JP7201635B2 - リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 - Google Patents
リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 Download PDFInfo
- Publication number
- JP7201635B2 JP7201635B2 JP2020052399A JP2020052399A JP7201635B2 JP 7201635 B2 JP7201635 B2 JP 7201635B2 JP 2020052399 A JP2020052399 A JP 2020052399A JP 2020052399 A JP2020052399 A JP 2020052399A JP 7201635 B2 JP7201635 B2 JP 7201635B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous carbon
- particles
- binder
- graphite particles
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
表面観察における該非晶質炭素粒子の平均粒子径が50~300nmであり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
リチウムイオン二次電池用負極材の比表面積が3.0~7.0m2/gであること、
を特徴とするリチウムイオン二次電池用負極材を提供するものである。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材を提供するものである。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材を提供するものである。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法を提供するものである。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法を提供するものである。
表面観察における該非晶質炭素粒子の平均粒子径が50~300nmであり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
リチウムイオン二次電池用負極材の比表面積が3.0~7.0m2/gであること、
を特徴とする。
断面観察における非晶質炭素粒子の埋没割合(%)=(非晶質炭素粒子3の埋没部分5の面積/非晶質炭素粒子3の全体面積7)×100 (1)
により求められる。なお、説明の都合上、図2では、黒鉛粒子、非晶質炭素化結合材料、及び非晶質炭素粒子の輪郭のみを実線で示した。
表面観察における非晶質炭素粒子の被覆率(%)=(計算範囲9内の非晶質炭素粒子3の合計面積/計算範囲9全体の面積)×100 (2)
により求められる。
表面観察における非晶質炭素粒子の被覆率(%)=(表面観察における計算範囲内の非晶質炭素粒子の合計面積/表面観察における計算範囲全体の面積)×100 (2)
で求められる表面観察における非晶質炭素粒子の被覆率は、50%以上である。表面観察における非晶質炭素粒子の被覆率が、50%以上であることにより、高速充放電特性が高くなる。表面観察における非晶質炭素粒子の被覆率は、更に高速充放電性能が向上する点で、より好ましくは70%以上であり、また、更に高速充放電性能が向上する点で、特に好ましくは80%以上である。
断面観察における非晶質炭素粒子の埋没割合(%)=(断面観察における非晶質炭素粒子の埋没部分の面積/断面観察における非晶質炭素粒子の全体面積)×100(1)
で求められる断面観察における非晶質炭素粒子の埋没割合は、好ましくは30~90%である。断面観察における非晶質炭素粒子の埋没割合が、30~90%であることにより、高速充放電特性が高くなる。断面観察における非晶質炭素粒子の埋没割合は、埋没の効果が十分に発揮され、高速充放電性能が向上する点で、より好ましくは50%以上であり、また、比表面積の低下による高速充放電性能が低下することを抑制する点で、より好ましくは80%以下である。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とする。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とする。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程(1)と、
を行い得られるリチウムイオン二次電池用負極材である。なお、上記本発明のリチウムイオン二次電池用負極材は、被覆工程(1)と、埋め込み工程と、焼成炭化工程(1)と、を少なくとも行い得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程(2)と、
を行い得られるリチウムイオン二次電池用負極材である。なお、上記本発明のリチウムイオン二次電池用負極材は、被覆工程(2)と、再被覆工程と、焼成炭化工程(2)と、を少なくとも行い得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
黒鉛粒子球状凝集体90.2重量%に対し、N-メチル-2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製する。
得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、常圧下90℃で90分間、更に真空下130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cm2である電極シートを得る。
なお、ここで目付量とは、電極シートの単位面積当たりの黒鉛粒子球状凝集体の重量を意味する。
上記電極シートを幅6cmの短冊状に切り出し、極板密度が1.2g/cm3となるようロールプレスによる圧延を行う。プレスした電極シートは縦2.8cm、横5.5cmに切断する。極板密度は各重量A(g)と中心部分の厚みB(cm)から、下記式(4)により算出して確認した。
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m2/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。次いで、90℃のまま、算術平均粒子径が122nmのファーネスブラック(東海カーボン株式会社製、S-TA)20.0質量部を投入し、更に10分間混合した。得られた混合粉をハイブリダイザー装置(奈良機械製作所製)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数6400rpmで3分間処理した。
得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm) し、篩下分を、リチウムイオン二次電池用負極材として製造した。
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m2/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。次いで、90℃のまま、算術平均粒子径が122nmのファーネスブラック(東海カーボン株式会社製、S-TA)20.0質量部を投入し、更に10分間混合した。槽内が40℃となったところで、樹脂水溶液(住友ベークライト社製PR56165:水=1:1)10.0質量部を加えて、更に10分間混合した。次いで、得られた混合粉を乾燥した。
得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm)し、篩下分を、リチウムイオン二次電池用負極材として製造した。なお、焼成炭化後の樹脂水溶液中の樹脂の炭化後の残炭量は、球形化天然黒鉛100.0質量部に対し、2.5質量部である。
得られたリチウムイオン二次電池用負極材の分析結果及び評価結果を表1に示す。
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m2/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm)し、篩下分を、リチウムイオン二次電池用負極材として製造した。
ファーネスブラックの添加量を5.0質量部とした以外は、実施例1と同様に行った。
ハイブリダイザーでの埋め込み工程を省略した以外は実施例1と同様に行った。
ハイブリダイザーの回転数を8000rpmとした以外は実施例1と同様に行った。
・SEM分析装置及び条件
分析装置:日本電子社製JSM7900F
加速電圧2-5kvで加速した電子線を試料に当て二次電子像を観察。
断面資料作製装置:日本電子社製IB-19530CP
電極シートを所定のサイズに切り出し、加工位置に対し遮蔽版を設置する。アルゴンイオンビームを照射することで、遮蔽版のエッジに沿って切断される。
・TEM分析装置及び条件
分析装置:日立社製H-7650型透過型電子顕微鏡(100kV)
カーボンブラックをアセトン等の有機溶媒中に分散させた後、アモルファスカーボン膜付きのグリッド上に滴下し、乾燥させ、100kVの加速電圧にて観察を行った。
・レーザー回折粒度分布測定装置及び分析条件
分析装置:堀場製作所社製:LA-960
光源:半導体レーザー(650nm)
蒸留水100質量部に対し、10質量%の両性界面活性剤を添加した水溶液に対し、粉末を超音波で分散させた。分散させた粉末を装置内の測定セルにフローし、レーザーを照射する。散乱光をリング状検出器で検出、解析することで粒度分布を得る。
(ラミネート電池の作製)
前記の作用極、対極を使用し、評価用電池として、正極(Li金属)、セパレータ(ポリプロピレン)、負極(試験負極材)を順に積層し、更に、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dm3のリチウム塩LiPF6を溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0 .2mA/cm2、終止電圧5mV で定電流充電を終えた後、下限電流0.02mA/cm2となるまで定電位保持する。放電は電流密度0.2mA/cm2にて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。5Cの充電容量は、3サイクル後の完放電の状態から、12分間で満充電させたときの充電容量である。
2 非晶質炭素化結合材料
3 非晶質炭素粒子
4 被覆層
5 埋没部分
6a、6b 交点
7 非晶質炭素粒子全体
8 非晶質炭素化結合材料の厚み
9 計算範囲
10 リチウムイオン二次電池用負極材
11 バインダー
12 バインダー被覆黒鉛粒子
13 非晶質炭素粒子付着バインダー被覆黒鉛粒子
14 非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子
15 樹脂
16 非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物
Claims (5)
- 黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み、該黒鉛粒子を覆う被覆層と、からなり、
表面観察における該非晶質炭素粒子の平均粒子径が50~300nmであり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
断面観察における該非晶質炭素粒子の埋没割合が30~90%であり、
リチウムイオン二次電池用負極材の比表面積が3.0~7.0m2/gであること、
を特徴とするリチウムイオン二次電池用負極材。 - 前記リチウムイオン二次電池用負極材の平均粒子径(D50)が5.0~30.0μmであることを特徴とする請求項1のリチウムイオン二次電池用負極材。
- 前記黒鉛粒子100.0質量部に対する、非晶質炭素粒子の割合が10.0~40.0質量部であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極材。
- 平均粒子径(D50)が5.0~30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法。 - 平均粒子径(D50)が5.0~30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50~300nmである非晶質炭素粒子を10.0~40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052399A JP7201635B2 (ja) | 2020-03-24 | 2020-03-24 | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 |
PCT/JP2021/004288 WO2021192651A1 (ja) | 2020-03-24 | 2021-02-05 | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020052399A JP7201635B2 (ja) | 2020-03-24 | 2020-03-24 | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021152999A JP2021152999A (ja) | 2021-09-30 |
JP7201635B2 true JP7201635B2 (ja) | 2023-01-10 |
Family
ID=77886629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020052399A Active JP7201635B2 (ja) | 2020-03-24 | 2020-03-24 | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7201635B2 (ja) |
WO (1) | WO2021192651A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056820A1 (fr) | 2006-11-10 | 2008-05-15 | Tokai Carbon Co., Ltd. | Matériau d'électrode négative pour une batterie secondaire lithium-ion et procédé de fabrication de celui-ci |
JP2010218758A (ja) | 2009-03-13 | 2010-09-30 | Tokai Carbon Co Ltd | リチウム二次電池用負極材及びその製造方法 |
WO2013002162A1 (ja) | 2011-06-30 | 2013-01-03 | 三洋電機株式会社 | 非水電解質二次電池及びその製造方法 |
WO2018110263A1 (ja) | 2016-12-12 | 2018-06-21 | 昭和電工株式会社 | 複合黒鉛粒子、その製造方法及びその用途 |
JP2019149348A (ja) | 2018-02-28 | 2019-09-05 | 三洋電機株式会社 | 非水電解質二次電池、及び非水電解質二次電池の製造方法 |
-
2020
- 2020-03-24 JP JP2020052399A patent/JP7201635B2/ja active Active
-
2021
- 2021-02-05 WO PCT/JP2021/004288 patent/WO2021192651A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056820A1 (fr) | 2006-11-10 | 2008-05-15 | Tokai Carbon Co., Ltd. | Matériau d'électrode négative pour une batterie secondaire lithium-ion et procédé de fabrication de celui-ci |
JP2010218758A (ja) | 2009-03-13 | 2010-09-30 | Tokai Carbon Co Ltd | リチウム二次電池用負極材及びその製造方法 |
WO2013002162A1 (ja) | 2011-06-30 | 2013-01-03 | 三洋電機株式会社 | 非水電解質二次電池及びその製造方法 |
WO2018110263A1 (ja) | 2016-12-12 | 2018-06-21 | 昭和電工株式会社 | 複合黒鉛粒子、その製造方法及びその用途 |
JP2019149348A (ja) | 2018-02-28 | 2019-09-05 | 三洋電機株式会社 | 非水電解質二次電池、及び非水電解質二次電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021192651A1 (ja) | 2021-09-30 |
JP2021152999A (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229775B2 (ja) | 非水系二次電池用炭素材 | |
EP3780169A1 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
US8501047B2 (en) | Mixed carbon material and negative electrode for a nonaqueous secondary battery | |
JP5413645B2 (ja) | リチウム二次電池用負極材の製造方法 | |
JP6864250B2 (ja) | 炭素材、及び、非水系二次電池 | |
JP2008305722A (ja) | リチウムイオン二次電池用負極材とその製造方法 | |
JP2012216545A (ja) | 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池 | |
JP5671110B2 (ja) | リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池 | |
JP2014067680A (ja) | 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池 | |
JP6634720B2 (ja) | 炭素材、及び、非水系二次電池 | |
JP6476627B2 (ja) | 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池 | |
JP2012216521A (ja) | 非水電解質二次電池用負極材の製造方法、及びその製造方法で得られた負極材、負極並びに非水電解質二次電池 | |
JP2014067639A (ja) | 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池 | |
WO2021166359A1 (ja) | リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池 | |
JP4542352B2 (ja) | リチウムイオン二次電池用負極、およびリチウムイオン二次電池 | |
WO2021192650A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 | |
JP2009110968A (ja) | 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極 | |
JP7201635B2 (ja) | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 | |
WO2021192648A1 (ja) | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 | |
JP2014146507A (ja) | 非水系二次電池負極用活物質、非水系二次電池用負極及び非水系二次電池 | |
JP7263284B2 (ja) | リチウムイオン二次電池用負極材の製造方法 | |
JP2014067640A (ja) | 非水系二次電池用炭素材料、非水系二次電池用負極及び非水系二次電池 | |
WO2022219836A1 (ja) | リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法 | |
WO2023119857A1 (ja) | 固体電池用負極および固体電池 | |
JP6924917B1 (ja) | リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7201635 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |