以下、本発明の実施の形態について詳細に説明する。但し、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
尚、本明細書では、「(メタ)アクリル酸」は「アクリル酸またはメタクリル酸」を意味し、「主成分」とは50質量%以上含むことを意味し、「ppm」は特に断りの無い限り質量換算で求められる値(例えば10,000ppmは1質量%)を意味する。また、「重量」は「質量」と同義語として扱い、「重量%」は「質量%」と同義語として扱い、本明細書において特記しない限り、数値範囲を示す「A~B」は、「A以上、B以下」であることを意味する。
本発明の一実施の形態に係る光学フィルムの製造方法は、(メタ)アクリル系樹脂100重量部に対して、熱分解温度が360℃以下である紫外線吸収剤を0.1~5重量部含む、熱可塑性樹脂組成物からなる溶融物を、ダイからフィルム状に吐出した後にタッチロール製膜を行う光学フィルムの製造方法であって、上記熱分解温度Td(℃)と、上記ダイの出口における上記溶融物の温度Tp(℃)との関係が下記式
50≦Td-Tp
を満たす方法である。
本発明の他の実施の形態に係る光学フィルムの製造方法は、(メタ)アクリル系樹脂と熱分解温度が360℃以下である紫外線吸収剤とを含む熱可塑性樹脂組成物からなる溶融物を製膜する、光学フィルムの製造方法であって、上記(メタ)アクリル系樹脂のガラス転移温度が108℃以上であり、上記溶融物をダイからフィルム状に吐出した後に、タッチロール製膜を行う方法である。
〔1.本発明の特徴〕
[耐熱性(メタ)アクリル系樹脂の使用]
本発明の一実施形態に係る光学フィルムは、耐熱性の(メタ)アクリル系樹脂(一例として、ガラス転移温度が108℃以上の(メタ)アクリル系樹脂)を原料に含んでいる。そして、上記光学フィルムは、耐熱性の熱可塑性樹脂組成物を製膜することによって得られ、それ自身として耐熱性を有している。
耐熱性(メタ)アクリル系樹脂を原料とする耐熱性光学フィルムには、例えば、耐候性および表面硬度に優れる、発熱部(光源など)に近接して配置することが容易になる、などの利点がある。
ところで、耐熱性(メタ)アクリル系樹脂を原料として光学フィルムを製造する際には、通常、紫外線吸収剤が高温環境下におかれることになる。このとき、熱分解温度の低い紫外線吸収剤を用いた場合は、ブリードアウトした当該紫外線吸収剤が原因となってロールが汚染され、フィルム表面に転写されて欠点が生じる、という課題が従来知られていた。上記の課題を解決する手段の一つとして、熱分解温度が高い紫外線吸収剤(例えば、ベンゾトリアジン系紫外線吸収剤)を用いる製造方法が提案されている。しかし、ベンゾトリアジン系紫外線吸収剤は、可視光領域の光線まで吸収してしまうため、製造される光学フィルムに色相および彩度が生じる難点があった。
これらの事項が、本発明の前提となる。すなわち、本発明は、耐熱性(メタ)アクリル系樹脂と、熱分解温度の低い紫外線吸収剤とを原料に用いながら、フィルム欠点が生じるという課題を解決するものである。そして、熱分解温度の低い紫外線吸収剤を用いる結果、得られる光学フィルムは光学特性に優れたものとなる(例えば、透明性が高く、色相が小さく、彩度が低い)。
[タッチロールの採用]
上記の課題を解決するため、本発明は、タッチロールを製膜方法に採用した。タッチロールにより製膜することにより、フィルム欠点の発生を抑制できる理由は、以下の通りであると推定される。すなわち、タッチロール製膜においては、成形中のフィルムが両面からロールと密着する。このため、紫外線吸収剤がフィルム表面から揮散することができずにフィルム内部にとどまりやすい。また、仮に一部の紫外線吸収剤が揮散したとしても、揮散した紫外線吸収剤が、欠点となるほど多量にロール表面に堆積することがない。結果として、ロール表面に紫外線吸収剤が多量に堆積することがなく、したがって堆積した紫外線吸収剤が転写されてフィルムに欠点が生じることもない。
上述したフィルム欠点の発生を抑制する手段は、しかし、製膜技術にタッチロールを適用することの技術的な困難さから、従来は見逃されていた。例えば、製膜技術におけるタッチロールには、以下の技術上の難点が存在している。
(1)厚み分布の発生
タッチロール製膜は、通常、エアシリンダ等によりロールの両端部を押え付けるように構成されている。このため、ロールに曲げモーメントが働き、当該ロールに撓みが生じる場合がある。このようなロールで製膜すると、フィルムの厚み分布が、中央部で厚く、端部で薄くなる。このようなフィルムには、把持部分付近で破れやすいという欠点がある。上記の欠点に対しては、タッチロールにクラウン加工を施す、バックアップロールを取付ける等の対策があるが、いずれも加工方法および製造装置の構造が複雑になる傾向がある。
(2)フィルムにかかる力の偏り
フィルムにかかる圧力が樹脂の配向状態に影響を与え、得られるフィルムのリタデーションが変化するため、リタデーションの均一性が高い光学フィルムを得るためには、十分に均一な圧力で挟圧を行うことが重要になる。しかし、幅広な光学フィルムを得るために流延ダイを幅広にすると、タッチロールとして弾性タッチロールを使用したとしても、ロールの撓みにより、タッチロールがフィルム面に均一に当たらなくなる。フィルム原反の膜厚を、フィルムの幅手方向の両端部より中央に向かって凸形状にすれば、上記の撓みに由来する圧力の偏りは解消できる。しかし、このようなフィルム原反を製造するには、特注の設備が必要になる。また、キャスト時に溶融物を強く押圧すると、フィルムに残留歪みが発生してしまう。そして、このようなフィルムを延伸すると、上記残留歪みが原因で延伸に偏りが発生し、膜厚にも偏りが生じてしまう。このように、押し出されたフィルム状の溶融物を、キャストロールとタッチロールとによって均一な圧力で挟圧することは困難である。
(3)高速製膜に伴う難点
高速でタッチロール製膜する際には、例えば、以下のような問題が生じうる。(i)溶融樹脂を狭圧するときに、当該溶融樹脂に横段が生じる問題。(ii)溶融樹脂が、部分的にタッチロールに接触しない問題。(iii)狭圧が均一でないために、幅手方向の端や中央で圧力の偏りが生じる問題。
本発明は、上記のような困難のために従来は敬遠されがちであったタッチロール製膜に着目し、フィルム欠点の抑制と、優れた光学特性とを両立した光学フィルムの製造方法、および光学フィルムを提供しようとするものである。
〔2.(メタ)アクリル系樹脂〕
[(メタ)アクリル系樹脂の構造]
本発明の一実施形態に係る光学フィルムは、(メタ)アクリル系樹脂を含む熱可塑性樹脂組成物から成形される。上記熱可塑性樹脂組成物を構成する(メタ)アクリル系樹脂は、アクリル酸、メタクリル酸、もしくはこれら化合物の誘導体、または下記式で表される構造を有する水酸基含有単量体を含む単量体組成物を、重合または共重合して得られる樹脂およびその誘導体である。これらの構造は、本発明の効果を損なわない限り、特に限定されない。具体的には、公知の(メタ)アクリル系樹脂を用いることができる。
CH2=C(COOR1)-CHR2-OH
(式中、R1およびR2は、それぞれ独立して、水素原子、または、炭素数1~20の直鎖状、分枝鎖状、若しくは環状のアルキル基を表す)。
(メタ)アクリル酸の誘導体としては、具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、および(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシへキシル等が挙げられる。これら誘導体は、複数種類が併用されてもよい。上記具体例のなかでも、得られる(メタ)アクリル系樹脂の熱安定性が優れている点で、(メタ)アクリル酸メチルが最も好ましい。
また、(メタ)アクリル系樹脂は、当該(メタ)アクリル系樹脂の耐熱性の向上のために、分子鎖(重合体の主骨格または主鎖とも称する)に環構造を導入されていてもよい。このような環構造の例としては、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N-置換マレイミド構造、および無水マレイン酸構造から選ばれる少なくとも1種が挙げられる。より具体的には、(メタ)アクリル系樹脂は、例えば、(メタ)アクリル酸またはその誘導体と、フェニルマレイミド、シクロヘキシルマレイミド、およびメチルマレイミド等のN-置換マレイミドとの共重合体であってもよい。
(メタ)アクリル系樹脂における上記環構造の含有率は、例えば、1~60モル%の範囲内であることが好ましく、1~40モル%の範囲内であることがより好ましく、2~30モル%の範囲内であることがさらに好ましい。また、(メタ)アクリル系樹脂における環構造の含有率は、例えば、1~80質量%の範囲内であることが好ましく、1~50質量%の範囲内であることがより好ましく、2~40質量%の範囲内であることがさらに好ましい。これにより、(メタ)アクリル系樹脂からなる光学フィルムは、優れた透明性および耐熱性を示すと共に、優れた機械的強度を示す。
(メタ)アクリル系樹脂は、光学フィルムにしたときに着色(黄変)し難いように、窒素原子を含まない構造であることがより好ましい。
また、(メタ)アクリル系樹脂は、正の複屈折率(正の位相差)を発現させ易いように、主鎖にラクトン環構造が導入されていることがより好ましい。主鎖に導入されるラクトン環構造は、4~8員環であることが好ましく、5~6員環であることが構造の安定性からより好ましく、6員環であることが特に好ましい。主鎖に導入される6員環のラクトン環構造としては、後述する一般式(1)で示されるラクトン環構造や、特開2004-168882号公報に記載されているラクトン環構造等が挙げられる。これらのなかでも、(i)主鎖にラクトン環構造を導入する前の、水酸基およびエステル基を有する重合体を合成するときの重合収率が高いこと、(ii)ラクトン環構造の含有割合が高い(メタ)アクリル系樹脂を合成するときの重合収率が高いこと、および、(iii)メタクリル酸メチル等の(メタ)アクリル酸エステルとの共重合性が良好であることから、一般式(1)で示されるラクトン環構造がより好ましい。
また、(メタ)アクリル系樹脂は、耐熱性を損なわない範囲で、(メタ)アクリル酸またはその誘導体と共重合可能なその他の単量体を重合してなる構造単位を有していてもよい。共重合可能なその他の単量体の具体例としては、スチレン、α-メチルスチレン等の芳香族ビニル系単量体、アクリロニトリル等のニトリル系単量体、酢酸ビニル等のビニルエステル類等が挙げられる。
本発明の実施の形態における(メタ)アクリル系樹脂の、GPC測定法によるスチレン換算の重量平均分子量(Mw)は、3,000~1,000,000であることが好ましい。この重量平均分子量が3,000以上であれば高分子として必要な強度が発現できる。また1,000,000以下であれば成形加工によって成形体とすることができる。当該(メタ)アクリル系樹脂の重量平均分子量は、より好ましくは4,000~800,000であり、さらに好ましくは5,000~500,000であり、より一層好ましくは100,000~500,000である。重量平均分子量が上記の範囲にある(メタ)アクリル系樹脂は、押出溶融による成形性が良好であるために好ましい。
本発明の一実施形態における(メタ)アクリル系樹脂の、GPC測定法による分子量分布(Mw/Mn)は、1~10であることが好ましい。成形加工に適した樹脂粘度に調整する観点から、分子量分布(Mw/Mn)は、好ましくは1.1~7.0、より好ましくは1.2~5.0、さらに好ましくは1.5~4.0である。
[(メタ)アクリル系樹脂の製造方法]
上記(メタ)アクリル系樹脂の製造方法は、特に限定されるものではなく、公知の方法を用いることができる。具体的には、(メタ)アクリル酸またはその誘導体を含有する単量体組成物を重合する方法が挙げられる。(メタ)アクリル系樹脂を光学材料用途として用いる場合は、微小な異物の混入はできるだけ避けるのが好ましい。この観点から、懸濁剤や乳化剤を用いない塊状重合、キャスト重合や溶液重合を用いることが望ましい。重合形式としては、例えば、バッチ重合法、連続重合法のいずれも用いることができる。重合操作が簡単という観点からは、バッチ重合法が望ましく、より均一な組成の重合物を得るという観点では、連続重合法が望ましい。
重合温度および重合時間は、用いる単量体の種類、その使用比率(単量体組成物の組成)等に応じて異なる。しかし一般的に、重合温度は0℃以上、150℃以下の範囲内であることが好ましく、80℃以上、140℃以下の範囲内であることがより好ましい。また重合時間は、0.5時間以上、20時間以下の範囲内であることが好ましく、1時間以上、10時間以下の範囲内であることがより好ましい。
溶剤を用いた重合形態の場合において用いられる溶剤は、特に限定されるものではない。例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;等が挙げられる。溶剤は、複数種類を併用してもよい。
特に、主鎖にラクトン環構造が導入されている(メタ)アクリル系樹脂を製造する場合には、用いる溶剤の沸点が高すぎると、最終的に得られる(メタ)アクリル系樹脂の残存揮発分が多くなる。そのため、溶剤の沸点は50℃以上、200℃以下の範囲内であることがより好ましい。
単量体組成物の重合反応時には、必要に応じて、重合開始剤を添加してもよい。重合開始剤は、特に限定されるものではない。例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエート等の有機過酸化物;2,2’-アゾビス(イソブチロニトリル)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物;等が挙げられる。重合開始剤は、複数種類を併用してもよい。重合開始剤の使用量は、用いる単量体の種類、その使用比率(単量体組成物の組成)、或いは反応条件等に応じて適宜設定すればよく、特に限定されない。
単量体組成物の重合反応時には、反応液のゲル化を抑制するために、反応液中の重合体の濃度を50質量%以下に制御することが好ましい。具体的には、反応液中の重合体の濃度が50質量%を超える場合には、当該濃度が50質量%以下となるように、反応液に溶剤を適宜追加することが好ましい。上記濃度は、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。尚、重合体の濃度が低すぎると生産性が低下するため、当該濃度は、10質量%以上であることが好ましく、20質量%以上であることがより好ましい。
重合反応時中に反応液に溶剤を追加する方法は、特に限定されるものではない。例えば、反応液に連続的に溶剤を追加してもよく、間欠的に溶剤を追加してもよい。反応液中の重合体の濃度を制御することによって、反応液のゲル化を抑制することができる。ラクトン環構造の含有割合を高めて(メタ)アクリル系樹脂の耐熱性を向上させるために、主鎖にラクトン環構造を導入する前の重合体が有する水酸基およびエステル基の割合を高めた場合であっても、このように重合体の濃度を制御すれば、反応液のゲル化を十分に抑制することができる。
反応液に追加する溶剤は、重合反応開始時に用いる溶剤と同じ種類(組成)であってもよく、異なる種類(組成)であってもよいが、重合反応開始時に用いる溶剤と同じ種類(組成)であることがより好ましい。また、添加する溶剤は、複数種類を併用してもよい。
上記重合反応を終了した時点で得られる反応液には、通常、重合によって得られた重合体以外に、溶剤が含まれている。上記重合体を後述するラクトン環構造含有重合体にする場合には、反応液から溶剤を除去して重合体を固体状態で取り出す必要はなく、溶剤を含む反応液を、重合反応に続くラクトン環化縮合工程における反応液として引き続き用いることができる。あるいは、重合体を固体状態で取り出した後に、ラクトン環化縮合工程に好適な溶剤を添加して反応液を構成してもよい。
[(メタ)アクリル系樹脂の特性]
重合反応によって得られる(メタ)アクリル系樹脂の色相は、特に限定されない。透明であって黄変度が小さい方が、(メタ)アクリル系樹脂の本来の特徴が損なわれず、光学フィルムに成形する上で好ましい。上記(メタ)アクリル系樹脂は、例えば厚さ3mmの成形体とした場合のヘイズ値が3以下であることが好ましく、2以下であることがより好ましく、1以下であるであることがさらに好ましい。また、上記(メタ)アクリル系樹脂は、例えば厚さ3mmの成形体とした場合のYI(イエローインデックス)値が10以下であることが好ましく、5以下であることがより好ましい。
本実施の形態において、(メタ)アクリル系樹脂を含む熱可塑性樹脂組成物の、270℃、剪断速度10/秒における溶融粘度は、500Pa・S以上であることがより好ましく、550Pa・S以上であることがさらに好ましく、600Pa・S以上であることが特に好ましい。溶融粘度が500Pa・S未満である場合には、上記熱可塑性樹脂組成物が脆くなり、十分な機械物性を有する材料とならないおそれがある。尚、上記溶融粘度の上限値は、3000Pa・S程度が好適である。
上記溶融粘度は、例えば、ツインボアバレルタイプであるロザンド社製キャピラリーレオメーターRH10を用いて測定することができる。測定条件等の詳細に関しては、実施例の項にて説明する。
また、本実施の形態において、熱可塑性樹脂組成物を構成する(メタ)アクリル系樹脂は、ガラス転移温度(Tg)が108℃以上、160℃以下の範囲内、より好ましくは110℃以上、150℃以下の範囲内である。さらに好ましい態様では、上記ガラス転移温度の範囲は、上限値が140℃以下であり、下限値は111℃以上、112℃以上、113℃以上、115℃以上、117℃以上の順に好ましくなる。この点において、上記熱可塑性組成物は、一般的な(メタ)アクリル樹脂(ポリメタクリル酸メチル(PMMA))とは異なっている。
ガラス転移温度が108℃未満である場合には、例えば当該(メタ)アクリル系樹脂からなる光学フィルムを光学機器の偏光板として組み入れた場合に、高温での十分な耐久性を発揮することができないおそれがある。ガラス転移温度が160℃を超える場合には、(メタ)アクリル系樹脂の成形温度を高くする必要があり、それゆえ、成形時に発泡したり、紫外線吸収剤のブリードアウトが発生したりするおそれがある。また、当該(メタ)アクリル系樹脂のガラス転移温度がこの範囲であれば、フィルム成形や延伸などの成形加工が困難となることなく、フィルムに形成される熱可塑性樹脂組成物のガラス転移温度を高めることができ、ひいては光学フィルムのガラス転移温度も高めることができる。ガラス転移温度の高い光学フィルムは、高温環境下での位相差の変化率を小さくできる。
上記ガラス転移温度は、JIS K7121の規定に準拠して測定することができる。測定条件等の詳細に関しては、実施例の項にて説明する。
本発明の一実施の形態における(メタ)アクリル系樹脂の熱分解温度(熱分解開始温度;Td)は、310℃以上であることが好ましく、315℃以上であることがより好ましく、320℃以上であることがさらに好ましい。熱分解温度が310℃以上である(メタ)アクリル系樹脂は、充分な耐熱性を有していると言える。上記熱分解温度の上限は、特に限定されないが、380℃程度とすることができる。このような熱分解温度を有する(メタ)アクリル系樹脂をタッチロール製膜することによって、フィルム欠点の低減、フィルム着色の低減、気泡混入の抑制、などの利点が得られる。
なお、実施例に示すように、本明細書において「熱分解温度」とは、昇温に伴う質量の減少速度が高まる温度のうち、最も低い温度を指す。つまり、本明細書においては、「熱分解温度」とは「熱分解開始温度」を意味している。以下、「熱分解温度」および「熱分解開始温度」のいずれの表記も使用するが、意味は同じである。
尚、(メタ)アクリル系樹脂のガラス転移温度および熱分解温度と、熱可塑性組成物のガラス転移温度および熱分解温度は、相違する場合がある。これは、熱可塑性組成物を調製する際に、(メタ)アクリル系樹脂以外の成分が追加される場合があるからである。一方、熱可塑性組成物を成形したものが光学フィルムである場合、熱可塑性組成物のガラス転移温度および熱分解温度は、光学フィルムのガラス転移温度および熱分解温度と実質的に同一と見做してよい。この点に関して、本発明の一実施の形態における熱可塑性樹脂組成物の好ましいガラス転移温度および熱分解温度(すなわち、本発明の一実施の形態に係る光学フィルムの好ましいガラス転移温度および熱分解温度)は、〔5〕節にて後述する。
また、本実施の形態において、熱可塑性樹脂組成物を構成する(メタ)アクリル系樹脂は、樹脂の応力光学係数(Cr)の絶対値が1.5×10-10Pa-1以下の範囲内、より好ましくは1.0×10-10Pa-1以下の範囲内、さらに好ましくは5.0×10-11Pa-1以下の範囲内である。従って、上記(メタ)アクリル系樹脂は、いわゆるゼロ位相差樹脂である。このような(メタ)アクリル系樹脂は、延伸加工時の屈折率の異方性を抑制し、複屈折を小さくすることができる。
上記応力光学係数(Cr)は、熱可塑性樹脂組成物の延伸時の応力と、フィルムの屈折率とを平面上にプロットし、そこから得られる近似直線の傾きから導出する。導出方法の詳細に関しては、実施例の項にて説明する。
[ラクトン環構造含有重合体の構造]
(メタ)アクリル系樹脂は、重合体の主鎖に分子内環化反応によってラクトン環構造を導入した、いわゆるラクトン環構造含有重合体であることがより好ましく、ラクトン環構造を主成分としたラクトン環構造含有重合体であることが特に好ましい。本明細書では、主鎖にラクトン環構造が導入されている(メタ)アクリル系樹脂をラクトン環構造含有重合体と称する。このようなラクトン環構造含有重合体は、透明性、耐熱性、光学等方性が何れも高く、各種光学用途に応じた特性を十分に発揮することができる。
上記ラクトン環構造含有重合体は、特に限定されるものではないが、下記一般式(1)で示されるラクトン環構造を有することがより好ましい。
(式中、R11、R12、R13は、それぞれ独立して、水素原子、または、炭素数1~20の直鎖状、枝分かれ鎖状、若しくは環状のアルキル基(当該アルキル基は、任意構成で酸素原子を有していてもよい)を表す)。
ラクトン環構造含有重合体における、一般式(1)で表されるラクトン環構造の含有割合は、好ましくは5質量%以上、90質量%以下、より好ましくは10質量%以上、70質量%以下、さらに好ましくは10質量%以上、60質量%以下、特に好ましくは10質量%以上、50質量%以下である。上記含有割合が5質量%よりも少ない場合には、耐熱性、耐溶剤性、および表面硬度が不十分になることがある。また、上記含有割合が90質量%よりも多い場合には、成形加工性に乏しくなることがある。
ラクトン環構造含有重合体は、一般式(1)で表されるラクトン環構造以外の構造を有していてもよい。一般式(1)で表されるラクトン環構造以外の構造は、特に限定されるものではない。例えば、(メタ)アクリル酸エステル、水酸基含有単量体、不飽和カルボン酸、下記一般式(2)で表される単量体、から選ばれる少なくとも1種の単量体を重合して構築される重合体構造単位(繰り返し構造単位)が好ましい。
CH2=C(X)-R14 …(2)
(式中、R14は、水素原子またはメチル基を表す。Xは、水素原子、炭素数1~20のアルキル基、アリール基、-OAc基、-CN基、-CO-R15基、またはC-O-R16基を表す。Acはアセチルを表す。R15およびR16は、水素原子、または、炭素数1~20の直鎖状、枝分かれ鎖状、若しくは環状のアルキル基を表す)。
ラクトン環構造含有重合体が、一般式(1)で表されるラクトン環構造以外の構造として、(メタ)アクリル酸エステルを重合して構築される重合体構造単位(繰り返し構造単位)を有している場合には、その含有割合は、好ましくは10質量%以上、95質量%以下の範囲内、より好ましくは10質量%以上、90質量%以下の範囲内、さらに好ましくは40質量%以上、90質量%以下の範囲内、特に好ましくは50質量%以上、90質量%以下の範囲内である。
また、ラクトン環構造含有重合体が、一般式(1)で表されるラクトン環構造以外の構造として、水酸基含有単量体を重合して構築される重合体構造単位(繰り返し構造単位)を有している場合には、その含有割合は、好ましくは0質量%を超え、30質量%以下の範囲内、より好ましくは0質量%を超え、20質量%以下の範囲内、さらに好ましくは0質量%を超え、15質量%以下の範囲内、特に好ましくは0質量%を超え、10質量%以下の範囲内である。
また、ラクトン環構造含有重合体が、一般式(1)で表されるラクトン環構造以外の構造として、不飽和カルボン酸を重合して構築される重合体構造単位(繰り返し構造単位)を有している場合には、その含有割合は、好ましくは0質量%を超え、30質量%以下の範囲内、より好ましくは0質量%を超え、20質量%以下の範囲内、さらに好ましくは0質量%を超え、15質量%以下の範囲内、特に好ましくは0質量%を超え、10質量%以下の範囲内である。
また、ラクトン環構造含有重合体が、一般式(1)で表されるラクトン環構造以外の構造として、一般式(2)で表される単量体を重合して構築される重合体構造単位(繰り返し構造単位)を有している場合には、その含有割合は、好ましくは0質量%を超え、30質量%以下の範囲内、より好ましくは0質量%を超え、20質量%以下の範囲内、さらに好ましくは0質量%を超え、15質量%以下の範囲内、特に好ましくは0質量%を超え、10質量%以下の範囲内である。
尚、ラクトン環構造含有重合体において、一般式(1)で表されるラクトン環構造以外の構造の含有割合は、合計で、好ましくは10質量%以上、95質量%以下、より好ましくは30質量%以上、90質量%以下、さらに好ましくは40質量%以上、90質量%以下、特に好ましくは50質量%以上、90質量%以下である。
[ラクトン環構造含有重合体の製造方法]
ラクトン環構造含有重合体の製造方法は、特に限定されるものではない。好ましくは、分子鎖中に水酸基とエステル基とを有する重合体を得た後に、当該重合体を加熱処理することでラクトン環構造を重合体に導入する環化縮合反応(ラクトン環縮合反応)を生じさせて、ラクトン環構造含有重合体を得ることができる。つまり、単量体組成物が、重合工程およびラクトン環化縮合工程を経ることによって、ラクトン環構造含有重合体となる。
ラクトン環構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、重合体に高い耐熱性が付与される。ラクトン環構造を重合体に導入する環化縮合反応の反応率が低い場合には、重合体の耐熱性が十分に向上しないおそれがある。また、成形時の加熱処理に伴う熱が原因となって、成形途中に重合体の縮合反応が起こり、生じたアルコールが成形品中に泡やシルバーストリークとなって現れるおそれがある。
環化縮合反応を行うために上記重合体を加熱処理する方法は、特に限定されるものではなく、公知の方法を利用することができる。例えば、重合工程を行うことによって得られた、重合体および溶剤を含む重合反応混合物を、そのまま加熱処理してもよい。また、重合体を溶剤の存在下で、必要に応じて閉環触媒を用いて加熱処理してもよい。さらに、揮発成分を除去するための真空装置または脱揮装置を備えた加熱炉や反応装置を用いて加熱処理してもよい。さらにまた、脱揮装置および押出機等を用いて重合体の加熱処理を行うこともできる。
環化縮合反応を行うときに、上記重合体に加えて、他のアクリル系樹脂を共存させてもよい。また、環化縮合反応を行うときには、必要に応じて、環化縮合反応の触媒として一般に用いられている、(i)有機リン化合物、(ii)p-トルエンスルホン酸等のエステル化触媒または(iii)エステル交換触媒を用いてもよい。或いは、酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸等の有機カルボン酸類を触媒として用いてもよい。さらには、特開昭61-254608号公報や特開昭61-261303号公報に記載されている、塩基性化合物、有機カルボン酸塩、炭酸塩等を触媒として用いてもよい。
脱アルコール反応である環化縮合反応の触媒としては、有機リン化合物がより好ましい。触媒として有機リン化合物を用いることにより、環化縮合反応の反応率を向上させることができると共に、得られるラクトン環構造含有重合体の着色を大幅に低減することができる。さらに、有機リン化合物を触媒として用いることにより、ラクトン環化縮合工程と後述する脱揮工程とを併用する場合において起こり得る、重合体の分子量の低下を抑制することができ、さらに当該重合体に優れた機械的強度を付与することができる。
環化縮合反応のときに触媒として用いることができる有機リン化合物としては、例えば、メチル亜スルホン酸、エチル亜スルホン酸、フェニル亜スルホン酸等のアルキル(アリール)亜スルホン酸(但し、これらは、互変異性体であるアルキル(アリール)ホスフィン酸になっていてもよい)およびこれらのモノエステルまたはジエステル;ジメチルホスフィン酸、ジエチルホスフィン酸、ジフェニルホスフィン酸、フェニルメチルホスフィン酸、フェニルエチルホスフィン酸等のジアルキル(アリール)ホスフィン酸およびこれらのエステル;メチルホスホン酸、エチルホスホン酸、トリフルオルメチルホスホン酸、フェニルホスホン酸等のアルキル(アリール)ホスホン酸およびこれらのモノエステルまたはジエステル;メチル亜ホスフィン酸、エチル亜ホスフィン酸、フェニル亜ホスフィン酸等のアルキル(アリール)亜ホスフィン酸およびこれらのエステル;亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル等の亜リン酸モノエステル、ジエステルまたはトリエステル;リン酸メチル、リン酸エチル、リン酸2-エチルヘキシル、リン酸オクチル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ-2-エチルヘキシル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニル等のリン酸モノエステル、ジエステルまたはトリエステル;メチルホスフィン、エチルホスフィン、フェニルホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン等のモノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;メチルジクロロホスフィン、エチルジクロロホスフィン、フェニルジクロロホスフィン、ジメチルクロロホスフィン、ジエチルクロロホスフィン、ジフェニルクロロホスフィン等のアルキル(アリール)ハロゲンホスフィン;酸化メチルホスフィン、酸化エチルホスフィン、酸化フェニルホスフィン、酸化ジメチルホスフィン、酸化ジエチルホスフィン、酸化ジフェニルホスフィン、酸化トリメチルホスフィン、酸化トリエチルホスフィン、酸化トリフェニルホスフィン等の酸化モノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;塩化テトラメチルホスホニウム、塩化テトラエチルホスホニウム、塩化テトラフェニルホスホニウム等のハロゲン化テトラアルキル(アリール)ホスホニウム;等が挙げられる。
これら有機リン化合物の中でも、触媒活性が高く、かつ着色性が低いため、アルキル(アリール)亜ホスホン酸、亜リン酸ジエステル或いはモノエステル、リン酸ジエステル或いはモノエステル、アルキル(アリール)ホスホン酸が好ましく、アルキル(アリール)亜ホスホン酸、亜リン酸ジエステル或いはモノエステル、リン酸ジエステル或いはモノエステルがより好ましく、アルキル(アリール)亜ホスホン酸、リン酸ジエステル或いはモノエステルが特に好ましい。これら有機リン化合物は、複数種類が併用されてもよい。
環化縮合反応のときに用いる触媒の使用量は、特に限定されるものではないが、上記重合体に対して、好ましくは0.001~5質量%の範囲内、より好ましくは0.01~2.5質量%の範囲内、さらに好ましくは0.01~1質量%の範囲内、特に好ましくは0.05~0.5質量%の範囲内である。触媒の使用量が0.001質量%未満であると、環化縮合反応の反応率の向上が不十分になるおそれがある。一方、触媒の使用量が5質量%を超えると、ラクトン環構造含有重合体の着色の原因となったり、重合体の架橋によって溶融賦形し難くなったりするおそれがある。
触媒の添加時期は、特に限定されるものではなく、環化縮合反応の反応初期に添加してもよく、反応途中に添加してもよく、それらの両方で添加してもよい。
ラクトン環構造含有重合体の製造方法としては、ラクトン環化縮合工程を溶剤の存在下で行い、かつ、ラクトン環化縮合工程のときに、脱揮工程を併用することが好ましい。このような製造方法の形態としては、(i)ラクトン環化縮合工程の全体を通じて脱揮工程を併用する形態、および、(ii)ラクトン環化縮合工程の一部においてのみ脱揮工程を併用する形態、が挙げられる。脱揮工程を併用する方法では、環化縮合反応で副生するアルコールを強制的に脱揮させて除去するので、反応の平衡が生成側に有利となる。
ラクトン環化縮合工程の一部においてのみ脱揮工程を併用する形態とは、例えば、重合体の製造後、当該重合体を製造した装置をさらに加熱して環化縮合反応を予め或る程度進行させておき、その後に引き続いて脱揮工程を併用した環化縮合反応を行い、当該反応を完結させる形態である。ここで、重合体を製造した装置をさらに加熱して環化縮合反応を予め或る程度進行させる段階においても、必要に応じて脱揮工程を一部併用してよい。ラクトン環化縮合工程と脱揮工程とを併用する形態であって、脱気工程がラクトン環化縮合工程の全体を通じて併用されていない形態はすべて、本形態に分類される。
ここで、上記脱揮工程とは、溶剤、残存単量体等の揮発分、および、ラクトン環構造を導く環化縮合反応によって副生したアルコールを除去処理する工程をいう。脱揮工程は、必要により減圧加熱条件下で行ってもよい。この除去処理が不十分であると、生成したラクトン環構造含有重合体中の残存揮発分が多くなり、成形時の変質等によってラクトン環構造含有重合体が着色したり、泡やシルバーストリーク等の成形不良が起こったりする等の問題が生じる。
ラクトン環化縮合工程の全体を通じて脱揮工程を併用する形態において、使用する装置は、特に限定されるものではない。本発明の製造方法をより効果的に実施するために、(i)熱交換器と脱揮槽とからなる脱揮装置、(ii)ベント付き押出機、または、(iii)脱揮装置とベント付き押出機とを直列に配置した装置、を用いることが好ましく、(i)熱交換器と脱揮槽とからなる脱揮装置または(ii)ベント付き押出機を用いることがより好ましい。
熱交換器と脱揮槽とからなる上記脱揮装置を用いる場合、環化縮合反応時の温度は、150~350℃の範囲内が好ましく、200~300℃の範囲内がより好ましい。上記温度が150℃よりも低いと、環化縮合反応が不十分となって残存揮発分が多くなるおそれがある。上記温度が350℃よりも高いと、ラクトン環構造含有重合体の着色や分解が起こるおそれがある。
熱交換器と脱揮槽とからなる上記脱揮装置を用いる場合、環化縮合反応時の圧力は、931~1.33hPa(700~1mmHg)の範囲内が好ましく、798~66.5hPa(600~50mmHg)の範囲内がより好ましい。上記圧力が931hPaよりも高いと、アルコールを含めた揮発分がラクトン環構造含有重合体に残存し易くなるおそれがある。上記圧力が1.33hPaよりも低いと、工業的な実施が困難になるおそれがある。
上記ベント付き押出機を用いる場合には、ベントは1個であっても複数個であってもよいが、複数個である方がより好ましい。
上記ベント付き押出機を用いる場合、環化縮合反応時の温度は、150~350℃の範囲内が好ましく、200~300℃の範囲内がより好ましい。上記温度が150℃よりも低いと、環化縮合反応が不十分となって残存揮発分が多くなるおそれがある。上記温度が350℃よりも高いと、ラクトン環構造含有重合体の着色や分解が起こるおそれがある。
上記ベント付き押出機を用いる場合、環化縮合反応時の圧力は、931~1.33hPa(700~1mmHg)の範囲内が好ましく、798~13.3hPa(600~10mmHg)の範囲内がより好ましい。上記圧力が931hPaよりも高いと、アルコールを含めた揮発分がラクトン環構造含有重合体に残存し易くなるおそれがある。上記圧力が1.33hPaよりも低いと、工業的な実施が困難になるおそれがある。
尚、ラクトン環化縮合工程の全体を通じて脱揮工程を併用する形態では、後述するように、厳しい条件の加熱処理において得られるラクトン環構造含有重合体の物性が低下するおそれがある。そのため、好ましくは、前述した環化縮合反応の触媒を使用して、できるだけ温和な条件で、ベント付き押出機等を用いて脱揮工程を行う。ここで、「厳しい条件の加熱処理」とは、例えば、300℃以上の高温条件で行う加熱処理を指す。一方、「温和な条件の加熱処理」とは、例えば、250~300℃の温度条件で行う加熱処理を指す。
また、ラクトン環化縮合工程の全体を通じて脱揮工程を併用する形態においては、好ましくは、重合工程で得られた重合体を、溶剤と共に反応装置に導入する。この場合には、必要に応じて、上記反応装置から取り出した重合体を、脱揮装置またはベント付き押出機にもう一度通してもよい。
ラクトン環化縮合工程の全体を通じて脱揮工程を併用する形態(例えば、2軸押出機を用いて、250℃近い或いはそれ以上の高温で重合体を加熱処理する形態)では、熱履歴の違いによって環化縮合反応が起こる前に重合体の一部が分解する等の現象が生じる場合がある。このような現象が生じると、得られるラクトン環構造含有重合体の物性が悪くなるおそれがある。
そのため、ラクトン環縮合工程は、ラクトン環化縮合工程の一部においてのみ脱揮工程を併用する形態とすることが好ましい。例えば、脱揮工程を併用したラクトン環化縮合工程を行う前に、環化縮合反応を予め或る程度進行させておくと、後半の反応条件を緩和することができ、得られるラクトン環構造含有重合体の物性の低下を抑制することができるので好ましい。
特に好ましい形態としては、脱揮工程をラクトン環化縮合工程の開始から時間をおいて開始する形態が挙げられる。具体的には、(i)重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基とを、予め環化縮合反応させて環化縮合反応の反応率を或る程度上げておき、引き続き、(ii)脱揮工程を併用したラクトン環化縮合工程を行う形態である。より具体的には、例えば、(i)釜型反応器を用いて溶剤の存在下で環化縮合反応を或る程度の反応率まで予め進行させておき、その後、(ii)脱揮装置を備えた反応器(例えば、熱交換器と脱揮槽とからなる脱揮装置や、ベント付き押出機等)で、環化縮合反応を完結させる形態である。この形態においては、反応系に環化縮合反応の触媒が存在していることが特に好ましい。
前述したように、(i)重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基とを、予め環化縮合反応させて環化縮合反応の反応率を或る程度上げておき、引き続き、(ii)脱揮工程を併用したラクトン環化縮合工程を行う方法は、ラクトン環構造含有重合体を得る上で好ましい形態である。この形態により、環化縮合反応の反応率がより高まる。また、ガラス転移温度がより高く、耐熱性に優れたラクトン環構造含有重合体が得られる。この形態において、環化縮合反応の反応率の目安としては、実施例に示すダイナッミクTG測定における、150~300℃の間での質量減少率が、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
脱揮工程を併用したラクトン環化縮合工程を行う前の、予め行う環化縮合反応において採用することができる反応器は、特に限定されるものではない。好ましくは、オートクレーブ、釜型反応器、熱交換器と脱揮槽とからなる脱揮装置、ベント付き押出機等が挙げられる(このうち、ベント付き押出機は、脱揮工程を併用したラクトン環化縮合工程にも好適に使用することができる)。より好ましくは、オートクレーブ、釜型反応器である。しかしながら、ベント付き押出機等の反応器を使用するときでも、(i)ベント条件を温和にする(例えば、931hPa(700mmHg)以上とする)、(ii)ベントを行わない、(iii)温度条件やバレル条件、スクリュウ形状、スクリュウ運転条件等を調整する、などの対処により、オートクレーブや釜型反応器での反応状態と同じような状態で環化縮合反応を行うことが可能である。
上記予め行う環化縮合反応としては、好ましくは、重合工程で得られた重合体と溶剤とを含む混合物を、(i)触媒を添加して加熱反応させる方法、(ii)無触媒で加熱反応させる方法、および、(iii)上記(i)または(ii)を加圧下で行う方法を採用することができる。
尚、ラクトン環化縮合工程において環化縮合反応に導入する「重合体と溶剤とを含む混合物」は、重合工程で得られた重合反応混合物をそのまま使用してもよいし、当該重合反応混合物から溶剤を一旦除去した後に環化縮合反応に適した別の溶剤を添加してなる混合物を使用してもよい。つまり、脱揮工程を併用したラクトン環化縮合工程の前に予め行う環化縮合反応において使用する溶剤は、重合工程で使用した溶剤であってもよいし、別の溶剤であってもよい。
予め行う環化縮合反応において使用する、上記別の溶剤としては、特に限定されるものではなく、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;クロロホルム、DMSO、テトラヒドロフラン;等が挙げられる。しかしながら、重合工程で用いた溶剤と同じ種類の溶剤を用いることがより好ましい。
上記方法(i)で添加する触媒としては、環化縮合反応の触媒として一般に用いられているp-トルエンスルホン酸等のエステル化触媒またはエステル交換触媒、塩基性化合物、有機カルボン酸塩、炭酸塩等を用いてもよい。しかし、本発明の一実施の形態においては、前述した有機リン化合物を用いることが好ましい。
触媒の添加時期は、特に限定されるものではなく、環化縮合反応の反応初期に添加してもよく、反応途中に添加してもよく、それらの両方で添加してもよい。添加する触媒の量は、特に限定されるものではないが、重合体の質量に対して、好ましくは0.001~5質量%の範囲内、より好ましくは0.01~2.5質量%の範囲内、さらに好ましくは0.01~0.1質量%の範囲内、特に好ましくは0.05~0.5質量%の範囲内である。
方法(i)の加熱温度および加熱時間は、特に限定されるものではないが、加熱温度としては、好ましくは室温以上、より好ましくは50℃以上であり、加熱時間としては、好ましくは1~20時間の範囲内、より好ましくは2~10時間の範囲内である。加熱温度が低いと、或いは、加熱時間が短いと、環化縮合反応の反応率が低下するおそれがある。また、加熱温度が高いと、或いは、加熱時間が長いと、ラクトン環構造含有重合体の着色や分解が起こるおそれがある。
上記方法(ii)としては、例えば、耐圧性の釜型反応器等を用いて、重合工程で得られた重合反応混合物をそのまま加熱する方法等が挙げられる。加熱温度としては、好ましくは100℃以上、より好ましくは150℃以上である。加熱時間としては、好ましくは1~20時間の範囲内、より好ましくは2~10時間の範囲内である。加熱温度が低いと、或いは、加熱時間が短いと、環化縮合反応の反応率が低下するおそれがある。また、加熱温度が高いと、或いは、加熱時間が長いと、ラクトン環構造含有重合体の着色や分解が起こるおそれがある。
上記方法(i)、(ii)共に、条件によっては加圧下で行っても何ら問題はない(上記方法(iii))。また、上記予め行う環化縮合反応において、溶剤の一部が反応中に自然に揮発しても何ら問題はない。
上記予め行う環化縮合反応の終了時、即ち、脱揮工程の開始直前において、ダイナッミクTG測定における、150~300℃の間での質量減少率は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が2%よりも高いと、続けて脱揮工程を併用したラクトン環化縮合工程を行っても、環化縮合反応の反応率が十分高いレベルにまで上がらず、得られるラクトン環構造含有重合体の物性が低下するおそれがある。
尚、ラクトン環化縮合工程(脱揮工程を併用する工程も、脱揮工程を併用しない工程も、いずれも含む)においては、重合体と溶剤とを含む混合物に、他の熱可塑性樹脂を共存させてもよい。上記他の熱可塑性樹脂としては、ラクトン環構造含有重合体と熱力学的に相溶する熱可塑性樹脂が好ましい。他の熱可塑性樹脂としては、例えば、シアン化ビニル系単量体単位と芳香族ビニル系単量体単位とを含む共重合体が挙げられる。具体的には、アクリロニトリル-スチレン系共重合体やポリ塩化ビニル樹脂、或いは、メタクリル酸エステル類を50質量%以上含有する重合体が挙げられる。
これら他の熱可塑性樹脂の中でも、アクリロニトリル-スチレン系共重合体が最も相溶性に優れ、耐熱性を損なわずに透明な成形体を得ることができるのでより好ましい。尚、ラクトン環構造含有重合体と他の熱可塑性樹脂とが熱力学的に相溶するかどうかは、両者を混合して得られた熱可塑性樹脂組成物のガラス転移点を測定することによって確認することができる。具体的には、示差走査熱量測定器により測定される上記熱可塑性樹脂組成物のガラス転移点が1点のみ観測される場合には、両者が熱力学的に相溶していると言える。
他の熱可塑性樹脂としてアクリロニトリル-スチレン系共重合体を用いる場合において、ラクトン環構造含有重合体とアクリロニトリル-スチレン系共重合体とを重合する方法としては、乳化重合法や懸濁重合法、溶液重合法、バルク重合法等が挙げられる。これら重合法の中でも、得られる光学用フィルムの透明性や光学性能の観点から、溶液重合法およびバルク重合法がより好ましい。
(i)重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基とを環化縮合反応させて、環化縮合反応の反応率を予め或る程度上げておき、引き続き、(ii)脱揮工程を併用したラクトン環化縮合工程を行う形態では、予め行う環化縮合反応で得られた重合体(分子鎖中に存在する水酸基およびエステル基の一部が環化縮合反応した重合体)と溶剤とを分離することなく、脱揮工程を併用したラクトン環化縮合工程を開始してもよい。また、必要に応じて、その他の処理(予め行う環化縮合反応で得られた重合体(分子鎖中に存在する水酸基およびエステル基の一部が環化縮合反応した重合体)と溶剤とを分離した後に、別の溶剤を添加する等)を経てから、脱揮工程を併用したラクトン環化縮合工程を開始しても構わない。
脱揮工程は、ラクトン環化縮合工程と同時に終了する必要はなく、ラクトン環化縮合工程の終了から時間をおいて終了しても構わない。つまり、脱揮工程は、ラクトン環化縮合工程より先に終了してもよいし、後に終了してもよい。
前述したように、ラクトン環化縮合工程においては、重合体の分子鎖中に存在する水酸基とエステル基とが環化縮合反応して、エステル交換の一種である脱アルコール反応を起こすことにより、重合体の分子鎖中(重合体の主骨格中)にラクトン環構造が形成される。
同じく前述したように、環化縮合反応のときには触媒を使用することが好ましい。しかし、当該触媒がラクトン環構造含有重合体中に残存していると、ラクトン環構造含有重合体が加熱されたときに、未反応の環形成性ユニット(即ち、未だ環を形成していないユニット)の水酸基、或いは系中に少量存在する水等の活性水素と、アルキルエステル基とのエステル交換が促進される場合がある。その結果、アルコールが発生して、発泡現象が起こることがある。それゆえ、この発泡現象を防ぐために、ラクトン環構造含有重合体に失活剤を配合することが好ましい。
一般に、エステル交換等の環化縮合反応に使用した触媒が酸性物質である場合は、反応後に残存する触媒を失活させるには、塩基性物質を使用して中和すればよい。それゆえ、環化縮合反応に使用した触媒が酸性物質である場合は、失活剤として塩基性物質が好ましく用いられる。塩基性物質としては、熱加工時に樹脂組成物の物性を阻害する物質等を発生しない限り、特に限定されるものではなく、例えば、金属カルボン酸塩等の金属塩、金属錯体、金属酸化物等の金属化合物が挙げられる。
上記金属化合物を構成する金属は、樹脂組成物の物性等を阻害せず、廃棄時に環境汚染を招くことがない限り、特に限定されるものではない。例えば、リチウム、ナトリウムおよびカリウム等のアルカリ金属;マグネシウム、カルシウム、ストロンチウムおよびバリウム等のアルカリ土類金属;亜鉛、アルミニウム、スズ、鉛等の両性物質;ジルコニウム;等が挙げられる。これら金属のうち、樹脂組成物の着色が少ないことから、典型金属元素が好ましく、アルカリ土類金属や両性金属が特に好ましく、カルシウム、マグネシウムおよび亜鉛が最も好ましい。
金属塩は、樹脂組成物への分散性や溶剤への溶解性から、有機酸の金属塩であることが好ましく、有機カルボン酸、有機リン化合物および酸性有機イオウ化合物の金属塩であることがより好ましい。
有機カルボン酸の金属塩を構成する有機カルボン酸は、特に限定されるものではない。例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ペヘン酸、トリデカン酸、ペンタデカン酸、ヘプタデカン酸、乳酸、リンゴ酸、クエン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等が挙げられる。
有機リン化合物の金属塩を構成する有機リン化合物としては、例えば、前述した有機リン化合物が挙げられる。
酸性有機イオウ化合物の金属塩を構成する酸性有機イオウ化合物としては、例えば、p-トルエンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。
金属錯体における有機成分としては、特に限定されるものではないが、アセチルアセトン等が挙げられる。
金属酸化物としては、特に限定されるものではないが、例えば、酸化亜鉛、酸化カルシウム、酸化マグネシウム等が挙げられる。
他方、一般に、エステル交換等の環化縮合反応に使用した触媒が塩基性物質である場合には、反応後に残存する触媒を失活させるには、酸性物質を使用して中和すればよい。それゆえ、環化縮合反応に使用した触媒が塩基性物質である場合は、失活剤として酸性物質が好ましく用いられる。酸性物質としては、熱加工時に樹脂組成物の物性を阻害する物質等を発生しない限り、特に限定されるものではなく、例えば、有機リン化合物が挙げられる。
触媒が酸性物質および塩基性物質の何れであっても、失活剤は、複数種類が併用されてもよい。尚、失活剤は、固形状、粉末状、粒状、分散体、懸濁液、水溶液等の何れの形態でラクトン環構造含有重合体に添加してもよく、特に限定されるものではない。
失活剤の配合量は、環化縮合反応に使用した触媒の使用量に応じて適宜調節すればよく、特に限定されるものではない。失活剤の配合量は、例えば、ラクトン環構造含有重合体の質量を基準として、好ましくは10ppm以上、10,000ppm以下、より好ましくは50ppm以上、5000ppm以下、さらに好ましくは100ppm以上、3000ppm以下である。上記配合量が10ppm未満であると、失活剤の作用が不十分となって加熱時に泡が発生するおそれがある。上記配合量が10,000ppmを超えると、失活剤の作用が飽和すると共に、必要以上に失活剤を使用することになり、製造コストが上昇する。
上記失活剤は、ラクトン環構造が形成された後であれば、どの段階でラクトン環構造含有重合体に添加してもよい。例えば、ラクトン環構造含有重合体を製造した後、ラクトン環構造含有重合体、失活剤、その他の成分等を同時に加熱溶融させて混練する方法;ラクトン環構造含有重合体およびその他の成分等を加熱溶融させておき、そこに失活剤を添加して混練する方法;等が挙げられる。ここで言う「その他の成分」とは、例えば、酸化防止剤、他の熱可塑性樹脂などのことである。
[ラクトン環構造含有重合体の特性]
本実施の形態において得られるラクトン環構造含有重合体の重量平均分子量は、好ましくは1,000以上、2,000,000以下、より好ましくは5,000以上、1,000,000以下、さらに好ましくは10,000以上、500,000以下、特に好ましくは50,000以上、500,000以下である。
上記ラクトン環構造含有重合体は、ダイナッミクTG測定における、150~300℃の間での質量減少率が、1%以下であることが好ましく、0.5%以下であることがより好ましく、0.3%以下であることがさらに好ましい。
本実施の形態において得られるラクトン環構造含有重合体は、環化縮合反応の反応率が高いので、成形後の成形品中に泡やシルバーストリークが入るという欠点を回避することができる。さらに、環化縮合反応の反応率が高いことにより、ラクトン環構造含有重合体にラクトン環構造が十分に導入されているので、得られたラクトン環構造含有重合体は十分に高い耐熱性を有している。
ラクトン環構造含有重合体は、熱重量分析(TG)における5%質量減少温度が、280℃以上であることが好ましく、290℃以上であることがより好ましく、300℃以上であることがさらに好ましい。熱重量分析(TG)における5%質量減少温度は、熱安定性の指標であり、当該温度が280℃未満である場合には、得られたラクトン環構造含有重合体が十分な熱安定性を発揮できないおそれがある。
ラクトン環構造含有重合体は、当該ラクトン環構造含有重合体に含まれる残存揮発分の総量が、5,000ppm以下であることが好ましく、2,000ppm以下であることがより好ましい。残存揮発分の総量が5,000ppmよりも多いと、成形時の変質等によってラクトン環構造含有重合体が着色したり、発泡したり、シルバーストリーク等の成形不良が生じたりする原因となる。
ラクトン環構造含有重合体は、射出成形により得られる成形品の、ASTM-D-1003に準じた方法で測定された全光線透過率が、好ましくは85%以上、より好ましくは88%以上、さらに好ましくは90%以上である。全光線透過率は、透明性の目安であり、当該透過率が85%未満であると、透明性が低下し、目的とする本来の用途に使用することができないおそれがある。
[無水グルタル酸構造含有重合体およびグルタルイミド構造含有重合体の構造]
(メタ)アクリル系樹脂は、重合体の主鎖に、無水グルタル酸構造またはグルタルイミド構造を導入した、いわゆる無水グルタル酸構造含有重合体またはグルタルイミド構造含有重合体であってもよい。本明細書では、主鎖に無水グルタル酸構造が導入されている(メタ)アクリル系樹脂を無水グルタル酸構造含有重合体と称し、主鎖にグルタルイミド構造が導入されている(メタ)アクリル系樹脂をグルタルイミド構造含有重合体と称する。
上記無水グルタル酸構造含有重合体およびグルタルイミド構造含有重合体は、特に限定されるものではないが、下記一般式(3)で示される無水グルタル酸構造またはグルタルイミド構造を有することがより好ましい。
(式中、R17、R18は、それぞれ独立して、水素原子またはメチル基を表す。X1は、酸素原子または窒素原子を表す。そして、X1が酸素原子のとき、R19は存在せず、X1が窒素原子のとき、R3は、水素原子、炭素数1~6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基またはフェニル基を表す)。
即ち、一般式(3)におけるX1が酸素原子のとき、一般式(3)により示される環構造は無水グルタル酸構造となる。無水グルタル酸構造含有重合体は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体を、分子内で脱アルコール環化縮合反応させることによって形成することができる。
分子内での脱アルコール環化縮合反応の方法は、特に限定されないが、例えば、上記共重合体を加熱することによって行うことができる。加熱温度は、脱アルコールによって分子内環化反応が生じる温度であれば特に限定されないが、例えば180~350℃の範囲内が好適である。加熱時間は、(メタ)アクリル系樹脂の組成等に応じて適宜変更すればよいが、例えば1~2時間の範囲内が好適である。また、上記脱アルコール環化縮合反応においては、触媒(例えば、酸触媒、塩基性触媒、塩系触媒等)を必要に応じて使用してもよい。
一般式(3)におけるX1が窒素原子のとき、一般式(3)により示される環構造はグルタルイミド構造となる。グルタルイミド構造含有重合体は、例えば、(メタ)アクリル酸エステルの重合体をメチルアミン等のイミド化剤を用いてイミド化することによって形成することができる。イミド化の方法は、公知の方法を用いることができる。具体的には、例えば、アンモニアや置換アミン等を用いて(メタ)アクリル酸エステルの重合体をイミド化することができる。
[N-置換マレイミド構造含有重合体および無水マレイン酸構造含有重合体]
(メタ)アクリル系樹脂は、重合体の主鎖に、N-置換マレイミド構造または無水マレイン酸構造を導入した、いわゆるN-置換マレイミド構造含有重合体または無水マレイン酸構造含有重合体であってもよい。本明細書では、主鎖にN-置換マレイミド構造が導入されている(メタ)アクリル系樹脂をN-置換マレイミド構造含有重合体と称し、主鎖に無水マレイン酸構造が導入されている(メタ)アクリル系樹脂を無水マレイン酸構造含有重合体と称する。
上記N-置換マレイミド構造含有重合体および無水マレイン酸構造含有重合体は、特に限定されるものではないが、下記一般式(4)で示されるN-置換マレイミド構造または無水マレイン酸構造を有することがより好ましい。
(式中、R20、R21は、それぞれ独立して、水素原子またはメチル基を表す。X2は、酸素原子または窒素原子を表す。そして、X2が酸素原子のとき、R22は存在せず、X2が窒素原子のとき、R22は、水素原子、炭素数1~6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基、ベンジル基またはフェニル基を表す)。
即ち、一般式(4)におけるX2が酸素原子のとき、一般式(4)により示される環構造は無水マレイン酸構造となる。無水マレイン酸構造含有重合体は、例えば、無水マレイン酸と(メタ)アクリル酸エステルとを共重合(例えば、ラジカル重合によって、好ましくは溶液重合によって)させることによって形成することができる。一般式(4)におけるX2が窒素原子のとき、一般式(4)により示される環構造はN-置換マレイミド構造となる。N-置換マレイミド構造含有重合体は、例えば、N-置換マレイミドと(メタ)アクリル酸エステルとを共重合(例えば、ラジカル重合によって、好ましくは溶液重合によって)させることによって形成することができる。
尚、無水グルタル酸構造含有重合体、グルタルイミド構造含有重合体、N-置換マレイミド構造含有重合体および無水マレイン酸構造含有重合体は、各々の環構造の形成に用いる重合体が全て(メタ)アクリル酸エステル単位を構成単位として有する。そのため、当該方法により得られる樹脂は(メタ)アクリル系樹脂の範疇に含まれる。
ラクトン環構造含有重合体、無水グルタル酸構造含有重合体、グルタルイミド構造含有重合体、N-置換マレイミド構造含有重合体および無水マレイン酸構造含有重合体は、必要に応じて複数種類を併用してもよい。即ち、本発明の実施の形態における熱可塑性樹脂組成物は、これら重合体の混合物であってもよい。
〔3.紫外線吸収剤〕
本発明の一実施の形態における熱可塑性樹脂組成物は、(メタ)アクリル系樹脂と、熱分解温度が360℃以下である紫外線吸収剤とを含む。
本発明の他の実施の形態における熱可塑性樹脂組成物は、ガラス転移温度が108℃以上である(メタ)アクリル系樹脂と、熱分解温度が360℃以下である紫外線吸収剤とを含む。
上記紫外線吸収剤の熱分解温度の下限値には、特に制限は無いものの、光学フィルムの製造時に、熱可塑性樹脂組成物に含まれる紫外線吸収剤が分解しないように、250℃以上であることがより好ましい。それゆえ、上記紫外線吸収剤は、熱分解温度が250℃以上、360℃以下であることが好ましい。
紫外線吸収剤の熱分解温度(Td)は、例えば、差動型示差熱天秤装置を利用して測定することができる。より具体的な方法は、実施例に記載した。その他にも、製造者が公表する値を採用することもできる。
紫外線吸収剤は、特に限定されるものではない。具体的には、例えば、ベンゾフェノン系化合物、サリシケート系化合物、ベンゾエート系化合物、シアノアクリレート系化合物、ベンゾトリアゾール系化合物、およびトリアジン系化合物から選ばれる少なくとも1種を使用することができる。これら紫外線吸収剤のなかでも、紫外線吸収能が高いことから、ベンゾトリアゾール系化合物およびトリアジン系化合物がより好ましい。
ベンゾトリアゾール系化合物としては、下記一般式(5)で示される紫外線吸収剤が好ましい。
(式中、R1、R2は、それぞれ独立して、水素原子、または、炭素数1~20のアルキル基(当該アルキル基は、任意構成で置換基を有していてもよい)を表す。R3、R4は、それぞれ独立して、水素原子またはハロゲン原子を表す。Lは、炭素数1~4のアルキレン基を表す)。
一般式(5)で示される紫外線吸収剤の中でも、前述した化合物aである下記式で示される2,2’-メチレンビス〔6-(2H-ベンゾトリアゾール-2-イル)4-(1,1,3,3-テトラメチルブチル)フェノール〕(商品名:LA-31、株式会社ADEKA製)が特に好ましい。
トリアジン系化合物としては、下記一般式(6)で示される紫外線吸収剤が好ましい。
(式中、R23は、水素原子、または、式「-OR27」によって示される基を表す。R27は、水素原子、または、炭素数1~18のアルキル基またはアルキルエステル基を表す。R24~R26は、それぞれ独立して、水素原子、または、炭素数1~18のアルキル基もしくはアルキルエステル基を表す。但し、上記アルキルエステル基は、式「-CH(-R28)C(=O)OR29」によって示される基であることが好ましく、R28は水素原子またはメチル基であり、R29はアルキル基である。アルキル基であるR24~R26およびR27並びにR29は、直鎖状、若しくは分枝鎖状のアルキル基である)。
上記紫外線吸収剤の分子量は、400以上であることが好ましい。分子量が400未満であると、熱可塑性樹脂組成物または光学フィルムの製造時に、ベントに吸引される紫外線吸収剤が多くなりすぎて、配管等が閉塞するおそれがある。
〔4.光学フィルムの製造方法〕
本発明の一実施の形態に係る光学フィルムの製造方法は、(メタ)アクリル系樹脂100重量部に対して、熱分解温度が360℃以下である紫外線吸収剤を0.1~5重量部含む、熱可塑性樹脂組成物からなる溶融物を、ダイからフィルム状に吐出した後にタッチロール製膜を行う方法であって、紫外線吸収剤の熱分解温度Td(℃)と、上記ダイの出口における上記溶融物の温度Tp(℃)との関係が式「50≦Td-Tp」を満たす方法である。
本発明の他の実施の形態に係る光学フィルムの製造方法は、(メタ)アクリル系樹脂と熱分解温度が360℃以下である紫外線吸収剤とを含む熱可塑性樹脂組成物からなる溶融物を製膜する、光学フィルムの製造方法であって、上記(メタ)アクリル系樹脂のガラス転移温度が108℃以上であり、上記溶融物をダイからフィルム状に吐出した後に、タッチロール製膜を行う方法である。
〔1〕節でも説明した通り、光学フィルムの製造においては、通常、タッチロール製膜は採用されない製膜方法であったところ、本発明者らは、タッチロール製膜を行うこと自体にブリードアウトを抑制する効果があることを見出した。この効果をさらに高めるためには、ダイの出口における溶融物の温度を「50≦Td-Tp」を満たすように調整することが好ましい。
溶融物の温度とは、Tダイ等のダイから吐出された直後(ダイリップから30mm以内)の溶融物に、針状または棒状の熱電対を接触させて複数箇所で測定した温度のうちの、最高温度を指す。
「Td-Tp」の上限値には特に制限は無いものの、90℃以下であることがより好ましい。それゆえ、「Td-Tp」は、50℃以上、90℃以下であることがより好ましく、55℃以上、85℃以下であることがさらに好ましく、60℃以上、80℃以下であることが特に好ましい。「Td-Tp」が50℃未満の場合には、熱可塑性樹脂組成物に含まれる紫外線吸収剤が熱分解してしまう。「Td-Tp」が90℃を超える場合には、溶融物の粘度が高く、ダイ内での流れが悪くなる。そのため、端部まで十分に溶融物が流れず、膜厚プロファイルが悪化するおそれがある。
上記タッチロール製膜とは、例えば、ダイからフィルム状に連続的に吐出された熱可塑性樹脂組成物の溶融物を、タッチロールとキャストロールとで挟み込んで、所定の大きさおよび厚さのフィルムに連続的に製膜する方法である。より具体的には、タッチロール製膜とは、例えば、タッチロールとキャストロールとの間にダイから上記溶融物を吐出し、タッチロールとキャストロールとで挟み込んで成形した後、冷却固化させてフィルムに連続的に製膜する方法である。タッチロール製膜は、ブリードアウトを抑制するのに効果的な製膜方法である。
[熱可塑性樹脂組成物]
本発明の一実施の形態における熱可塑性樹脂組成物は、(メタ)アクリル系樹脂100重量部に対して、熱分解温度が360℃以下である紫外線吸収剤を0.1~5重量部の範囲内、より好ましくは0.3~4重量部の範囲内、さらに好ましくは0.5~3.5重量部の範囲内で含む。紫外線吸収剤の量が0.1重量部未満であるか、または5重量部を超えると、光学特性が良好な光学フィルムを製造することができない。
(メタ)アクリル系樹脂に紫外線吸収剤を添加する方法は、特に限定されるものではない。(メタ)アクリル系樹脂と紫外線吸収剤とが均一に混合されることにより、本発明の一実施の形態における熱可塑性樹脂組成物が得られる。
本発明の実施の形態における熱可塑性樹脂組成物は、本発明の効果を損なわない範囲であれば、(メタ)アクリル系樹脂以外のその他の重合体を含有していてもよい。
その他の重合体としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系重合体;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系重合体;ポリメタクリル酸メチル等のアクリル系重合体;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系重合体;ポリマーポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体;等が挙げられる。
また、本発明の実施の形態における熱可塑性樹脂組成物は、本発明の効果を損なわない範囲であれば、溶剤、未反応の単量体および反応工程中に発生した副生成物等の揮発分、または希釈用溶剤等を含有していてもよい。本発明の実施の形態における熱可塑性樹脂組成物100質量%中の当該揮発分の総含有量は5000質量ppm以下が好ましく、3000質量ppm以下がより好ましい。5000質量ppm以上の場合、成形時に着色したり、シルバーストリーク等の成形不良が発生したりするおそれがある。
ここで、本発明の実施の形態における熱可塑性樹脂組成物100質量%のスチレン系単量体に由来する構成単位の含有量は、好ましくは0質量%以上10質量%未満、より好ましくは0質量%以上8質量%未満、さらに好ましくは0質量%以上5質量%未満である。当該熱可塑性樹脂組成物のスチレン系単量体に由来する構成単位の含有量が10質量%以上である場合、長期間使用時での熱による光学特性の悪化が発生するおそれがある。
本発明の実施の形態における熱可塑性樹脂組成物は、本発明の効果を損なわない範囲であれば、紫外線吸収剤以外のその他の添加剤を含んでいてもよい。その他の添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;位相差上昇剤、位相差低減剤、位相差安定剤等の位相差調整剤;アニオン系、カチオン系、ノニオン系の界面活性剤を含む帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;等が挙げられる。本発明の実施の形態における熱可塑性樹脂組成物100質量%におけるその他の添加剤の含有割合は、好ましくは0~5質量%、より好ましくは0~2質量%、さらに好ましくは0~1質量%の範囲内である。
上記着色剤としては、アントラキノン骨格を有する化合物、フタロシアニン骨格を有する化合物等が挙げられる。これらの中でもアントラキノン骨格を有する化合物が、耐熱性の観点から好ましい。本発明の実施の形態における熱可塑性樹脂組成物100質量%中の当該着色剤の含有量は、0.01~5質量ppmが好ましく、0.05~3質量ppmがより好ましく、0.1~1質量ppmがさらに好ましい。着色剤は公知のものを適宜使用できる。例えば、具体的には、「マクロレックス(登録商標)バイオレットB」「マクロレックス(登録商標)バイオレット3R」(ランクセス株式会社製)、「スミプラスト(登録商標)バイオレットB」「スミプラスト(登録商標)グリーンG」(住化ケムテックス株式会社製)等が挙げられる。当該着色剤は、本発明の実施の形態における熱可塑性樹脂組成物の色相および彩度を低減させることが可能である。
尚、その他の重合体や添加剤は、(メタ)アクリル系樹脂と紫外線吸収剤を混合する際に混合してもよいし、(メタ)アクリル系樹脂および/または紫外線吸収剤とあらかじめ混合しておいてから、他方と混合してもよい。混合方法は、特に限定されない。
ここで、本発明の実施の形態における熱可塑性樹脂組成物を製造するに当たり、様々な経路で金属元素が混入する可能性がある。例えば、(メタ)アクリル系樹脂の製造時には重合開始剤や環化触媒、失活剤等の添加剤由来の金属元素、熱可塑性樹脂組成物の製造時にはUVAやその他添加剤由来の金属元素の混入が考えられる。本発明の実施の形態における熱可塑性樹脂組成物100質量%の金属元素の含有量は、好ましくは0~200質量ppm、より好ましくは0~100質量ppm、さらに好ましくは0~60質量ppm、特に好ましくは0~10質量ppmの範囲内である。当該熱可塑性樹脂組成物の金属元素の含有量が200質量ppmを超える場合には、当該熱可塑性樹脂組成物の色相および彩度の増加、および異物の発生による透明性の悪化が生じるおそれがある。このような好ましくない効果をもたらす金属元素は、特に制限されない。一例として、ベンゾトリアゾール系化合物である紫外線吸収剤と錯体を形成し、色相および彩度が増加するおそれがあることから、アルカリ金属、アルカリ土類金属、重金属が挙げられ、例えば、亜鉛、銅、鉄等が挙げられる。
本発明の実施の形態における熱可塑性樹脂組成物のガラス転移温度(Tg)は、108℃以上であれば特に制限されないが、好ましくは110℃以上であり、以降、111℃以上、113℃以上、115℃以上、117℃以上、120℃以上の順で好ましい。当該熱可塑性樹脂組成物のTgが110℃未満である場合には、例えば、当該熱可塑性樹脂組成物からなる光学フィルムを光学機器の偏光板として組み入れた場合に、高温での十分な耐久性は発揮することができないおそれがある。ただし、当該熱可塑性樹脂組成物のTgが余りに高すぎると、当該熱可塑性樹脂組成物の成形温度を高くする必要があり、それゆえ、成形時に発泡したり、紫外線吸収剤のブリードアウトが発生したりするおそれがあるため、当該熱可塑性樹脂組成物のTgは、200℃以下が好ましく、より好ましくは180℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。尚、熱可塑性樹脂組成物のガラス転移温度は、光学フィルムのガラス転移温度と実質的に同一と見做すことができる。
本発明の一実施の形態における熱可塑性樹脂組成物の熱分解温度(熱分解開始温度;Td)は、310℃以上であることが好ましく、315℃以上であることがより好ましく、320℃以上であることがさらに好ましい。熱分解温度が310℃以上である熱可塑性樹脂組成物は、充分な耐熱性を有していると言える。上記熱分解温度の上限は、特に限定されないが、380℃程度とすることができる。尚、熱可塑性樹脂組成物の熱分解温度は、光学フィルムの熱分解温度と実質的に同一と見做すことができる。このような熱分解温度を有する熱可塑性樹脂組成物をタッチロール製膜することによって、フィルム欠点の低減、フィルム着色の低減、気泡混入の抑制、などの利点が得られる。
熱可塑性樹脂組成物の熱分解温度(Td)は、熱可塑性樹脂組成物に対するダイナミックTGを用いて測定することができる。具体的な測定方法は、実施例に記載の通りである。
(厚さ100μmの未延伸フィルムとしたときの光学的性能)
本発明の一実施形態における熱可塑性樹脂組成物は、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したc*値が、0.45以下である。好ましくは0.35以下であり、より好ましくは0.30以下であり、さらに好ましくは0.25以下である。また、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したa*値の絶対値が、0.10以下あることが好ましく、0.05以下であることがさらに好ましい。さらに、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したb*値の絶対値が、0.45以下が好ましく、0.35以下がより好ましく、0.30以下がさらに好ましく、0.25以下が特に好ましい。また、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したL*値が、95.0%以上であることが好ましく、98.0%以上であることがより好ましく、99.0%以上であることがさらに好ましく、99.5%以上であることが特に好ましい。本発明の一実施形態における熱可塑性樹脂組成物が上記範囲内であれば、偏光子保護フィルム等に使用する光学フィルムに好適に用いることができる。
ここで、上述のa*値、b*値およびL*値とは、JIS Z 8729に規定されるL*a*b*表色系における指数であり、a*値およびb*値は色相を表し、L*値は明度を表す。またc*値とは彩度を表し、上記a*値およびb*値より次の式によって算出される。
c*=(a*2+b*2)1/2。
a*値、b*値およびc*値は、0に近いほど無彩色に近いことを意味する。L*値は、100%に近いほど白に近い、すなわち白色光を全て透過することを意味する。偏光子保護フィルム等に使用する光学フィルムは、バックライトからの色再現性を高めるために無彩色に近いことが必要であり、かつ、高いコントラストを実現するために高い明度であることが必要である。本発明の一実施形態における熱可塑性樹脂組成物は、より無彩色に近く、高い明度を示すため、光学フィルムに好適に用いることができる。
本発明の一実施形態における熱可塑性樹脂組成物は、厚さ100μmの未延伸フィルムとしたときのJIS K7361:1997の規定に準拠して測定した波長380nmの光線透過率が、3.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.5%以下であることがさらに好ましい。上記未延伸フィルムの波長380nmにおける光線透過率が、この範囲内であれば、光学機器の偏光板として組み入れた場合に、十分な紫外線吸収能を発揮することができる。また、上記熱可塑性組成物は、厚さ100μmの未延伸フィルムとしたときのJIS K7361:1997の規定に準拠して測定した波長420nmの光線透過率が、95.0%以上であることが好ましく、96.0%以上であることがより好ましく、97.0%以上であることがさらに好ましい。上記未延伸フィルムの波長420nmにおける光線透過率が、この範囲内であれば、可視光領域の透過率が高くなり、当該熱可塑性樹脂組成物を光学用途に用いる場合に特に好適である。
本発明の一実施形態における熱可塑性樹脂組成物は、厚さ100μmの未延伸フィルムとしたときの全光線透過率が、好ましくは95.0%以上、より好ましくは97.0%以上、さらに好ましくは99.0%以上である。
本発明の一実施形態における熱可塑性樹脂組成物は、厚さ100μmの未延伸フィルムとしたときのヘイズが1.0%以下であることが好ましい。より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズが1.0%を超えると透明性が低下し、当該熱可塑性樹脂組成物を光学用途に用いる場合に適さない。
[ダイ]
ダイは、熱可塑性樹脂組成物を溶融させる溶融装置の出口に設けられている。そして、熱可塑性樹脂組成物の溶融物をフィルム状にして、タッチロール上、またはキャストロール上に連続的に吐出するように構成されている。ダイの材質は、金属であることが好ましく、ステンレスであることがより好ましい。ダイの大きさおよび個数は、吐出する溶融物の量に応じて適宜設定すればよく、特に限定されるものではない。
ダイの温度は、吐出する溶融物の温度に応じて適宜設定すればよく、特に限定されるものではない。しかし上記温度は、熱可塑性樹脂組成物に含まれる紫外線吸収剤の熱分解温度Td(℃)と、上記ダイの出口における上記溶融物の温度Tp(℃)との関係が式「50≦Td-Tp」を満たすことができるように設定される。尚、上記溶融装置は、上記式を満たすことができるように熱可塑性樹脂組成物を溶融させて、温度Tp(℃)以上の溶融物を調製できるように構成されている。
[タッチロールおよびキャストロール]
タッチロールおよびキャストロールは、互いに対向して平行に設置されている。タッチロールおよびキャストロールは、それぞれ複数本存在していてもよい。タッチロールおよびキャストロールは、その表面が鏡面仕上げされていることが特に好ましい。
タッチロールは、弾性を有する材質から形成されていることが好ましい。タッチロールおよびキャストロールの材質は、SCM系の鋼鉄、SUS等のステンレス等が好ましい。さらに、タッチロールおよびキャストロールとして、上記鋼鉄またはステンレスに、クロム、ニッケル、チタン等のめっきを施してなる材;PVD(Physical Vapor Deposition)法等によって、TiN,TiAlN,TiCN,CrN,DLC(ダイアモンド状カーボン)等の表面被膜を形成してなる材;タングステンカーバイトまたはその他のセラミックを溶射してなる材;および、上記鋼鉄またはステンレスの表面を窒化処理してなる材;を用いることも好適である。
キャストロールに対するタッチロールの押圧力を、フィルムとタッチロールとの接触面積で割った値であるタッチ圧は、0.1MPa~10MPaの範囲内であることが好ましく、0.3MPa~8MPaの範囲内であることがより好ましく、0.5MPa~5MPaの範囲内であることが特に好ましい。
タッチロールおよびキャストロールは、その表面の算術平均高さ(Ra)が100nm以下であることが好ましく、50nm以下であることがより好ましく、25nm以下であることがさらに好ましい。これにより、表面に適度な凹凸を有するフィルムを製膜することができる。タッチロールおよびキャストロール表面の材質が金属であれば、これらロールのRaを100nm以下にすることが容易である。
タッチロールおよびキャストロールの太さ、長さ、および温度等は、所望する光学フィルムの大きさおよび厚さに応じて適宜設定すればよく、特に限定されるものではない。但し、溶融物を徐冷(冷却)する上で、上記キャストロールは複数本(より具体的には2~6本)存在することがより好ましい。
そして、例えば、2本以上のキャストロールを用いて溶融物を徐冷してフィルムを製膜する場合には、ダイにより近い側(上流側)のキャストロールよりも下流側に隣接するキャストロールの温度は、上記上流側のキャストロールの温度と比較して、0℃を超え、20℃以下の範囲で低いことが好ましく、1℃~18℃低いことがより好ましく、2℃~15℃低いことがさらに好ましい。これにより、得られる光学フィルムの両面の物性をより均一にすることができ、当該光学フィルム内の残存ひずみが解消され易くなる。それゆえ、湿度および熱に対する光学フィルムの寸法安定性を向上させることができる。尚、ダイに最も近い側(最上流側)のキャストロールの温度は、溶融物の温度に応じて適宜設定すればよい。
タッチロールの温度は、(メタ)アクリル系樹脂のガラス転移温度(Tg)を基準として、Tg-80℃~Tg+10℃の範囲内であることが好ましく、Tg-70℃~Tg+5℃の範囲内であることがより好ましく、Tg-60℃~Tgの範囲内であることが特に好ましい。
タッチロールおよびキャストロールの温度制御は、例えば、これらロールの内部に温度を調節した熱媒(液体または気体)を流通させることによって行うことができる。
[製膜速度]
溶融物の製膜速度は、所望する光学フィルムの大きさおよび厚さ等に応じて適宜設定すればよく、特に限定されるものではない。上記製膜速度は、2m/分~50m/分の範囲内であることが好ましく、2m/分~40m/分の範囲内であることがより好ましく、3m/分~35m/分の範囲内であることがさらに好ましい。製膜速度を上記範囲内とすることにより、ダイの出口において上記溶融物がタッチロールおよびキャストロールによって引っ張られ、当該溶融物の膨張が抑制されると共に、溶融物がダイの出口に擦れることが抑制される。そのため、得られる光学フィルムの表面の凹凸を好ましい範囲に制御することができる。また、製膜速度を上記範囲内とすることにより、溶融物のダイでの滞留時間を短く抑えることができるので、溶融物に含まれる異物(ゲルや汚染物質)の数を低減することができる。製膜速度が50m/分を超えると、ダイの出口における溶融物の流れに乱れが生じ、フィルムの均一性が低下するおそれがある。
このように耐熱性(ガラス転移温度が108℃以上の)の(メタ)アクリル系樹脂をタッチロール製膜することによって、熱分解温度が低い紫外線吸収剤を用いた場合においても、b*値が低くて良好であり、製膜時にロール(タッチロールおよびキャストロール)からの汚染物質の転写が無い、光学特性が良好な光学フィルムを製造することができる。
そして、熱可塑性樹脂組成物に含まれる紫外線吸収剤の熱分解温度Td(℃)と、上記ダイの出口における上記溶融物の温度Tp(℃)との関係が式「50≦Td-Tp」を満たすようにダイから溶融物を吐出すると、上述の効果をより大きくすることができる。
尚、タッチロール製膜によって得られた光学フィルムは、必要に応じて、その両端をトリミングしてもよい。トリミングによって切り落とされた光学フィルムは、破砕すれば原料として再使用することができる。
[巻き取りおよび延伸]
タッチロール製膜によって連続的に製造された光学フィルムは、キャストロールから剥離され、ニップロール等を通過した後、心材に巻き取られてロール状の光学フィルムとされる。光学フィルムの巻き取り速度は、特に限定されるものではないものの、1m/分~100m/分の範囲内であることが好ましく、2m/分~80m/分の範囲内であることがより好ましく、3m/分~70m/分の範囲内であることがさらに好ましい。また、光学フィルムの巻き取り張力は、特に限定されるものではないものの、1N/m幅~500N/幅の範囲内であることが好ましく、1N/m幅~300N/幅の範囲内であることがより好ましい。
光学フィルムを巻き取る前に、当該光学フィルムの片面または両面に、ポリエチレン、ポリプロピレン、ポリエステル等からなる保護フィルムを貼着してもよい。保護フィルムの厚さは、特に限定されるものではないものの、5μm~100μmの範囲内であることが好ましく、10μm~50μmの範囲内であることがより好ましい。
タッチロール製膜によって連続的に製造された光学フィルムは、縦延伸および/または横延伸を行うことが好ましい(以下、縦延伸を「MD延伸」、横延伸を「TD延伸」とも表記する)。MD延伸および/またはTD延伸と、収縮緩和処理とを組み合わせても行ってもよい。本発明に係る光学フィルムは、二軸延伸(MD延伸およびTD延伸)することがより好ましい。尚、MDとはMachine Directionの略語で、「長手方向」および「縦方向」と同義である。TDとはTransverse Directionの略語で、「幅方向」および「横方向」と同義である。
MD延伸の具体的な方法としては、特に限定されるものではないものの、例えば、オーブン縦延伸、ロール縦延伸等の方法が挙げられる。
オーブン縦延伸は、オーブンの入口側にある搬送ロールと、出口側にある搬送ロールとの間に周速差をつけることによって原フィルムをその長手方向に延伸する方法である。上記オーブンは、原フィルムを延伸可能な温度にまで加熱できるように構成されている。オーブン縦延伸によれば、延伸条件によっては、延伸後のフィルムに熱処理効果を与えることができる。
オーブン縦延伸における延伸温度は、原フィルムのガラス転移温度(Tg)を基準として、Tg-10℃~Tg+50℃の範囲内であることが好ましく、Tg-5℃~Tg+40℃の範囲内であることがより好ましく、Tg℃~Tg+30℃の範囲内であることがさらに好ましい。Tg-10℃よりも低い温度で延伸すると、原フィルムが破断するおそれがある。Tg+50℃よりも高い温度で延伸すると、原フィルムのたるみが大きくなるために、原フィルムと装置とのこすれが生じるおそれや、原フィルムが破断するおそれがある。
ロール縦延伸は、原フィルムを多数の加熱ロールに連続接触しながら延伸温度にまで加熱し、延伸区間に設けられたニップロールによって延伸する方法である。その後、延伸されたフィルムは、冷却ロールによって冷却される。上記延伸区間内には、延伸温度を安定化させるために、補助加熱装置が設けられていてもよい。ロール縦延伸は、ロール縦延伸機を用いて実施することができる。
ロール縦延伸機における加熱ロールの温度とは、加熱ロールの設定温度を指す。原フィルムの延伸温度および延伸倍率は、縦延伸後に得られるフィルムの機械的強度、表面性および厚み精度を指標として、適宜調整することができる。延伸のときには、原フィルムを、当該フィルムのガラス転移温度(Tg)を基準として、加熱ロールによってTg-10℃~Tg+20℃の範囲内にまで加熱することが好ましい。さらに、延伸区間内に設けた補助加熱装置によって、Tg℃~Tg+30℃の範囲内にまで加熱することがより好ましい。加熱ロールによる原フィルムの加熱がTg-10℃よりも低い場合には、原フィルムが裂ける、割れる等の工程上の問題を引き起こし易い。加熱ロールによる原フィルムの加熱がTg+30℃よりも高い場合には、最終的に得られる光学フィルムの伸び率や引っ張り強度、可撓性等の力学的性質が改善され難いので、2次加工性が悪くなることがある。
尚、加熱ロールの合計本数は5本以上が好ましい。加熱ロールが5本よりも少ない場合には、加熱効果が小さくなるため、原フィルムを十分に加熱することができない。加熱ロールの合計本数を5本未満にする代わりに、加熱効果を高めるために加熱ロールのロール径を大きくする方法は、加熱により熱膨張した原フィルムを充分に引き伸ばすことができず、シワが発生し易くなると共にシワ由来の破断も発生し易くなるため好ましくない。
延伸区間内に設ける補助加熱装置としては、公知の装置が挙げられる。具体的には、例えば、IRヒーター、セラミックヒーター、熱風ヒーターの中から選ばれる少なくとも1種が好ましい。
MD延伸を行うときの延伸速度は、所望する光学フィルムの特性に応じて適宜設定すればよく、特に限定されるものではないものの、10~20000%/分の範囲内が好ましく、100~10000%/分の範囲内がより好ましい。延伸速度が10%/分よりも遅いと、十分な延伸倍率を得るために時間が掛かり、製造コストが高くなる。延伸速度が20000%/分よりも速いと、フィルムの破断等が起こるおそれがある。
MD延伸を行うときの延伸倍率は、所望する光学フィルムの特性に応じて適宜設定すればよく、特に限定されるものではないものの、10~300%の範囲内であることが好ましく、15~300%の範囲内であることがより好ましく、20~200%の範囲内であることがさらに好ましい。尚、延伸倍率は、「延伸倍率(%)=100×{(延伸後の長さ)-(延伸前の長さ)}/(延伸前の長さ)」で定義される。
TD延伸を行うときの延伸温度は、特に限定されるものではないものの、原フィルムのガラス転移温度(Tg)を基準として、Tg-5℃~Tg+30℃の範囲内であることが好ましく、Tg~Tg+30℃の範囲内であることがより好ましく、Tg~Tg+20℃の範囲内であることがさらに好ましい。延伸温度がTg-5℃未満であれば、延伸する前にフィルムが破断するおそれがある。延伸温度がTg+30℃を超えると、分子鎖の緩和が大きくなって分子が配向し難くなるおそれがある。
TD延伸を行うときの延伸速度は、所望する光学フィルムの特性に応じて適宜設定すればよく、特に限定されるものではないものの、10~20000%/分の範囲内が好ましく、100~10000%/分の範囲内がより好ましい。延伸速度が10%/分よりも遅いと、十分な延伸倍率を得るために時間が掛かり、製造コストが高くなる。延伸速度が20000%/分よりも速いと、フィルムの破断等が起こるおそれがある。
TD延伸を行うときの延伸倍率は、所望する光学フィルムの特性に応じて適宜設定すればよく、特に限定されるものではないものの、10~300%の範囲内であることが好ましく、15~300%の範囲内であることがより好ましく、20~200%の範囲内であることがさらに好ましい。
光学フィルムは、MD延伸および/またはTD延伸の前に熱処理を行ってもよく、MD延伸および/またはTD延伸の後に熱処理を行ってもよい。
本発明に係る光学フィルムは、特に限定されるものではないものの、縦方向の延伸倍率と横方向の延伸倍率との比(MD延伸の延伸倍率/TD延伸の延伸倍率)が、0.40~1.50の範囲内であることが好ましく、0.45~1.40の範囲内であることがより好ましく、0.50~1.30の範囲内であることがさらに好ましい。
〔5.光学フィルム〕
上記方法によって製造された光学フィルムは、当該光学フィルムを厚さ80μmのフィルムとしたときのb*値が0.5未満であり、光学特性が良好である。上記b*値の絶対値は、0.4以下、0.3以下の順に好ましくなる。上記b*値の絶対値に下限は特になく、小さいほど好ましい(つまり、b*値はゼロに近いほど好ましい)。ここで、上記光学フィルムには、〔4〕節で説明されている方法によって製造されたフィルムが含まれる。より具体的には、タッチロール製膜によって製造された未延伸フィルム、その後延伸が行われた延伸フィルム等が含まれる。
[ノイズ]
上記光学フィルムがロール状の光学フィルムである場合には、当該光学フィルムをその長手方向に120mの長さに亘って12mおきに幅方向の80%を投影検査したときの、ノイズの合計は5点以下である。また、光学フィルムが枚葉の光学フィルムである場合には、当該光学フィルムを投影検査したときの、1m2当たりのノイズは5点以下である。このような性質を満たすフィルムのことを、本明細書では「ロールからの汚染物質の転写が無い」と表現する。
本明細書において「ノイズ」とは、汚染物質(例えば、熱可塑性樹脂組成物或いは揮散した紫外線吸収剤が変質した物質)が、光学フィルムの表面に転写されたことによって生じた欠点のことを意味する。上記ノイズの範疇には、(i)熱可塑性樹脂組成物の溶融物に含まれるゲル等の異物によって生じた欠点、(ii)空気中の浮遊物(糸くず、塵、埃等)が光学フィルムの表面に付着したことによって生じた欠点、並びに(iii)、タッチロールおよびキャストロールの表面に付着したゴミ(塵、埃等)は含まれない。上記ノイズによって、本来確認したい、熱可塑性樹脂組成物の溶融物に含まれる異物(ゲル等)の検出が困難になる。さらに、当該ノイズが多いフィルムは、光学フィルムとしての機能に支障を来たす。
ロール状の光学フィルムを、その長手方向に120mの長さに亘って12mおきに幅方向の80%を投影検査する方法は、例えば、タッチロール製膜によって製造された光学フィルムを心材に巻き取るときに(即ち、インラインで)投影検査する方法がある。具体的には、以下の手順による。
(1)連続的に搬送される光学フィルムを測定可能な位置に、自動欠点検査装置を配置する。
(2)12mおきに測定することができる測定間隔を、光学フィルムの搬送速度から算出する(例えば、搬送速度が12m/分の場合には1分間おき)。
(3)上記測定間隔で合計11回、上記自動欠点検査装置による投影検査を行う。このとき、各測定箇所における光学フィルムの幅方向の80%を投影検査する。
光学フィルムの幅方向の80%は、どこに設定しても構わない。好ましくは、光学フィルムの幅方向の中心から両端に向かって40%ずつに設定する。つまり、幅方向の両端10%ずつを省くように設定する。
また、枚葉の光学フィルムの投影検査は、複数枚の光学フィルムを投影検査して得られたノイズの数を1m2当たりのノイズの数に換算することによって(即ち、オフラインで)実施することが好ましい。上記複数枚の光学フィルムは、面積の合計が1m2以上となる枚数(例えば、A4サイズでは17枚以上)であることがより好ましい。光学フィルムの投影検査は、市販の自動欠点検査装置を使用して行うことができる。具体的な投影検査方法の一例は、実施例に記載の通りである。
光学フィルムにノイズが発生している場合、当該ノイズの大きさは、15μm以下であることが好ましく、10μm以下であることがより好ましい。大きさが15μm以下のノイズは、投影検査で検出されず、光学フィルムとして実際に使用する際にも問題とならない場合がある。尚、ノイズは少なければ少ないほど好ましく、小さければ小さいほど好ましい。
本発明に係る光学フィルムは、前述した熱分解温度Td(℃)と温度Tp(℃)との関係が式「50≦Td-Tp」を満たすようにして製造されている。そのため、当該光学フィルムを厚さ80μmのフィルムとしたときのb*値が0.5未満であり、光学特性が良好である。のみならず、熱可塑性樹脂組成物の溶融物に含まれるゲル等の異物も少なく、また、ロール(タッチロールおよびキャストロール)が汚染することも無い。それゆえ、一般的な光学フィルムの製造環境であっても、上記投影検査を行った場合のノイズを5点以下にすることができる(つまり、ロールからの汚染物質の転写が無い)。
[光学的性能]
(厚さ80μmのフィルムとしたときの光学的性能)
本発明の一実施形態に係る光学フィルムは、厚さ80μmのフィルムとしたときのJIS Z 8729の規定に準拠して測定したc*値が、0.5未満であることが好ましく、より好ましくは0.3未満である。上記光学フィルムは、厚さ80μmのフィルムとしたときのJIS Z 8729の規定に準拠して測定したa*値の絶対値が、0.10以下あることが好ましく、0.05以下であることがさらに好ましい。上記光学フィルムは、厚さ80μmのフィルムとしたときのJIS Z 8729の規定に準拠して測定したb*値が0.5未満であり、光学特性が良好である。上記b*値の絶対値は、0.4以下、0.3以下の順に好ましくなる。上記b*値の絶対値に下限は特になく、小さいほど好ましい(つまり、b*値はゼロに近いほど好ましい)。上記光学フィルムは、厚さ80μmのフィルムとしたときのJIS Z 8729の規定に準拠して測定したL*値が、95.0%以上であることが好ましく、98.0%以上であることがより好ましく、99.0%以上であることがさらに好ましく、99.5%以上であることが特に好ましい。上記光学フィルムの光学特性が上記範囲内であれば、偏光子保護フィルム等に好適に用いることができる。
本発明の一実施形態に係る光学フィルムは、厚さ80μmのフィルムとしたときのJIS K7361:1997の規定に準拠して測定した波長380nmの光線透過率が、5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。光線透過率が、この範囲内であれば、上記光学フィルムを光学機器の偏光板として組み入れた場合に、十分な紫外線吸収能を発揮することができる。また、上記光学フィルムは、厚さ80μmのフィルムとしたときのJIS K7361:1997の規定に準拠して測定した波長420nmの光線透過率が、95.0%以上であることが好ましく、より好ましくは96.0%以上、さらに好ましくは97.0%以上である。光線透過率が、この範囲内であれば、可視光領域の透過率が高くなり、当該光学フィルムを光学用途に用いる場合に特に好適である。
本発明の光学フィルムは、厚さ80μmのフィルムとしたときの全光線透過率が、好ましくは95.0%以上、より好ましくは97.0%以上、さらに好ましくは99.0%以上である。
本発明の一実施形態に係る光学フィルムは、厚さ80μmのフィルムとしたときのヘイズが1.0%以下であることが好ましい。より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズが1.0%を超えると透明性が低下し、当該光学フィルムを光学用途に用いる場合に適さない。
本発明の一実施形態に係る光学フィルムは、純水との接触角が76°以下であることが好ましい。純水との接触角が76°以下であれば、光学フィルムへ親水性易接着剤組成物を塗布する際に、均一に塗布することができる。
[光学フィルムの用途]
本発明の一実施形態に係る光学フィルムは、同種光学材料および/または異種光学材料と積層させて用いることにより、さらに光学特性を制御することができる。この際に積層される光学材料としては、特には限定されないが、例えば、偏光板、ポリカーボネート製延伸配向フィルム、環状ポリオレフィン製延伸配向フィルム等が挙げられる。もちろん、上記光学フィルムを単独で使用してもよい。
本発明の一実施形態に係る光学フィルムの表面には、必要に応じて、各種の機能性コーティング層が形成されうる。機能性コーティング層は、例えば、帯電防止層、粘接着剤層、接着層、易接着層、防眩(ノングレア)層、光触媒層等の防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層である。
本発明の一実施形態に係る光学フィルムの用途は特に限定されない。本発明の一実施形態に係る光学フィルムは、高い透明性、小さな色相、低い彩度および高い耐熱性を有するので、以下の用途に好適である。当該用途は、例えば、光学用保護フィルム(具体的には、各種の光ディスク(VD、CD、DVD、MD、LDなど)の基板の保護フィルム)、LCD等の画像表示装置が備える偏光板に用いる偏光子保護フィルムである。他にも、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルム、位相差フィルム、光変換用フィルム等の光学フィルムとして、本発明の一実施形態に係る光学フィルムを用いうる。本発明の一実施形態に係る光学フィルムは、特に、偏光子保護フィルムとしての使用に好適である。
〔6.本発明のその他の構成〕
本発明には、以下の構成も包含されている。
本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)は、(メタ)アクリル系重合体((メタ)アクリル系樹脂)と紫外線吸収剤を含有した(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)であって、ガラス転移温度が110℃以上であり、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したc*値が0.45以下であることを特徴としている。
上記構成によれば、透明性、色相、彩度および耐熱性に優れた(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を提供することができるという効果を奏する。
本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)は、厚さ100μmの未延伸フィルムとしたときのJIS Z 8729の規定に準拠して測定したa*値の絶対値が0.10以下であることが好ましい。
上記構成によれば、色相のより優れた(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を提供することができるという効果を奏する。
上記紫外線吸収剤は、ベンゾトリアゾール系化合物であることが好ましい。
また、本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)は、厚さ100μmの未延伸フィルムとしたときのJIS K7361:1997の規定に準拠して測定した波長380nmにおける光線透過率が3.0%以下、かつ、波長420nmにおける光線透過率が95.0%以上であることが好ましい。
上記構成によれば、例えば、本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を偏光子保護フィルム等の光学フィルムに使用した際に十分な紫外線吸収能を有し、色相および彩度のより優れた(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を提供することができるという効果を奏する。
本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)は、当該(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)100質量%中のスチレン系単量体に由来する構成単位の含有量が8質量%未満であることが好ましい。
また、本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)は、当該(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)100質量%中の金属元素の含有量が60質量ppm以下であることが好ましい。
上記構成によれば、色相および彩度のより優れた(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を提供することができるという効果を奏する。
本発明に係る(メタ)アクリル系重合体((メタ)アクリル系樹脂)は、主鎖に環構造を有することが好ましい。
また、上記環構造は、無水マレイン酸構造、グルタルイミド構造、無水グルタル酸構造およびラクトン環構造から選ばれる少なくとも1種であることがより好ましく、ラクトン環構造であることがさらに好ましい。
上記構成によれば、高い耐熱性を維持しながら、透明性、色相および彩度がより優れた(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)を提供することができるという効果を奏する。
本発明の成形品およびフィルムは、上記課題を解決するために、上記本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)により形成されることを特徴としている。
上記構成によれば、上記本発明の(メタ)アクリル系樹脂組成物(熱可塑性樹脂組成物)により形成されるため、透明性、色相、彩度および耐熱性に優れた成形品およびフィルムを提供することができるという効果を奏する。
本発明のフィルムは、当該フィルムを投影検査したときに、1m2当たりのノイズ数が5点以下であることが好ましい。
上記構成によれば、本発明のフィルムを偏光子保護フィルム等の光学フィルムとして使用した場合に、光学特性の良好な光学フィルムを提供できるという効果を奏する。
以下、実施例および比較例を用いて、本発明をさらに詳細に説明する。しかし、本発明はこれら実施例に限定されて解釈されるべきではない。
〔実施例1〕
<物性等の測定方法>
[投影検査方法]
1.ロール状の光学フィルムの投影検査方法
検査には、自動連続欠点検査装置(株式会社メック製:LSC-6000L、光学系:45度正透過、1/8エッジ、ロッド照明(片側スリット付))を用いた。具体的には、以下の手順によった。
(1)上記自動連続欠点検査装置を、巻き取り装置の手前に配置した。光学フィルムの搬送速度は12m/分であった。
(2)1分間隔で検査することにより、長手方向に11ヵ所(つまり、長手方向に120m)を検査した。検査対象は、幅方向の中心から両端に向かって40%ずつ(つまり、幅方向の両端10%ずつを省いた部分)の光学フィルムとした。
(3)上記検査対象の光学フィルムに対して、画像処理によって欠点(ノイズ)を検出、光学フィルムを評価した。
尚、ノイズの量が多いほど(つまり、ロールの表面に付着した汚染物質の光学フィルムへの転写が多いと)、上記自動連続欠点検査装置で検出される欠点数が多くなる。検出される欠点数が1000点を超えたフィルムは、カウント不可となる。
2.枚葉の光学フィルムの投影検査方法
検査には、自動欠点検査装置(株式会社メック製:MLA-5000、光学系:45度正透過、1/8エッジ、ロッド照明(片側スリット付))を用いた。具体的には、以下の手順によった。
(1)枚葉の光学フィルムの表面をエアブローし、光学フィルムの表面に付着したゴミ(塵、埃等)を除いた。
(2)200mm×300mm(A4)サイズの光学フィルム17枚を検査対象として、画像処理によって欠点(ノイズ)を検出した。
(3)(2)で得られた欠点の数を、1m2当たりの欠点の数に換算し、光学フィルムを評価した。
尚、ノイズの量が多いほど(つまり、ロールの表面に付着した汚染物質の光学フィルムへの転写が多いと)、上記自動欠点検査装置で検出される欠点数が多くなる。検出される欠点数が1000点を超えたフィルムは、カウント不可となる。
[b*値]
分光色差計(日本電色工業株式会社製:Colormeter ZE6000)を用いて、JIS Z 8729の規定に準拠してb*値を求めた。
[溶融粘度]
ツインボアバレルタイプであるロザンド社製キャピラリーレオメーターRH10を用いて測定した。ロングダイとして直径1mm、長さ16mmのダイスを、ショートダイとして直径1mm、長さ0.25mmのダイスを用いて、測定温度270℃、剪断速度10/秒で測定を行った。これにより得られた値を、バーグレー補正することによって溶融粘度を算出した。
[重量平均分子量(Mw)]
(メタ)アクリル系樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
システム:東ソー製GPCシステム HLC-8220
測定側カラム構成
・ガードカラム:東ソー製、TSKguardcolumn SuperHZ-L
・分離カラム:東ソー製、TSKgel SuperHZM-M 2本直列接続
リファレンス側カラム構成
・リファレンスカラム:東ソー製、TSKgel SuperH-RC
展開溶媒:クロロホルム(和光純薬工業製、特級)
展開溶媒の流量:0.6mL/分
標準試料:TSK標準ポリスチレン(東ソー製、PS-オリゴマーキット)
カラム温度:40℃。
[ガラス転移温度(Tg)]
JIS K7121の規定に準拠して求めた。具体的には、示差走査熱量計(株式会社リガク製:DSC-8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを、常温から200℃まで昇温速度20℃/分で昇温して得られたDSC曲線から、始点法によりガラス転移温度を算出した。リファレンスには、α-アルミナを用いた。
[応力光学係数(Cr)]
未延伸フィルムを60mm×20mmの長方形に切り出し、1N/mm2以下の応力になるように重りを選択し、当該未延伸フィルムの下端に取り付けた。これをTg+3℃に設定された定温乾燥機(アズワン株式会社製:DOV-450A)にチャック間40mmでセットした。そのままTg+3℃で約30分間保持して延伸を行った後、加熱を止め、Tg-40℃になるまで約1℃/分で冷却した。その後、得られた延伸フィルムを取り出し、延伸後のフィルム長、厚さ、並びに重りの重量を測定した。また、延伸フィルムの面内位相差Reを測定した。
次に、それぞれ1N/mm2以下の応力になるように、さらに4種類の重さの重りを選択し、未延伸フィルムの下端に取り付けて同様に測定を行い、その結果から応力光学係数(Cr)を算出した。応力光学係数(Cr)の算出方法は[高分子学会 編『透明プラスチックの最前線』エヌ・ティー・エス、2006年、37~44頁]に記載されている。具体的には、Δn(=nx-ny)をy軸に、σをx軸にプロットし、最小二乗法で得られる直線の傾きを求め、その値をCrとした。ここで、nxはフィルムの面内における遅相軸方向(フィルム面内において最大の屈折率を示す方向)の屈折率、nyはフィルムの面内における進相軸方向(フィルム面内において遅相軸方向と垂直な方向)の屈折率、σは延伸に対する応力[N/m2]である。
[熱分解温度(熱分解開始温度;Td)]
差動型示差熱天秤装置(株式会社リガク製:Thermo Plus2 TG-8120)を用い、窒素ガス雰囲気下、10mgのサンプルを常温から500℃まで昇温した。このとき、昇温中のサンプルの質量減少速度が0.005質量%/秒以下の場合は、昇温速度10℃/分で昇温した。逆に、昇温中のサンプルの質量減少速度が0.005質量%/秒を超える場合は、当該速度が0.005質量%/秒以下を保つように階段状等温制御で昇温した。そして、上記質量減少速度を保つために最初に階段状等温制御とした温度(階段状等温制御で昇温された区間のうち、最も低い温度)を、熱可塑性樹脂組成物および紫外線吸収剤のTdとした。
<熱可塑性樹脂組成物の製造例>
先ず、(メタ)アクリル系樹脂としてラクトン環構造含有重合体を、下記方法によって製造した。
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応容器に、メタクリル酸メチル(MMA)229.6部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)33部、トルエン248.6部、およびn-ドデシルメルカプタン0.19部を仕込み、これに窒素ガスを通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富株式会社製:ルペロックス(登録商標)570)0.25部を添加すると共に、さらにt-アミルパーオキシイソノナノエート0.51部とスチレン12.4部とを2時間かけて滴下しながら、約105~110℃の還流下で溶液重合を進行させた。滴下終了後、同温度でさらに4時間の熟成を行った。
次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)としてリン酸ステアリル(堺化学工業株式会社製:Phoslex A-18)0.21部を加え、約90~110℃の還流下において1.5時間、ラクトン環構造を形成するための環化縮合反応を進行させた。
次に、得られた重合溶液を、240℃に加熱した多管式熱交換器に通して環化縮合反応を完結させた。その後、重合溶液を、ベントタイプスクリュー二軸押出機(L/D=52)に、35.1部/時(樹脂量換算)の処理速度で導入した。上記ベントタイプスクリュー二軸押出機は、バレル温度が250℃であり、1個のリアベント、4個のフォアベント(上流側から第1、第2、第3、第4ベントと称する)、および第3ベントと第4ベントとの間にサイドフィーダーを備え、先端部にリーフディスク型のポリマーフィルタ(濾過精度5μm)が配置されている。重合溶液の導入に際して、別途準備しておいた酸化防止剤/環化触媒失活剤の混合溶液を0.15部/時の投入速度で第2ベントの下流から、イオン交換水を0.54部/時の投入速度で第1および第3ベントの下流から、それぞれ投入した。酸化防止剤/環化触媒失活剤の混合溶液には、それぞれ4.3部の酸化防止剤(BASF社製:イルガノックス1010、株式会社ADEKA製:アデカスタブ(登録商標)LAO-412S)と、失活剤として14部のオクチル酸亜鉛(日本化学産業株式会社製:ニッカオクチクス亜鉛)とを、トルエン144部に溶解させた溶液を用いた。また、上記サイドフィーダーから、紫外線吸収剤(株式会社ADEKA製:アデカスタブ(登録商標)LA-31、熱分解温度Td(℃)は345℃)を投入速度0.79部/時で投入した。
次に、脱揮完了後、押出機内に残された熱溶融状態にある樹脂組成物を当該押出機の先端からポリマーフィルタで濾過しながら排出した。その後、押出機の先端に備わっているダイスを通過させ、冷却水を満たした水槽で冷却することにより、上記樹脂組成物のストランドを得た。上記冷却水は、孔径1μmのフィルタ(オルガノ株式会社製、製品名:ミクロポアフィルタ1EU)で濾過し、30±10℃の範囲内の温度に保持されていたものである。冷却後のストランドを切断機(ペレタイザ)に導入することで、ラクトン環構造含有重合体と紫外線吸収剤とを含む熱可塑性樹脂組成物からなるペレットを得た。
得られたラクトン環構造含有重合体の諸物性は、以下の通りである。
ガラス転移温度(Tg):120℃
重量平均分子量:149000
応力光学係数(Cr):0.7×10-11Pa-1
熱分解温度(Td):339℃
熱重量分析(TG)における5%質量減少温度:366℃
残存揮発分の総量:2050ppm
全光線透過率:92.5%。
得られた熱可塑性樹脂組成物の270℃、剪断速度10/秒における溶融粘度は、694Pa・S以上であった。
<実施例1-1>
上記製造例で得た熱可塑性樹脂組成物をタッチロール製膜して、光学フィルムを製造した。ダイの出口における熱可塑性樹脂組成物の溶融物の温度Tp(℃)は272℃であった。従って、「Td-Tp」は73℃であった。
具体的には、以下の手順で製膜した。
(1)ベント付単軸押出機を用いて、25kg/時の処理速度で溶融製膜を行った。上記押出機は、直径65mm、L/D=32のバリアフライト型スクリューを有していた。また、上記押出機の先端部には、ポリマーフィルタ(濾過精度5μm)およびTダイが備わっていた。
(2)製膜後の溶融樹脂フィルムを、冷却ロールに通した。上記冷却ロールは、第1ロール(弾性タッチロール)、第2ロール(キャストロール)、および第3ロールから構成されており、それぞれのロールはクロムめっきが施されていた。各冷却ロールの温度は、R1/R2/R3=95/100/85℃とした(R1、R2およびR3は、順に第1ロール、第2ロールおよび第3ロールを意味する。以下同様)。Tダイ出口から押し出した熱可塑性樹脂組成物の溶融樹脂フィルムと、R1およびR2の間隙を含む鉛直面とのなす角度θは、5°に設定した。
(3)溶融樹脂フィルムをR1上にキャスティングし、厚さ215μmの未延伸フィルムを得た。得られた未延伸フィルムをそのまま連続的にオーブン縦延伸機へ供給し、オーブンの温度を136℃として、縦方向に延伸倍率1.6倍の延伸を行った。
(4)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ160μmの縦延伸フィルムロールを得た。
(5)得られた縦延伸フィルムロールを繰り出し機で繰り出し、両端部から20mmの位置を2インチのクリップで掴んでテンター延伸機へ供給した。そして、オーブンの温度を138℃として、横方向に延伸倍率2.0倍の横延伸を行った。
(6)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ80μmのロール状の光学フィルムを得た。
(7)得られた光学フィルムを200mm×300mm(A4)サイズに切断して、複数枚の枚葉状光学フィルムを製造した。
製造した光学フィルムのb*値は0.18であった。そして、当該枚葉状光学フィルムの投影検査を前述した投影検査方法に従って実施したところ、ノイズ(1m2当たりのノイズの数)は0点であった。結果を表1に示す。
また、長時間運転した後も、上記タッチロール(R1)、キャストロール(R2)共に、汚染物質の付着は観察されなかった。
<実施例1-2>
(i)ベント付単軸押出機の処理速度を56kg/時とし、(ii)各冷却ロールの温度をR1/R2/R3=80/80/80℃とし、(iii)ダイの出口における上記溶融物の温度Tp(℃)を277℃にした(「Td-Tp」を68℃にした)以外は、実施例1-1と同様にして、複数枚の枚葉状光学フィルムを製造した。製造した光学フィルムのb*値は0.20であった。そして、当該枚葉状光学フィルムの投影検査を前述した投影検査方法に従って実施したところ、ノイズ(1m2当たりのノイズの数)は0点であった。結果を表1に示す。
また、長時間運転した後も、上記タッチロール(R1)、キャストロール(R2)共に、汚染物質の付着は観察されなかった。
<比較例1-1>
上記製造例で得た熱可塑性樹脂組成物を、オープン製膜を行うことによって光学フィルムを製造した。ダイの出口における熱可塑性樹脂組成物の溶融物の温度Tp(℃)は272℃であった。従って、「Td-Tp」は73℃であった。
具体的には、以下の手順で製膜した。
(1)ベント付単軸押出機を用いて、25kg/時の処理速度で溶融製膜を行った。上記押出機は、直径65mm、L/D=32のバリアフライト型スクリューを有していた。また、上記押出機の先端部には、ポリマーフィルタ(濾過精度5μm)およびTダイが備わっていた。
(2)製膜後の溶融樹脂フィルムを、冷却ロールに通した。上記冷却ロールは、第2ロール(キャストロール)、および第3ロールから構成されており、それぞれのロールはクロムめっきが施されていた。各冷却ロールの温度は、R2/R3=120/95℃とした。
(3)Tダイ出口から押し出した熱可塑性樹脂組成物の溶融樹脂フィルムをR2上にキャスティングし、厚さ215μmの未延伸フィルムを得た。得られた未延伸フィルムをそのまま連続的にオーブン縦延伸機へ供給し、オーブンの温度を136℃として、縦方向に延伸倍率1.6倍の延伸を行った。
(4)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ160μmの縦延伸フィルムロールを得た。
(5)得られた縦延伸フィルムロールを繰り出し機で繰り出し、両端部から20mmの位置を2インチのクリップで掴んでテンター延伸機へ供給した。そして、オーブンの温度を138℃として、横方向に延伸倍率2.0倍の横延伸を行った。
(6)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ80μmのロール状の光学フィルムを得た。
(7)得られた光学フィルムを200mm×300mm(A4)サイズに切断して、複数枚の枚葉状光学フィルムを製造した。
製造した光学フィルムのb*値は0.20であった。そして、当該光学フィルムの投影検査を前述した投影検査方法に従って実施したところ、17枚のフィルムのうちの7枚は、ノイズが0点であった。しかしながら、残りの10枚は、キャストロール(R2)の表面に付着した汚染物質の転写によるノイズが多く、上記自動欠点検査装置で検出される欠点数が1000点を超えたため、カウント不可となった。結果を表1に示す。
また、長時間運転した後に、上記キャストロール(R2)に、汚染物質の付着が観察された。
(結果)
表1から明らかなように、タッチロール製膜を行うことによって、熱分解温度が低い紫外線吸収剤を用いた場合においても、b*値が低くて良好であり、製膜時にロール(タッチロールおよびキャストロール)からの汚染物質の転写が無い、光学特性が良好な光学フィルムを製造することができることが分かった。
〔実施例2〕
<物性等の測定方法>
[熱分解温度(Td)、ガラス転移温度(Tg)および重量平均分子量(Mw)]
熱分解温度(熱分解開始温度)、ガラス転移温度および重量平均分子量は、実施例1と同様の方法で測定した。
[フィルムの厚さ]
フィルムの厚さは、デジマチックマイクロメーター(株式会社ミツトヨ製)を用いて測定した。以降に評価方法を示す物性を含め、フィルムの物性を測定、評価するためのサンプルはフィルムの幅方向の中央部から取得した。
[a*値、b*値、c*値およびL*値]
a*値、b*値、およびL*値は、分光色差計(日本電色工業株式会社製:Colormeter ZE6000)を用いて、JIS Z 8729の規定に準拠して測定した。具体的には、以下の手順に従った。
(1)熱可塑性樹脂組成物を手動式加熱プレス機(株式会社井元製作所製、IMC-180C型)を用いて、250℃で5分間溶融プレス成形し、未延伸フィルムを作製した。
(2)45mm×35mmに切り出した未延伸フィルムを、1,2,3,4-テトラヒドロナフタレン(テトラリン)を入れた光路長10mmの石英セルに浸漬して、a*値、b*値、およびL*値を測定した。
(3)(2)の測定を、2枚目、3枚目と追加の未延伸フィルムを重ねながら同様に繰り返した。
(4)測定したa*値、b*値、およびL*値をそれぞれy軸に、未延伸フィルムの厚さをx軸にプロットして、最小二乗法により当該プロットの直線の傾きを導出した。これにより、厚さを100μmの未延伸フィルムとしたときのa*値、b*値、およびL*値を算出した。
(5)c*値は、上記方法で算出したa*値およびb*値より下記式から算出した。
c*=(a*2+b*2)1/2。
[380nmおよび420nmにおける光線透過率]
380nmおよび420nmにおける光線透過率は、JIS K7361:1997の規定に準拠して、株式会社島津製作所製UV-1600PCを用いてそれぞれ測定した。具体的には、以下の手順に従った。
(1)熱可塑性樹脂組成物を手動式加熱プレス機(株式会社井元製作所製、IMC-180C型)を用いて、250℃で5分間溶融プレス成形して未延伸フィルムを作製した。
(2)40mm×10mmに切り出した未延伸フィルムを、イオン交換水を入れた光路長10mmの石英セルに浸漬して、各光線透過率を測定した。
(3)測定した各光線透過率Tと未延伸フィルムの厚さLの結果を用いて、厚さを100μmの未延伸フィルムとしたときの各光線透過率T(100μm)を、下記式から算出した。
T(100μm)=102-(2-LOG(T))×100/L。
[全光線透過率およびヘイズ]
全光線透過率およびヘイズは、日本電色工業株式会社製NDH-1001DPを用いて測定した。具体的には、以下の手順に従った。
(1)熱可塑性樹脂組成物を手動式加熱プレス機(株式会社井元製作所製、IMC-180C型)を用いて、250℃で5分間溶融プレス成形して未延伸フィルムを作製した。
(2)45mm×35mmに切り出した未延伸フィルムを、1,2,3,4-テトラヒドロナフタレン(テトラリン)を入れた光路長10mmの石英セルに浸漬して、全光線透過率およびヘイズを測定した。
(3)(2)の測定を、2枚目、3枚目と追加の未延伸フィルムを重ねながら繰り返した。
(4)測定した全光線透過率およびヘイズをそれぞれy軸に、未延伸フィルムの厚さをx軸にプロットして、最小二乗法により当該プロットの直線の傾きを導出した。これにより、厚さを100μmの未延伸フィルムとしたときの全光線透過率およびヘイズを算出した。
[フィルムの1m2当たりのノイズ数]
フィルムの1m2当たりのノイズ数は、実施例1と同様の方法で測定した。結果は、得られた1m2当たりのノイズ数が5点以下の場合を「○」、得られた1m2当たりのノイズ数が5点を超える場合を「×」とした。
[純水との接触角]
接触角測定器(協和界面化学社製「FACE 接触角計 CA-X」)を用いて、JIS R3257:1999に準拠して測定した。滴下後30秒後の純水との接触角を5回測定し、最高値と最低値を除く3回の平均値を「純水との接触角」とした。
<実施例2-1>
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応容器に、メタクリル酸メチル(MMA)83.5部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)12部、トルエン90.4部、およびn-ドデシルメルカプタン0.07部を仕込み、これに窒素を通じつつ、105℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富株式会社製:ルペロックス(登録商標)570)0.10部を添加した。続けて、上記t-アミルパーオキシイソノナノエート0.20部とスチレン4.5部とを2時間かけて滴下しながら約105~110℃の還流下で溶液重合を進行させた。滴下終了後、同温度でさらに4時間の熟成を行った。
次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、リン酸ステアリル(堺化学工業株式会社製:Phoslex A-18)0.08部を加え、約90~110℃の還流下において2時間、ラクトン環構造を形成するための環化縮合反応を進行させた。さらに、得られた重合溶液を、240℃に加熱した多管式熱交換器に通して環化縮合反応を完結させた。
その後、ベントタイプスクリュー二軸押出機(L/D=52)を用いて、得られた重合物を35.1部/時(樹脂量換算)の処理速度で導入した。上記押出機は、バレル温度が250℃であり、1個のリアベント、4個のフォアベント(以下、上流側から第1、第2、第3、第4ベントと称する)および第3ベントと第4ベントとの間にサイドフィーダーを備えていた。また、上記押出機は、先端部にリーフディスク型のポリマーフィルター(濾過精度5μm)が配置されていた。
重合物を導入する際には、イオン交換水を0.54部/時の投入速度で第2および第4ベントの上流から、0.18部/時の投入速度で第3ベントの上流からそれぞれ投入した。また、上記サイドフィーダーから、紫外線吸収剤(株式会社ADEKA製:アデカスタブ(登録商標)LA-31、重量減少開始温度Td(℃)は345℃)を0.79部/時の投入速度で投入した。
脱揮完了後、押出機内に残された熱溶融状態にある樹脂組成物を当該押出機の先端からポリマーフィルタで濾過しながら排出した。その後、押出機の先端に備わっているダイスを通過させ、冷却水を満たした水槽で冷却することにより、上記樹脂組成物のストランドを得た。上記冷却水は、孔径1μmのフィルタ(オルガノ株式会社製、製品名:ミクロポアフィルタ1EU)で濾過し、30±10℃の範囲内の温度に保持されていたものである。冷却後のストランドを切断機(ペレタイザー)に導入することで、熱可塑性樹脂組成物(A-1)を得た。得られた熱可塑性樹脂組成物(A-1)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-1)から、タッチロール製膜を行うことによってフィルムを製造した。ダイの出口における熱可塑性樹脂組成物(A-1)の溶融物の温度Tpは272℃であった。従って、「Td-Tp」は73℃であった。
具体的には、以下の手順で製膜した。
(1)ベント付単軸押出機を用いて、25kg/時の処理速度で溶融製膜を行った。上記押出機は、直径65mm、L/D=32のバリアフライト型スクリューを有していた。また、上記押出機の先端部には、ポリマーフィルタ(濾過精度5μm)およびTダイが備わっていた。
(2)製膜後の溶融樹脂フィルムを、冷却ロールに通した。上記冷却ロールは、第1ロール(弾性タッチロール)、第2ロール(キャストロール)、および第3ロールから構成されており、それぞれのロールはクロムめっきが施されていた。各冷却ロールの温度は、R1/R2/R3=95/100/85℃とした。Tダイ出口から押し出した熱可塑性樹脂組成物の溶融樹脂フィルムと、R1およびR2の間隙を含む鉛直面とのなす角度θは、5°に設定した。
(3)溶融樹脂フィルムをR1上にキャスティングし、厚さ215μmの未延伸フィルムを得た。得られた未延伸フィルムをそのまま連続的にオーブン縦延伸機へ供給し、オーブンの温度を136℃として、縦方向に延伸倍率1.6倍の延伸を行った。
(4)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ160μmの縦延伸フィルムロールを得た。
(5)得られた縦延伸フィルムロールを繰り出し機で繰り出し、両端部から20mmの位置を2インチのクリップで掴んでテンター延伸機へ供給した。そして、オーブンの温度を138℃として、横方向に延伸倍率2.0倍の横延伸を行った。
(6)延伸後のフィルムを巻き取り機で巻き取り、平均厚さ80μmのロール状の光学フィルムを得た。
(7)得られた光学フィルムを200mm×300mm(A4)サイズに切断して、複数枚の枚葉状光学フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。当該フィルムの純水との接触角を測定したところ、76°であった。
<実施例2-2>
ガラス容器に、メタクリル酸メチル(MMA)18質量部、アクリル酸メチル(MA)2質量部、メチルイソブチルケトン(MIBK)20質量部、2,2’-アゾビス(イソ酪酸)ジメチル(和光純薬工業株式会社製:V-601)0.06質量部を仕込み、これに窒素ガスを導入して密封し、60℃で4時間、50℃で48時間反応させた。続いて、得られた重合溶液をMIBKで希釈し、ヘキサンを用いて再沈殿、ろ過および乾燥により(メタ)アクリル系樹脂を得た。得られた重合体20質量部をトルエン20質量部で溶解し、得られた重合溶液から、実施例2-1と同様にして、熱可塑性樹脂組成物(A-2)を得た。得られた熱可塑性樹脂組成物(A-2)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-2)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
<実施例2-3>
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応容器に、メタクリル酸メチル(MMA)81部、N-フェニルマレイミド(PMI)8部、N-シクロヘキシルマレイミド(CHMI)11部、およびキシレン67部を仕込み、これに窒素を通じつつ、130℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt-ブチルパーオキシ-2-エチルヘキサノエート(日本油脂株式会社製:パーブチル(登録商標)O)0.19部を6時間かけて滴下しながら、約130~145℃の還流下で溶液重合を進行させた。
二軸押出機のバレル温度を260℃に設定した以外は、実施例2-1と同様にして、得られた重合溶液から熱可塑性樹脂組成物(A-3)を得た。得られた熱可塑性樹脂組成物(A-3)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-3)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
<実施例2-4>
着色剤(住化ケムテックス株式会社製:スミプラスト(登録商標)VioletB)0.01部をトルエン44部に溶解させた溶液を0.15部/時の投入速度で第3ベントの上流から投入した以外は、実施例2-1と同様にして熱可塑性樹脂組成物(A-4)を得た。得られた熱可塑性樹脂組成物(A-4)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-4)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
<実施例2-5>
着色剤(住化ケムテックス株式会社製:スミプラスト(登録商標)GreenG)0.01部をトルエン44部に溶解させた溶液を0.15部/時の投入速度で第3ベントの上流から投入した以外は、実施例2-1と同様にして熱可塑性樹脂組成物(A-5)を得た。得られた熱可塑性樹脂組成物(A-5)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-5)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
<比較例2-1>
紫外線吸収剤(株式会社ADEKA製:アデカスタブ(登録商標)LA-F70、重量減少開始温度Td(℃)は379℃)0.55部をトルエン1.13部に溶解させた溶液を0.59部/時の投入速度で第3ベントの上流から投入した以外は、実施例2-2と同様にして、熱可塑性樹脂組成物(A-6)を得た。得られた熱可塑性樹脂組成物(A-6)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-6)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
<参考例2-1>
市販のポリメチルメタクリレート樹脂(住友化学社製:スミペックス(登録商標)EX)320部、トルエン480部を攪拌機付のオートクレーブに導入し、100℃で30分間加熱して溶解して、重合溶液を得た。
得られた重合溶液から、実施例2-1と同様にして、熱可塑性樹脂組成物(A-7)を得た。得られた熱可塑性樹脂組成物(A-7)の物性値は表2にまとめて示す。
熱可塑性樹脂組成物(A-7)から、実施例2-1と同様にしてタッチロール製膜および延伸を行い、複数枚の枚葉状フィルムを製造した。当該フィルムの1m2当たりのノイズ数は5点以下であった。
(結果)
実施例2-1~2-5、比較例2-1~2-2は、いずれもタッチロールにより製膜を行った。このため、ノイズ発生が抑制された良好な光学フィルムを製造することができた。この点は、実施例1と同様である。
また、実施例2-1~2-3は熱可塑性樹脂組成物の組成を変更することにより、ガラス転移温度がそれぞれ異なるが、いずれも高耐熱性の熱可塑性組成物を得た。実施例2-4~2-5も、着色剤を用いたが、やはり高耐熱性の熱可塑性組成物を得た。その結果、各種光学特性に優れた熱可塑性組成物を得ることができた。
一方、比較例2-1は、熱分解温度の高い紫外線吸収剤を用いて熱可塑性組成物を得た。その結果、上記熱可塑性組成物は、光学特性に欠点が存在した。具体的には、a*値、b*値、c*値および420nm光線通過率が、好適な範囲から外れていた。
尚、参考例2-1のように、ガラス転移温度の低い(高耐熱性でない)熱可塑性樹脂組成物を用いても、光学特性に優れた熱可塑性樹脂組成物を得ることができる。しかし、〔1〕節で述べた通り、このような熱可塑性樹脂組成物から得られる光学フィルムは、高耐熱性の光学フィルムが備えている利点を備えていない。
実施例2の結果から、高耐熱性の熱可塑性組成物(高耐熱性の(メタ)アクリル系樹脂)および熱分解温度の低い紫外線吸収剤を併用すれば、光学特性に優れた光学フィルムが製造できることが示唆される。この際、製膜方法としてタッチロールを採用すれば、ノイズの発生も抑制することができる。