[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7290126B2 - Method for manufacturing all-solid-state battery - Google Patents

Method for manufacturing all-solid-state battery Download PDF

Info

Publication number
JP7290126B2
JP7290126B2 JP2020031376A JP2020031376A JP7290126B2 JP 7290126 B2 JP7290126 B2 JP 7290126B2 JP 2020031376 A JP2020031376 A JP 2020031376A JP 2020031376 A JP2020031376 A JP 2020031376A JP 7290126 B2 JP7290126 B2 JP 7290126B2
Authority
JP
Japan
Prior art keywords
solid
state battery
voltage
aging
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020031376A
Other languages
Japanese (ja)
Other versions
JP2021136145A (en
Inventor
壮吉 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020031376A priority Critical patent/JP7290126B2/en
Publication of JP2021136145A publication Critical patent/JP2021136145A/en
Application granted granted Critical
Publication of JP7290126B2 publication Critical patent/JP7290126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、全固体電池の製造方法に関する。 The present invention relates to a method for manufacturing an all-solid-state battery.

二次電池は、EV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。二次電池を製造する過程で、二次電池内に短絡が生じているか否かを検査する技術が知られている。例えば、特許文献1に記載されている全固体電池の検査方法では、電池を充電した後に、電池の自己放電による電圧降下量が基準値を超えるか否かを判定する。電圧降下量が基準値を超えた場合に、電池を不良品と判定する。 Secondary batteries are widely used as power sources for driving vehicles such as EVs (electric vehicles), HVs (hybrid vehicles), and PHVs (plug-in hybrid vehicles). 2. Description of the Related Art Techniques for inspecting whether a short circuit occurs in a secondary battery during the manufacturing process of the secondary battery are known. For example, in the inspection method for an all-solid-state battery described in Patent Document 1, after charging the battery, it is determined whether or not the amount of voltage drop due to self-discharge of the battery exceeds a reference value. If the amount of voltage drop exceeds the reference value, the battery is determined to be defective.

特開2015-122169号公報JP 2015-122169 A

従来の方法では、全固体電池を充電した後に短絡の有無が検査される。短絡した全固体電池が検査のために充電されると、発熱等の不具合が発生する可能性もある。 In the conventional method, the presence or absence of a short circuit is inspected after charging the all-solid-state battery. When a short-circuited all-solid-state battery is charged for inspection, problems such as heat generation may occur.

本発明の典型的な目的は、全固体電池の短絡の有無を適切に検査することが可能な全固体電池の製造方法を提供することである。 A typical object of the present invention is to provide a method for manufacturing an all-solid-state battery that can appropriately inspect the presence or absence of a short circuit in the all-solid-state battery.

かかる目的を実現するべく、ここに開示される一態様の全固体電池の製造方法は、組み立てられた以後に未だ充電が行われていない全固体電池を、エージング温度に調整した状態で保持するエージング工程と、上記エージング工程が終了した上記全固体電池の電圧が、上記エージング温度および上記エージング工程に要した時間に応じて定められた基準電圧よりも低い場合に、上記全固体電池に短絡が生じていると判定する未充電短絡検査工程と、を含むことを特徴とする。 In order to achieve such an object, an all-solid-state battery manufacturing method disclosed herein according to one aspect provides an aging method in which an all-solid-state battery that has not yet been charged after being assembled is maintained at an aging temperature. A short circuit occurs in the all-solid-state battery when the voltage of the all-solid-state battery after the step and the aging step is completed is lower than a reference voltage determined according to the aging temperature and the time required for the aging step. and an uncharged short-circuit inspection step for determining that the

電解液を使用する二次電池では、組み立て後に未充電のまま放置すると、電極に使用される物質(例えば、負極集電箔に使用される銅等)が電解液中に溶出し、電池性能の低下等の不具合が生じる可能性がある。一方で、全固体電池では、組み立て後に未充電のまま放置しても物質が溶出する問題は発生しない。従って、全固体電池に対しては、未充電のままエージング工程を行うことが可能である。 In a secondary battery that uses an electrolyte, if left uncharged after assembly, the materials used in the electrodes (for example, copper used in the negative electrode current collector foil) will leach into the electrolyte, degrading battery performance. There is a possibility that problems such as a decrease may occur. On the other hand, with an all-solid-state battery, even if it is left uncharged after assembly, the problem of material elution does not occur. Therefore, it is possible to perform the aging process on the all-solid-state battery while it is uncharged.

ここで、本願の発明者は、組み立てられたに未充電の状態の全固体電池に対してエージング工程を実行することで、全固体電池の電圧(OCV:閉回路電圧)が上昇することに着目した。発明者が見出した新たな知見によると、短絡が生じているか否かに関わらず、全固体電池の電圧は、未充電の状態で実行されるエージング工程の開始直後に上昇する。その後、短絡が生じてない全固体電池の電圧はさらに上昇して安定するが、短絡が生じている全固体電池の電圧は低下する。エージング工程によって全固体電池の電圧が上昇する程度は、全固体電池の仕様、エージング工程中の全固体電池の温度(エージング温度)、および、エージング工程に要した時間(エージング時間)に応じて異なる。従って、エージング工程が終了した全固体電池の電圧を、エージング温度およびエージング時間に応じて定められた基準電圧と比較することで、全固体電池の短絡の有無を未充電の状態で検査することができる。よって、短絡した全固体電池が充電されることによる不具合の発生が抑制された状態で、全固体電池の短絡の有無が適切に検査される。 Here, the inventors of the present application focused on the fact that the voltage (OCV: closed circuit voltage) of the all-solid-state battery increases by performing the aging process on the assembled all-solid-state battery in an uncharged state. bottom. According to a new finding made by the inventors, regardless of whether a short circuit occurs or not, the voltage of the all-solid-state battery rises immediately after the start of the aging process performed in an uncharged state. After that, the voltage of the all-solid-state battery that is not short-circuited further increases and stabilizes, but the voltage of the all-solid-state battery that is short-circuited decreases. The degree to which the voltage of the all-solid-state battery increases due to the aging process varies depending on the specifications of the all-solid-state battery, the temperature of the all-solid-state battery during the aging process (aging temperature), and the time required for the aging process (aging time). . Therefore, by comparing the voltage of the all-solid-state battery that has undergone the aging process with a reference voltage determined according to the aging temperature and aging time, it is possible to inspect the presence or absence of a short circuit in the all-solid-state battery in an uncharged state. can. Therefore, the presence or absence of a short circuit in the all-solid-state battery is appropriately inspected in a state in which the occurrence of problems due to charging of the short-circuited all-solid-state battery is suppressed.

全固体電池の製造方法は、初充電工程および自己放電検査工程をさらに含んでいてもよい。初充電工程では、未充電短絡検査工程において短絡が生じていないと判定された全固体電池を充電して設定電圧とする。自己放電検査工程では、初充電工程において充電された全固体電池を一定時間放置して自己放電させた後、自己放電検査開始時の電圧からの全固体電池の電圧の降下量を検出し、電圧の降下量が閾値を超える場合に、全固体電池に短絡が生じていると判定する。 The method for manufacturing an all-solid-state battery may further include an initial charging step and a self-discharge inspection step. In the initial charging step, the all-solid-state battery determined to have no short circuit in the uncharged short-circuit inspection step is charged to a set voltage. In the self-discharge inspection step, the all-solid-state battery charged in the initial charging step is allowed to stand for a certain period of time to self-discharge. is determined to be short-circuited in the all-solid-state battery when the amount of descent exceeds the threshold.

この場合、未充電短絡検査工程で短絡が無いと判定された全固体電池に対し、さらに自己放電検査工程によって短絡の有無が判定される。従って、短絡の有無を判定する精度がさらに向上する。ただし、未充電短絡検査工程のみで、全固体電池の短絡の有無を判定することも可能である。 In this case, the presence or absence of a short circuit is further determined by the self-discharge inspection process for the all-solid-state battery that has been determined to have no short circuit in the uncharged short-circuit inspection process. Therefore, the accuracy of determining the presence or absence of a short circuit is further improved. However, it is also possible to determine the presence or absence of a short circuit in an all-solid-state battery only by the uncharged short-circuit inspection process.

全固体電池の製造方法のフローチャートである。4 is a flow chart of a method for manufacturing an all-solid-state battery. 短絡が無い全固体電池と、短絡がある全固体電池の、エージング工程中の経過時間とOCVの関係の一例を示すグラフである。FIG. 4 is a graph showing an example of the relationship between the elapsed time during the aging process and the OCV for an all-solid-state battery without a short circuit and an all-solid-state battery with a short circuit.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄(例えば、全固体電池の構成等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 One typical embodiment of the present disclosure will be described in detail below with reference to the drawings. Matters other than the matters specifically referred to in this specification and necessary for implementation (for example, the configuration of an all-solid-state battery, etc.) can be grasped as design matters by those skilled in the art based on the prior art in the field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field.

まず、本開示で例示する製造方法によって製造される全固体電池の一例である全固体リチウムイオン二次電池(以下、単に「全固体電池」という場合もある)の概略構成について説明する。ただし、本開示における製造方法の適用対象となる全固体電池は、全固体リチウムイオン二次電池に限定されない。つまり、全固体電池は、リチウムイオン以外の金属イオンを電化担体とするもの、例えば、ナトリウムイオン二次電池、マグネシウムイオン二次電池、等であってもよい。 First, a schematic configuration of an all-solid-state lithium-ion secondary battery (hereinafter sometimes simply referred to as an “all-solid-state battery”), which is an example of an all-solid-state battery manufactured by the manufacturing method exemplified in the present disclosure, will be described. However, the all-solid-state battery to which the manufacturing method of the present disclosure is applied is not limited to the all-solid-state lithium-ion secondary battery. That is, the all-solid-state battery may be one that uses metal ions other than lithium ions as a charge carrier, such as a sodium-ion secondary battery, a magnesium-ion secondary battery, and the like.

全固体電池は、正極、固体電解質層(セパレータ層)、および負極を備える。正極は、正極集電体および正極活物質層を備える。負極は、負極集電体および負極活物質層を備える。固体電解質層は、正極の正極活物質層と負極の負極活物質層との間に配置される。固体電解質層は、正極および負極の間を絶縁するセパレータとしても機能する。 An all-solid battery includes a positive electrode, a solid electrolyte layer (separator layer), and a negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer. The negative electrode includes a negative electrode current collector and a negative electrode active material layer. The solid electrolyte layer is arranged between the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode. The solid electrolyte layer also functions as a separator that insulates between the positive electrode and the negative electrode.

固体電解質層は、少なくとも固体電解質を含む。固体電解質として、例えば、硫化物系固体電解質および酸化物系固体電解質が挙げられる。硫化物系固体電解質の例としては、LiS-SiS系、LiS-P系、LiS-P系、LiS-GeS系、LiS-B系、等のガラスまたはガラスセラミックスが挙げられる。酸化物系電解質の例としては、NASICON構造、ガーネット型構造、またはペロブスカイト型構造を有する種々の酸化物が挙げられる。固体電解質は、例えば、粒子状である。 The solid electrolyte layer contains at least a solid electrolyte. Examples of solid electrolytes include sulfide-based solid electrolytes and oxide-based solid electrolytes. Examples of sulfide-based solid electrolytes include Li 2 S—SiS 2 system, Li 2 SP 2 S 3 system, Li 2 SP 2 S 5 system, Li 2 S—GeS 2 system, Li 2 S— Glasses or glass-ceramics such as B 2 S 3 series can be mentioned. Examples of oxide-based electrolytes include various oxides having a NASICON structure, a garnet-type structure, or a perovskite-type structure. The solid electrolyte is, for example, particulate.

正極活物質層は、少なくとも正極活物質を含む。正極活物質層は、固体電解質を更に含むことが好ましく、導電材、バインダ(結着材)等を更に含んでいてもよい。正極活物質として、この種の電池で従来から用いられている種々の化合物を使用することができる。正極活物質の例として、LiCoO、LiNiO等の層状構造の複合酸化物、LiNiMn、LiMn等のスピネル構造の複合酸化物、LiFePO等のオリビン構造の複合化合物、等が挙げられる。正極活物質層における固体電解質としては、固体電解質層に含有される固体電解質と同種の材料を用いることができる。正極活物質は、例えば、粒子状である。 The positive electrode active material layer contains at least a positive electrode active material. The positive electrode active material layer preferably further contains a solid electrolyte, and may further contain a conductive material, a binder (binding material), and the like. Various compounds conventionally used in this type of battery can be used as the positive electrode active material. Examples of positive electrode active materials include layered structure composite oxides such as LiCoO 2 and LiNiO 2 , spinel structure composite oxides such as Li 2 NiMn 3 O 8 and LiMn 2 O 4 , and olivine structure composite compounds such as LiFePO 4 . , etc. As the solid electrolyte in the positive electrode active material layer, the same material as the solid electrolyte contained in the solid electrolyte layer can be used. The positive electrode active material is, for example, particulate.

負極活物質層は、少なくとも負極活物質を含む。負極活物質層は、固体電解質を更に含むことが好ましく、導電材、バインダ等を更に含んでいてもよい。負極活物質として、この種の電池で従来から用いられている種々の化合物を使用することができる。負極活物質の例として、例えば、グラファイト、メソカーボンマイクロビーズ、カーボンブラック等の炭素系の負極活物質が挙げられる。また、負極活物質の例として、ケイ素(Si)またはスズ(Sn)を構成元素とする負極活物質が挙げられる。負極活物質層における固体電解質としては、固体電解質層に含有される固体電解質と同種の材料を用いることができる。負極活物質は、例えば、粒子状である。 The negative electrode active material layer contains at least a negative electrode active material. The negative electrode active material layer preferably further contains a solid electrolyte, and may further contain a conductive material, a binder, and the like. Various compounds conventionally used in this type of battery can be used as the negative electrode active material. Examples of negative electrode active materials include carbon-based negative electrode active materials such as graphite, mesocarbon microbeads, and carbon black. Further, examples of negative electrode active materials include negative electrode active materials containing silicon (Si) or tin (Sn) as a constituent element. As the solid electrolyte in the negative electrode active material layer, the same material as the solid electrolyte contained in the solid electrolyte layer can be used. The negative electrode active material is, for example, particulate.

正極集電体としては、この種の電池の正極集電体として用いられるものを特に制限なく用いることができる。典型的には、正極集電体は、良好な導電性を有する金属製であることが好ましい。正極集電体は、例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材から構成されていてもよい。負極集電体としては、この種の電池の負極集電体として用いられるものを特に制限なく用いることができる。典型的には、負極集電体は、良好な導電性を有する金属製であることが好ましい。負極集電体として、例えば、銅(銅箔)や銅を主体とする合金を用いることができる。 As the positive electrode current collector, any one used as a positive electrode current collector for this type of battery can be used without particular limitation. Typically, the positive electrode current collector is preferably made of metal with good electrical conductivity. The positive electrode current collector may be made of, for example, a metal material such as aluminum, nickel, titanium, or stainless steel. As the negative electrode current collector, a material used as a negative electrode current collector for this type of battery can be used without particular limitation. Typically, the negative electrode current collector is preferably made of metal with good electrical conductivity. As the negative electrode current collector, for example, copper (copper foil) or an alloy mainly composed of copper can be used.

図1および図2を参照して、本実施形態における全固体電池の製造方法(検査方法)について説明する。図1に示すように、本実施形態で例示する全固体電池の製造方法は、組み立て工程(S1)、エージング工程(S2)、未充電短絡検査工程(S3)、初充電工程(S4)、および自己放電検査工程(S5)を含む。 A manufacturing method (inspection method) for an all-solid-state battery according to the present embodiment will be described with reference to FIGS. 1 and 2 . As shown in FIG. 1, the method for manufacturing an all-solid-state battery exemplified in this embodiment includes an assembly step (S1), an aging step (S2), an uncharged short-circuit inspection step (S3), an initial charging step (S4), and A self-discharge inspection step (S5) is included.

組み立て工程(S1)では、全固体電池(一例として、本実施形態では前述した全固体リチウムイオン二次電池)を組み立てる。つまり、正極、固体電解質層(セパレータ層)、および負極を含む発電要素を電池ケースの内部に収容することで、全固体電池を組み立てる。 In the assembly step (S1), an all-solid battery (as an example, the all-solid lithium ion secondary battery described above in this embodiment) is assembled. That is, an all-solid-state battery is assembled by housing a power generation element including a positive electrode, a solid electrolyte layer (separator layer), and a negative electrode inside a battery case.

エージング工程(S2)では、組み立て工程(S1)において組み立てられた以後に未だ充電が行われていない全固体電池を、所定の温度(エージング温度)に調整した状態で、所定時間(エージング時間)の間保持(放置)する。 In the aging step (S2), the all-solid-state battery, which has not yet been charged after being assembled in the assembling step (S1), is adjusted to a predetermined temperature (aging temperature) for a predetermined time (aging time). Hold (leave) for a while.

エージング温度は、例えば35℃以上(典型的には40℃以上)であることが望ましい。本実施形態の全固体電池では、エージング温度は、60℃~100°の高温とすることがより望ましい。高温環境下で全固体電池を保持すると、全固体電池内に金属異物が含まれる場合等に、後述する検査工程(S3,S5)において違いが顕著に表れやすい。全固体電池の温度を上昇させて保持する方法としては、例えば、温度制御恒温槽または赤外線ヒーター等の加熱手段を使用することができる。 Desirably, the aging temperature is, for example, 35° C. or higher (typically 40° C. or higher). In the all-solid-state battery of the present embodiment, the aging temperature is more desirably a high temperature of 60°C to 100°C. If the all-solid-state battery is held in a high-temperature environment, a noticeable difference is likely to appear in the later-described inspection steps (S3, S5) when metallic foreign matter is contained in the all-solid-state battery. As a method for increasing and maintaining the temperature of the all-solid-state battery, for example, a heating means such as a temperature-controlled constant temperature bath or an infrared heater can be used.

エージング時間は、エージング温度および全固体電池の仕様等に応じて適宜設定できるが、所定時間以上の長さとすることが望ましい。図2は、短絡が無い全固体電池と、短絡がある全固体電池の、エージング工程中の経過時間とOCVの関係の一例を示すグラフである。図2に示すように、短絡が無い全固体電池の電圧(OCV)も、短絡がある全固体電池の電圧も、エージング工程の開始直後には上昇する。その後、短絡が無い全固体電池の電圧はさらに上昇して安定するが、短絡がある全固体電池の電圧は低下する。従って、後述する未充電短絡検査工程(S3)において、全固体電池の短絡の有無を精度良く検出するためには、エージング時間を所定時間以上(つまり、短絡の有無による電圧の差を検出可能な時間以上)に設定することが望ましい。図2に示すように、エージング時間を2日間以上とすることで、短絡の有無による電圧の差が表れる。エージング時間を4日間以上とすることで、短絡の有無による電圧の差がより顕著となる。エージング時間を7日間以上とすれば、電圧の差はさらに顕著となる。一例として、本実施形態におけるエージング時間は14日間に設定されている。 The aging time can be appropriately set depending on the aging temperature and specifications of the all-solid-state battery, but it is desirable that the aging time is longer than a predetermined time. FIG. 2 is a graph showing an example of the relationship between the elapsed time during the aging process and the OCV for an all-solid-state battery without a short circuit and an all-solid-state battery with a short circuit. As shown in FIG. 2, both the voltage (OCV) of the solid-state battery without a short circuit and the voltage of an all-solid-state battery with a short circuit increase immediately after the aging process begins. After that, the voltage of the all-solid-state battery without a short circuit further increases and stabilizes, but the voltage of the all-solid-state battery with a short circuit decreases. Therefore, in the uncharged short-circuit inspection step (S3) described later, in order to accurately detect the presence or absence of a short circuit in the all-solid-state battery, the aging time must be a predetermined time or more (that is, the difference in voltage due to the presence or absence of a short circuit can be detected). hours or more). As shown in FIG. 2, by setting the aging time to two days or longer, a voltage difference appears depending on the presence or absence of a short circuit. By setting the aging time to 4 days or more, the difference in voltage due to the presence or absence of a short circuit becomes more pronounced. If the aging time is set to 7 days or more, the difference in voltage becomes even more remarkable. As an example, the aging time in this embodiment is set to 14 days.

未充電短絡検査工程(S3)では、エージング工程(S2)が終了した全固体電池(つまり、組み立て以後に未だ充電が行われていない全固体電池)の電圧(OCV)に基づいて、全固体電池に短絡が生じているか否かを判定する。本実施形態では、エージング工程(S2)の終了後に全固体電池を冷却することで、電池温度を安定させるために必要な待機時間を減少させた後、全固体電池の電圧を検出する。次いで、検出された電圧が基準電圧よりも低い場合に、全固体電池に短絡が生じていると判定する。一方で、検出された電圧が基準電圧以上である場合に、全固体電池に短絡が生じていないと判定する。 In the uncharged short-circuit inspection step (S3), based on the voltage (OCV) of the all-solid-state battery that has completed the aging step (S2) (that is, the all-solid-state battery that has not been charged after assembly), the all-solid-state battery is short-circuited. In this embodiment, by cooling the all-solid-state battery after the aging step (S2) is completed, the standby time required for stabilizing the battery temperature is reduced, and then the voltage of the all-solid-state battery is detected. Next, when the detected voltage is lower than the reference voltage, it is determined that a short circuit has occurred in the all-solid-state battery. On the other hand, when the detected voltage is equal to or higher than the reference voltage, it is determined that a short circuit has not occurred in the all-solid-state battery.

前述したように、エージング時間を所定時間以上としてエージング工程を行った場合、短絡が無い全固体電池の電圧は上昇して安定した状態であるが、短絡がある全固体電池の電圧は低下する。従って、エージング工程後の全固体電池の電圧を基準電圧と比較することで、全固体電池の短絡の有無が、全固体電池を充電する工程を経ずに判定される。よって、短絡した全固体電池が充電されることによる不具合の発生が抑制された状態で、短絡の有無が適切に検査される。 As described above, when the aging process is performed with the aging time set to a predetermined time or more, the voltage of the all-solid-state battery without a short circuit rises and is stable, but the voltage of the all-solid-state battery with a short circuit drops. Therefore, by comparing the voltage of the all-solid-state battery after the aging process with the reference voltage, the presence or absence of a short circuit in the all-solid-state battery can be determined without going through the process of charging the all-solid-state battery. Therefore, the presence or absence of a short circuit is appropriately inspected in a state in which the occurrence of problems due to charging of a short-circuited all-solid-state battery is suppressed.

また、本実施形態では、エージング工程中の全固体電池の電圧を、常時または複数回検出せずに、エージング工程終了後の電圧に基づいて短絡の有無が判定される。従って、全固体電池の短絡の有無が容易に判定される。また、全固体電池の電圧は、エージング工程によって上昇する。従って、本実施形態の未充電検査工程では、組み立て直後(エージング工程の前)の全固体電池の電圧に基づいて短絡の有無を検出する場合に比べて、短絡がある全固体電池の電圧と、短絡が無い全固体電池の電圧の差が顕著になる。よって、短絡の有無がより正確に検出され易い。 In addition, in the present embodiment, the presence or absence of a short circuit is determined based on the voltage after the aging process without detecting the voltage of the all-solid-state battery during the aging process all the time or multiple times. Therefore, the presence or absence of a short circuit in the all-solid-state battery can be easily determined. Also, the voltage of the all-solid-state battery increases due to the aging process. Therefore, in the uncharged inspection process of the present embodiment, compared to the case of detecting the presence or absence of a short circuit based on the voltage of the all-solid-state battery immediately after assembly (before the aging process), the voltage of the all-solid-state battery with a short circuit, The difference in the voltage of all-solid-state batteries without a short circuit becomes remarkable. Therefore, the presence or absence of a short circuit can be detected more accurately.

ここで、エージング工程によって全固体電池の電圧が上昇する程度は、全固体電池の仕様、エージング工程中の全固体電池の温度(エージング温度)、および、エージング工程に要した時間(エージング時間)に応じて異なる。従って、本実施形態では、全固体電池の仕様毎に、エージング温度、エージング時間、および、エージング工程終了後の電圧を比較する基準電圧の関係を示すマップが、複数回の試験結果に基づいて予め定められている。未充電短絡検査工程では、エージング温度およびエージング時間に応じてマップから定まる基準電圧と、エージング工程終了後の全固体電池の電圧とを比較することで、全固体電池に短絡が生じているか否かが判定される。 Here, the extent to which the voltage of the all-solid-state battery increases due to the aging process depends on the specifications of the all-solid-state battery, the temperature of the all-solid-state battery during the aging process (aging temperature), and the time required for the aging process (aging time). Varies accordingly. Therefore, in the present embodiment, a map showing the relationship between the aging temperature, the aging time, and the reference voltage for comparing the voltage after the aging process is prepared for each specification of the all-solid-state battery based on the results of multiple tests. It is defined. In the uncharged short-circuit inspection process, the reference voltage determined from the map according to the aging temperature and aging time is compared with the voltage of the all-solid-state battery after the aging process is completed to determine whether a short-circuit has occurred in the all-solid-state battery. is determined.

初充電工程(S4)では、未充電短絡検査工程(S3)で短絡が無いと判定された全固体電池を充電して、全固体電池の電圧を所定の設定電圧Vpとする。なお、初充電工程では、全固体電池を充電してSOCを高い値に一旦調整した後に放電させることで、電圧を設定電圧Vpに調整してもよい。一般に、二次電池の出力密度はSOCが低くなる程低下する傾向がある。従って、SOCが低い状態で高出力が要求される二次電池を検査対象とする場合には、SOCが20%以下(好ましくは10%以下、例えば1%~5%)となるように設定電圧Vpを設定してもよい。この場合、SOCが低い状態の全固体電池の性能が適切に評価される。 In the initial charging step (S4), the all-solid-state battery determined to have no short-circuit in the uncharged short-circuit inspection step (S3) is charged, and the voltage of the all-solid-state battery is set to a predetermined set voltage Vp. In the initial charging step, the voltage may be adjusted to the set voltage Vp by charging the all-solid-state battery, adjusting the SOC to a high value, and then discharging the battery. In general, the output density of secondary batteries tends to decrease as the SOC decreases. Therefore, when a secondary battery that requires high output with a low SOC is to be inspected, the voltage is set so that the SOC is 20% or less (preferably 10% or less, for example 1% to 5%). Vp may be set. In this case, the performance of the all-solid-state battery with a low SOC is appropriately evaluated.

自己放電検査工程(S5)では、初充電工程(S4)において充電された全固体電池を一定時間放置して自己放電させた後、自己放電検査開始時の電圧からの全固体電池の電圧の降下量を検出する。電圧の降下量が閾値を超える場合には、全固体電池に短絡が生じていると判定する。一方で、電圧の降下量が閾値以下である場合には、全固体電池に短絡が生じていないと判定する。短絡が生じている全固体電池では、自己放電による電圧の降下量が大きくなる。従って、電圧の降下量が閾値を超えるか否かによって、全固体電池に短絡が生じているか否かを適切に判定することができる。 In the self-discharge inspection step (S5), after the all-solid-state battery charged in the initial charging step (S4) is left for a certain period of time to self-discharge, the voltage of the all-solid-state battery drops from the voltage at the start of the self-discharge inspection. Detect quantity. If the amount of voltage drop exceeds the threshold, it is determined that a short circuit has occurred in the all-solid-state battery. On the other hand, if the amount of voltage drop is equal to or less than the threshold, it is determined that a short circuit has not occurred in the all-solid-state battery. An all-solid-state battery in which a short circuit occurs has a large amount of voltage drop due to self-discharge. Therefore, whether or not the all-solid-state battery is short-circuited can be appropriately determined based on whether or not the amount of voltage drop exceeds the threshold.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。例えば、上記実施形態では、未充電短絡検査工程(S3)において短絡が生じていないと判定された全固体電池に対し、自己放電検査工程において短絡の有無が再度判定される。その結果、全固体電池の短絡の有無を判定する精度がさらに構造する。しかし、未充電短絡検査工程(S3)のみによって短絡の有無が判定されてもよい。


Although detailed descriptions have been given above with reference to specific embodiments, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the embodiments described above. For example, in the above-described embodiment, the presence or absence of a short circuit is determined again in the self-discharge inspection step for the all-solid-state battery that has been determined to have no short circuit in the uncharged short-circuit inspection step (S3). As a result, the accuracy of determining the presence or absence of a short circuit in the all-solid-state battery is further improved. However, the presence or absence of a short circuit may be determined only by the uncharged short circuit inspection step (S3).


Claims (1)

全固体電池の製造方法であって、
組み立てられた以後に未だ充電が行われていない全固体電池を、エージング温度に調整した状態で、短絡の有無による電圧の差を検出可能な時間以上保持するエージング工程と、
前記エージング工程が終了した前記全固体電池の電圧が、前記エージング温度および前記エージング工程に要した時間に応じて定められた基準電圧よりも低い場合に、前記全固体電池に短絡が生じていると判定する未充電短絡検査工程と、
を含むことを特徴とする全固体電池の製造方法。
A method for manufacturing an all-solid-state battery,
an aging step in which an all-solid-state battery that has not yet been charged after being assembled is adjusted to an aging temperature and held for a period of time or longer that allows the voltage difference due to the presence or absence of a short circuit to be detected ;
When the voltage of the all-solid-state battery after the aging process is completed is lower than a reference voltage determined according to the aging temperature and the time required for the aging process, it is determined that a short circuit has occurred in the all-solid-state battery. an uncharged short-circuit inspection step for determining;
A method for manufacturing an all-solid-state battery, comprising:
JP2020031376A 2020-02-27 2020-02-27 Method for manufacturing all-solid-state battery Active JP7290126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031376A JP7290126B2 (en) 2020-02-27 2020-02-27 Method for manufacturing all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031376A JP7290126B2 (en) 2020-02-27 2020-02-27 Method for manufacturing all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2021136145A JP2021136145A (en) 2021-09-13
JP7290126B2 true JP7290126B2 (en) 2023-06-13

Family

ID=77661578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031376A Active JP7290126B2 (en) 2020-02-27 2020-02-27 Method for manufacturing all-solid-state battery

Country Status (1)

Country Link
JP (1) JP7290126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136353A1 (en) * 2022-01-14 2023-07-20 Apb株式会社 Battery inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086737A (en) 2008-09-30 2010-04-15 Panasonic Corp Nonaqueous electrolyte battery
JP2013254653A (en) 2012-06-07 2013-12-19 Toyota Motor Corp Method for inspecting secondary battery
JP2015122169A (en) 2013-12-20 2015-07-02 トヨタ自動車株式会社 Method of inspecting all-solid battery
WO2017002615A1 (en) 2015-07-01 2017-01-05 Necエナジーデバイス株式会社 Method for manufacturing lithium-ion secondary battery and method for evaluating lithium-ion secondary battery
JP2017027770A (en) 2015-07-22 2017-02-02 トヨタ自動車株式会社 Inspection method for all-solid secondary battery and method of manufacturing all-solid secondary battery using the inspection method
CN110729516A (en) 2019-11-12 2020-01-24 昆山聚创新能源科技有限公司 Micro-short circuit test method of lithium ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086737A (en) 2008-09-30 2010-04-15 Panasonic Corp Nonaqueous electrolyte battery
JP2013254653A (en) 2012-06-07 2013-12-19 Toyota Motor Corp Method for inspecting secondary battery
JP2015122169A (en) 2013-12-20 2015-07-02 トヨタ自動車株式会社 Method of inspecting all-solid battery
WO2017002615A1 (en) 2015-07-01 2017-01-05 Necエナジーデバイス株式会社 Method for manufacturing lithium-ion secondary battery and method for evaluating lithium-ion secondary battery
JP2017027770A (en) 2015-07-22 2017-02-02 トヨタ自動車株式会社 Inspection method for all-solid secondary battery and method of manufacturing all-solid secondary battery using the inspection method
CN110729516A (en) 2019-11-12 2020-01-24 昆山聚创新能源科技有限公司 Micro-short circuit test method of lithium ion battery

Also Published As

Publication number Publication date
JP2021136145A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US9250297B2 (en) Methods for testing lithium ion battery and evaluating safety of lithium ion battery
CN107799837B (en) Recovery method and reuse method for secondary battery
JP2009145137A (en) Inspection method of secondary battery
JP2012084346A (en) Method for producing lithium ion secondary battery
JP2015122169A (en) Method of inspecting all-solid battery
JP6094817B2 (en) Method for producing non-aqueous electrolyte secondary battery
Zhao et al. A study on half‐cell equivalent circuit model of lithium‐ion battery based on reference electrode
JP4233073B2 (en) Non-aqueous electrolyte battery defect sorting method
KR101471775B1 (en) Method of inspecting for lithium ion secondary battery
JP7290126B2 (en) Method for manufacturing all-solid-state battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
KR20180014763A (en) A method for determining an anode potential and / or a cathode potential in a battery cell
KR20200054013A (en) Method for Detecting Battery Having Disconnection of Terminal
JP7256151B2 (en) Method for judging quality of secondary battery, method for manufacturing secondary battery
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
CN110231569B (en) Method for inspecting all-solid-state battery, method for manufacturing all-solid-state battery, and method for manufacturing battery pack
JP6058968B2 (en) Manufacturing method of secondary battery
JP7582282B2 (en) Inspection method for solid-state batteries
JP4478856B2 (en) Secondary battery protection control system and secondary battery protection control method
JP2021170464A (en) Manufacturing method of all-solid battery
JP2019160779A (en) Method for testing all solid state battery, method for producing all solid state battery, and method for producing battery pack
US20230176134A1 (en) Method for inspecting nonaqueous electrolyte rechargeable battery
JP2024068875A (en) Method for testing all-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R151 Written notification of patent or utility model registration

Ref document number: 7290126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151