助剤や,キレート剤,pH緩衝剤が含まれていてもよい。なお,Fe系電気めっき処理を施した後は,Fe系電気めっき鋼板に対して追加の焼鈍は行わないことが好ましい。 Further, in the Fe-based electroplating bath, Fe ions and at least It can contain one element. The total content of these elements in the Fe-based electroplating bath is preferably 10% by mass or less in the Fe-based electroplating layer. Metal elements may be contained as metal ions, and non-metal elements may be contained as part of boric acid, phosphoric acid, nitric acid, organic acids, and the like. Further, the iron sulfate plating solution may contain conductivity aids such as sodium sulfate and potassium sulfate, chelating agents, and pH buffers. In addition, after the Fe-based electroplating treatment, it is preferable not to perform additional annealing on the Fe-based electroplated steel sheet.

Fe系電気めっき浴のその他の条件についても特に限定しない。Fe系電気めっき液の温度は,定温保持性を考えると,30℃以上とすることが好ましく,85℃以下が好ましい。Fe系電気めっき浴のpHも特に規定しないが,水素発生による電流効率の低下を防ぐ観点から1.0以上とすることが好ましく,またFe系電気めっき浴の電気伝導度を考慮すると,3.0以下が好ましい。電流密度は,生産性の観点から10A/dm2以上とすることが好ましく,Fe系電気めっき層の付着量制御を容易にする観点から150A/dm2以下とすることが好ましい。通板速度は,生産性の観点から5mpm以上とすることが好ましく,付着量を安定的に制御する観点から150mpm以下とすることが好ましい。Other conditions of the Fe-based electroplating bath are not particularly limited. The temperature of the Fe-based electroplating solution is preferably 30.degree. C. or higher and preferably 85.degree. Although the pH of the Fe-based electroplating bath is not particularly specified, it is preferably 1.0 or more from the viewpoint of preventing a decrease in current efficiency due to hydrogen generation. 0 or less is preferable. The current density is preferably 10 A/dm 2 or more from the viewpoint of productivity, and preferably 150 A/dm 2 or less from the viewpoint of facilitating control of the amount of deposition of the Fe-based electroplating layer. The sheet threading speed is preferably 5 mpm or more from the viewpoint of productivity, and preferably 150 mpm or less from the viewpoint of stably controlling the adhesion amount.

なお,Fe系電気めっき処理を施す前の処理として,Si含有冷延鋼板表面を清浄化するための脱脂処理および水洗,さらには,Si含有冷延鋼板表面を活性化するための酸洗処理および水洗を施すことができる。これらの前処理に引き続いてFe系電気めっき処理を実施する。脱脂処理および水洗の方法は特に限定されず,通常の方法を用いることができる。酸洗処理においては,硫酸,塩酸,硝酸,およびこれらの混合物等各種の酸が使用できる。中でも,硫酸,塩酸あるいはこれらの混合が好ましい。酸の濃度は特に規定しないが,酸化皮膜の除去能力,および過酸洗による肌荒れ(表面欠陥)防止等を考慮すると,1~20mass%程度が好ましい。また,酸洗処理液には,消泡剤,酸洗促進剤,酸洗抑制剤等を含有してもよい。 Before the Fe-based electroplating treatment, degreasing and water washing for cleaning the surface of the Si-containing cold-rolled steel sheet, and pickling and washing for activating the surface of the Si-containing cold-rolled steel sheet. It can be washed with water. Following these pretreatments, an Fe-based electroplating treatment is performed. Methods of degreasing treatment and washing with water are not particularly limited, and ordinary methods can be used. Various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used in the pickling treatment. Among them, sulfuric acid, hydrochloric acid, or a mixture thereof is preferable. Although the concentration of the acid is not specified, it is preferably about 1 to 20% by mass in consideration of the ability to remove the oxide film and the prevention of surface roughness (surface defects) due to over-acid washing. In addition, the pickling treatment liquid may contain antifoaming agents, pickling accelerators, pickling inhibitors, and the like.

<電着塗装鋼板>
また,本実施形態によれば,上述したFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成皮膜上に形成された電着塗装皮膜とをさらに有する電着塗装鋼板を提供することもできる。本実施形態に係るFe系電気めっき鋼板は,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いて形成した電着塗装鋼板は,自動車部品への適用に特に好適である。本実施形態に係る電着塗装鋼板は,Fe系電気めっき層の上に,直接化成処理皮膜が形成されていることが好ましい。換言すれば,本実施形態に係る電着塗装鋼板は,Fe系電気めっき層の他に,追加のめっき層を有さないことが好ましい。化成処理皮膜,および電着塗装皮膜の種類は特に限定されず,公知の化成処理皮膜,および電着塗装皮膜とすることができる。化成処理皮膜としては,リン酸亜鉛皮膜,ジルコニウム皮膜等が使用できる。電着塗装皮膜としては,自動車用の電着皮膜であれば特に限定されない。電着皮膜の厚みは,用途により異なるが,乾燥状態の塗膜で10μm以上30μm以下程度とすることが好ましい。また,本実施形態によれば,電着塗装を施すための電着塗装用Fe系電気めっき鋼板を提供することもできる。
<Electrodeposition coated steel plate>
Further, according to the present embodiment, on the above-described Fe-based electroplated steel sheet, a chemical conversion treatment film formed in contact with the Fe-based electroplating layer, and an electrodeposition coating film formed on the chemical conversion film. It is also possible to provide an electrodeposition coated steel sheet further having Since the Fe-based electroplated steel sheet according to the present embodiment is excellent in chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance in welds, the electrodeposition coated steel sheet formed using the Fe-based electroplated steel sheet is It is particularly suitable for application to automotive parts. In the electrodeposition coated steel sheet according to the present embodiment, it is preferable that a chemical conversion treatment film is formed directly on the Fe-based electroplating layer. In other words, the electrodeposition coated steel sheet according to this embodiment preferably does not have an additional plating layer in addition to the Fe-based electroplating layer. The types of the chemical conversion treatment film and the electrodeposition coating film are not particularly limited, and known chemical conversion treatment films and electrodeposition coating films can be used. A zinc phosphate film, a zirconium film, or the like can be used as the chemical conversion coating. The electrodeposition coating film is not particularly limited as long as it is an electrodeposition coating for automobiles. Although the thickness of the electrodeposition film varies depending on the application, it is preferable that the thickness of the dry film is about 10 μm to 30 μm. Further, according to this embodiment, it is possible to provide an Fe-based electroplated steel sheet for electrodeposition coating.

<電着塗装鋼板の製造方法>
次いで,上述した電着塗装鋼板の製造方法について説明する。上述した電着塗装鋼板は,Fe系電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe系電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,を含む,電着塗装鋼板の製造方法によって製造することができる。化成処理,および電着塗装処理は,公知の方法によることができる。なお,化成処理を施す前の処理として,Fe系電気めっき鋼板表面を清浄化するための脱脂処理,水洗および必要に応じて表面調整処理を施すことができる。これらの前処理に引き続いて化成処理を実施する。脱脂処理および水洗の方法は特に限定されず,通常の方法を用いることができる。表面調整処理においては,Tiコロイド,あるいはリン酸亜鉛コロイドを有する表面調整剤等を使用できる。これらの表面調整剤を施すに際して,特別な工程を設ける必要はなく,常法に従い実施すればよい。例えば,所望の表面調整剤を所定の脱イオン水に溶解させ,十分攪拌したのち,既定の温度(通常は常温,25~30℃)の処理液とし,該処理液中に鋼板を所定時間(20~30秒)浸漬させる。引き続き乾燥させることなく,次工程の化成処理を行う。化成処理においても,常法に従い実施すればよい。例えば,所望の化成処理剤を所定の脱イオン水に溶解させ,十分攪拌したのち,所定の温度(通常35~45℃)の処理液とし,該処理液中に鋼板を所定時間(60~120秒)浸漬させる。化成処理剤としては,例えば鋼用のリン酸亜鉛処理剤,鋼・アルミニウム併用型のリン酸亜鉛処理剤,およびジルコニウム処理剤等を使用できる。引き続き,次工程の電着塗装を行う。電着塗装も,常法に従い実施すればよい。必要に応じて水洗処理等の前処理を施したのち,十分攪拌された電着塗料に鋼板を浸漬し,電着処理によって所望の厚みの電着塗装を得る。電着塗装としては,カチオン型の電着塗装の他,アニオン型電着塗装を使用できる。さらに,用途に応じて電着塗装後に上塗り塗装などを施してもよい。
<Manufacturing method of electrodeposition coated steel sheet>
Next, a method for manufacturing the above-described electrodeposition coated steel sheet will be described. The above-described electrodeposition coated steel sheet is obtained by subjecting the Fe-based electroplated steel sheet to a chemical conversion treatment without performing an additional plating treatment to obtain a chemically treated steel sheet in which a chemical conversion treatment film is formed in contact with the Fe-based electroplated layer. , a chemical conversion treatment step, and an electrodeposition coating step of subjecting the chemical conversion treated steel sheet to an electrodeposition coating treatment to obtain an electrodeposition coated steel sheet having an electrodeposition coating film formed on the chemical conversion coating, It can be manufactured by a method for manufacturing a coated steel plate. Chemical conversion treatment and electrodeposition coating treatment can be carried out by known methods. Before the chemical conversion treatment, degreasing treatment for cleaning the surface of the Fe-based electroplated steel sheet, washing with water, and, if necessary, surface conditioning treatment can be performed. Following these pretreatments, a chemical conversion treatment is carried out. Methods of degreasing treatment and washing with water are not particularly limited, and ordinary methods can be used. In the surface conditioning treatment, a Ti colloid or a surface conditioning agent containing zinc phosphate colloid can be used. There is no need to provide a special process for applying these surface conditioners, and the process may be carried out according to a conventional method. For example, after dissolving the desired surface conditioner in a predetermined deionized water and sufficiently stirring it, a predetermined temperature (usually normal temperature, 25 to 30° C.) of the treatment liquid is used, and the steel sheet is placed in the treatment liquid for a predetermined time ( 20-30 seconds) to soak. Then, without drying, the next step of chemical conversion treatment is performed. The chemical conversion treatment may also be carried out according to a conventional method. For example, a desired chemical conversion treatment agent is dissolved in a prescribed deionized water, stirred sufficiently, and then treated with a treatment solution at a prescribed temperature (usually 35 to 45°C). second) to be immersed. As the chemical conversion treatment agent, for example, a zinc phosphating agent for steel, a zinc phosphating agent for both steel and aluminum, and a zirconium treatment agent can be used. Subsequently, the electrodeposition coating of the next process is performed. Electrodeposition coating may also be carried out according to a conventional method. After pretreatment such as washing with water, if necessary, the steel sheet is immersed in a sufficiently stirred electrodeposition paint to obtain an electrodeposition coating having a desired thickness. As the electrodeposition coating, not only cationic electrodeposition coating but also anionic electrodeposition coating can be used. Furthermore, depending on the application, top coating may be applied after the electrodeposition coating.

<自動車部品>
また,本実施形態によれば,上述した電着塗装鋼板を少なくとも一部に用いてなる自動車部品を提供することができる。本実施形態に係るFe系電気めっき鋼板は,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いた電着塗装鋼板は,自動車部品への適用に特に好適である。電着塗装鋼板を用いてなる自動車部品は,本実施形態に係る電着塗装鋼板以外の鋼板を,素材として含んでいてもよい。本実施形態に係る電着塗装鋼板は溶接部における耐抵抗溶接割れ特性に優れるため,該Fe系電気めっき鋼板を用いてなる自動車部品が溶接相手として高強度亜鉛めっき鋼板を含んでいる場合であっても,溶接部におけるもらい割れが好適に防がれる。電着塗装鋼板を少なくとも一部に用いてなる自動車部品の種類は特に限定されないが,例えば,サイドシル部品,ピラー部品および自動車車体等であり得る。
<Automotive parts>
Further, according to the present embodiment, it is possible to provide an automobile part at least partially using the above-described electrodeposition coated steel sheet. Since the Fe-based electroplated steel sheet according to the present embodiment is excellent in chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance in welds, the electrodeposition coated steel sheet using the Fe-based electroplated steel sheet is suitable for automotive parts. It is particularly suitable for application to Automobile parts using the electrodeposition coated steel sheet may include steel sheets other than the electrodeposition coated steel sheet according to the present embodiment as materials. Since the electrodeposition-coated steel sheet according to the present embodiment is excellent in resistance weld cracking resistance at the welded portion, it is possible even when the automobile parts using the Fe-based electroplated steel sheet includes a high-strength galvanized steel sheet as a welding partner. However, it is possible to suitably prevent the occurrence of secondary cracks in the weld. Although there is no particular limitation on the types of automobile parts at least partly made of the electrodeposition coated steel sheet, they can be side sill parts, pillar parts, automobile bodies, and the like.

[実施形態2]
次に,本発明の実施形態2に係るFe系電気めっき鋼板について説明する。
本実施形態に係るFe系電気めっき鋼板は,
冷延鋼板と,
冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が15.0g/m2以上であるFe系電気めっき層とを有する,Fe系電気めっき鋼板である。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
[Embodiment 2]
Next, an Fe-based electroplated steel sheet according to Embodiment 2 of the present invention will be described.
The Fe-based electroplated steel sheet according to this embodiment is
a cold-rolled steel sheet;
An Fe-based electroplated steel sheet having an Fe-based electroplated layer having a coating amount of 15.0 g/m 2 or more per side formed on at least one side of a cold-rolled steel sheet.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.

本実施形態に係る冷延鋼板は,下記の試験によって評価した場合に,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性に劣る鋼板であれば,特に限定されない。冷延鋼板の成分組成も特に限定されないが,発明者らは,鋼中のSi含有量が0.5質量%以上の冷延鋼板であれば,以下の試験によって評価される溶接部における耐抵抗溶接割れ特性に劣るという知見を得ている。なお,Fe系電気めっき層を形成した後に,後述する試験によって冷延鋼板の板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性を評価する場合には,Fe系電気めっき層を形成していない同一のSi含有量の冷延鋼板を別に用意し,以下の試験を実施すればよい。Si含有量が同一であれば,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性について同一の評価結果が得られるため,Fe系電気めっき層を形成していない同一のSi含有量を有する冷延鋼板を用いれば,Fe系電気めっき鋼板で使用されている冷延鋼板の溶接部における耐抵抗溶接割れ特性を間接的に評価することができる。 The cold-rolled steel sheet according to the present embodiment is not particularly limited as long as the steel sheet is inferior in resistance weld cracking resistance at the weld zone when the sheet assembly partner is a galvanized steel sheet when evaluated by the following test. The chemical composition of the cold-rolled steel sheet is not particularly limited, either. We have obtained the knowledge that the weld cracking property is inferior. After forming the Fe-based electroplating layer, when evaluating the resistance weld cracking characteristics of the weld zone when the cold-rolled steel sheet is paired with a galvanized steel sheet by the test described later, the Fe-based electroplating A cold-rolled steel sheet having the same Si content without forming a layer may be separately prepared and subjected to the following test. If the Si content is the same, the same evaluation results can be obtained with respect to the resistance weld cracking resistance of the weld zone when the plate pair is a galvanized steel sheet. By using a cold-rolled steel sheet containing Si, it is possible to indirectly evaluate the resistance weld cracking resistance in the weld zone of the cold-rolled steel sheet used in the Fe-based electroplated steel sheet.

<板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性>
図8を用いて,溶接部における耐抵抗溶接割れ特性の評価方法について説明する。圧延直角方向(TD)を長手として50×150mmに切り出した試験片6を,同サイズに切り出した,溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板5と重ねて板組とする。板組は,試験片6の評価対象面(Fe系電気めっき層)と,試験用合金化溶融亜鉛めっき鋼板5の亜鉛めっき層とが向かい合うように組み立てる。当該板組を,厚さ2.0mmのスペーサー7を介して,固定台8に固定する。スペーサー7は,長手方向50mm×短手方向45mm×厚さ2.0mmの一対の鋼板であり,図8(a)に示すように,一対の鋼板各々の長手方向端面が,板組短手方向両端面とそろうように配置する。よって,一対の鋼板間の距離は60mmとなる。固定台8は,中央部に穴が開いた一枚の板である。
<Resistance Weld Cracking Characteristics in Welded Portion When Sheet Assembly Mate is Galvanized Steel Sheet>
A method for evaluating the resistance weld cracking resistance of welds will be described with reference to FIG. A test piece 6 cut into a size of 50 x 150 mm with the direction perpendicular to the rolling direction (TD) as the length was overlapped with a hot-dip galvanized steel sheet 5 cut into the same size and having a hot-dip galvanized layer with a coating amount of 50 g/ m2 per side. It will be a board assembly. The plate assembly is assembled so that the surface to be evaluated (Fe-based electroplating layer) of the test piece 6 and the galvanized layer of the alloyed hot-dip galvanized steel sheet 5 for testing face each other. The plate assembly is fixed to a fixing base 8 via a spacer 7 having a thickness of 2.0 mm. The spacer 7 is a pair of steel plates measuring 50 mm in the longitudinal direction, 45 mm in the transverse direction, and 2.0 mm in thickness. As shown in FIG. Arrange so that both ends are aligned. Therefore, the distance between the pair of steel plates is 60 mm. The fixed base 8 is a single plate with a hole in the center.

次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,板組を一対の電極9(先端径:6mm)で加圧しつつ板組をたわませた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.02秒または0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とする。このとき,一対の電極9は,鉛直方向の上下から板組を加圧し,下側の電極は,固定台8の穴を介して,試験片6を加圧する。加圧に際しては,一対の電極9のうち下側の電極がスペーサー7と固定台8とが接する面を延長した平面に接するように,下側の電極と固定台8とを固定し,上側の電極を可動とする。また,上側の電極が試験用合金化溶融亜鉛めっき鋼板5の中央部に接するようにする。また,板組は,該抵抗溶接機の電極対の中心軸同士を結んだ線に対する垂直面(図8(a)では水平方向)に対して前記板組を該板組の長手方向側に5°傾けた状態で,溶接を行なう。上述のスペーサーにより,下側の電極と試験片6との間には,板組の長手方向60mm×板組の厚さ方向2.0mmの空隙が形成されている。なお,ここでホールドタイムとは,溶接電流を流し終わってから,電極を開放し始めるまでの時間を指す。ここで,図8(b)下図を参照して,ナゲット径rとは,板組の長手方向における,ナゲット10の端部同士の距離を意味する。なお,冷延鋼板の板厚をt(mm)とし,ナゲット径rが4√t以上5√5以下の関係を満たす場合,特に内割れの問題が生じやすい傾向がある。 Next, using a single-phase AC (50 Hz) resistance welding machine with a servo motor pressurization, the plate assembly is pressed with a pair of electrodes 9 (tip diameter: 6 mm) while bending the plate assembly. A set of welding current and welding time at which the welding force is 3.5 kN, the hold time is 0.02 seconds or 0.1 seconds, and the nugget diameter is 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. Resistance welding is applied under certain conditions to make a plate assembly with a welded part. At this time, the pair of electrodes 9 presses the plate assembly from above and below in the vertical direction, and the lower electrode presses the test piece 6 through the hole of the fixing table 8 . When pressurizing, the lower electrode and the fixing base 8 are fixed so that the lower electrode of the pair of electrodes 9 is in contact with the plane extending the surface where the spacer 7 and the fixing base 8 contact, and the upper electrode is pressed. Make the electrodes movable. Also, the upper electrode is brought into contact with the central portion of the test alloyed hot-dip galvanized steel sheet 5 . In addition, the plate assembly is arranged 5 times in the longitudinal direction of the plate assembly with respect to the vertical plane (horizontal direction in FIG. 8(a)) to the line connecting the center axes of the electrode pairs of the resistance welder. °Perform welding in an inclined state. A space of 60 mm in the longitudinal direction of the plate assembly and 2.0 mm in the thickness direction of the plate assembly is formed between the lower electrode and the test piece 6 by the above spacer. Here, the hold time refers to the time from the end of the welding current to the start of opening the electrode. Here, referring to the lower part of FIG. 8(b), the nugget diameter r means the distance between the ends of the nugget 10 in the longitudinal direction of the plate assembly. When the thickness of the cold-rolled steel sheet is t (mm) and the nugget diameter r satisfies the relationship of 4√t or more and 5√5 or less, the problem of inner cracks tends to occur particularly easily.

次いで,前記溶接部付き板組を,ナゲット10を含めた溶接部の中心を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察し,以下の基準で溶接部における耐抵抗溶接割れ特性を評価する。なお,○または△であれば,溶接部における耐抵抗溶接割れ特性に優れると判断とする。×であれば,溶接部における耐抵抗溶接割れ特性に劣ると判断とする。
○ : ホールドタイム0.02秒で0.1mm以上の長さのき裂が認められない
△ : ホールドタイム0.02秒で0.1mm以上の長さのき裂が認められるが,ホールドタイム0.1秒で0.1mm以上の長さのき裂が認められない
× : ホールドタイム0.1秒で0.1mm以上の長さのき裂が認められる
Next, the plate set with the welded part is cut in half so as to include the center of the welded part including the nugget 10, and the cross section of the welded part is observed with an optical microscope (200 times). Evaluate resistance weld crack resistance. If it is ○ or △, it is judged that the resistance weld cracking resistance of the weld zone is excellent. If it is ×, it is judged that the resistance weld crack resistance in the weld is inferior.
○: No cracks with a length of 0.1 mm or longer were observed at a hold time of 0.02 seconds. △: Cracks with a length of 0.1 mm or longer were observed with a hold time of 0.02 seconds, but the hold time was 0. 0.1 mm or longer crack is not observed in 1 second ×: 0.1 mm or longer crack is observed at hold time of 0.1 second

なお,図8(b)下図には,試験片6に発生したき裂の一例を模式的に符号11として示している。 An example of a crack generated in the test piece 6 is schematically indicated by reference numeral 11 in the lower part of FIG. 8(b).

本実施形態に係るFe系電気めっき鋼板のFe系電気めっき層については,上述した実施形態1と同様であるため,ここでは説明を省略する。また,Fe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層と冷延鋼板との結晶方位が一体化している割合は特に限定されないが,上述した実施形態1と同様,50%以下であり得る。Fe系電気めっき層と冷延鋼板との界面においてFe系電気めっき層と冷延鋼板との結晶方位が一体化している割合の詳細については上述した実施形態1と同様であるため,ここでは説明を省略する。 The Fe-based electroplated layer of the Fe-based electroplated steel sheet according to the present embodiment is the same as that of the above-described Embodiment 1, so the description is omitted here. In addition, the ratio of the crystal orientation of the Fe-based electroplating layer and the cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the cold-rolled steel sheet is not particularly limited, but is 50% as in the first embodiment. can be: The details of the ratio of the crystal orientations of the Fe-based electroplating layer and the cold-rolled steel sheet at the interface between the Fe-based electroplating layer and the cold-rolled steel sheet are the same as in Embodiment 1 described above, so they will not be described here. omitted.

次に,実施形態2に係るFe系電気めっき鋼板の製造方法を説明する。
一実施形態に係るFe系電気めっき鋼板の製造方法は,焼鈍前冷延鋼板を焼鈍して冷延鋼板とし,
次いで,前記冷延鋼板にFe系電気めっきを施して,片面あたりの付着量が15.0g/m2以上のFe系電気めっき層が少なくとも片面に形成されたFe系電気めっき鋼板を得る,Fe系電気めっき鋼板の製造方法であり得る。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
Next, a method for manufacturing an Fe-based electroplated steel sheet according to Embodiment 2 will be described.
A method for manufacturing an Fe-based electroplated steel sheet according to one embodiment includes annealing a pre-annealed cold-rolled steel sheet to obtain a cold-rolled steel sheet,
Then, the cold-rolled steel sheet is subjected to Fe-based electroplating to obtain an Fe-based electroplated steel sheet having an Fe-based electroplating layer formed on at least one side with a deposition amount of 15.0 g/m 2 or more per side. It can be a method for producing a system electroplated steel sheet.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.

まず,焼鈍前冷延鋼板を製造する。焼鈍前冷延鋼板の製造方法は,通常の冷延鋼板の製造方法に従うことができる。一例においては,鋼スラブに熱間圧延を施して熱延板とし,次いで該熱延板に酸洗を施し,次いで,熱延板に冷間圧延を施して焼鈍前冷延鋼板を製造する。 First, a pre-annealed cold-rolled steel sheet is manufactured. The manufacturing method of the pre-annealed cold-rolled steel sheet can follow the manufacturing method of ordinary cold-rolled steel sheets. In one example, a steel slab is hot-rolled into a hot-rolled sheet, then the hot-rolled sheet is pickled, and then the hot-rolled sheet is cold-rolled to produce a pre-annealed cold-rolled steel sheet.

次いで,Fe系電気めっき処理を施す前に,焼鈍前冷延鋼板に,焼鈍工程を行なって,冷延鋼板を得る。焼鈍工程の条件は特に限定されないが,例えば,露点:30℃以下,水素濃度:1.0体積%以上30.0体積%以下の還元性雰囲気中で,650℃以上900℃以下の温度域で30秒以上600秒以下保持した後に冷却する焼鈍工程であり得る。焼鈍工程の詳細については上述したので,ここでは説明を省略する。 Next, before the Fe-based electroplating treatment, the pre-annealed cold-rolled steel sheet is subjected to an annealing process to obtain a cold-rolled steel sheet. The conditions of the annealing step are not particularly limited, but for example, in a reducing atmosphere with a dew point of 30°C or less and a hydrogen concentration of 1.0% by volume or more and 30.0% by volume or less, in a temperature range of 650°C or more and 900°C or less. It may be an annealing step of cooling after holding for 30 seconds or more and 600 seconds or less. Since the details of the annealing process have been described above, the description is omitted here.

次いで,焼鈍後の冷延鋼板の表面にFe系電気めっき処理を施して,Fe系電気めっき鋼板を得る。Fe系電気めっき処理の詳細については上述したので,ここでは説明を省略する。 Then, the surface of the annealed cold-rolled steel sheet is subjected to Fe-based electroplating to obtain an Fe-based electroplated steel sheet. Since the details of the Fe-based electroplating process have been described above, the description is omitted here.

本実施形態に係る冷延鋼板は,焼鈍後,Fe系電気めっき層を形成する前に,上述した試験によって評価した場合に,板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性に劣る鋼板であれば,特に限定されない。冷延鋼板の成分組成も特に限定されず,鋼中のSi含有量が0.5質量%以上の冷延鋼板であれば,以下の試験によって評価される溶接部における耐抵抗溶接割れ特性に劣る。なお,Fe系電気めっき層を形成した後に上述した試験によって板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性を評価する場合には,Fe系電気めっき層を形成していない同一のSi含有量の冷延鋼板を別に用意し,以下の試験を実施すれば,Fe系電気めっき鋼板で使用されている冷延鋼板の溶接部における耐抵抗溶接割れ特性を間接的に評価することができる。 When the cold-rolled steel sheet according to this embodiment is evaluated by the above-described test after annealing and before forming the Fe-based electroplating layer, resistance welding at the weld zone when the plate pair is a galvanized steel sheet. There is no particular limitation as long as the steel sheet is inferior in cracking properties. The chemical composition of the cold-rolled steel sheet is not particularly limited, and if the cold-rolled steel sheet has a Si content of 0.5% by mass or more in the steel, the resistance weld cracking resistance at the weld, which is evaluated by the following test, is inferior. . When evaluating the resistance weld cracking characteristics of the weld zone when the plate pair is a galvanized steel sheet by the above-mentioned test after forming the Fe-based electroplating layer, the Fe-based electroplating layer is not formed. By separately preparing a cold-rolled steel sheet with the same Si content and conducting the following test, the resistance weld crack resistance in the weld zone of the cold-rolled steel sheet used in the Fe-based electroplated steel sheet can be indirectly evaluated. can do.

本実施形態においても,上述した実施形態1と同様,本実施形態に係るFe系電気めっき鋼板上に,前記Fe系電気めっき層に接触して形成された化成処理皮膜と,該化成皮膜上に形成された電着塗装皮膜とをさらに有する電着塗装鋼板を提供することもできる。また,電着塗装を施すための電着塗装用Fe系電気めっき鋼板を提供することもできる。電着塗装鋼板および電着塗装鋼板の製造方法の詳細については上述した実施形態1と同様であるため,ここでは説明を省略する。 In this embodiment, as in the above-described Embodiment 1, on the Fe-based electroplated steel sheet according to this embodiment, a chemical conversion coating formed in contact with the Fe-based electroplating layer, and on the chemical conversion coating It is also possible to provide an electrodeposition coated steel sheet further having an electrodeposition coating film formed thereon. Further, it is also possible to provide an Fe-based electroplated steel sheet for electrodeposition coating for applying electrodeposition coating. The details of the electrodeposition-coated steel sheet and the manufacturing method of the electrodeposition-coated steel sheet are the same as those of the above-described Embodiment 1, so the description is omitted here.

また,本実施形態においても,上述した実施形態1と同様,自動車部品を提供することができる。自動車部品の詳細については上述したため,ここでは記載を省略する。 Further, in this embodiment as well, it is possible to provide automobile parts as in the case of the above-described first embodiment. Since the details of the automobile parts have been described above, they are omitted here.

以下,本発明を,実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.

表1に示す化学成分の鋼を溶製して得た鋳片を熱間圧延,酸洗,および冷間圧延によって板厚1.4mmの冷延鋼板とした。 A slab obtained by melting a steel having the chemical composition shown in Table 1 was hot-rolled, pickled and cold-rolled into a cold-rolled steel sheet having a thickness of 1.4 mm.

Figure 0007205664000001
Figure 0007205664000001

次いで,該冷延鋼板に,15%H2-N2,均熱帯温度800℃,露点-40℃の条件にて還元焼鈍を実施した。還元焼鈍は100秒間実施した。引き続き,鋼板に対して,アルカリにて脱脂処理を施し,次いで,以下に示す条件で,鋼板を陰極として電解処理を行ない,その後追加の焼鈍を行わずに,Fe系電気めっき層を有するFe系電気めっき鋼板を製造した。Fe系電気めっき層の付着量は,通電時間で制御した。
〔電解条件〕
浴温:50℃
pH:2.0
電流密度:45A/dm2
Fe系電気めっき浴:Fe2+イオンを1.5mol/L含む
電極(陽極):酸化イリジウム電極
Then, the cold-rolled steel sheet was subjected to reduction annealing under the conditions of 15% H 2 -N 2 , soaking zone temperature of 800°C and dew point of -40°C. Reduction annealing was performed for 100 seconds. Subsequently, the steel sheet was degreased with an alkali, and then subjected to electrolytic treatment under the following conditions using the steel sheet as a cathode. An electroplated steel sheet was produced. The adhesion amount of the Fe-based electroplating layer was controlled by the energization time.
[Electrolysis conditions]
Bath temperature: 50°C
pH: 2.0
Current density: 45A/ dm2
Fe-based electroplating bath: Electrode containing 1.5 mol/L of Fe 2+ ions (anode): Iridium oxide electrode

上記のように作製したFe系電気めっき鋼板から,上述した方法に従って,Fe系電気めっき層の片面あたりの付着量,並びに,Fe系電気めっき層とSi含有冷延鋼板との界面においてFe系電気めっき層とSi含有冷延鋼板との結晶方位が一体化している割合を求めた。 From the Fe-based electroplated steel sheet produced as described above, according to the method described above, the amount of adhesion per side of the Fe-based electroplated layer, and the Fe-based electroplated layer at the interface between the Fe-based electroplated layer and the Si-containing cold-rolled steel sheet The proportion of the crystal orientations of the plating layer and the Si-containing cold-rolled steel sheet that are integrated was determined.

以上により得られたFe系電気めっき鋼板について,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性を調査した。以下に,測定方法および評価方法を示す。 The Fe-based electroplated steel sheets thus obtained were examined for chemical conversion treatability, post-coating corrosion resistance, and resistance weld cracking resistance at welds. The measurement method and evaluation method are shown below.

化成処理性および塗装後耐食性
(1)化成処理
上記Fe系電気めっき鋼板から採取した試験片に,脱脂処理,表面調整処理,および化成処理を施して,試験片の表裏両面に化成処理皮膜を有する化成処理試験片を製造した。まず,上記Fe系電気めっき鋼板から採取した試験片を脱脂剤に浸漬させ,以下の標準的な条件で,脱脂処理を施した。
[脱脂処理]
・脱脂剤:FC-E2011(日本パーカライジング社製)
・処理温度:43°C
・処理時間:120秒
Chemical conversion treatment property and corrosion resistance after painting (1) Chemical conversion treatment A test piece taken from the above Fe-based electroplated steel sheet is subjected to degreasing treatment, surface conditioning treatment, and chemical conversion treatment, and the front and back surfaces of the test piece have a chemical conversion coating. A chemically treated test piece was produced. First, a test piece taken from the Fe-based electroplated steel sheet was immersed in a degreasing agent and degreased under the following standard conditions.
[Degreasing treatment]
・ Degreasing agent: FC-E2011 (manufactured by Nihon Parkerizing Co., Ltd.)
・Processing temperature: 43°C
・Processing time: 120 seconds

次いで,脱脂処理後の試験片に表面調整剤をスプレーし,以下の標準的な条件で,表面調整処理を施した。
[表面調整処理]
・表面調整剤:プレパレンX(PL-X:日本パーカライジング社製)
・pH:9.5
・処理温度:室温
・処理時間:20秒
After the degreasing treatment, the test piece was sprayed with a surface conditioning agent and subjected to surface conditioning treatment under the following standard conditions.
[Surface adjustment treatment]
・ Surface conditioner: Preparen X (PL-X: manufactured by Nihon Parkerizing Co., Ltd.)
・pH: 9.5
・Processing temperature: room temperature ・Processing time: 20 seconds

次いで,表面調整処理後の試験片を化成処理剤に浸漬させ,以下の標準的な条件で,化成処理を施した。
[化成処理]
・化成処理剤:パルボンドPB-SX35(日本パーカライジング社製)
・化成処理液の温度:35℃
・処理時間:90秒
Then, the test piece after the surface conditioning treatment was immersed in a chemical conversion treatment agent and subjected to chemical conversion treatment under the following standard conditions.
[Chemical treatment]
・ Chemical conversion agent: Palbond PB-SX35 (manufactured by Nihon Parkerizing Co., Ltd.)
・Temperature of chemical conversion treatment solution: 35°C
・Processing time: 90 seconds

以上の通り製造した化成処理試験片を用いて,後述する化成処理性を測定した。 Using the chemically treated test pieces manufactured as described above, the chemically convertible property described later was measured.

(2)電着塗装処理
上記化成処理試験片の表面に,関西ペイント社製の電着塗料:GT-100を用いて,膜厚が15μmとなるように電着塗装を施して電着塗装試験片とした。該電着塗装試験片を,後述する塩温水浸漬試験に供した。
(2) Electrodeposition coating treatment On the surface of the chemical conversion treatment test piece, using an electrodeposition paint: GT-100 manufactured by Kansai Paint Co., Ltd., electrodeposition coating was applied so that the film thickness was 15 μm, and the electrodeposition coating test was performed. cut to pieces. The electrodeposition coating test piece was subjected to a salt water immersion test described later.

<化成処理性>
上記化成処理試験片(n=1)の表面を,倍率×1000倍にてSEM観察し,以下の基準で評価した。なお,◎または○であれば化成処理性に優れると判断した。
◎ : 化成結晶の粒径が5μm以下かつ未析出部が認められない
○ : 化成結晶の粒径が5μm以上だが,未析出部が認められない
× : 化成結晶の粒径が5μm以上かつ,未析出部が認められる
<Chemical conversion treatability>
The surface of the chemically treated test piece (n=1) was observed with an SEM at a magnification of 1000 times and evaluated according to the following criteria. In addition, it was judged to be excellent in chemical convertibility if it was (double-circle) or (circle).
◎: The grain size of the chemical crystal is 5 μm or less and no unprecipitated portion is observed ○: The grain size of the chemical crystal is 5 μm or more, but no unprecipitated portion is observed ×: The grain size of the chemical crystal is 5 μm or more and no unprecipitated portion is observed Precipitation part is recognized

<塩温水浸漬試験>
上記電着塗装試験片(n=1)の表面に,カッターで長さ45mmのクロスカット疵を付与した後,この試験片を,5mass%NaCl溶液(60℃)に360時間浸漬し,その後,水洗し,乾燥した。次いで,試験片のクロスカット疵部に粘着テープを貼り付けた後,引き剥がすテープ剥離試験を行い,クロスカット疵部の左右を合わせた電着塗装皮膜の最大剥離全幅を測定した。電着塗装皮膜の最大剥離全幅を以下の基準で評価した。なお,◎または○であれば塗装後耐食性に優れると判断した。
◎ : 最大剥離全幅が3.0mm以下
○ : 最大剥離全幅が5.0mm以下
× : 最大剥離全幅が5.0mm超
として評価した。
<Salt water immersion test>
After applying a cross-cut flaw of 45 mm in length to the surface of the electrodeposition coating test piece (n = 1) with a cutter, this test piece was immersed in a 5 mass% NaCl solution (60 ° C.) for 360 hours, and then It was washed with water and dried. Next, an adhesive tape was attached to the cross-cut flaws of the test piece, and then a tape peeling test was conducted by peeling it off, and the maximum peeling width of the electrodeposition coating film was measured on both sides of the cross-cut flaws. The maximum peeling width of the electrodeposition coating film was evaluated according to the following criteria. In addition, it was judged that the corrosion resistance after painting was excellent if it was ⊚ or ◯.
A: The maximum peel width is 3.0 mm or less. B: The maximum peel width is 5.0 mm or less. ×: The maximum peel width is over 5.0 mm.

<板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性>
Fe系電気めっき鋼板について,上述した方法に従って,板組相手が,引張強さが980MPa級,および片面あたりの付着量が50g/m2の合金化溶融亜鉛めっき鋼板(板厚1.4mm)である場合の溶接部における耐抵抗溶接割れ特性を評価した。溶接時間は18cycle(50Hz)とし,実施例No.毎に溶接電流を変化させてナゲット径を測定し,ナゲット径が5.3mmとなる溶接電流にて評価した。
<Resistance Weld Cracking Characteristics in Welded Portion When Sheet Assembly Mate is Galvanized Steel Sheet>
Regarding the Fe-based electroplated steel sheet, according to the method described above, the sheet pair is an alloyed hot-dip galvanized steel sheet (sheet thickness 1.4 mm) having a tensile strength of 980 MPa class and a coating amount per side of 50 g / m 2 The resistance weld cracking resistance properties of the welds in certain cases were evaluated. The welding time was 18 cycles (50 Hz), and Example No. The nugget diameter was measured by changing the welding current every time, and the welding current at which the nugget diameter was 5.3 mm was used for evaluation.

上記試験の結果を表2に併記した。この結果から,連続焼鈍後,本発明に適合する条件でFe系電気めっき層を形成した発明例のFe系電気めっき鋼板は,化成処理性,塗装後耐食性,および溶接部における耐抵抗溶接割れ特性のいずれも優れていることがわかる。なお,参考例1および2については,Siが0.5%未満であるため,化成処理性や溶接部における耐抵抗溶接割れ特性に特に問題は生じなかった。Fe系電気めっき層の付着量を25g/m2以上とした各発明例においては,ホールドタイム0.02秒の条件下でも0.1mm以上の長さのき裂が認められず,溶接部における耐抵抗溶接割れ特性が特に良好であった。The results of the above tests are also shown in Table 2. From these results, the Fe-based electroplated steel sheets of the invention examples, in which the Fe-based electroplated layer was formed under the conditions suitable for the present invention after continuous annealing, were found to have good chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance at welds. It can be seen that both are excellent. In Reference Examples 1 and 2, since the Si content was less than 0.5%, there was no particular problem with the chemical conversion treatability or the resistance weld cracking resistance of the weld zone. In each invention example in which the amount of the Fe-based electroplating layer was 25 g/m 2 or more, no cracks with a length of 0.1 mm or more were observed even under the condition of a hold time of 0.02 seconds. Resistance weld crack resistance was particularly good.

Figure 0007205664000002
Figure 0007205664000002

本発明により製造されるFe系電気めっき鋼板は,化成処理性,塗装後耐食性,および板組相手が亜鉛めっき鋼板である場合の溶接部における耐抵抗溶接割れ特性,特に内割れを防ぐ特性に優れるだけでなく,高い強度と優れた加工性を有しているので,自動車部品に用いられる素材としてだけでなく,家電製品や建築部材などの分野で同様の特性が求められる用途の素材としても好適に用いることができる。 The Fe-based electroplated steel sheet produced by the present invention is excellent in chemical conversion treatability, corrosion resistance after painting, and resistance weld cracking resistance at the weld zone when the plate pair is a galvanized steel sheet, especially in preventing internal cracking. In addition, it has high strength and excellent workability, so it is suitable not only as a material for automobile parts, but also as a material for applications that require similar characteristics in fields such as home appliances and building materials. can be used for

1 Fe系電気めっき鋼板
2 Si含有冷延鋼板
3 Fe系電気めっき層
5 試験用合金化溶融亜鉛めっき鋼板
6 試験片
7 スペーサー
8 固定台
9 電極
10 ナゲット
11 き裂
REFERENCE SIGNS LIST 1 Fe-based electroplated steel sheet 2 Si-containing cold-rolled steel sheet 3 Fe-based electroplated layer 5 Galvannealed steel sheet for testing 6 Test piece 7 Spacer 8 Fixing table 9 Electrode 10 Nugget 11 Crack

Claims (11)

Siを0.5質量%以上3.0質量%以下含有するSi含有冷延鋼板と,
前記Si含有冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が15.0g/m2以上であり、Fe及び不可避不純物からなるFe電気めっき層とを有する,Fe電気めっき鋼板。
a Si-containing cold-rolled steel sheet containing 0.5% by mass or more and 3.0% by mass or less of Si;
An Fe electroplated steel sheet having an Fe electroplated layer formed on at least one side of the Si-containing cold-rolled steel sheet and having an adhesion amount per side of 15.0 g/m 2 or more and comprising Fe and unavoidable impurities.
前記Fe電気めっき層と前記Si含有冷延鋼板との界面において前記Fe電気めっき層と前記Si含有冷延鋼板との結晶方位が一体化している割合が50%以下である,請求項1に記載のFe電気めっき鋼板。 The ratio of the crystal orientations of the Fe electroplating layer and the Si-containing cold-rolled steel sheet that are integrated at the interface between the Fe electroplating layer and the Si-containing cold-rolled steel sheet is 50% or less. The Fe electroplated steel sheet according to Item 1. 前記Fe電気めっき層の片面あたりの付着量が,25g/m2以上である,請求項1または2に記載のFe電気めっき鋼板。 The Fe electroplated steel sheet according to claim 1 or 2, wherein the Fe electroplating layer has a coating weight per side of 25 g/ m2 or more. 前記Si含有冷延鋼板は,前記Siに加えて,質量%で,
C:0.8%以下,
Mn:1.0%以上12.0%以下,
P:0.1%以下,
S:0.03%以下,
N:0.010%以下および
Al:1.0%以下を含有し,残部がFeおよび不可避的不純物からなる成分組成を有する,請求項1から3のいずれか1項に記載のFe電気めっき鋼板。
The Si-containing cold-rolled steel sheet contains, in addition to the Si,
C: 0.8% or less,
Mn: 1.0% or more and 12.0% or less,
P: 0.1% or less,
S: 0.03% or less,
The Fe electricity according to any one of claims 1 to 3, having a component composition containing N: 0.010% or less and Al: 1.0% or less, with the balance being Fe and inevitable impurities Galvanized steel sheet.
前記成分組成がさらに,質量%で,
B:0.005%以下,
Ti:0.2%以下,
Cr:1.0%以下,
Cu:1.0%以下,
Ni:1.0%以下,
Mo:1.0%以下,
Nb:0.20%以下,
V:0.5%以下,
Sb:0.200%以下,
Ta:0.1%以下,
W:0.5%以下,
Zr:0.1%以下,
Sn:0.20%以下,
Ca:0.005%以下,
Mg:0.005%以下および
REM:0.005%以下
からなる群から選ばれる1種または2種以上を含有する,請求項4に記載のFe電気めっき鋼板。
The component composition is further, in mass%,
B: 0.005% or less,
Ti: 0.2% or less,
Cr: 1.0% or less,
Cu: 1.0% or less,
Ni: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.20% or less,
V: 0.5% or less,
Sb: 0.200% or less,
Ta: 0.1% or less,
W: 0.5% or less,
Zr: 0.1% or less,
Sn: 0.20% or less,
Ca: 0.005% or less,
The Fe electroplated steel sheet according to claim 4, containing one or more selected from the group consisting of Mg: 0.005% or less and REM: 0.005% or less.
冷延鋼板と,
前記冷延鋼板の少なくとも片面に形成された,片面あたりの付着量が15.0g/m2以上であり、Fe及び不可避不純物からなるFe電気めっき層とを有する,Fe電気めっき鋼板
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
a cold-rolled steel sheet;
An Fe electroplated steel sheet having an Fe electroplated layer formed on at least one side of the cold-rolled steel sheet and having an adhesion amount per side of 15.0 g/m 2 or more and comprising Fe and inevitable impurities.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.
請求項1からのいずれか1項に記載のFe電気めっき鋼板上に,前記Fe電気めっき層に接触して形成された化成処理皮膜と,該化成処理皮膜上に形成された電着塗装皮膜とをさらに有する,電着塗装鋼板。 A chemical conversion coating formed on the Fe electroplated steel sheet according to any one of claims 1 to 6 in contact with the Fe electroplating layer, and a chemical conversion coating formed on the chemical conversion coating An electrodeposition coated steel sheet, further comprising an electrodeposition coating film. 請求項に記載の電着塗装鋼板を少なくとも一部に用いてなる,自動車部品。 An automobile part, at least partly of which the electrodeposition coated steel sheet according to claim 7 is used. 請求項1からのいずれか1項に記載のFe電気めっき鋼板に追加のめっき処理を施さずに化成処理を施して,前記Fe電気めっき層に接触して化成処理皮膜が形成された化成処理鋼板を得る,化成処理工程と,
前記化成処理鋼板に電着塗装処理を施して,前記化成処理皮膜上に電着塗装皮膜が形成された電着塗装鋼板を得る,電着塗装工程と,
を含む,電着塗装鋼板の製造方法。
The Fe electroplated steel sheet according to any one of claims 1 to 6 is subjected to chemical conversion treatment without additional plating treatment, and a chemical conversion coating is formed in contact with the Fe electroplated layer. a chemical conversion treatment step for obtaining a chemically treated steel sheet;
an electrodeposition coating step of subjecting the chemically treated steel sheet to an electrodeposition coating process to obtain an electrodeposition coated steel sheet having an electrodeposition coating film formed on the chemical conversion coating;
A method for manufacturing an electrodeposition coated steel sheet, including
Siを0.5質量%以上3.0質量%以下含有するSi含有焼鈍前冷延鋼板を焼鈍してSi含有冷延鋼板とし,
次いで,前記Si含有冷延鋼板にFe電気めっきを施して,片面あたりの付着量が15.0g/m2以上あり、Fe及び不可避不純物からなるFe電気めっき層が少なくとも片面に形成されたFe電気めっき鋼板を得る,Fe電気めっき鋼板の製造方法。
An Si-containing cold-rolled steel sheet before annealing containing 0.5% by mass or more and 3.0% by mass or less of Si is annealed to obtain a Si-containing cold-rolled steel sheet,
Next, the Si-containing cold-rolled steel sheet was subjected to Fe electroplating , and an Fe electroplating layer composed of Fe and inevitable impurities was formed on at least one side with an adhesion amount per side of 15.0 g/m 2 or more. A method for producing an Fe electroplated steel sheet for obtaining an Fe electroplated steel sheet.
焼鈍前冷延鋼板を焼鈍して冷延鋼板とし,
次いで,前記冷延鋼板にFe電気めっきを施して,片面あたりの付着量が15.0g/m2以上あり、Fe及び不可避不純物からなるFe電気めっき層が少なくとも片面に形成されたFe電気めっき鋼板を得る,Fe電気めっき鋼板の製造方法。
ここで,前記冷延鋼板は,圧延直角方向を長手として50×150mmに切り出した試験片を,同サイズに切り出した溶融亜鉛めっき層の片面あたりの付着量が50g/m2である溶融亜鉛めっき鋼板と重ねて板組とし,
次いで,サーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて,該抵抗溶接機の電極(先端径6mm)に対して前記板組を5°傾けた状態で,前記板組に,加圧力:3.5kN,ホールドタイム:0.1秒,並びに前記冷延鋼板の板厚をtとしてナゲット径が4.5√tmmになる溶接電流および溶接時間の条件にて抵抗溶接を施して溶接部付き板組とし,
次いで,前記溶接部付き板組を溶接部を含むように半切して,該溶接部の断面を光学顕微鏡(200倍)で観察した場合に,0.1mm以上の長さのき裂が認められる冷延鋼板である。
The pre-annealed cold-rolled steel sheet is annealed to form a cold-rolled steel sheet,
Next, the cold-rolled steel sheet is subjected to Fe electroplating , and Fe having an adhesion amount per side of 15.0 g/m 2 or more and an Fe electroplating layer composed of Fe and inevitable impurities formed on at least one side A method for producing an Fe electroplated steel sheet to obtain an electroplated steel sheet.
Here, the cold-rolled steel sheet is a test piece cut into a size of 50 × 150 mm with the longitudinal direction perpendicular to the rolling direction, and a hot-dip galvanized layer having a coating amount of 50 g / m 2 per side of the hot-dip galvanized layer cut into the same size. Stacked with steel plates to form a board assembly,
Next, using a single-phase alternating current (50 Hz) resistance welder with a servo motor pressure type, the plate assembly is tilted 5° with respect to the electrode (tip diameter 6 mm) of the resistance welder. , pressure: 3.5 kN, hold time: 0.1 second, and welding current and welding time conditions that make the nugget diameter 4.5 √t mm, where t is the thickness of the cold-rolled steel sheet. and a plate assembly with a welded part,
Next, when the plate assembly with the welded part is cut in half so as to include the welded part and the cross section of the welded part is observed with an optical microscope (200 times), a crack with a length of 0.1 mm or more is observed. It is a cold-rolled steel sheet.
JP2022511993A 2020-03-31 2021-03-23 Fe electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe electroplated steel sheet Active JP7205664B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020064955 2020-03-31
JP2020064955 2020-03-31
PCT/JP2021/012076 WO2021200412A1 (en) 2020-03-31 2021-03-23 Fe-ELECTROPLATED STEEL SHEET, ELECTRODEPOSITION COATED STEEL SHEET, AUTOMOBILE COMPONENT, METHOD FOR MANUFACTURING ELECTRODEPOSITION COATED STEEL SHEET, AND METHOD FOR MANUFACTURING Fe-ELECTROPLATED STEEL SHEET

Publications (2)

Publication Number Publication Date
JPWO2021200412A1 JPWO2021200412A1 (en) 2021-10-07
JP7205664B2 true JP7205664B2 (en) 2023-01-17

Family

ID=77928650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022511993A Active JP7205664B2 (en) 2020-03-31 2021-03-23 Fe electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe electroplated steel sheet

Country Status (4)

Country Link
JP (1) JP7205664B2 (en)
CN (1) CN115335554A (en)
MX (1) MX2022012217A (en)
WO (1) WO2021200412A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097735A1 (en) * 2020-11-06 2022-05-12 Jfeスチール株式会社 Zinc plated steel sheet, electrodeposition coated steel sheet, automotive parts, production method for electrodeposition coated steel sheet, and production method for zinc plated steel sheet
WO2022097733A1 (en) * 2020-11-06 2022-05-12 Jfeスチール株式会社 Zinc alloy-plated steel sheet, electrodeposited steel sheet, motor vehicle component, method for producing electrodeposited steel sheet, and method for producing zinc alloy-plated steel sheet
US20230407506A1 (en) * 2020-11-06 2023-12-21 Jfe Steel Corporation Fe-based electroplated steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing fe-based electroplated steel sheet
JPWO2023171143A1 (en) * 2022-03-08 2023-09-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290794A (en) 1999-04-05 2000-10-17 Nippon Steel Corp High efficiency electroplating method for iron-family metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5779160A (en) * 1980-11-04 1982-05-18 Nippon Steel Corp Production of zinc-iron type alloy coated high tensile steel plate
JPH0611919B2 (en) * 1983-12-26 1994-02-16 日本鋼管株式会社 Cold rolled steel sheet with excellent corrosion resistance after painting
JPH05320952A (en) * 1992-05-25 1993-12-07 Nkk Corp High strength cold rolled steel sheet excellent in corrosion resistance after coating
JPH07197225A (en) * 1994-01-10 1995-08-01 Nisshin Steel Co Ltd Hot-dip metal plating method of high tensile strength hot-rolled steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290794A (en) 1999-04-05 2000-10-17 Nippon Steel Corp High efficiency electroplating method for iron-family metal

Also Published As

Publication number Publication date
WO2021200412A1 (en) 2021-10-07
JPWO2021200412A1 (en) 2021-10-07
CN115335554A (en) 2022-11-11
MX2022012217A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7205664B2 (en) Fe electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe electroplated steel sheet
JP7311041B2 (en) Fe-based electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe-based electroplated steel sheet
JP7311040B2 (en) Method for producing Fe-based electroplated steel sheet and method for producing galvannealed steel sheet
JP7311042B2 (en) Galvanized steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvanized steel sheet
JP7311043B2 (en) Galvannealed steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvannealed steel sheet
EP4316719A1 (en) Resistance spot welding member and resistance spot welding method therefor
JP7506350B2 (en) Steel welded parts
JP7323062B2 (en) Fe-based electroplated steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing Fe-based electroplated steel sheet
JP7323064B2 (en) Galvanized steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvanized steel sheet
JP7323063B2 (en) Galvannealed steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvannealed steel sheet
JP7578118B2 (en) Fe-based electroplated high strength steel sheet and manufacturing method thereof
WO2022244772A1 (en) Fe-based electroplated steel sheet, hot-dip galvanized steel sheet, and methods for manufacturing same
JP7276640B1 (en) Projection welding joint and projection welding method
JP7151948B1 (en) High-strength galvanized steel sheet and member, and manufacturing method thereof
WO2023139923A1 (en) Projection-welded joint and projection welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221011

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221107

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150