[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7181819B2 - ventilation system - Google Patents

ventilation system Download PDF

Info

Publication number
JP7181819B2
JP7181819B2 JP2019047261A JP2019047261A JP7181819B2 JP 7181819 B2 JP7181819 B2 JP 7181819B2 JP 2019047261 A JP2019047261 A JP 2019047261A JP 2019047261 A JP2019047261 A JP 2019047261A JP 7181819 B2 JP7181819 B2 JP 7181819B2
Authority
JP
Japan
Prior art keywords
window
air
glass
windows
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019047261A
Other languages
Japanese (ja)
Other versions
JP2020148038A (en
Inventor
豊 大浦
幸康 朝岡
武史 藤園
大輔 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Tateyama Inc
Original Assignee
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Tateyama Inc filed Critical Sankyo Tateyama Inc
Priority to JP2019047261A priority Critical patent/JP7181819B2/en
Publication of JP2020148038A publication Critical patent/JP2020148038A/en
Application granted granted Critical
Publication of JP7181819B2 publication Critical patent/JP7181819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Ventilation (AREA)

Description

本発明は、冷暖房負荷を抑えることのできる換気システムに関する。 TECHNICAL FIELD The present invention relates to a ventilation system capable of reducing cooling and heating loads.

建物の室内環境は、空調設備で制御していたが、窓からの熱の出入りが多く電気代がかかるため、経済的に優れたものが求められていた。 The indoor environment of the building was controlled by air-conditioning equipment, but since a lot of heat goes in and out through the windows, and electricity costs are high, there was a need for something economically superior.

本発明は以上に述べた実情に鑑み、窓からの熱の出入りを減らし、冷暖房負荷を抑えることのできる換気システムの提供を目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a ventilation system capable of reducing the amount of heat flowing in and out through windows and reducing the air conditioning load.

上記の課題を達成するために請求項1記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで日射熱を取得すると共に温熱を回収し内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れ、他の方角の窓から内気を排出するものであり、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から外気を取り入れるように給気と排気の窓が切り替わることを特徴とする。 In order to achieve the above object, the ventilation system according to claim 1 is provided with a plurality of windows provided on the walls of the building in different directions, each window having an outer glass and an inner glass, and the outside air is outside. It flows in one direction along the inner surface of the glass, turns back at the edge of the intermediate layer between the outer glass and the inner glass, and flows in the other direction along the outer surface of the inner glass to acquire solar heat. Heat is recovered , and the internal air flows in one direction along the outer surface of the inner glass, turns back at the end of the intermediate layer, and flows in the other direction along the inner surface of the outer glass, thereby suppressing heat loss. Of the multiple windows, outside air is taken in from the window in the direction where the sunlight hits, and inside air is discharged from the window in the other direction. It is characterized in that the windows for air supply and exhaust are switched so that the outside air is taken in from the window in the receiving direction .

請求項2記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで冷熱を回収し、内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出し、他の方角の窓から外気を取り入れるものであり、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から内気を排出するように給気と排気の窓が切り替わることを特徴とする。 The ventilation system according to the second aspect of the invention comprises a plurality of windows provided on walls in different directions of a building, each window having an outer glass and an inner glass, and outside air flowing along the inner surface of the outer glass. flow in one direction, fold back at the edge of the intermediate layer between the outer glass and the inner glass, and collect cold heat by flowing in the other direction along the outer surface of the inner glass, and the inside air along the outer surface of the inner glass It flows in one direction through the middle layer, turns back at the edge of the intermediate layer, and flows in the other direction along the inner surface of the outer glass, thereby suppressing the acquisition of solar heat. The inside air is discharged from the window and the outside air is taken in from the window in the other direction. It is characterized by the fact that the air and exhaust windows are switched .

請求項1記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで日射熱を取得すると共に温熱を回収し内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れることで日射熱を取得すると共に温熱を回収でき、他の方角の窓から内気を排出することで温熱損失が抑えられるので、暖房負荷を抑えることができる。本換気システムは、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から外気を取り入れるように給気と排気の窓が切り替わることで、暖房負荷を抑える効果が一日を通して確実に発揮される。 The ventilation system according to the invention of claim 1 comprises a plurality of windows provided on walls in different directions of a building, each window having an outer glass and an inner glass, and outside air flowing along the inner surface of the outer glass. It flows in one direction, turns back at the edge of the intermediate layer between the outer glass and the inner glass, and flows in the other direction along the outer surface of the inner glass to obtain solar heat and collect heat , and the inside air is inside. Heat loss is suppressed by flowing in one direction along the outer surface of the glass, folding back at the edge of the intermediate layer, and flowing in the other direction along the inner surface of the outer glass. By taking in outside air from the windows in the opposite direction, it is possible to obtain solar heat and recover the heat , and by discharging inside air from the windows in other directions, it is possible to suppress heat loss, so the heating load can be suppressed. This ventilation system has the effect of reducing the heating load by switching the air supply and exhaust windows so that the outside air is taken in from the window in the direction that receives the sun in conjunction with the change in the direction of the sunlight due to the movement of the sun. is reliably demonstrated throughout the day.

請求項2記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで冷熱を回収し、内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出することで日射熱の取得を抑制でき、他の方角の窓から外気を取り入れることで冷熱を回収できるので、冷房負荷を抑えることができる。本換気システムは、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から内気を排出するように給気と排気の窓が切り替わることで、冷房負荷を抑える効果が一日を通して確実に発揮される。 The ventilation system according to the second aspect of the invention comprises a plurality of windows provided on walls in different directions of a building, each window having an outer glass and an inner glass, and outside air flowing along the inner surface of the outer glass. flow in one direction, fold back at the edge of the intermediate layer between the outer glass and the inner glass, and collect cold heat by flowing in the other direction along the outer surface of the inner glass, and the inside air along the outer surface of the inner glass It flows in one direction through the middle layer, turns back at the edge of the intermediate layer, and flows in the other direction along the inner surface of the outer glass, thereby suppressing the acquisition of solar heat. By exhausting the inside air from the outside, it is possible to suppress the acquisition of solar heat. This ventilation system reduces the cooling load by switching the air supply and exhaust windows so that the inside air is discharged from the window in the direction that receives the sun in conjunction with the change in the direction of the sunlight due to the movement of the sun. The effect is guaranteed throughout the day.

本発明の換気システムの第1実施形態を示す模式図である。1 is a schematic diagram showing a first embodiment of a ventilation system of the present invention; FIG. 同換気システムの窓の働きを示す説明図であって、(a)は給気側を、(b)は排気側を示す。It is explanatory drawing which shows the function of the window of the same ventilation system, (a) shows an air supply side, (b) shows an exhaust side. 同換気システムの窓(給気側)の上部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view showing an enlarged upper part of the window (air supply side) of the same ventilation system. 同換気システムが設置されるビルの一例を示す平面図である。It is a plan view showing an example of a building in which the same ventilation system is installed. 第1実施形態の換気システムにおいて、南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。In the ventilation system of the first embodiment, when there are windows on the south side and the west side, it is a diagram showing an example of how to switch between air supply and air exhaust for each window. 東京の2月22日の各方位の壁面日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the wall surface solar radiation amount of each direction on February 22 in Tokyo. 第1実施形態の換気システムにおいて、東面と南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。FIG. 4 is a diagram showing an example of how to switch between air supply and exhaust for each window when there are windows on the east, south, and west sides of the ventilation system of the first embodiment. 東京の2月22日の東面+南面及び南面+西面の日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the solar radiation amount of the east + south side and the south + west side of Tokyo on February 22nd. 本発明の換気システムの第2実施形態を示す模式図である。FIG. 4 is a schematic diagram showing a second embodiment of the ventilation system of the present invention; 同換気システムの窓の働きを示す説明図であって、(a)は給気側を、(b)は排気側を示す。It is explanatory drawing which shows the function of the window of the same ventilation system, (a) shows an air supply side, (b) shows an exhaust side. 第2実施形態の換気システムにおいて、南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。In the ventilation system of the second embodiment, when there are windows on the south side and the west side, it is a diagram showing an example of how to switch air supply and exhaust of each window. 東京の6月17日の各方位の壁面日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the wall surface solar radiation amount of each direction on June 17 in Tokyo. 第2実施形態の換気システムにおいて、東面と南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。In the ventilation system of the second embodiment, when there are windows on the east, south and west sides, it is a diagram showing an example of how to switch air supply and exhaust of each window. 東京の6月17日の東面+南面及び南面+西面の日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the solar radiation amount of the east + south side and the south + west side of Tokyo on June 17. FIG.

以下、本発明の実施の形態を図面に基づいて説明する。図1~3は、本発明の換気システムの第1実施形態(請求項1記載の発明の実施形態)を示している。本実施形態は、オフィスビルの換気システムに適用したものであって、冬期における運転状態を示している。本換気システムは、図1に示すように、建物の異なる方角の壁に設けた複数の窓1と、天井裏に設置した空調機4と、天井5に設置した空気取入・吹出口6と、それらを天井裏で繋ぐダクト7とを備えている。
図4は、本換気システムが設置されるビルの一例を示す平面図であり、窓1は東面と南面と西面のうち、南面を含む少なくとも二つの面の開口部19に設置されている。そして本換気システムは、図1に示すように、日射の当たる方角の窓1から外気を取り入れ、他の窓1から内気を室外に排出する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 3 show a first embodiment (embodiment of the invention defined in claim 1) of the ventilation system of the present invention. This embodiment is applied to a ventilation system in an office building, and shows an operating state in winter. As shown in FIG. 1, this ventilation system consists of a plurality of windows 1 provided on the walls in different directions of the building, an air conditioner 4 installed in the ceiling space, and an air intake/outlet 6 installed in the ceiling 5. , and a duct 7 connecting them above the ceiling.
FIG. 4 is a plan view showing an example of a building in which this ventilation system is installed, and windows 1 are installed in openings 19 on at least two sides including the south side among the east, south and west sides. . In this ventilation system, as shown in FIG. 1, the outside air is taken in from the window 1 facing the sun, and the inside air is discharged from the other window 1 to the outside.

各窓1は、図1~3に示すように、外窓(外側ガラス)2と内窓(内側ガラス)3とを備える二重窓となっており、外窓2と内窓3間の中間層8にブラインド等の遮蔽物9が上方から吊り下げて設置してある。
外窓2は、図3に示すように、上枠10のガラス11より室外側の底壁に通気口12aを形成し、中間の縦壁に通気口12bを形成し、ガラス11より室内側の底壁に通気口12cを形成することで、上枠10に室外空間から遮蔽物9より室外側の中間層8に連通する通気部13が設けてある。同通気部13は室外側の通気口12aが下向きに開口して設けてあり、室内側の通気口12cはガラス11に向けて斜め下向きに設けてある。
内窓3は、上枠14の室外側壁と上壁とに通気口15a,15bを形成することで、上枠14に遮蔽物9より室内側の中間層8より天井裏の空間に連通する通気部16が設けてあり、通気口15bにはダクト7が連結されている。
Each window 1 is, as shown in FIGS. A shield 9 such as a blind is installed on the layer 8 so as to be suspended from above.
As shown in FIG. 3, the exterior window 2 has a vent 12a formed in the bottom wall on the outside of the glass 11 of the upper frame 10, and a vent 12b in the middle vertical wall. By forming the vent hole 12c in the bottom wall, the upper frame 10 is provided with the ventilation part 13 communicating from the outdoor space to the intermediate layer 8 on the outdoor side from the shield 9. The vent 12a on the outdoor side of the ventilation part 13 is opened downward, and the vent 12c on the indoor side is provided obliquely downward toward the glass 11. - 特許庁
The inner window 3 has ventilation openings 15a and 15b formed in the outdoor side wall and the upper wall of the upper frame 14, so that the upper frame 14 is ventilated from the shield 9 to the space behind the ceiling through the intermediate layer 8 on the indoor side. A portion 16 is provided, and a duct 7 is connected to the vent 15b.

内窓3の通気部16に連結されたダクト7には、図1に示すように、正逆回転自在なファン17を備えており、日射を受けている方角の窓1から外気を吸い込み、他の窓1から内気を排出するように各ファン17を回転させる。 As shown in FIG. 1, the duct 7 connected to the ventilation part 16 of the inner window 3 is equipped with a fan 17 that can rotate forward and backward, and sucks outside air from the window 1 in the direction that receives the sun. Each fan 17 is rotated so as to exhaust the internal air from the window 1 of the window.

図2(a)は、給気側の窓1の働きを示している。同図に示すように、外窓2の通気部13より流入した冷たい外気は、通気部13室内側の通気口12cが内周側に向けて開口して設けてあることで、図中の矢印に示すように、外窓2のガラス11の室内側面に沿うように下向きに流出する。その後、冷たい外気はコールドドラフトにより中間層8の下まで流れる。この間に、外気は日射熱を取得する。その後、外気は中間層8の下部で折り返し、内窓3のガラス18から室内の熱が伝わることでさらに暖められ、ガラス18の室外側面に沿って上昇し、この間にガラス18から室外に逃げる熱を空気の流れによって回収する。0℃であった外気は、このように窓1の中間層8を通る間に日射熱を取得するとともに内窓3のガラス18から室内の熱を回収することで、18℃に暖められる。その後、暖められた外気は内窓3上部の通気部16を通り、ダクト7を通って空調機4へと送られ、空調機4により30℃程度に暖められて空気取入・吹出口6より室内に流出する。このように、中間層11内を外窓9と内窓10に沿うように迂回して外気が流れることで、日射熱を取得できるとともに、室内から室外に伝わる熱を空気の流れによって回収し、室内に戻すことで、室内から室外への熱の損失がほとんどなくなり、これにより空気が流入する方向とは逆方向である室内側から室外側への熱輸送が妨げられ、非常に高い断熱性が得られると共に、外気を日射を受ける窓1に通すことで18℃まで暖めてから空調機4に供給するので、空調機4の負荷を低減することができる。 FIG. 2(a) shows the operation of the window 1 on the air supply side. As shown in the figure, the cold outside air that has flowed in through the ventilation part 13 of the exterior window 2 is blocked by the arrows in the figure because the ventilation opening 12c on the inside of the ventilation part 13 is opened toward the inner peripheral side. 2, the air flows downward along the indoor side surface of the glass 11 of the exterior window 2. As shown in FIG. After that, cold outside air flows under the intermediate layer 8 by cold draft. During this time, the outside air acquires solar heat. After that, the outside air is folded back at the lower part of the intermediate layer 8, and is further warmed by the heat in the room being transferred from the glass 18 of the inner window 3, and rises along the outdoor side of the glass 18. During this time, the heat escapes from the glass 18 to the outside. is recovered by the air flow. The outside air at 0° C. is warmed to 18° C. by receiving solar heat while passing through the intermediate layer 8 of the window 1 and recovering indoor heat from the glass 18 of the inner window 3 . After that, the warmed outside air passes through the ventilation part 16 above the inner window 3, passes through the duct 7, is sent to the air conditioner 4, is heated to about 30° C. by the air conditioner 4, and is discharged from the air intake/outlet 6. leak into the room. In this way, by detouring the inside of the intermediate layer 11 along the outer window 9 and the inner window 10, the outside air flows, so that solar heat can be obtained, and the heat transmitted from the indoor to the outdoor can be recovered by the air flow, By returning it indoors, there is almost no heat loss from the indoors to the outdoors, and this prevents the heat transfer from the indoors to the outdoors, which is the opposite direction of the air flow, resulting in extremely high thermal insulation. In addition, the load on the air conditioner 4 can be reduced because the outside air is heated to 18° C. by passing it through the window 1 that receives the sunshine and then supplied to the air conditioner 4 .

一方、排気側の窓1では、図2(b)に示すように、内窓3の通気部16より内気が遮蔽物9より室内側の中間層8に流れ込み、その後、内気は内窓3のガラス18の室外側面に沿って下向きに流れ、中間層8の下部で折り返し、外窓2のガラス11の室内側面に沿って上昇し、外窓2の通気部13を通って室外に排出される。このように、暖かい内気を遮蔽物9より室内側の中間層8に導入して下向きに流れることで、遮蔽物9より室内側の中間層8の温度が室内の温度とほぼ同じになるため、窓1からの温熱損失を抑制することができる。よって、空調機4の負荷を低減することができる。 On the other hand, in the window 1 on the exhaust side, as shown in FIG. It flows downward along the outdoor side of the glass 18, folds at the bottom of the intermediate layer 8, rises along the indoor side of the glass 11 of the outside window 2, and is discharged outside through the ventilation part 13 of the outside window 2. . In this way, by introducing the warm inside air into the intermediate layer 8 on the indoor side from the shield 9 and flowing downward, the temperature of the intermediate layer 8 on the indoor side from the shield 9 becomes almost the same as the indoor temperature. Heat loss from the window 1 can be suppressed. Therefore, the load on the air conditioner 4 can be reduced.

日射を受ける方角は時間によって変わるため、本換気システムは太陽の動きに連動して給気と排気の窓1が順次切り替わるようになっている。各窓1の給気から排気、排気から給気への切り替えは、ファン17の回転方向を変更して空気の流れの向きを変更することにより行うことができる。 Since the direction in which sunlight is received changes with time, the ventilation system is designed such that the windows 1 for air supply and exhaust are sequentially switched in conjunction with the movement of the sun. Switching from the air supply to the exhaust and from the exhaust to the air supply of each window 1 can be performed by changing the rotation direction of the fan 17 to change the direction of the air flow.

太陽の動きに連動して給気と排気の窓1を切り替える方法としては、ビルの建設地における年間の方位ごとの窓面日射量を計算し、最適な年間の給気・排気の切替時間を決定する方法がある。
以下に具体例をあげて説明する。図5,6は、南面と西面の2面に窓1がある場合の例を示している。図6は、ビルの建設地である東京の2月22日の各方位の壁面日射量(過去10年の平均)の経時変化を示すグラフである。なお、このようなグラフは、気象庁から入手できるデータに基づいて作成することができる。同グラフで南面と西面の日射量を比較すると、日の出から15:00までは南面の日射量が多く、15:00から日の入りまでは西面の日射量が多いことが分かる。そこで、図5に示すように、運転開始(例えば8:00)から15:00までの間は、南面の窓1から給気して西面の窓1から排気し、15:00から運転終了(例えば21:00)までの間は、西面の窓1から給気して南面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
図7,8は、東面と南面と東面の3面に窓1がある場合の例を示している。図8は、ビルの建設地である東京の2月22日の東面+南面、南面+西面の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフより、日の出から12:00までの間は東面+南面の日射量が多く、12:00から日の入りまでの間は南面+西面の日射量が多いことが分かる。そこで、図7に示すように、運転開始(例えば8:00)から12:00までの間は、東面及び南面の窓1から給気して西面の窓1から排気し、12:00から運転終了(例えば21:00)までの間は、南面及び西面の窓1から給気して東面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
As a method of switching the air supply and exhaust windows 1 in conjunction with the movement of the sun, the annual amount of solar radiation on the window surface for each direction in the building construction site is calculated, and the optimal annual switching time for air supply and exhaust is determined. There is a way to decide.
Specific examples will be described below. FIGS. 5 and 6 show an example in which windows 1 are provided on two sides, the south side and the west side. FIG. 6 is a graph showing changes over time in the amount of wall solar radiation in each direction (average for the past ten years) on February 22 in Tokyo, where the building was constructed. Such a graph can be created based on data available from the Japan Meteorological Agency. Comparing the amount of solar radiation on the south side and the west side in the same graph, it can be seen that the amount of solar radiation on the south side is large from sunrise to 15:00, and the amount of solar radiation on the west side is large from 15:00 to sunset. Therefore, as shown in FIG. 5, from the start of operation (for example, 8:00) to 15:00, air is supplied from the window 1 on the south side and exhausted from the window 1 on the west side, and the operation ends at 15:00. Until (for example, 21:00), the fan 17 in the duct route is operated by a timer (not shown) built into this ventilation system so that air is supplied from the window 1 on the west side and exhausted from the window 1 on the south side. Control the direction of rotation to change the direction of the air flow.
FIGS. 7 and 8 show an example in which windows 1 are present on three sides, east, south and east. FIG. 8 is a graph showing changes over time in wall solar irradiation (average for the past 10 years) on east + south and south + west on February 22 in Tokyo, where the building was constructed. From the same graph, it can be seen that from sunrise to 12:00, the amount of solar radiation on the east and south faces is large, and from 12:00 to sunset, the amount of solar radiation on the south and west faces is large. Therefore, as shown in FIG. 7, from the start of operation (for example, 8:00) to 12:00, air is supplied from the windows 1 on the east and south sides and exhausted from the window 1 on the west side, and the air is exhausted from the window 1 on the west side. to the end of operation (for example, 21:00), the duct is operated by a timer (not shown) built into this ventilation system so that air is supplied from the windows 1 on the south and west sides and exhausted from the windows 1 on the east side. The direction of air flow is changed by controlling the rotation direction of the fan 17 in the path.

上述の例においては、1日ごとに図6,8に示すようなグラフを作成し、1日ごとに給気・排気を切り替えるタイミングを設定してもよいが、一定の期間(例えば2週間)ごとに図6,8に示すようなグラフを作成し、当該期間の間はグラフから求めた同じタイミングで給気・排気を切り替えるようにしてもよい。
また、東面と南面と東面の3面に窓1がある場合で、時間ごとに一つの方角の窓からだけ給気するようにしてもよい。例えば、運転開始から9:30までは東面の窓1から給気し(南面及び西面の窓1から排気)、9:30から15:00までは南面の窓1から給気し(東面及び西面の窓1から排気)、15:00から運転終了までは西面の窓1から給気(東面及び南面の窓1から排気)することもできる。
In the above example, the graphs shown in FIGS. 6 and 8 may be created for each day, and the timing for switching air supply/exhaust may be set for each day. Graphs such as those shown in FIGS. 6 and 8 may be created for each period, and the air supply/exhaust may be switched at the same timing obtained from the graphs during the relevant period.
Also, in the case where there are windows 1 on the three sides of the east, south, and east sides, air may be supplied only from the windows in one direction at each hour. For example, from the start of operation until 9:30, air is supplied from the window 1 on the east side (exhaust from the windows 1 on the south and west sides), and from 9:30 to 15:00 air is supplied from the window 1 on the south side (east From 15:00 to the end of operation, air can be supplied from the west window 1 (exhaust from the east and south windows 1).

上記のように、過去の日射量のデータに基づいて各窓1の給気と排気を切り替えるタイミングを予め設定しておく方法の他、外気温計と窓面日射量計を用いるなどして各窓1の給気と排気を切り替えるタイミングをリアルタイムで決定することもできる。
例えば、屋外に外気温計を設置し、東面と南面と西面に日射量計をそれぞれ設置しておき、外気温計で測定した外気温に基づいて季節が冬であるか否かを判定し、冬であると判定した場合は、運転開始時には東面の窓1から給気し(南面及び西面の窓1から排気)、東面の日射量計で測定した日射量よりも南面の日射量計で測定した日射量が多くなったときに、給気の窓1を東面から南面に切り替え(東面及び西面の窓1から排気)、南面の日射量計で測定した日射量よりも西面の日射量計で測定した日射量が多くなったときに、給気の窓1を南面から西面に切り替える(東面及び南面の窓1から排気)。
As described above, in addition to the method of presetting the timing of switching air supply and exhaust of each window 1 based on past solar radiation data, each It is also possible to determine in real time the timing of switching between the air supply and exhaust of the window 1 .
For example, an outdoor thermometer is installed outdoors, and solar radiation meters are installed on the east, south, and west sides, respectively, and whether the season is winter or not is determined based on the outside temperature measured by the outside temperature gauge. However, when it is determined that it is winter, air is supplied from the window 1 on the east side at the start of operation (exhaust from the window 1 on the south and west sides), and the amount of solar radiation on the south side is higher than that measured by the solar radiation meter on the east side. When the amount of solar radiation measured by the pyranometer increased, the air supply window 1 was switched from the east side to the south side (exhaust from the windows 1 on the east and west sides), and the amount of solar radiation measured by the pyranometer on the south side When the amount of solar radiation measured by the pyranometer on the west side is greater than that on the west side, the window 1 for air supply is switched from the south side to the west side (exhaust from the windows 1 on the east and south sides).

上述した何れの制御方法においても、天候が曇天・雨天などの日射が少ない場合(センサーで計測した日射量が閾値以下の場合)は給気・排気の切替を行わないようにすることができる。これにより不要な給気・排気の切替を省くことができ、合理的な運転が行える。
一例として、図5,6に示す南面と西面の2面に窓1がある場合の例で説明すると、前日が西面給気の状態で運転終了(または朝まで連続運転)し、その翌日が切替の効果が見込めない日射の少ない日だった場合に、上記の制御がなければ、設定した切替モードに従って、朝に南面給気に切替、15:00に西面給気に切替と2回の不要な切替が発生するが、上記の日射量により切替を行うか否かを判断する制御を加えれば、不要な切替を行わずに済む。
なお、天候により一時的に日射量が閾値を越えた時間は、切替モードでの運用に移行する(再度閾値以下になった場合には切替は行わない。)。
In any of the control methods described above, when the weather is cloudy or rainy and the amount of solar radiation is low (when the amount of solar radiation measured by the sensor is equal to or less than a threshold value), switching between air supply and exhaust can be prevented. As a result, unnecessary switching between air supply and exhaust can be omitted, and rational operation can be performed.
As an example, if there are windows 1 on two sides, the south side and the west side shown in FIGS. However, if it is a day with little sunlight where the effect of switching cannot be expected, without the above control, according to the set switching mode, switch to the south side air supply in the morning and switch to the west side air supply at 15:00 twice. However, if control is added to determine whether or not to perform switching based on the amount of solar radiation, unnecessary switching can be avoided.
When the amount of solar radiation temporarily exceeds the threshold due to the weather, the operation shifts to the switching mode (when the amount of solar radiation falls below the threshold again, switching is not performed).

図9,10は、本発明の換気システムの第2実施形態(請求項2記載の発明の実施形態)を示している。本実施形態は、第1実施形態と同様に、オフィスビルの換気システムに適用したものであって、夏期における運転状態を示している。第2実施形態の換気システムは、第1実施形態と装置の構成は全く同じで、空気の流れる向きを第1実施形態とは逆向きにしている。すなわち、図9に示すように、日射の当たる方角の窓1から内気を室外に排出し、他の窓1から外気を取り入れる。 9 and 10 show a second embodiment of the ventilation system of the present invention (embodiment of the invention defined in claim 2). This embodiment, like the first embodiment, is applied to a ventilation system in an office building, and shows an operating state in summer. The ventilation system of the second embodiment has exactly the same device configuration as that of the first embodiment, and the direction of air flow is opposite to that of the first embodiment. That is, as shown in FIG. 9, the inside air is discharged to the outside through the window 1 in the direction in which the sunlight hits, and the outside air is taken in through the other windows 1 .

図10(a)は、給気側の窓1の働きを示している。同図に示すように、外窓2の通気部13より流入した暖かい外気は、通気部13室内側の通気口12cが内周側に向けて開口して設けてあることで、図中の矢印に示すように、外窓2のガラス11の室内側面に沿うように下向きに流出し、その後、中間層8の下まで流れる。給気側の窓1は日射が当たっておらず、日射熱を取得しないため、この間の外気の温度上昇が抑制される。その後、外気は中間層8の下部で折り返し、内窓3のガラス18の室外側面に沿って上昇し、この間にガラス18から室外に逃げる冷熱を空気の流れによって回収する。これにより、30℃であった外気が27℃に冷やされる。その後、冷やされた外気は内窓3上部の通気部16を通り、ダクト7を通って空調機4へと送られ、空調機4により20℃程度に冷やされて空気取入・吹出口6より室内に流出する。このように、外気を日射を受けない窓1に通すことで冷熱を回収し、27℃まで冷やしてから空調機4に供給するので、空調機4の負荷を低減することができる。 FIG. 10(a) shows the operation of the window 1 on the air supply side. As shown in the figure, the warm outside air that has flowed in through the ventilation part 13 of the exterior window 2 is vented by opening the ventilation opening 12c on the inside of the ventilation part 13 toward the inner peripheral side. 2, it flows downward along the indoor side surface of the glass 11 of the exterior window 2, and then flows under the intermediate layer 8. As shown in FIG. Since the window 1 on the air supply side is not exposed to sunlight and does not receive solar heat, the temperature rise of the outside air during this period is suppressed. After that, the outside air is folded back at the lower part of the intermediate layer 8 and rises along the outdoor side of the glass 18 of the inner window 3, during which cold heat escaping from the glass 18 to the outside is recovered by the air flow. As a result, the outside air at 30°C is cooled to 27°C. After that, the cooled outside air passes through the ventilation part 16 above the inner window 3, passes through the duct 7, is sent to the air conditioner 4, is cooled to about 20° C. by the air conditioner 4, and is discharged from the air intake/outlet 6. leak into the room. In this way, cold heat is recovered by passing outside air through the window 1 which does not receive solar radiation, and is supplied to the air conditioner 4 after being cooled to 27° C., so the load on the air conditioner 4 can be reduced.

一方、排気側の窓1では、図10(b)に示すように、冷たい内気が窓1の中間層8の遮蔽物9より室内側に導入される。この空気は、室外よりも温度が低いので、内窓3のガラス18の室外側面に沿って下向きに流れ、その後、中間層8の下部で折り返し、外窓2のガラス11等の熱が伝わることで外窓2のガラス11の室内側面に沿って上昇し、この間に日射熱を取得すると共に、ガラス11を通じて室外から室内に入ってくる熱を空気の流れによって回収する。25℃であった内気は、外窓2と遮蔽物9の間を通る間に日射熱を取得して46℃に暖められ、その後、外窓2の通気部13を通って空気が室外に放出される。空気が通気部13を通過する際、上枠10を伝って室内に入ってくる熱を空気の流れによって回収する。そして、空気が室外に放出されることで、日射熱とガラス11や上枠10から回収した熱を室外に捨てる。このように、外窓2の内側面と内窓3の外側面に沿うように内気が流れることで、日射熱の取得を抑制できると共に、室外から室内に伝わる熱を空気の流れによって回収し室外に捨てることで、空気が流出する方向とは逆方向である室外側から室内側への熱輸送が妨げられ、優れた断熱効果を発揮して、室内が涼しく保たれる。よって、空調機4の負荷を低減することができる。 On the other hand, in the window 1 on the exhaust side, as shown in FIG. 10B, cold inside air is introduced into the room through the shield 9 of the intermediate layer 8 of the window 1 . Since the temperature of this air is lower than that of the outside, the air flows downward along the outside surface of the glass 18 of the inner window 3, then folds back at the lower part of the intermediate layer 8, and heat is transferred to the glass 11 of the outer window 2, etc. , it rises along the indoor side surface of the glass 11 of the external window 2, receives solar heat during this time, and collects the heat entering the room from the outside through the glass 11 by the flow of air. The inside air, which was 25°C, acquires solar heat while passing between the outer window 2 and the shield 9 and is warmed to 46°C. be done. When the air passes through the ventilation part 13, the heat coming into the room along the upper frame 10 is recovered by the flow of air. Then, the air is released outdoors, and the heat from the sun and the heat collected from the glass 11 and the upper frame 10 are discarded outdoors. In this way, the internal air flows along the inner surface of the outer window 2 and the outer surface of the inner window 3, so that the acquisition of solar heat can be suppressed, and the heat transmitted from the outdoor to the indoor is recovered by the air flow, and the outdoor air can be collected. By disposing of it in the direction opposite to the direction in which the air flows out, the heat transfer from the outdoor side to the indoor side is hindered, exhibiting an excellent heat insulating effect and keeping the room cool. Therefore, the load on the air conditioner 4 can be reduced.

日射を受ける方角は時間によって変わるため、本換気システムは太陽の動きに連動して給気と排気の窓1が順次切り替わるようになっている。
図11,12は、南面と西面の2面に窓がある場合の例を示している。図12は、ビルの建設地である東京の6月17日の各方位の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフで南面と西面の日射量を比較すると、日の出から13:00までは南面の日射量が多く、13:00から日の入りまでは西面の日射量が多いことが分かる。そこで、図11に示すように、運転開始(例えば8:00)から15:00までの間は、西面の窓1から給気して南面の窓1から排気し、13:00から運転終了(例えば21:00)までの間は、南面の窓1から給気して西面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
図13,14は、東面と南面と東面の3面に窓1がある場合の例を示している。図14は、ビルの建設地である東京の6月17日の東面+南面、南面+西面の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフより、日の出から12:00までの間は東面+南面の日射量が多く、12:00から日の入りまでの間は南面+西面の日射量が多いことが分かる。そこで、図13に示すように、運転開始(例えば8:00)から12:00までの間は、西面の窓1から給気して東面及び南面の窓1から排気し、12:00から運転終了(例えば21:00)までの間は、東面の窓1から給気して南面及び西面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
Since the direction in which sunlight is received changes with time, the ventilation system is designed such that the windows 1 for air supply and exhaust are sequentially switched in conjunction with the movement of the sun.
11 and 12 show an example in which there are windows on two sides, the south side and the west side. FIG. 12 is a graph showing changes over time in the amount of wall solar radiation in each direction (average for the past 10 years) on June 17 in Tokyo, where the building was constructed. Comparing the amount of solar radiation on the south side and the west side in the same graph, it can be seen that the amount of solar radiation on the south side is high from sunrise to 13:00, and the amount of solar radiation on the west side is high from 13:00 to sunset. Therefore, as shown in FIG. 11, from the start of operation (for example, 8:00) to 15:00, air is supplied from the window 1 on the west side and exhausted from the window 1 on the south side, and the operation ends at 13:00. Until (for example, 21:00), the fan 17 in the duct route is operated by a timer (not shown) built into this ventilation system so that air is supplied from the window 1 on the south side and exhausted from the window 1 on the west side. Control the direction of rotation to change the direction of the air flow.
FIGS. 13 and 14 show an example in which windows 1 are provided on three sides, east, south and east. FIG. 14 is a graph showing changes over time in the amount of wall solar radiation (average for the past 10 years) on east + south and south + west faces on June 17 in Tokyo, where the building was constructed. From the same graph, it can be seen that from sunrise to 12:00, the amount of solar radiation on the east and south faces is large, and from 12:00 to sunset, the amount of solar radiation on the south and west faces is large. Therefore, as shown in FIG. 13, from the start of operation (for example, 8:00) to 12:00, air is supplied from the window 1 on the west side and exhausted from the windows 1 on the east and south sides. to the end of operation (for example, 21:00), the duct is operated by a timer (not shown) built into this ventilation system so that air is supplied from the window 1 on the east side and exhausted from the windows 1 on the south and west sides. The direction of air flow is changed by controlling the rotation direction of the fan 17 in the path.

第2実施形態においても、第1実施形態と同様に、外気温計と窓面日射量計を用いるなどして各窓1の給気と排気を切り替えるタイミングをリアルタイムで決定することもできる。
例えば、屋外に外気温計を設置し、東面と西面に日射量計をそれぞれ設置しておき、外気温計で測定した外気温に基づいて季節が夏であるか否かを判定し、夏であると判定した場合は、運転開始時には西面の窓1から給気し(東面及び南面の窓1から排気)、西面の日射量計で測定した日射量が東面の日射量計で測定した日射量より多くなったときに、給気の窓1を西面から東面に切り替える(南面及び西面の窓1から排気)。
Also in the second embodiment, like the first embodiment, it is possible to determine in real time the timing of switching between the air supply and the exhaust of each window 1 by using an outside air temperature gauge and a window surface pyranometer.
For example, an outdoor thermometer is installed outdoors, and a solar radiation meter is installed on each of the east and west sides. If it is determined that it is summer, air is supplied from window 1 on the west side (exhaust from window 1 on the east and south sides) at the start of operation, and the amount of solar radiation measured by the pyranometer on the west side is the amount of solar radiation on the east side. When the amount of solar radiation exceeds that measured by the meter, the supply window 1 is switched from the west face to the east face (exhaust from the south and west windows 1).

また、第2実施形態においても、第1実施形態と同様に、日射量により切替を行うか否かを判断する制御を加えることができ、これにより曇天・雨天のときに不要な給気・排気の切替を省き、合理的な運転が行える。 Also in the second embodiment, as in the first embodiment, it is possible to add control to determine whether or not to perform switching based on the amount of solar radiation. This eliminates the need to switch over, allowing rational operation.

第2実施形態の換気システムは、夏期だけでなく中間期においても実施することができる。すなわち本換気システムは、冬期においては日射が当たる方角の窓1から外気を取り入れ、他の方角の窓1から内気を排出し、冬期以外は日射が当たる方角の窓1から内気を排出し、他の方角の窓1から外気を取り入れるようにすることで、年間を通じて冷暖房負荷を抑えることができる。 The ventilation system of the second embodiment can be implemented not only in the summer season but also in the interim season. In other words, this ventilation system takes in outside air from the window 1 facing the sun in winter, discharges the inside air from the window 1 facing the other direction, and discharges the inside air from the window 1 facing the sun in other directions than in winter. By taking in outside air from the window 1 in the direction of , the air conditioning load can be suppressed throughout the year.

以上に述べたように本換気システム(第1実施形態)は、建物の異なる方角の壁に設けた複数の窓1を備え、各窓1は、外側ガラス(外窓)2と内側ガラス(内窓)3を有し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように外気が流れることで日射熱を取得し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように内気が流れることで温熱損失を抑えるものであり、複数の窓1のうち、日射が当たる方角の窓1から外気を取り入れることで日射熱を取得でき、他の方角の窓1から内気を排出することで温熱損失が抑えられるので、暖房負荷を抑えることができる。 As described above, the ventilation system (first embodiment) includes a plurality of windows 1 provided on the walls of the building in different directions. It has a window) 3, acquires solar heat by flowing outside air along the inner surface of the outer glass 2 and the outer surface of the inner glass 3, and flows along the inner surface of the outer glass 2 and the outer surface of the inner glass 3. Heat loss can be suppressed by flowing inside air, and outside air can be taken in from the window 1 in the direction where the sun shines out of the plurality of windows 1, and inside air can be taken in from the windows 1 in other directions. Heat loss can be suppressed by discharging, so heating load can be suppressed.

本換気システム(第2実施形態)は、建物の異なる方角の壁に設けた複数の窓1を備え、各窓1は、外側ガラス2と内側ガラス3を有し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように外気が流れることで冷熱を回収し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように内気が流れることで日射熱の取得を抑えるものであり、複数の窓1のうち、日射が当たる方角の窓1から内気を排出することで日射熱の取得を抑制でき、他の方角の窓1から外気を取り入れることで冷熱を回収できるので、冷房負荷を抑えることができる。 This ventilation system (second embodiment) comprises a plurality of windows 1 provided on walls in different directions of a building. Outside air flows along the outer surface of the inner glass 3 to collect cold heat, and internal air flows along the inner surface of the outer glass 2 and the outer surface of the inner glass 3 to suppress the acquisition of solar heat. There is, among a plurality of windows 1, the inside air is discharged from the window 1 in the direction where the sunlight hits, so that the acquisition of solar heat can be suppressed, and the outside air is taken in from the windows 1 in other directions, so that cold heat can be recovered. load can be reduced.

本換気システム(第1及び第2実施形態)は、太陽の動きに連動して給気と排気の窓1が順次切り替わることで、上記の暖房負荷又は冷房負荷を抑える効果が一日を通して確実に発揮される。 In this ventilation system (first and second embodiments), the air supply and exhaust windows 1 are sequentially switched in conjunction with the movement of the sun, so that the effect of suppressing the above-mentioned heating load or cooling load can be reliably achieved throughout the day. demonstrated.

本発明は以上に述べた実施形態に限定されない。窓の構造は適宜変更することができ、外窓と内窓とを備える二重窓に限らず、外側ガラスと内側ガラスを1つのフレーム(枠、框等)に支持した単体サッシとすることもできる。室外空間から中間層に連通する通気部、中間層から室内空間に連通する通気部はどこに形成してあってもよく、例えば縦枠や下枠に設けてあったり、上框と上枠との隙間を通気部とし、その隙間から空気が流入・流出するもの等であってもよい。建物の構造は任意であり、壁面が必ずしも正確に東西南北に向いていなくてもよいし、横断面が四角形以外の多角形や円形であってもよい。本発明の換気システムは、ビルだけでなく、一般住宅で使用することもできる。本発明の換気システムは、ダクトを使わずに、窓だけで完結するものであってもよい。 The invention is not limited to the embodiments described above. The structure of the window can be changed as appropriate, and it is not limited to a double window having an outer window and an inner window, but it is also possible to use a single sash in which the outer glass and the inner glass are supported by one frame (frame, stile, etc.). can. The ventilation part that communicates from the outdoor space to the intermediate layer and the ventilation part that communicates from the intermediate layer to the indoor space may be formed anywhere. The gap may be used as a vent, and air may flow in and out through the gap. The structure of the building is arbitrary, and the walls do not necessarily have to face north, south, east and west, and the cross section may be polygonal or circular other than square. The ventilation system of the present invention can be used not only in buildings but also in ordinary houses. The ventilation system of the present invention may be completed only with windows without using ducts.

1 窓
2 外窓(外側ガラス)
3 内窓(内側ガラス)
1 window 2 outside window (outside glass)
3 Inner window (inner glass)

Claims (2)

建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで日射熱を取得すると共に温熱を回収し内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れ、他の方角の窓から内気を排出するものであり、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から外気を取り入れるように給気と排気の窓が切り替わることを特徴とする換気システム。 A plurality of windows installed on walls in different directions of a building, each window having an outer glass and an inner glass, outside air flowing in one direction along the inner surface of the outer glass, and between the outer glass and the inner glass By folding back at the end of the middle layer of the inner glass and flowing in the other direction along the outer surface of the inner glass, the heat of the sun is collected and the heat is collected , and the inside air flows in one direction along the outer surface of the inner glass. The heat loss is suppressed by folding back at the edge of the intermediate layer and flowing in the other direction along the inner surface of the outer glass. Air is discharged from the directional windows, and when the direction of solar radiation changes due to the movement of the sun, the intake and exhaust windows are switched so that outside air is taken in from the windows in the direction of solar radiation. A ventilation system characterized by: 建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外気が外側ガラスの内側面に沿って一方向に流れ、外側ガラスと内側ガラスの間の中間層の端部で折り返し、内側ガラスの外側面に沿って他方向に流れることで冷熱を回収し、内気が内側ガラスの外側面に沿って一方向に流れ、中間層の端部で折り返し、外側ガラスの内側面に沿って他方向に流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出し、他の方角の窓から外気を取り入れるものであり、太陽が動くことで日射を受ける方角が変わるのに連動して、日射を受ける方角の窓から内気を排出するように給気と排気の窓が切り替わることを特徴とする換気システム。 A plurality of windows installed on walls in different directions of a building, each window having an outer glass and an inner glass, outside air flowing in one direction along the inner surface of the outer glass, and between the outer glass and the inner glass At the end of the middle layer, the cold heat is recovered by flowing in the other direction along the outer surface of the inner glass , and the inside air flows in one direction along the outer surface of the inner glass, and the end of the middle layer It turns back at the outside and flows in the other direction along the inner surface of the outer glass to suppress the acquisition of solar heat. It takes in outside air from the outside, and in conjunction with the change in the direction of solar radiation due to the movement of the sun, the intake and exhaust windows are switched so that the inside air is discharged from the window in the direction of solar radiation. ventilation system.
JP2019047261A 2019-03-14 2019-03-14 ventilation system Active JP7181819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047261A JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047261A JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Publications (2)

Publication Number Publication Date
JP2020148038A JP2020148038A (en) 2020-09-17
JP7181819B2 true JP7181819B2 (en) 2022-12-01

Family

ID=72430433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047261A Active JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Country Status (1)

Country Link
JP (1) JP7181819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117366651B (en) * 2023-12-08 2024-03-12 山西迪安普特科技有限公司 Building heating device utilizing solar energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090187A (en) 2003-09-19 2005-04-07 Takenaka Komuten Co Ltd Exhaust structure of building and building using this exhaust structure
JP2009150099A (en) 2007-12-20 2009-07-09 Ykk Ap株式会社 Window device
JP2013217616A (en) 2012-04-11 2013-10-24 Takenaka Komuten Co Ltd Humidity control system using double skin
JP2016138428A (en) 2015-01-29 2016-08-04 高砂熱学工業株式会社 Double skin unit and air conditioning system using the same
JP2017198371A (en) 2016-04-26 2017-11-02 高砂熱学工業株式会社 Double skin unit and air-conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090187A (en) 2003-09-19 2005-04-07 Takenaka Komuten Co Ltd Exhaust structure of building and building using this exhaust structure
JP2009150099A (en) 2007-12-20 2009-07-09 Ykk Ap株式会社 Window device
JP2013217616A (en) 2012-04-11 2013-10-24 Takenaka Komuten Co Ltd Humidity control system using double skin
JP2016138428A (en) 2015-01-29 2016-08-04 高砂熱学工業株式会社 Double skin unit and air conditioning system using the same
JP2017198371A (en) 2016-04-26 2017-11-02 高砂熱学工業株式会社 Double skin unit and air-conditioning system

Also Published As

Publication number Publication date
JP2020148038A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
Khedari et al. Experimental study of a roof solar collector towards the natural ventilation of new houses
US10598403B2 (en) Mechanical ventilation heat recovery apparatus
US20120108158A1 (en) Solar energy intercept and waste heat recovery system
Hilliaho et al. Energy saving and indoor climate effects of an added glazed facade to a brick wall building: Case study
Siddhartha et al. Effect of building orientation and window glazing on the energy consumption of HVAC system of an office building for different climate zones
JP7463125B2 (en) Ventilation system
JP2009235677A (en) Thermal environment improving system
WO2015021525A1 (en) Integrated solar energy collector for a building enclosure
JP7181819B2 (en) ventilation system
JP2012220131A (en) Solar heating and cooling ventilator, and solar heating and cooling ventilation method using the same
JP7333026B2 (en) Ductless dynamic insulation and heat storage system
CN110259358A (en) A kind of photovoltaic sun-shading louver system and its control method
JP3848652B2 (en) Solar system house
Fosdick et al. Passive solar heating
JP2018080904A (en) Urban type passive design
JP6748904B2 (en) Operating method of multi-function double skin system with vertical opening/closing mechanism
Schnieders et al. Passive houses in Chinese climates
Qurraie et al. The Energy Performance of Shading Element and Double Skin Facade System Integration into Office Buildings in Turkey
Thambidurai et al. Free cooling feasibility of a typical commercial building in Pune city, India
Babota Increase Energy Efficiency and Comfort in Homes by Incorporating Passive Solar Design Features
Lamsal et al. Passive solar building design strategies in lalitpur, pokhara and dharan cities of nepal
JPH05296514A (en) Ventilation mechanism of dwelling equipped with cellar
KR101125311B1 (en) Intermediate level control system of the residential double skin system communicated with home network system
JP2003193579A (en) House
EP1947404A2 (en) System for using, controlling and regulating renewable energies in self-sufficient buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221118

R150 Certificate of patent or registration of utility model

Ref document number: 7181819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150