[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021170464A - Manufacturing method of all-solid-state battery - Google Patents

Manufacturing method of all-solid-state battery Download PDF

Info

Publication number
JP2021170464A
JP2021170464A JP2020072996A JP2020072996A JP2021170464A JP 2021170464 A JP2021170464 A JP 2021170464A JP 2020072996 A JP2020072996 A JP 2020072996A JP 2020072996 A JP2020072996 A JP 2020072996A JP 2021170464 A JP2021170464 A JP 2021170464A
Authority
JP
Japan
Prior art keywords
solid
state battery
voltage
resistance
target temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072996A
Other languages
Japanese (ja)
Inventor
真一郎 橘内
Shinichiro Kitsunai
尊 原
Takashi Hara
慶宣 荒牧
Norinobu Aramaki
祐司 冨田
Yuji Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020072996A priority Critical patent/JP2021170464A/en
Publication of JP2021170464A publication Critical patent/JP2021170464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】全固体電池の性能を、充放電を実行することなく適切に評価することが可能な全固体電池の製造方法を提供する。【解決手段】全固体電池の製造方法は、電圧挙動取得工程(S2)、および抵抗予測工程(S14)を含む。電圧挙動取得工程(S2)では、組み立てられた以後に未だ充電が行われていない全固体電池を加熱して目標温度で維持する際の、全固体電池の電圧挙動を取得する。全固体電池の温度が目標温度に到達した目標温度到達時の全固体電池の電圧をV0、目標温度到達時以後の電圧の上昇が一旦下降する際の全固体電池の極大電圧、または、一旦停滞して再上昇する際の再上昇時電圧をV1、目標温度到達時から電圧がV1となるまでの経過時間をT1とする。抵抗予測工程(S14)では、少なくとも、V1とV0の差、およびT1に基づいて、全固体電池の抵抗を予測する。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for manufacturing an all-solid-state battery capable of appropriately evaluating the performance of the all-solid-state battery without executing charging / discharging. A method for manufacturing an all-solid-state battery includes a voltage behavior acquisition step (S2) and a resistance prediction step (S14). In the voltage behavior acquisition step (S2), the voltage behavior of the all-solid-state battery when the all-solid-state battery that has not been charged after being assembled is heated and maintained at the target temperature is acquired. When the temperature of the all-solid-state battery reaches the target temperature, the voltage of the all-solid-state battery when the target temperature is reached is V0, and the maximum voltage of the all-solid-state battery when the voltage rise and fall after the target temperature is reached, or once stagnant. Let V1 be the voltage at the time of re-rise when the voltage rises again, and T1 be the elapsed time from the time when the target temperature is reached until the voltage becomes V1. In the resistance prediction step (S14), the resistance of the all-solid-state battery is predicted at least based on the difference between V1 and V0 and T1. [Selection diagram] Fig. 1

Description

本発明は、全固体電池の製造方法に関する。 The present invention relates to a method for manufacturing an all-solid-state battery.

二次電池は、EV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。二次電池を製造する過程で、製造された二次電池の性能を評価するための種々の手法が提案されている。例えば、特許文献1に記載の充電状態測定装置は、二次電池の充電開始時または放電開始時から所定時間経過後に検出された、二次電池の電圧および電流を用いて、二次電池の抵抗を演算する。演算された抵抗を用いて、二次電池の充電状態が測定される。 Secondary batteries are widely used as a power source for driving vehicles such as EVs (electric vehicles), HVs (hybrid vehicles), and PHVs (plug-in hybrid vehicles). In the process of manufacturing a secondary battery, various methods for evaluating the performance of the manufactured secondary battery have been proposed. For example, the state of charge measuring device described in Patent Document 1 uses the voltage and current of the secondary battery detected at the start of charging or discharging of the secondary battery after a lapse of a predetermined time, and uses the voltage and current of the secondary battery to resist the secondary battery. Is calculated. The state of charge of the secondary battery is measured using the calculated resistance.

特開2013−142649号公報Japanese Unexamined Patent Publication No. 2013-142649

製造された二次電池の性能を評価するための従来の方法では、二次電池に対する充放電を実行する必要がある。二次電池に対する充放電を実行せずに、製造された二次電池の性能を評価できれば、非常に有用である。 Conventional methods for evaluating the performance of manufactured secondary batteries require charging and discharging the secondary batteries. It would be very useful if the performance of the manufactured secondary battery could be evaluated without charging and discharging the secondary battery.

本発明の典型的な目的は、全固体電池の性能を、充放電を実行することなく適切に評価することが可能な全固体電池の製造方法を提供することである。 A typical object of the present invention is to provide a method for manufacturing an all-solid-state battery, which can appropriately evaluate the performance of the all-solid-state battery without performing charge / discharge.

かかる目的を実現するべく、ここに開示される一態様の全固体電池の製造方法は、組み立てられた以後に未だ充電が行われていない全固体電池を加熱して目標温度で維持する際の、上記全固体電池の電圧挙動を取得する電圧挙動取得工程と、上記電圧挙動取得工程において取得された電圧挙動に基づいて、上記全固体電池の抵抗を予測する抵抗予測工程と、を含み、上記抵抗予測工程では、上記全固体電池の温度が上記目標温度に到達した目標温度到達時の上記全固体電池の電圧をV0、上記目標温度到達時以後の電圧の上昇が、一旦下降する際の上記全固体電池の極大電圧、または、一旦停滞して再上昇する際の上記全固体電池の再上昇時電圧をV1、上記目標温度到達時から、上記全固体電池の電圧がV1となるまでの経過時間をT1とした場合に、少なくとも、V1とV0の差、およびT1に基づいて、上記全固体電池の抵抗を予測する。 In order to achieve such an object, one aspect of the method for manufacturing an all-solid-state battery disclosed herein is to heat an all-solid-state battery that has not yet been charged after being assembled and maintain it at a target temperature. The resistance includes a voltage behavior acquisition step of acquiring the voltage behavior of the all-solid-state battery and a resistance prediction step of predicting the resistance of the all-solid-state battery based on the voltage behavior acquired in the voltage behavior acquisition step. In the prediction step, the voltage of the all-solid-state battery when the temperature of the all-solid-state battery reaches the target temperature reaches V0, and the increase in the voltage after reaching the target temperature is once all the above-mentioned decrease. The maximum voltage of the solid-state battery, or the voltage at which the all-solid-state battery rises again when it stagnates and rises again is V1, and the elapsed time from when the target temperature is reached until the voltage of the all-solid-state battery reaches V1. Is T1, and the resistance of the all-solid-state battery is predicted based on at least the difference between V1 and V0 and T1.

電解液を使用する二次電池では、全固体電池とは異なり、正極と負極が離間している。従って、電解液を使用する二次電池を組み立て後に加熱しても、電荷担体(例えばリチウムイオン等)は移動し難いので、二次電池の電圧は上昇しない。また、電解液を使用する二次電池では、組み立て後に未充電のまま放置すると、電極に使用される物質(例えば、負極集電箔に使用される銅等)が電解液中に溶出し、電池性能の低下等の不具合が生じる可能性がある。一方で、全固体電池を組み立て後に加熱すると、全固体電池の電圧が上昇する。全固体電池では、正極、負極、および固体電解質が接着しているので、加熱によって電荷担体の濃度が高い方から低い方に拡散することで電圧が上昇すると考えられる。また、全固体電池では、組み立て後に未充電のまま放置しても物質が溶出する問題は発生しない。 In a secondary battery using an electrolytic solution, unlike an all-solid-state battery, a positive electrode and a negative electrode are separated from each other. Therefore, even if the secondary battery using the electrolytic solution is heated after being assembled, the charge carrier (for example, lithium ion or the like) is difficult to move, so that the voltage of the secondary battery does not increase. Further, in a secondary battery using an electrolytic solution, if the battery is left uncharged after assembly, the substance used for the electrode (for example, copper used for the negative electrode current collecting foil) is eluted into the electrolytic solution, and the battery Problems such as deterioration of performance may occur. On the other hand, when the all-solid-state battery is assembled and then heated, the voltage of the all-solid-state battery rises. In an all-solid-state battery, since the positive electrode, the negative electrode, and the solid electrolyte are adhered to each other, it is considered that the voltage rises by diffusing the charge carrier from the higher concentration to the lower concentration by heating. Further, in the all-solid-state battery, the problem of substance elution does not occur even if the battery is left uncharged after assembly.

ここで、本願の発明者は、組み立てられた以後に未だ充電が行われていない全固体電池を加熱して目標温度で維持する際の、全固体電池の電圧挙動の抵抗の間に、相関があることを見出した。詳細には、全固体電池の温度が目標温度に到達した際(目標温度到達時)の、全固体電池の電圧をV0とする。目標温度到達時以後の電圧の上昇が一旦下降する際の、全固体電池の極大電圧、または、目標温度到達時以後の電圧の上昇が一旦停滞して再上昇する際の、全固体電池の再上昇時電圧を、V1とする。目標温度到達時から、全固体電池の電圧がV1となるまでの経過時間をT1とする。本願発明の発明者は、少なくとも、V1とV0の差(ΔV1)、およびT1と、全固体電池の抵抗の間に相関があることを発見した。 Here, the inventor of the present application has a correlation between the resistance of the voltage behavior of the all-solid-state battery when heating the all-solid-state battery that has not been charged since it was assembled and maintaining it at the target temperature. I found that there is. Specifically, when the temperature of the all-solid-state battery reaches the target temperature (when the target temperature is reached), the voltage of the all-solid-state battery is set to V0. When the voltage rise after reaching the target temperature drops once, the maximum voltage of the all-solid-state battery, or when the voltage rise after reaching the target temperature stagnates and rises again, the all-solid-state battery reappears. Let the rising voltage be V1. Let T1 be the elapsed time from the time when the target temperature is reached until the voltage of the all-solid-state battery becomes V1. The inventor of the present invention has found that there is at least a correlation between the difference between V1 and V0 (ΔV1) and between T1 and the resistance of the all-solid-state battery.

本開示に係る全固体電池の製造方法では、少なくとも、V1とV0の差(ΔV1)、およびT1に基づいて、これらの値と相関がある全固体電池の抵抗を予測する。従って、組み立て後の全固体電池に対する充放電を実行することなく、全固体電池の抵抗が適切に予測される。組み立てられた二次電池の抵抗を評価する場合、従来の方法では、大きな電流(例えば、1C〜3C以上の電流)で二次電池に対する充放電を実行する必要があった。これに対し、本開示に係る全固体電池の製造方法によると、低いコストで適切に全固体電池の抵抗が予測される。 In the method for manufacturing an all-solid-state battery according to the present disclosure, the resistance of the all-solid-state battery that correlates with these values is predicted based on at least the difference between V1 and V0 (ΔV1) and T1. Therefore, the resistance of the all-solid-state battery can be appropriately predicted without performing charging and discharging of the all-solid-state battery after assembly. When evaluating the resistance of an assembled secondary battery, in the conventional method, it is necessary to charge and discharge the secondary battery with a large current (for example, a current of 1C to 3C or more). On the other hand, according to the method for manufacturing an all-solid-state battery according to the present disclosure, the resistance of the all-solid-state battery can be appropriately predicted at a low cost.

目標温度到達時以後に上昇した全固体電池の電圧が、V1に到達した後一旦下降して再度上昇した場合について言及する。この場合、V1到達時以後の全固体電池の極小電圧を、V2とする。また、V2到達時以後における電圧の上昇中に、単位時間当たりの上昇量の変動が閾値以下となった際の全固体電池の電圧を、V3とする。抵抗予測工程では、V1とV0の差(ΔV1)、V3とV2の差(ΔV2)、およびT1に基づいて、全固体電池の抵抗を予測してもよい。ΔV1とT1に加えてΔV2を考慮することで、全固体電池の電圧挙動と抵抗の間の相関が高くなる。これは、ΔV2が、全固体電池の拡散抵抗に起因しているためであると考えられる。従って、ΔV1、ΔV2、およびT1に基づいて全固体電池の抵抗を予測することで、予測精度がさらに向上する。 The case where the voltage of the all-solid-state battery which has risen after reaching the target temperature falls once after reaching V1 and rises again will be described. In this case, the minimum voltage of the all-solid-state battery after reaching V1 is V2. Further, the voltage of the all-solid-state battery when the fluctuation of the amount of increase per unit time becomes equal to or less than the threshold value while the voltage is increasing after reaching V2 is defined as V3. In the resistance prediction step, the resistance of the all-solid-state battery may be predicted based on the difference between V1 and V0 (ΔV1), the difference between V3 and V2 (ΔV2), and T1. By considering ΔV2 in addition to ΔV1 and T1, the correlation between the voltage behavior and resistance of the all-solid-state battery becomes high. It is considered that this is because ΔV2 is caused by the diffusion resistance of the all-solid-state battery. Therefore, by predicting the resistance of the all-solid-state battery based on ΔV1, ΔV2, and T1, the prediction accuracy is further improved.

目標温度到達時以後に上昇が一旦停滞してV1となった全固体電池の電圧が、その後に再上昇した場合について言及する。この場合、V2到達時以後における電圧の上昇中に、単位時間当たりの上昇量の変動が閾値以下となった際の全固体電池の電圧を、V4とする。抵抗予測工程では、V1とV0の差(ΔV1)、V4とV1の差(ΔV2)、およびT1に基づいて、全固体電池の抵抗を予測してもよい。ΔV1とT1に加えてΔV2を考慮することで、全固体電池の電圧挙動と抵抗の間の相関が高くなる。これは、ΔV2が、全固体電池の拡散抵抗に起因しているためであると考えられる。従って、ΔV1、ΔV2、およびT1に基づいて全固体電池の抵抗を予測することで、予測精度がさらに向上する。 The case where the voltage of the all-solid-state battery which once stagnated after reaching the target temperature and became V1 then rises again will be described. In this case, the voltage of the all-solid-state battery when the fluctuation of the amount of increase per unit time becomes equal to or less than the threshold value while the voltage is increasing after reaching V2 is defined as V4. In the resistance prediction step, the resistance of the all-solid-state battery may be predicted based on the difference between V1 and V0 (ΔV1), the difference between V4 and V1 (ΔV2), and T1. By considering ΔV2 in addition to ΔV1 and T1, the correlation between the voltage behavior and resistance of the all-solid-state battery becomes high. It is considered that this is because ΔV2 is caused by the diffusion resistance of the all-solid-state battery. Therefore, by predicting the resistance of the all-solid-state battery based on ΔV1, ΔV2, and T1, the prediction accuracy is further improved.

ただし、ΔV1とT1のみであっても、全固体電池の抵抗との間に相関がある。従って、ΔV2を参照せずに、ΔV1とT1のみに基づいて全固体電池の抵抗が予測されてもよい。 However, even if only ΔV1 and T1 are used, there is a correlation with the resistance of the all-solid-state battery. Therefore, the resistance of the all-solid-state battery may be predicted based only on ΔV1 and T1 without referring to ΔV2.

同一種類の複数の全固体電池の各々について取得された、温度を目標温度で維持する際の電圧挙動、および抵抗の実測値に基づいて、電圧挙動から抵抗の予測値を決定するための予測アルゴリズム(例えば、計算式またはテーブル等)が構築されていてもよい。抵抗予測工程では、電圧挙動取得工程において取得された電圧挙動を予測アルゴリズムに当てはめることで、全固体電池の抵抗の予測値が取得されてもよい。この場合、全固体電池の種類に応じて構築されたアルゴリズムに従って、全固体電池の抵抗が適切に予測される。 Prediction algorithm for determining the predicted value of resistance from the voltage behavior based on the voltage behavior when maintaining the temperature at the target temperature and the measured value of resistance obtained for each of multiple all-solid-state batteries of the same type. (For example, a calculation formula or a table, etc.) may be constructed. In the resistance prediction step, the predicted value of the resistance of the all-solid-state battery may be obtained by applying the voltage behavior acquired in the voltage behavior acquisition step to the prediction algorithm. In this case, the resistance of the all-solid-state battery is appropriately predicted according to the algorithm constructed according to the type of the all-solid-state battery.

予測アルゴリズムの構築方法は適宜選択できる。例えば、複数の全固体電池の各々について取得された、温度を目標温度で維持する際の電圧挙動(例えば、ΔV1・T1、または、ΔV1・ΔV2・T1)と、抵抗の実測値に対し、多変量解析を実行することで、抵抗の予測値を決定するための相関式を構築してもよい。 The method of constructing the prediction algorithm can be appropriately selected. For example, the voltage behavior (for example, ΔV1 ・ T1 or ΔV1 ・ ΔV2 ・ T1) obtained for each of a plurality of all-solid-state batteries when maintaining the temperature at the target temperature and the measured resistance value are large. By performing a multivariate analysis, a correlation equation may be constructed to determine the predicted value of the resistance.

全固体電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of an all-solid-state battery. 複数の全固体電池を未充電のまま目標温度に加熱して放置した際の、経過時間と全固体電池の電圧の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the elapsed time and the voltage of an all-solid-state battery when a plurality of all-solid-state batteries are heated to a target temperature and left uncharged. 加熱中に電圧が極大値および極小値を取る場合の、経過時間と全固体電池の電圧の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the elapsed time and the voltage of an all-solid-state battery when the voltage takes a maximum value and a minimum value during heating. 加熱中に電圧が極大値および極小値を取らない場合の、経過時間と全固体電池の電圧の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the elapsed time and the voltage of an all-solid-state battery when the voltage does not take the maximum value and the minimum value during heating. 複数の全固体電池の各々に関する、抵抗の実測値と、本実施形態で示した方法で予測された抵抗の計算値(予測値)をプロットしたグラフである。It is a graph which plotted the measured value of the resistance and the calculated value (predicted value) of the resistance predicted by the method shown in this embodiment for each of a plurality of all-solid-state batteries. 複数の全固体電池の各々に関する、抵抗の実測値と、ΔV1およびT1に基づいて予測された抵抗の計算値(予測値)をプロットしたグラフである。It is a graph which plotted the measured value of the resistance and the calculated value (predicted value) of the resistance predicted based on ΔV1 and T1 for each of a plurality of all-solid-state batteries.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄(例えば、全固体電池の構成等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation (for example, the configuration of an all-solid-state battery) can be grasped as design matters of a person skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art.

まず、本開示で例示する製造方法によって製造される全固体電池の一例である全固体リチウムイオン二次電池(以下、単に「全固体電池」という場合もある)の概略構成について説明する。ただし、本開示における製造方法の適用対象となる全固体電池は、全固体リチウムイオン二次電池に限定されない。つまり、全固体電池は、リチウムイオン以外の金属イオンを電化担体とするもの、例えば、ナトリウムイオン二次電池、マグネシウムイオン二次電池、等であってもよい。 First, a schematic configuration of an all-solid-state lithium-ion secondary battery (hereinafter, may be simply referred to as an “all-solid-state battery”), which is an example of an all-solid-state battery manufactured by the manufacturing method exemplified in the present disclosure, will be described. However, the all-solid-state battery to which the manufacturing method in the present disclosure is applied is not limited to the all-solid-state lithium ion secondary battery. That is, the all-solid-state battery may be a battery using a metal ion other than lithium ion as an electric carrier, for example, a sodium ion secondary battery, a magnesium ion secondary battery, or the like.

全固体電池は、正極、固体電解質層(セパレータ層)、および負極を備える。正極は、正極集電体および正極活物質層を備える。負極は、負極集電体および負極活物質層を備える。固体電解質層は、正極の正極活物質層と負極の負極活物質層との間に配置される。固体電解質層は、正極および負極の間を絶縁するセパレータとしても機能する。 The all-solid-state battery includes a positive electrode, a solid electrolyte layer (separator layer), and a negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer. The negative electrode includes a negative electrode current collector and a negative electrode active material layer. The solid electrolyte layer is arranged between the positive electrode active material layer of the positive electrode and the negative electrode active material layer of the negative electrode. The solid electrolyte layer also functions as a separator that insulates between the positive electrode and the negative electrode.

固体電解質層は、少なくとも固体電解質を含む。固体電解質として、例えば、硫化物系固体電解質および酸化物系固体電解質が挙げられる。硫化物系固体電解質の例としては、LiS−SiS系、LiS−P系、LiS−P系、LiS−GeS系、LiS−B系、等のガラスまたはガラスセラミックスが挙げられる。酸化物系電解質の例としては、NASICON構造、ガーネット型構造、またはペロブスカイト型構造を有する種々の酸化物が挙げられる。固体電解質は、例えば、粒子状である。 The solid electrolyte layer contains at least a solid electrolyte. Examples of the solid electrolyte include a sulfide-based solid electrolyte and an oxide-based solid electrolyte. Examples of the sulfide-based solid electrolyte, Li 2 S-SiS 2 system, Li 2 S-P 2 S 3 system, Li 2 S-P 2 S 5 based, Li 2 S-GeS 2 system, Li 2 S- Examples include glass or glass ceramics such as B 2 S 3 series. Examples of oxide-based electrolytes include various oxides having a NASICON structure, a garnet-type structure, or a perovskite-type structure. The solid electrolyte is, for example, in the form of particles.

正極活物質層は、少なくとも正極活物質を含む。正極活物質層は、固体電解質を更に含むことが好ましく、導電材、バインダ(結着材)等を更に含んでいてもよい。正極活物質として、この種の電池で従来から用いられている種々の化合物を使用することができる。正極活物質の例として、LiCoO、LiNiO等の層状構造の複合酸化物、LiNiMn、LiMn等のスピネル構造の複合酸化物、LiFePO等のオリビン構造の複合化合物、等が挙げられる。正極活物質層における固体電解質としては、固体電解質層に含有される固体電解質と同種の材料を用いることができる。正極活物質は、例えば、粒子状である。 The positive electrode active material layer contains at least the positive electrode active material. The positive electrode active material layer preferably further contains a solid electrolyte, and may further contain a conductive material, a binder (binding material), and the like. As the positive electrode active material, various compounds conventionally used in this type of battery can be used. Examples of positive electrode active materials include layered composite oxides such as LiCoO 2 and LiNiO 2 , spinel-structured composite oxides such as Li 2 Nimn 3 O 8 and LiMn 2 O 4 , and olivine-structured composite compounds such as LiFePO 4. , Etc. can be mentioned. As the solid electrolyte in the positive electrode active material layer, the same kind of material as the solid electrolyte contained in the solid electrolyte layer can be used. The positive electrode active material is, for example, in the form of particles.

負極活物質層は、少なくとも負極活物質を含む。負極活物質層は、固体電解質を更に含むことが好ましく、導電材、バインダ等を更に含んでいてもよい。負極活物質として、この種の電池で従来から用いられている種々の化合物を使用することができる。負極活物質の例として、例えば、グラファイト、メソカーボンマイクロビーズ、カーボンブラック等の炭素系の負極活物質が挙げられる。また、負極活物質の例として、ケイ素(Si)またはスズ(Sn)を構成元素とする負極活物質が挙げられる。負極活物質層における固体電解質としては、固体電解質層に含有される固体電解質と同種の材料を用いることができる。負極活物質は、例えば、粒子状である。 The negative electrode active material layer contains at least the negative electrode active material. The negative electrode active material layer preferably further contains a solid electrolyte, and may further contain a conductive material, a binder, and the like. As the negative electrode active material, various compounds conventionally used in this type of battery can be used. Examples of the negative electrode active material include carbon-based negative electrode active materials such as graphite, mesocarbon microbeads, and carbon black. Further, as an example of the negative electrode active material, a negative electrode active material containing silicon (Si) or tin (Sn) as a constituent element can be mentioned. As the solid electrolyte in the negative electrode active material layer, the same kind of material as the solid electrolyte contained in the solid electrolyte layer can be used. The negative electrode active material is, for example, in the form of particles.

正極集電体としては、この種の電池の正極集電体として用いられるものを特に制限なく用いることができる。典型的には、正極集電体は、良好な導電性を有する金属製であることが好ましい。正極集電体は、例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材から構成されていてもよい。負極集電体としては、この種の電池の負極集電体として用いられるものを特に制限なく用いることができる。典型的には、負極集電体は、良好な導電性を有する金属製であることが好ましい。負極集電体として、例えば、銅(銅箔)や銅を主体とする合金を用いることができる。 As the positive electrode current collector, those used as the positive electrode current collector of this type of battery can be used without particular limitation. Typically, the positive electrode current collector is preferably made of a metal having good conductivity. The positive electrode current collector may be made of a metal material such as aluminum, nickel, titanium, or stainless steel. As the negative electrode current collector, those used as the negative electrode current collector of this type of battery can be used without particular limitation. Typically, the negative electrode current collector is preferably made of a metal having good conductivity. As the negative electrode current collector, for example, copper (copper foil) or an alloy mainly composed of copper can be used.

図1から図5を参照して、本実施形態における全固体電池の製造方法(抵抗予測方法)について説明する。まず、全固体電池(一例として、本実施形態では前述した全固体リチウムイオン二次電池)が組み立てられる(S1)。つまり、全固体電池の製造メーカーは、正極、固体電解質層(セパレータ層)、および負極を含む発電要素を電池ケースの内部に収容することで、全固体電池を組み立てる。 The manufacturing method (resistance prediction method) of the all-solid-state battery in the present embodiment will be described with reference to FIGS. 1 to 5. First, an all-solid-state battery (for example, the all-solid-state lithium-ion secondary battery described above in the present embodiment) is assembled (S1). That is, the manufacturer of the all-solid-state battery assembles the all-solid-state battery by accommodating the power generation element including the positive electrode, the solid electrolyte layer (separator layer), and the negative electrode inside the battery case.

次いで、メーカーは、S1で組み立てられた以後に未だ充電が行われていない全固体電池を加熱して目標温度で維持する際の、全固体電池の電圧挙動を取得する(S2)。例えば、メーカーは、電圧を測定して記録するための電圧ロガー等が接続された全固体電池を、温度調整可能な恒温槽等に配置し、全固体電池を目標温度に加熱する。全固体電池の温度が目標温度に達すると、温度は目標温度で維持される。この間の全固体電池の電圧を、経過時間毎に記録する。電圧挙動を取得する工程(S2)が終了すると、加熱されていた全固体電池が冷却される(S3)。 Next, the manufacturer acquires the voltage behavior of the all-solid-state battery when the all-solid-state battery that has not been charged after being assembled in S1 is heated and maintained at the target temperature (S2). For example, the manufacturer arranges an all-solid-state battery to which a voltage logger or the like for measuring and recording a voltage is connected in a temperature-adjustable constant temperature bath or the like, and heats the all-solid-state battery to a target temperature. When the temperature of the all-solid-state battery reaches the target temperature, the temperature is maintained at the target temperature. The voltage of the all-solid-state battery during this period is recorded for each elapsed time. When the step of acquiring the voltage behavior (S2) is completed, the heated all-solid-state battery is cooled (S3).

なお、全固体電池を加熱する際の目標温度は、60℃〜80℃に設定されることが望ましい。本実施形態で設定された目標温度は80℃である。ただし、目標温度は、全固体電池の種類等に応じて適宜変更してもよい。 The target temperature for heating the all-solid-state battery is preferably set to 60 ° C to 80 ° C. The target temperature set in this embodiment is 80 ° C. However, the target temperature may be appropriately changed according to the type of the all-solid-state battery and the like.

図2は、複数の全固体電池を未充電のまま加熱して放置した際の、経過時間と電圧の関係の一例を示すグラフである。図2に示すように、組み立てられた全固体電池を未充電の状態で加熱すると、いずれの全固体電池の電圧も、まず大幅に上昇した後、一旦下降または停滞し、その後再び緩やかに上昇する傾向があることが分かる。本願発明の発明者は、図2に例示する全固体電池の電圧挙動と、全固体電池の抵抗の間に相関があることを見出した。加熱中の全固体電池の電圧挙動と抵抗の間に相関があるので、全固体電池に対する充放電を実行しなくても、電圧挙動に基づいて全固体電池の抵抗を予測することができる。 FIG. 2 is a graph showing an example of the relationship between the elapsed time and the voltage when a plurality of all-solid-state batteries are heated and left uncharged. As shown in FIG. 2, when the assembled all-solid-state battery is heated in an uncharged state, the voltage of each all-solid-state battery first rises significantly, then falls or stagnates, and then gradually rises again. It turns out that there is a tendency. The inventor of the present invention has found that there is a correlation between the voltage behavior of the all-solid-state battery illustrated in FIG. 2 and the resistance of the all-solid-state battery. Since there is a correlation between the voltage behavior and resistance of the all-solid-state battery during heating, the resistance of the all-solid-state battery can be predicted based on the voltage behavior without performing charging / discharging of the all-solid-state battery.

詳細には、加熱中の全固体電池の電圧は、上昇した後一旦下降し、その後再び緩やかに上昇する場合(図3参照)と、上昇した後一旦停滞し、その後再び緩やかに上昇する場合(図4参照)がある。図3および図4のグラフでは、全固体電池の温度が上昇して目標温度に到達した時点(目標温度到達時)の時間を「0」としている。 Specifically, the voltage of the all-solid-state battery during heating rises and then falls once and then gradually rises again (see FIG. 3), and rises and then stagnates once and then gradually rises again (see FIG. 3). (See FIG. 4). In the graphs of FIGS. 3 and 4, the time at which the temperature of the all-solid-state battery rises and reaches the target temperature (when the target temperature is reached) is set to “0”.

図3に示すように、電圧が上昇した後一旦下降する場合には、全固体電池の電圧は、目標温度到達時以後に上昇して極大電圧V1となった後、一旦下降して極小電圧V2となり、その後、再び緩やかに上昇する。電圧が極小電圧V2となった以後、単位時間当たりの電圧の上昇量の変動が閾値以下(つまり、電圧の上昇量が略一定)となった際の電圧を、一定上昇時電圧V3とする。 As shown in FIG. 3, when the voltage rises and then falls once, the voltage of the all-solid-state battery rises after reaching the target temperature to reach the maximum voltage V1, and then drops once to reach the minimum voltage V2. After that, it gradually rises again. After the voltage becomes the minimum voltage V2, the voltage when the fluctuation of the amount of increase in voltage per unit time becomes equal to or less than the threshold value (that is, the amount of increase in voltage is substantially constant) is defined as the constant increase voltage V3.

S2で取得された全固体電池の電圧の推移に極大電圧および極小電圧がある場合(図3に例示する場合)には(S5:YES)、目標温度到達時の電圧V0、極大電圧V1、極小電圧V2、一定上昇時電圧V3、および、目標温度到達時の電圧V0から極大電圧V1となるまでの経過時間T1が、全固体電池の電圧挙動として取得される(S6)。次いで、V1とV0の差がΔV1として取得され、V3とV2の差がΔV2として取得される(S7)。 When there are a maximum voltage and a minimum voltage in the transition of the voltage of the all-solid-state battery acquired in S2 (in the case illustrated in FIG. 3) (S5: YES), the voltage V0, the maximum voltage V1, and the minimum when the target temperature is reached. The voltage V2, the constant rising voltage V3, and the elapsed time T1 from the voltage V0 when the target temperature is reached to the maximum voltage V1 are acquired as the voltage behavior of the all-solid-state battery (S6). Next, the difference between V1 and V0 is acquired as ΔV1, and the difference between V3 and V2 is acquired as ΔV2 (S7).

また、図4に示すように、全固体電池の電圧は、目標温度到達時以後に上昇した後、極大値および極小値を取らずに一旦停滞して再上昇する場合もある。この場合、電圧の上昇が一旦停滞して再上昇する際の電圧(つまり、図4のグラフにおける変曲点の電圧)を、再上昇時電圧V1とする。電圧が再上昇時電圧V1となった以後、単位時間当たりの電圧の上昇量の変動が閾値以下(つまり、電圧の上昇量が略一定)となった際の電圧を、一定上昇時電圧V4とする。 Further, as shown in FIG. 4, the voltage of the all-solid-state battery may rise after reaching the target temperature, and then temporarily stagnate and rise again without taking the maximum value and the minimum value. In this case, the voltage at the time when the voltage rise once stagnates and then rises again (that is, the voltage at the inflection point in the graph of FIG. 4) is defined as the voltage at the time of the rise again V1. After the voltage becomes the voltage V1 when rising again, the voltage when the fluctuation of the amount of voltage rise per unit time becomes less than the threshold value (that is, the amount of voltage rise is substantially constant) is defined as the constant rising voltage V4. do.

S2で取得された全固体電池の電圧の推移に極大電圧および極小電圧が無い場合(図4に例示する場合)には(S5:NO)、目標温度到達時の電圧V0、再上昇時電圧V1、一定上昇時電圧V4、および、目標温度到達時の電圧V0から再上昇時電圧V1となるまでの経過時間T1が、全固体電池の電圧挙動として取得される(S8)。次いで、V1とV0の差がΔV1として取得され、V4とV1の差がΔV2として取得される(S9)。 When there is no maximum voltage and minimum voltage in the voltage transition of the all-solid-state battery acquired in S2 (in the case illustrated in FIG. 4) (S5: NO), the voltage V0 when the target temperature is reached and the voltage V1 when the voltage rises again. , The constant rising voltage V4 and the elapsed time T1 from the voltage V0 at the time of reaching the target temperature to the voltage V1 at the time of re-rising are acquired as the voltage behavior of the all-solid-state battery (S8). Next, the difference between V1 and V0 is acquired as ΔV1, and the difference between V4 and V1 is acquired as ΔV2 (S9).

次いで、抵抗を予測する対象となる全固体電池の種類について、電圧挙動と抵抗の間の相関が既知であるか否かが判断される(S11)。つまり、S11では、電圧挙動から抵抗の予測値を決定するための予測アルゴリズムが構築されているか否かが判断される。 Next, it is determined whether or not the correlation between the voltage behavior and the resistance is known for the type of all-solid-state battery for which the resistance is predicted (S11). That is, in S11, it is determined whether or not a prediction algorithm for determining the predicted value of the resistance is constructed from the voltage behavior.

電圧挙動と抵抗の間の相関が既知でない場合には(S11:NO)、予測アルゴリズムを構築するための工程が実行される(S12,S13)。詳細には、まず、電圧挙動が取得された全固体電池の抵抗Rが測定される(S12)。一例として、本実施形態では、SOC(State Of Charge)が100%となるまで全固体電池を充電した後に放電し、SOCが30%の状態から3Cで10秒間放電した際の電圧と電流の関係から、10秒放電抵抗を測定する。次いで、電圧挙動(ΔV1、ΔV2、T1)と、抵抗の実測値Rに基づいて、予測アルゴリズムを構築する(S13)。一例として本実施形態では、複数の全固体電池の各々について取得された、電圧挙動と抵抗の実測値に対し、多変量解析を実行することで、抵抗の予測値を決定するための相関式を、予測アルゴリズムとして構築する。以下に、構築される相関式の一例(式1)を示す。以下の(式1)では、Rpは抵抗の予測値、a,b,c,dは全固体電池の種類に応じて定まる係数および切片となる。
Rp=a×ΔV1+b×T1+c×ΔV2+d・・・(式1)
If the correlation between voltage behavior and resistance is unknown (S11: NO), a step for building a prediction algorithm is performed (S12, S13). Specifically, first, the resistance R of the all-solid-state battery from which the voltage behavior has been acquired is measured (S12). As an example, in the present embodiment, the relationship between the voltage and the current when the all-solid-state battery is charged and then discharged until the SOC (State Of Charge) reaches 100%, and the battery is discharged at 3C for 10 seconds from the state where the SOC is 30%. Then, the discharge resistance is measured for 10 seconds. Next, a prediction algorithm is constructed based on the voltage behavior (ΔV1, ΔV2, T1) and the measured value R of the resistor (S13). As an example, in the present embodiment, a correlation equation for determining the predicted value of resistance is obtained by performing multivariate analysis on the measured values of voltage behavior and resistance acquired for each of a plurality of all-solid-state batteries. , Build as a prediction algorithm. An example of the correlation equation constructed (Equation 1) is shown below. In the following (Equation 1), Rp is a predicted value of resistance, and a, b, c, and d are coefficients and intercepts determined according to the type of all-solid-state battery.
Rp = a × ΔV1 + b × T1 + c × ΔV2 + d ... (Equation 1)

なお、予測アルゴリズムの構築方法を変更することも可能である。例えば、電圧挙動に基づいて抵抗の予測値を決定するためのテーブル等が、予測アルゴリズムとして構築されてもよい。 It is also possible to change the method of constructing the prediction algorithm. For example, a table or the like for determining the predicted value of the resistance based on the voltage behavior may be constructed as the prediction algorithm.

電圧挙動と抵抗の間の相関が既知である場合(予測アルゴリズムが構築されている場合)には(S11:YES)、電圧挙動(ΔV1、ΔV2、T1)に基づいて、全固体電池の抵抗が予測される(S14)。詳細には、本実施形態では、前述した(式1)に電圧挙動(ΔV1、ΔV2、T1)を当てはめることで、全固体電池の抵抗の予測値が取得される。 When the correlation between the voltage behavior and the resistance is known (when the prediction algorithm is constructed) (S11: YES), the resistance of the all-solid-state battery is based on the voltage behavior (ΔV1, ΔV2, T1). Predicted (S14). Specifically, in the present embodiment, the predicted value of the resistance of the all-solid-state battery is obtained by applying the voltage behavior (ΔV1, ΔV2, T1) to the above-mentioned (Equation 1).

ここで、同一種類の複数の全固体電池の各々について、S14で示した方法で予測した抵抗の計算値(予測値)と、S12で示した方法で測定された実測値をプロットしたグラフを、図5に示す。図5に示すように、実測値と計算値(予測値)はいずれも近いものとなり、両者の間にはR^2=0.7338の相関があった。以上のように、本実施形態で示した方法によって、充放電を実行することなく全固体電池の抵抗を高い精度で予測できることが分かる。 Here, for each of a plurality of all-solid-state batteries of the same type, a graph plotting the calculated resistance value (predicted value) predicted by the method shown in S14 and the measured value measured by the method shown in S12 is shown. It is shown in FIG. As shown in FIG. 5, both the measured value and the calculated value (predicted value) are close to each other, and there is a correlation of R ^ 2 = 0.7338 between the two. As described above, it can be seen that the resistance of the all-solid-state battery can be predicted with high accuracy by the method shown in the present embodiment without executing charging / discharging.

次いで、S12で測定された抵抗、または、S14で予測された抵抗に基づいて、全固体電池の良否判定が行われる(S16)。例えば、測定または予測された抵抗が閾値以下である全固体電池を、良品と判定してもよい。良品と判定された全固体電池は、充電されて容量が検査された後に出荷される。 Next, the quality of the all-solid-state battery is determined based on the resistance measured in S12 or the resistance predicted in S14 (S16). For example, an all-solid-state battery whose measured or predicted resistance is equal to or less than a threshold value may be judged as a non-defective product. All-solid-state batteries judged to be non-defective are charged and shipped after their capacity is inspected.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。例えば、上記実施形態では、ΔV1(V1−V0)と経過時間T1に加えて、ΔV2(V3−V2、またはV4−V1)も考慮されたうえで、高い精度で全固体電池の抵抗が予測される。これは、ΔV2が、全固体電池の拡散抵抗に起因しているためであると考えられる。しかし、ΔV2を考慮せずに、ΔV1とT1のみに基づいて、全固体電池の抵抗を予測することも可能である。 Although the detailed description has been given with reference to specific embodiments, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the above-described embodiments. For example, in the above embodiment, the resistance of the all-solid-state battery is predicted with high accuracy after considering ΔV2 (V3-V2 or V4-V1) in addition to ΔV1 (V1-V0) and the elapsed time T1. NS. It is considered that this is because ΔV2 is caused by the diffusion resistance of the all-solid-state battery. However, it is also possible to predict the resistance of an all-solid-state battery based only on ΔV1 and T1 without considering ΔV2.

同一種類の複数の全固体電池の各々について、V1およびT1のみに基づいて予測した抵抗の計算値(予測値)と、S12で示した方法で測定された実測値をプロットしたグラフを、図6に示す。図6に示した予測値を算出するための予測アルゴリズム(相関式)は、電圧挙動ΔV1、T1と、抵抗の実測値Rに基づいて構築されている。図6に示すように、V1およびT1のみに基づいて予測した抵抗の計算値(予測値)も、実測値に近いものとなった。計算値と実測値の間には、R^2=0.5231の相関があった。以上のように、電圧挙動としてΔV1とT1のみを用いた場合でも、ΔV2も併せて用いる場合に比べると精度は若干低くなるものの、全固体電池の抵抗を適切に予測できることが分かる。換言すると、電圧挙動としてΔV2も併せて用いる上記実施形態では、より高い精度で全固体電池の抵抗を予測できると言える。

FIG. 6 is a graph in which the calculated resistance value (predicted value) predicted based only on V1 and T1 and the measured value measured by the method shown in S12 are plotted for each of a plurality of all-solid-state batteries of the same type. Shown in. The prediction algorithm (correlation formula) for calculating the predicted value shown in FIG. 6 is constructed based on the voltage behaviors ΔV1 and T1 and the measured value R of the resistance. As shown in FIG. 6, the calculated value (predicted value) of the resistance predicted based only on V1 and T1 is also close to the measured value. There was a correlation of R ^ 2 = 0.5231 between the calculated value and the measured value. As described above, even when only ΔV1 and T1 are used as the voltage behavior, the accuracy is slightly lower than when ΔV2 is also used, but it can be seen that the resistance of the all-solid-state battery can be appropriately predicted. In other words, in the above embodiment in which ΔV2 is also used as the voltage behavior, it can be said that the resistance of the all-solid-state battery can be predicted with higher accuracy.

Claims (1)

全固体電池の製造方法であって、
組み立てられた以後に未だ充電が行われていない全固体電池を加熱して目標温度で維持する際の、前記全固体電池の電圧挙動を取得する電圧挙動取得工程と、
前記電圧挙動取得工程において取得された電圧挙動に基づいて、前記全固体電池の抵抗を予測する抵抗予測工程と、
を含み、
前記抵抗予測工程では、
前記全固体電池の温度が前記目標温度に到達した目標温度到達時の前記全固体電池の電圧をV0、
前記目標温度到達時以後の電圧の上昇が、一旦下降する際の前記全固体電池の極大電圧、または、一旦停滞して再上昇する際の前記全固体電池の再上昇時電圧をV1、
前記目標温度到達時から、前記全固体電池の電圧がV1となるまでの経過時間をT1とした場合に、
少なくとも、V1とV0の差、およびT1に基づいて、前記全固体電池の抵抗を予測することを特徴とする、全固体電池の製造方法。

It is a manufacturing method of all-solid-state batteries.
A voltage behavior acquisition step for acquiring the voltage behavior of the all-solid-state battery when heating the all-solid-state battery that has not been charged since it was assembled and maintaining it at the target temperature.
A resistance prediction step for predicting the resistance of the all-solid-state battery based on the voltage behavior acquired in the voltage behavior acquisition step, and a resistance prediction step.
Including
In the resistance prediction step,
When the temperature of the all-solid-state battery reaches the target temperature, the voltage of the all-solid-state battery when the target temperature is reached is set to V0.
The voltage rise after reaching the target temperature is the maximum voltage of the all-solid-state battery when it falls once, or the voltage when the all-solid-state battery rises again when it stagnates and rises again.
When the elapsed time from the time when the target temperature is reached until the voltage of the all-solid-state battery reaches V1 is T1.
A method for manufacturing an all-solid-state battery, which comprises predicting the resistance of the all-solid-state battery based on at least the difference between V1 and V0 and T1.

JP2020072996A 2020-04-15 2020-04-15 Manufacturing method of all-solid-state battery Pending JP2021170464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072996A JP2021170464A (en) 2020-04-15 2020-04-15 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072996A JP2021170464A (en) 2020-04-15 2020-04-15 Manufacturing method of all-solid-state battery

Publications (1)

Publication Number Publication Date
JP2021170464A true JP2021170464A (en) 2021-10-28

Family

ID=78119576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072996A Pending JP2021170464A (en) 2020-04-15 2020-04-15 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP2021170464A (en)

Similar Documents

Publication Publication Date Title
US10886575B2 (en) Evaluating capacity fade in dual insertion batteries using potential and temperature measurements
Samadani et al. Empirical modeling of lithium-ion batteries based on electrochemical impedance spectroscopy tests
Kindermann et al. Long-term equalization effects in Li-ion batteries due to local state of charge inhomogeneities and their impact on impedance measurements
Danzer et al. Aging of lithium-ion batteries for electric vehicles
CN109633454B (en) Method for realizing on-line estimation of equivalent temperature of lithium ion battery
US20150060290A1 (en) Dynamic Formation Protocol for Lithium-Ion Battery
Kirchev Battery management and battery diagnostics
CN112840496B (en) Method and device for measuring thermodynamic data (enthalpy and entropy) of battery in real time and on site
Zhao et al. A study on half‐cell equivalent circuit model of lithium‐ion battery based on reference electrode
CN116047311A (en) On-line prediction method and device for remaining life of energy storage battery
US20230305067A1 (en) A method for estimating state of charge and state of health of a battery and a system thereof
JP5849537B2 (en) Estimation apparatus and estimation method
CN114879053A (en) Method for predicting service life of energy storage lithium iron phosphate battery
JP7201647B2 (en) Method for estimating deterioration of secondary battery, apparatus for estimating deterioration of secondary battery
JP7256151B2 (en) Method for judging quality of secondary battery, method for manufacturing secondary battery
KR102754579B1 (en) Method for inspecting wettability of electrolyte in battery
KR20230098257A (en) Power battery charging method and battery management system
JP7290126B2 (en) Method for manufacturing all-solid-state battery
JP2021170464A (en) Manufacturing method of all-solid-state battery
CN113419188B (en) Online identification method and system for key electrochemical aging parameters in battery
CN114765280B (en) Method and system for battery cell
Ohshima et al. Thermal behavior of small lithium‐ion secondary battery during rapid charge and discharge cycles
CN115494416B (en) A method for estimating battery health status
Eddahech et al. Lithium-ion battery heat generation investigation based on calorimetric entropy measurements
Wang et al. Fast cycle life evaluation method for ternary lithium-ion batteries based on divided SOC intervals