[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2020148038A - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
JP2020148038A
JP2020148038A JP2019047261A JP2019047261A JP2020148038A JP 2020148038 A JP2020148038 A JP 2020148038A JP 2019047261 A JP2019047261 A JP 2019047261A JP 2019047261 A JP2019047261 A JP 2019047261A JP 2020148038 A JP2020148038 A JP 2020148038A
Authority
JP
Japan
Prior art keywords
window
glass
air
windows
ventilation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019047261A
Other languages
Japanese (ja)
Other versions
JP7181819B2 (en
Inventor
豊 大浦
Yutaka Oura
豊 大浦
幸康 朝岡
Yukiyasu Asaoka
幸康 朝岡
武史 藤園
Takeshi Fujizono
武史 藤園
岡村 大輔
Daisuke Okamura
大輔 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Tateyama Inc
Original Assignee
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Tateyama Inc filed Critical Sankyo Tateyama Inc
Priority to JP2019047261A priority Critical patent/JP7181819B2/en
Publication of JP2020148038A publication Critical patent/JP2020148038A/en
Application granted granted Critical
Publication of JP7181819B2 publication Critical patent/JP7181819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ventilation (AREA)
  • Building Environments (AREA)

Abstract

To provide a ventilation system that can suppress cooling and heating load by reducing entering and exiting of heat from a window.SOLUTION: A ventilation system comprises a plurality of windows 1 provided on the different direction wall of a building, and each window 1 has an outside glass 2 and an inner side glass 3. In the ventilation system, solar radiation heat is captured by flowing outside air so as to be along an inside surface of the outside glass 2 and an outside surface of the inner side glass 3, and thermal loss is suppressed by flowing the inside air so as to be along the inside surface of the outside glass 2 and the outside surface of the inner side glass 3. The outside air is taken in from the window 1 in the direction shot by solar radiation among the plurality of windows 1 and the inside air is exhausted from the window 1 in the other direction.SELECTED DRAWING: Figure 1

Description

本発明は、冷暖房負荷を抑えることのできる換気システムに関する。 The present invention relates to a ventilation system capable of suppressing a heating / cooling load.

建物の室内環境は、空調設備で制御していたが、窓からの熱の出入りが多く電気代がかかるため、経済的に優れたものが求められていた。 The indoor environment of the building was controlled by air-conditioning equipment, but there was a need for economically superior ones because of the large amount of heat coming in and out of the windows and the cost of electricity.

本発明は以上に述べた実情に鑑み、窓からの熱の出入りを減らし、冷暖房負荷を抑えることのできる換気システムの提供を目的とする。 In view of the above-mentioned circumstances, an object of the present invention is to provide a ventilation system capable of reducing heat inflow and outflow from windows and suppressing heating and cooling load.

上記の課題を達成するために請求項1記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで日射熱を取得し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れ、他の方角の窓から内気を排出することを特徴とする。 To achieve the above task, the ventilation system according to the invention according to claim 1 comprises a plurality of windows provided on walls in different directions of the building, each window having an outer glass and an inner glass, and the outer glass. Solar heat is acquired by the outside air flowing along the inner surface and the outer surface of the inner glass, and the inside air flows along the inner surface of the outer glass and the outer surface of the inner glass to suppress heat loss. Among a plurality of windows, the outside air is taken in from the window in the direction of sunlight, and the inside air is discharged from the window in the other direction.

請求項2記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで冷熱を回収し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出し、他の方角の窓から外気を取り入れることを特徴とする。 The ventilation system according to the invention according to claim 2 comprises a plurality of windows provided on walls in different directions of the building, each window having an outer glass and an inner glass, and an inner side surface of the outer glass and an outer surface of the inner glass. The outside air flows along the window to recover the cold heat, and the inside air flows along the inner surface of the outer glass and the outer surface of the inner glass to suppress the acquisition of solar heat. It is characterized by discharging the inside air from the windows in the direction of sunlight and taking in the outside air from the windows in the other directions.

請求項1記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで日射熱を取得し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れることで日射熱を取得でき、他の方角の窓から内気を排出することで温熱損失が抑えられるので、暖房負荷を抑えることができる。 The ventilation system according to the invention according to claim 1 comprises a plurality of windows provided on walls in different directions of the building, each window having an outer glass and an inner glass, and an inner side surface of the outer glass and an outer surface of the inner glass. The outside air flows along the window to acquire solar heat, and the inside air flows along the inner side surface of the outer glass and the outer surface of the inner glass to suppress the heat loss. Solar heat can be obtained by taking in the outside air from the window in the direction in which the glass hits, and the heat loss can be suppressed by discharging the inside air from the window in the other direction, so the heating load can be suppressed.

請求項2記載の発明による換気システムは、建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで冷熱を回収し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出することで日射熱の取得を抑制でき、他の方角の窓から外気を取り入れることで冷熱を回収できるので、冷房負荷を抑えることができる。 The ventilation system according to the invention according to claim 2 comprises a plurality of windows provided on walls in different directions of the building, each window having an outer glass and an inner glass, and an inner side surface of the outer glass and an outer surface of the inner glass. The outside air flows along the window to recover the cold heat, and the inside air flows along the inner surface of the outer glass and the outer surface of the inner glass to suppress the acquisition of solar heat. The acquisition of solar heat can be suppressed by discharging the inside air from the window in the direction of sunlight, and the cold heat can be recovered by taking in the outside air from the window in the other direction, so that the cooling load can be suppressed.

本発明の換気システムの第1実施形態を示す模式図である。It is a schematic diagram which shows the 1st Embodiment of the ventilation system of this invention. 同換気システムの窓の働きを示す説明図であって、(a)は給気側を、(b)は排気側を示す。It is explanatory drawing which shows the function of the window of the ventilation system, (a) shows an air supply side, (b) shows an exhaust side. 同換気システムの窓(給気側)の上部を拡大して示す縦断面図である。It is a vertical cross-sectional view which shows the upper part of the window (air supply side) of the ventilation system enlarged. 同換気システムが設置されるビルの一例を示す平面図である。It is a top view which shows an example of the building where the ventilation system is installed. 第1実施形態の換気システムにおいて、南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。It is a figure which shows the example of how to switch the air supply and exhaust of each window when there are windows on the south side and the west side in the ventilation system of 1st Embodiment. 東京の2月22日の各方位の壁面日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the wall surface solar radiation amount of each direction on February 22 in Tokyo. 第1実施形態の換気システムにおいて、東面と南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。It is a figure which shows the example of how to switch the air supply and the exhaust of each window when there are windows on the east side, the south side, and the west side in the ventilation system of 1st Embodiment. 東京の2月22日の東面+南面及び南面+西面の日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the amount of solar radiation of the east side + south side and the south side + west side of Tokyo on February 22nd. 本発明の換気システムの第2実施形態を示す模式図である。It is a schematic diagram which shows the 2nd Embodiment of the ventilation system of this invention. 同換気システムの窓の働きを示す説明図であって、(a)は給気側を、(b)は排気側を示す。It is explanatory drawing which shows the function of the window of the ventilation system, (a) shows an air supply side, (b) shows an exhaust side. 第2実施形態の換気システムにおいて、南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。It is a figure which shows the example of how to switch the air supply and exhaust of each window when there are windows on the south side and the west side in the ventilation system of the 2nd Embodiment. 東京の6月17日の各方位の壁面日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the wall surface solar radiation amount of each direction on June 17th of Tokyo. 第2実施形態の換気システムにおいて、東面と南面と西面に窓がある場合の各窓の給気と排気の切替え方の例を示す図である。It is a figure which shows the example of how to switch the air supply and exhaust of each window when there are windows on the east side, the south side, and the west side in the ventilation system of the 2nd Embodiment. 東京の6月17日の東面+南面及び南面+西面の日射量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the amount of solar radiation of the east side + south side and the south side + west side of Tokyo on June 17.

以下、本発明の実施の形態を図面に基づいて説明する。図1〜3は、本発明の換気システムの第1実施形態(請求項1記載の発明の実施形態)を示している。本実施形態は、オフィスビルの換気システムに適用したものであって、冬期における運転状態を示している。本換気システムは、図1に示すように、建物の異なる方角の壁に設けた複数の窓1と、天井裏に設置した空調機4と、天井5に設置した空気取入・吹出口6と、それらを天井裏で繋ぐダクト7とを備えている。
図4は、本換気システムが設置されるビルの一例を示す平面図であり、窓1は東面と南面と西面のうち、南面を含む少なくとも二つの面の開口部19に設置されている。そして本換気システムは、図1に示すように、日射の当たる方角の窓1から外気を取り入れ、他の窓1から内気を室外に排出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 to 3 show a first embodiment of the ventilation system of the present invention (the embodiment of the invention according to claim 1). This embodiment is applied to a ventilation system of an office building, and shows an operating state in winter. As shown in FIG. 1, this ventilation system includes a plurality of windows 1 provided on walls in different directions of a building, an air conditioner 4 installed behind the ceiling, and an air intake / outlet 6 installed on the ceiling 5. , It is equipped with a duct 7 that connects them behind the ceiling.
FIG. 4 is a plan view showing an example of a building in which the ventilation system is installed, and the window 1 is installed in the openings 19 of at least two of the east, south, and west surfaces including the south surface. .. Then, as shown in FIG. 1, this ventilation system takes in the outside air from the window 1 in the direction of sunlight and exhausts the inside air to the outside through the other windows 1.

各窓1は、図1〜3に示すように、外窓(外側ガラス)2と内窓(内側ガラス)3とを備える二重窓となっており、外窓2と内窓3間の中間層8にブラインド等の遮蔽物9が上方から吊り下げて設置してある。
外窓2は、図3に示すように、上枠10のガラス11より室外側の底壁に通気口12aを形成し、中間の縦壁に通気口12bを形成し、ガラス11より室内側の底壁に通気口12cを形成することで、上枠10に室外空間から遮蔽物9より室外側の中間層8に連通する通気部13が設けてある。同通気部13は室外側の通気口12aが下向きに開口して設けてあり、室内側の通気口12cはガラス11に向けて斜め下向きに設けてある。
内窓3は、上枠14の室外側壁と上壁とに通気口15a,15bを形成することで、上枠14に遮蔽物9より室内側の中間層8より天井裏の空間に連通する通気部16が設けてあり、通気口15bにはダクト7が連結されている。
As shown in FIGS. 1 to 3, each window 1 is a double-glazed window including an outer window (outer glass) 2 and an inner window (inner glass) 3, and is intermediate between the outer window 2 and the inner window 3. A shield 9 such as a blind is suspended from above on the layer 8.
As shown in FIG. 3, the outer window 2 has a vent 12a formed on the bottom wall outside the glass 11 of the upper frame 10, a vent 12b formed on the vertical wall in the middle, and is on the indoor side of the glass 11. By forming the vent 12c on the bottom wall, the upper frame 10 is provided with a vent 13 that communicates from the outdoor space to the intermediate layer 8 on the outdoor side of the shield 9. The vent 12a on the outdoor side is provided so as to open downward in the vent portion 13, and the vent 12c on the indoor side is provided diagonally downward toward the glass 11.
The inner window 3 has vents 15a and 15b formed on the outdoor wall and the upper wall of the upper frame 14, so that the upper frame 14 communicates with the space behind the ceiling from the intermediate layer 8 on the indoor side of the shield 9. A portion 16 is provided, and a duct 7 is connected to the vent 15b.

内窓3の通気部16に連結されたダクト7には、図1に示すように、正逆回転自在なファン17を備えており、日射を受けている方角の窓1から外気を吸い込み、他の窓1から内気を排出するように各ファン17を回転させる。 As shown in FIG. 1, the duct 7 connected to the ventilation portion 16 of the inner window 3 is provided with a fan 17 that can rotate in the forward and reverse directions, and sucks in outside air from the window 1 in the direction of receiving sunlight. Each fan 17 is rotated so as to exhaust the inside air from the window 1.

図2(a)は、給気側の窓1の働きを示している。同図に示すように、外窓2の通気部13より流入した冷たい外気は、通気部13室内側の通気口12cが内周側に向けて開口して設けてあることで、図中の矢印に示すように、外窓2のガラス11の室内側面に沿うように下向きに流出する。その後、冷たい外気はコールドドラフトにより中間層8の下まで流れる。この間に、外気は日射熱を取得する。その後、外気は中間層8の下部で折り返し、内窓3のガラス18から室内の熱が伝わることでさらに暖められ、ガラス18の室外側面に沿って上昇し、この間にガラス18から室外に逃げる熱を空気の流れによって回収する。0℃であった外気は、このように窓1の中間層8を通る間に日射熱を取得するとともに内窓3のガラス18から室内の熱を回収することで、18℃に暖められる。その後、暖められた外気は内窓3上部の通気部16を通り、ダクト7を通って空調機4へと送られ、空調機4により30℃程度に暖められて空気取入・吹出口6より室内に流出する。このように、中間層11内を外窓9と内窓10に沿うように迂回して外気が流れることで、日射熱を取得できるとともに、室内から室外に伝わる熱を空気の流れによって回収し、室内に戻すことで、室内から室外への熱の損失がほとんどなくなり、これにより空気が流入する方向とは逆方向である室内側から室外側への熱輸送が妨げられ、非常に高い断熱性が得られると共に、外気を日射を受ける窓1に通すことで18℃まで暖めてから空調機4に供給するので、空調機4の負荷を低減することができる。 FIG. 2A shows the function of the window 1 on the air supply side. As shown in the figure, the cold outside air flowing in from the ventilation portion 13 of the outer window 2 is provided by the ventilation port 12c on the indoor side of the ventilation portion 13 so as to open toward the inner peripheral side. As shown in the above, the glass 11 of the outer window 2 flows downward along the indoor side surface. After that, the cold outside air flows to the bottom of the mesosphere 8 by the cold draft. During this time, the outside air acquires solar heat. After that, the outside air is folded back at the lower part of the intermediate layer 8, further warmed by transferring the heat in the room from the glass 18 of the inner window 3, rising along the outdoor surface of the glass 18, and during this time, the heat escaping from the glass 18 to the outside. Is recovered by the flow of air. The outside air, which was 0 ° C., is warmed to 18 ° C. by acquiring solar heat while passing through the intermediate layer 8 of the window 1 and recovering the heat inside the room from the glass 18 of the inner window 3. After that, the warmed outside air is sent to the air conditioner 4 through the ventilation portion 16 above the inner window 3 and through the duct 7, and is warmed to about 30 ° C. by the air conditioner 4 from the air intake / outlet 6. It leaks into the room. In this way, the outside air flows around the inside of the intermediate layer 11 along the outer window 9 and the inner window 10, so that the solar heat can be acquired and the heat transmitted from the room to the outside is recovered by the air flow. By returning it to the room, there is almost no heat loss from the room to the outside, which hinders the heat transfer from the indoor side to the outdoor side, which is the direction opposite to the direction in which the air flows, and provides extremely high heat insulation. At the same time, the load of the air conditioner 4 can be reduced because the outside air is passed through the window 1 that receives the sunlight to warm the temperature to 18 ° C. and then supplied to the air conditioner 4.

一方、排気側の窓1では、図2(b)に示すように、内窓3の通気部16より内気が遮蔽物9より室内側の中間層8に流れ込み、その後、内気は内窓3のガラス18の室外側面に沿って下向きに流れ、中間層8の下部で折り返し、外窓2のガラス11の室内側面に沿って上昇し、外窓2の通気部13を通って室外に排出される。このように、暖かい内気を遮蔽物9より室内側の中間層8に導入して下向きに流れることで、遮蔽物9より室内側の中間層8の温度が室内の温度とほぼ同じになるため、窓1からの温熱損失を抑制することができる。よって、空調機4の負荷を低減することができる。 On the other hand, in the window 1 on the exhaust side, as shown in FIG. 2B, the inside air flows from the ventilation portion 16 of the inner window 3 into the intermediate layer 8 on the indoor side from the shield 9, and then the inside air flows into the intermediate layer 8 on the indoor side. It flows downward along the outdoor surface of the glass 18, folds back at the lower part of the intermediate layer 8, rises along the indoor side surface of the glass 11 of the outer window 2, and is discharged to the outside through the ventilation portion 13 of the outer window 2. .. In this way, by introducing the warm inside air into the intermediate layer 8 on the indoor side of the shield 9 and flowing downward, the temperature of the intermediate layer 8 on the indoor side of the shield 9 becomes almost the same as the indoor temperature. The heat loss from the window 1 can be suppressed. Therefore, the load on the air conditioner 4 can be reduced.

日射を受ける方角は時間によって変わるため、本換気システムは太陽の動きに連動して給気と排気の窓1が順次切り替わるようになっている。各窓1の給気から排気、排気から給気への切り替えは、ファン17の回転方向を変更して空気の流れの向きを変更することにより行うことができる。 Since the direction of receiving sunlight changes with time, the main ventilation system is designed so that the air supply and exhaust windows 1 are sequentially switched in synchronization with the movement of the sun. Switching from air supply to exhaust gas and from exhaust gas to air supply in each window 1 can be performed by changing the rotation direction of the fan 17 and changing the direction of the air flow.

太陽の動きに連動して給気と排気の窓1を切り替える方法としては、ビルの建設地における年間の方位ごとの窓面日射量を計算し、最適な年間の給気・排気の切替時間を決定する方法がある。
以下に具体例をあげて説明する。図5,6は、南面と西面の2面に窓1がある場合の例を示している。図6は、ビルの建設地である東京の2月22日の各方位の壁面日射量(過去10年の平均)の経時変化を示すグラフである。なお、このようなグラフは、気象庁から入手できるデータに基づいて作成することができる。同グラフで南面と西面の日射量を比較すると、日の出から15:00までは南面の日射量が多く、15:00から日の入りまでは西面の日射量が多いことが分かる。そこで、図5に示すように、運転開始(例えば8:00)から15:00までの間は、南面の窓1から給気して西面の窓1から排気し、15:00から運転終了(例えば21:00)までの間は、西面の窓1から給気して南面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
図7,8は、東面と南面と東面の3面に窓1がある場合の例を示している。図8は、ビルの建設地である東京の2月22日の東面+南面、南面+西面の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフより、日の出から12:00までの間は東面+南面の日射量が多く、12:00から日の入りまでの間は南面+西面の日射量が多いことが分かる。そこで、図7に示すように、運転開始(例えば8:00)から12:00までの間は、東面及び南面の窓1から給気して西面の窓1から排気し、12:00から運転終了(例えば21:00)までの間は、南面及び西面の窓1から給気して東面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
As a method of switching between air supply and exhaust windows 1 in conjunction with the movement of the sun, the amount of solar radiation on the window surface for each direction in the building construction site is calculated, and the optimum annual air supply / exhaust switching time is calculated. There is a way to decide.
A specific example will be described below. FIGS. 5 and 6 show an example in which windows 1 are provided on two sides, a south side and a west side. FIG. 6 is a graph showing the time course of the amount of solar radiation on the wall surface (average for the past 10 years) in each direction on February 22, the construction site of the building. In addition, such a graph can be created based on the data available from the Japan Meteorological Agency. Comparing the amount of solar radiation on the south and west sides with the same graph, it can be seen that the amount of solar radiation on the south side is large from sunrise to 15:00, and the amount of solar radiation on the west side is large from 15:00 to sunset. Therefore, as shown in FIG. 5, from the start of operation (for example, 8:00) to 15:00, air is supplied from the window 1 on the south side and exhausted from the window 1 on the west side, and the operation ends from 15:00. Until (for example, 21:00), the fan 17 in the duct path is supplied with air from the window 1 on the west side and exhausted from the window 1 on the south side by a timer (not shown) built in the ventilation system. Control the direction of rotation to change the direction of air flow.
FIGS. 7 and 8 show an example in which windows 1 are provided on the east side, the south side, and the east side. FIG. 8 is a graph showing the time course of the amount of solar radiation (average over the past 10 years) on the east side + south side and the south side + west side of Tokyo, which is the construction site of the building, on February 22nd. From the same graph, it can be seen that the amount of solar radiation on the east side + south side is large from sunrise to 12:00, and the amount of solar radiation on the south side + west side is large from 12:00 to sunset. Therefore, as shown in FIG. 7, from the start of operation (for example, 8:00) to 12:00, air is supplied from the windows 1 on the east side and the south side and exhausted from the window 1 on the west side at 12:00. From to the end of operation (for example, 21:00), ducts are provided by a timer (not shown) built into the ventilation system so that air is supplied from windows 1 on the south and west sides and exhausted from windows 1 on the east side. The direction of air flow is changed by controlling the rotation direction of the fan 17 in the path.

上述の例においては、1日ごとに図6,8に示すようなグラフを作成し、1日ごとに給気・排気を切り替えるタイミングを設定してもよいが、一定の期間(例えば2週間)ごとに図6,8に示すようなグラフを作成し、当該期間の間はグラフから求めた同じタイミングで給気・排気を切り替えるようにしてもよい。
また、東面と南面と東面の3面に窓1がある場合で、時間ごとに一つの方角の窓からだけ給気するようにしてもよい。例えば、運転開始から9:30までは東面の窓1から給気し(南面及び西面の窓1から排気)、9:30から15:00までは南面の窓1から給気し(東面及び西面の窓1から排気)、15:00から運転終了までは西面の窓1から給気(東面及び南面の窓1から排気)することもできる。
In the above example, a graph as shown in FIGS. 6 and 8 may be created for each day, and the timing for switching between air supply and exhaust may be set for each day, but for a certain period (for example, 2 weeks). A graph as shown in FIGS. 6 and 8 may be created for each, and air supply / exhaust may be switched at the same timing obtained from the graph during the period.
Further, when there are windows 1 on the east side, the south side, and the east side, the air may be supplied from only one window in one direction every hour. For example, from the start of operation to 9:30, air is supplied from window 1 on the east side (exhaust from window 1 on the south and west sides), and from 9:30 to 15:00, air is supplied from window 1 on the south side (east). Air can be supplied from the window 1 on the west side (exhausted from the window 1 on the east side and the south side) from 15:00 to the end of operation.

上記のように、過去の日射量のデータに基づいて各窓1の給気と排気を切り替えるタイミングを予め設定しておく方法の他、外気温計と窓面日射量計を用いるなどして各窓1の給気と排気を切り替えるタイミングをリアルタイムで決定することもできる。
例えば、屋外に外気温計を設置し、東面と南面と西面に日射量計をそれぞれ設置しておき、外気温計で測定した外気温に基づいて季節が冬であるか否かを判定し、冬であると判定した場合は、運転開始時には東面の窓1から給気し(南面及び西面の窓1から排気)、東面の日射量計で測定した日射量よりも南面の日射量計で測定した日射量が多くなったときに、給気の窓1を東面から南面に切り替え(東面及び西面の窓1から排気)、南面の日射量計で測定した日射量よりも西面の日射量計で測定した日射量が多くなったときに、給気の窓1を南面から西面に切り替える(東面及び南面の窓1から排気)。
As described above, in addition to the method of presetting the timing for switching between air supply and exhaust of each window 1 based on the past solar radiation amount data, each method such as using an outside air temperature meter and a window surface solar radiation meter is used. It is also possible to determine the timing of switching between air supply and exhaust of the window 1 in real time.
For example, an outside air temperature gauge is installed outdoors, and solar radiation meters are installed on the east, south, and west sides, respectively, and it is determined whether or not the season is winter based on the outside temperature measured by the outside air temperature gauge. However, if it is determined that it is winter, air is supplied from window 1 on the east side (exhausted from window 1 on the south and west sides) at the start of operation, and the amount of solar radiation on the south side is higher than that measured by the solar radiation meter on the east side. When the amount of solar radiation measured by the solar radiation meter increases, switch the air supply window 1 from the east side to the south side (exhaust from the windows 1 on the east side and the west side), and the amount of solar radiation measured by the solar radiation meter on the south side. When the amount of solar radiation measured by the solar radiation meter on the west side is larger than that on the west side, the air supply window 1 is switched from the south side to the west side (exhaust from the windows 1 on the east side and the south side).

上述した何れの制御方法においても、天候が曇天・雨天などの日射が少ない場合(センサーで計測した日射量が閾値以下の場合)は給気・排気の切替を行わないようにすることができる。これにより不要な給気・排気の切替を省くことができ、合理的な運転が行える。
一例として、図5,6に示す南面と西面の2面に窓1がある場合の例で説明すると、前日が西面給気の状態で運転終了(または朝まで連続運転)し、その翌日が切替の効果が見込めない日射の少ない日だった場合に、上記の制御がなければ、設定した切替モードに従って、朝に南面給気に切替、15:00に西面給気に切替と2回の不要な切替が発生するが、上記の日射量により切替を行うか否かを判断する制御を加えれば、不要な切替を行わずに済む。
なお、天候により一時的に日射量が閾値を越えた時間は、切替モードでの運用に移行する(再度閾値以下になった場合には切替は行わない。)。
In any of the above-mentioned control methods, it is possible not to switch between air supply and exhaust when the weather is cloudy or rainy and the amount of solar radiation is small (when the amount of solar radiation measured by the sensor is less than the threshold value). As a result, unnecessary switching between air supply and exhaust can be omitted, and rational operation can be performed.
As an example, to explain the case where windows 1 are provided on the two sides of the south side and the west side shown in FIGS. 5 and 6, the operation is terminated (or continuous operation until the morning) with the west side air supplied the day before, and the next day. If there is little sunlight and the effect of switching cannot be expected, if there is no above control, the south side air supply will be switched in the morning and the west side air supply will be switched twice according to the set switching mode. However, if a control is added to determine whether or not to perform the switching based on the above-mentioned amount of solar radiation, the unnecessary switching can be avoided.
In addition, the time when the amount of solar radiation temporarily exceeds the threshold value due to the weather shifts to the operation in the switching mode (when the amount falls below the threshold value again, the switching is not performed).

図9,10は、本発明の換気システムの第2実施形態(請求項2記載の発明の実施形態)を示している。本実施形態は、第1実施形態と同様に、オフィスビルの換気システムに適用したものであって、夏期における運転状態を示している。第2実施形態の換気システムは、第1実施形態と装置の構成は全く同じで、空気の流れる向きを第1実施形態とは逆向きにしている。すなわち、図9に示すように、日射の当たる方角の窓1から内気を室外に排出し、他の窓1から外気を取り入れる。 9 and 10 show a second embodiment of the ventilation system of the present invention (the embodiment of the invention according to claim 2). This embodiment is applied to the ventilation system of the office building as in the first embodiment, and shows the operating state in the summer. The ventilation system of the second embodiment has exactly the same configuration as that of the first embodiment, and the direction of air flow is opposite to that of the first embodiment. That is, as shown in FIG. 9, the inside air is discharged to the outside from the window 1 in the direction of sunlight, and the outside air is taken in from the other window 1.

図10(a)は、給気側の窓1の働きを示している。同図に示すように、外窓2の通気部13より流入した暖かい外気は、通気部13室内側の通気口12cが内周側に向けて開口して設けてあることで、図中の矢印に示すように、外窓2のガラス11の室内側面に沿うように下向きに流出し、その後、中間層8の下まで流れる。給気側の窓1は日射が当たっておらず、日射熱を取得しないため、この間の外気の温度上昇が抑制される。その後、外気は中間層8の下部で折り返し、内窓3のガラス18の室外側面に沿って上昇し、この間にガラス18から室外に逃げる冷熱を空気の流れによって回収する。これにより、30℃であった外気が27℃に冷やされる。その後、冷やされた外気は内窓3上部の通気部16を通り、ダクト7を通って空調機4へと送られ、空調機4により20℃程度に冷やされて空気取入・吹出口6より室内に流出する。このように、外気を日射を受けない窓1に通すことで冷熱を回収し、27℃まで冷やしてから空調機4に供給するので、空調機4の負荷を低減することができる。 FIG. 10A shows the function of the window 1 on the air supply side. As shown in the figure, the warm outside air that has flowed in from the ventilation portion 13 of the outer window 2 is provided by the ventilation port 12c on the indoor side of the ventilation portion 13 so as to open toward the inner peripheral side. As shown in the above, it flows downward along the indoor side surface of the glass 11 of the outer window 2, and then flows to the bottom of the intermediate layer 8. Since the window 1 on the air supply side is not exposed to sunlight and does not acquire the heat of sunlight, the temperature rise of the outside air during this period is suppressed. After that, the outside air is folded back at the lower part of the intermediate layer 8 and rises along the outdoor surface of the glass 18 of the inner window 3, and during this time, the cold heat escaping from the glass 18 to the outside is recovered by the air flow. As a result, the outside air, which was 30 ° C., is cooled to 27 ° C. After that, the cooled outside air is sent to the air conditioner 4 through the ventilation portion 16 above the inner window 3 and through the duct 7, cooled to about 20 ° C. by the air conditioner 4, and from the air intake / outlet 6. It leaks into the room. In this way, the cold heat is recovered by passing the outside air through the window 1 that does not receive sunlight, cooled to 27 ° C., and then supplied to the air conditioner 4, so that the load on the air conditioner 4 can be reduced.

一方、排気側の窓1では、図10(b)に示すように、冷たい内気が窓1の中間層8の遮蔽物9より室内側に導入される。この空気は、室外よりも温度が低いので、内窓3のガラス18の室外側面に沿って下向きに流れ、その後、中間層8の下部で折り返し、外窓2のガラス11等の熱が伝わることで外窓2のガラス11の室内側面に沿って上昇し、この間に日射熱を取得すると共に、ガラス11を通じて室外から室内に入ってくる熱を空気の流れによって回収する。25℃であった内気は、外窓2と遮蔽物9の間を通る間に日射熱を取得して46℃に暖められ、その後、外窓2の通気部13を通って空気が室外に放出される。空気が通気部13を通過する際、上枠10を伝って室内に入ってくる熱を空気の流れによって回収する。そして、空気が室外に放出されることで、日射熱とガラス11や上枠10から回収した熱を室外に捨てる。このように、外窓2の内側面と内窓3の外側面に沿うように内気が流れることで、日射熱の取得を抑制できると共に、室外から室内に伝わる熱を空気の流れによって回収し室外に捨てることで、空気が流出する方向とは逆方向である室外側から室内側への熱輸送が妨げられ、優れた断熱効果を発揮して、室内が涼しく保たれる。よって、空調機4の負荷を低減することができる。 On the other hand, in the window 1 on the exhaust side, as shown in FIG. 10B, cold inside air is introduced into the room side from the shield 9 of the intermediate layer 8 of the window 1. Since this air has a lower temperature than the outside, it flows downward along the outdoor surface of the glass 18 of the inner window 3, and then folds back at the lower part of the intermediate layer 8 to transfer the heat of the glass 11 of the outer window 2. Ascends along the indoor side surface of the glass 11 of the outer window 2, and during this period, solar heat is acquired, and the heat entering the room from the outside through the glass 11 is recovered by the flow of air. The inside air, which was 25 ° C., acquires solar heat while passing between the outer window 2 and the shield 9, and is warmed to 46 ° C., and then the air is released to the outside through the ventilation portion 13 of the outer window 2. Will be done. When the air passes through the ventilation portion 13, the heat that enters the room through the upper frame 10 is recovered by the air flow. Then, when the air is released to the outside, the solar heat and the heat recovered from the glass 11 and the upper frame 10 are discarded to the outside. In this way, by allowing the inside air to flow along the inner surface of the outer window 2 and the outer surface of the inner window 3, the acquisition of solar heat can be suppressed, and the heat transferred from the outside to the inside is recovered by the air flow to the outside. By throwing it away, heat transfer from the outdoor side to the indoor side, which is the direction opposite to the direction in which the air flows out, is hindered, and an excellent heat insulating effect is exhibited to keep the indoor cool. Therefore, the load on the air conditioner 4 can be reduced.

日射を受ける方角は時間によって変わるため、本換気システムは太陽の動きに連動して給気と排気の窓1が順次切り替わるようになっている。
図11,12は、南面と西面の2面に窓がある場合の例を示している。図12は、ビルの建設地である東京の6月17日の各方位の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフで南面と西面の日射量を比較すると、日の出から13:00までは南面の日射量が多く、13:00から日の入りまでは西面の日射量が多いことが分かる。そこで、図11に示すように、運転開始(例えば8:00)から15:00までの間は、西面の窓1から給気して南面の窓1から排気し、13:00から運転終了(例えば21:00)までの間は、南面の窓1から給気して西面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
図13,14は、東面と南面と東面の3面に窓1がある場合の例を示している。図14は、ビルの建設地である東京の6月17日の東面+南面、南面+西面の壁面日射量(過去10年の平均)の経時変化を示すグラフである。同グラフより、日の出から12:00までの間は東面+南面の日射量が多く、12:00から日の入りまでの間は南面+西面の日射量が多いことが分かる。そこで、図13に示すように、運転開始(例えば8:00)から12:00までの間は、西面の窓1から給気して東面及び南面の窓1から排気し、12:00から運転終了(例えば21:00)までの間は、東面の窓1から給気して南面及び西面の窓1から排気するように、本換気システムに内蔵するタイマー(図示省略)によりダクト経路にあるファン17の回転方向を制御して空気の流れの向きを変更する。
Since the direction of receiving sunlight changes with time, the main ventilation system is designed so that the air supply and exhaust windows 1 are sequentially switched in synchronization with the movement of the sun.
FIGS. 11 and 12 show an example when there are windows on two sides, the south side and the west side. FIG. 12 is a graph showing the time course of the amount of solar radiation on the wall surface (average for the past 10 years) in each direction on June 17, Tokyo, which is the construction site of the building. Comparing the amount of solar radiation on the south and west sides with the same graph, it can be seen that the amount of solar radiation on the south side is large from sunrise to 13:00, and the amount of solar radiation on the west side is large from 13:00 to sunset. Therefore, as shown in FIG. 11, from the start of operation (for example, 8:00) to 15:00, air is supplied from the window 1 on the west side and exhausted from the window 1 on the south side, and the operation ends from 13:00. Until (for example, 21:00), the fan 17 in the duct path is supplied with air from the window 1 on the south side and exhausted from the window 1 on the west side by a timer (not shown) built in the ventilation system. Control the direction of rotation to change the direction of air flow.
13 and 14 show an example in which the windows 1 are provided on the east side, the south side, and the east side. FIG. 14 is a graph showing the time course of the amount of solar radiation (average over the past 10 years) on the east side + south side and the south side + west side of Tokyo, which is the construction site of the building, on June 17th. From the same graph, it can be seen that the amount of solar radiation on the east side + south side is large from sunrise to 12:00, and the amount of solar radiation on the south side + west side is large from 12:00 to sunset. Therefore, as shown in FIG. 13, from the start of operation (for example, 8:00) to 12:00, air is supplied from the window 1 on the west side and exhausted from the window 1 on the east side and the south side at 12:00. From to the end of operation (for example, 21:00), ducts are provided by a timer (not shown) built into the ventilation system so that air is supplied from window 1 on the east side and exhausted from windows 1 on the south and west sides. The direction of air flow is changed by controlling the rotation direction of the fan 17 in the path.

第2実施形態においても、第1実施形態と同様に、外気温計と窓面日射量計を用いるなどして各窓1の給気と排気を切り替えるタイミングをリアルタイムで決定することもできる。
例えば、屋外に外気温計を設置し、東面と西面に日射量計をそれぞれ設置しておき、外気温計で測定した外気温に基づいて季節が夏であるか否かを判定し、夏であると判定した場合は、運転開始時には西面の窓1から給気し(東面及び南面の窓1から排気)、西面の日射量計で測定した日射量が東面の日射量計で測定した日射量より多くなったときに、給気の窓1を西面から東面に切り替える(南面及び西面の窓1から排気)。
In the second embodiment as well, as in the first embodiment, the timing of switching between air supply and exhaust of each window 1 can be determined in real time by using an outside air temperature meter and a window surface solar radiation meter.
For example, an outside air temperature gauge is installed outdoors, an insolation meter is installed on the east side and the west side, respectively, and it is determined whether or not the season is summer based on the outside temperature measured by the outside air temperature meter. If it is determined that it is summer, air is supplied from window 1 on the west side (exhausted from window 1 on the east side and south side) at the start of operation, and the amount of solar radiation measured by the solar radiation meter on the west side is the amount of solar radiation on the east side. When the amount of solar radiation measured by the meter is greater than the amount of solar radiation, the air supply window 1 is switched from the west side to the east side (exhaust from the windows 1 on the south side and the west side).

また、第2実施形態においても、第1実施形態と同様に、日射量により切替を行うか否かを判断する制御を加えることができ、これにより曇天・雨天のときに不要な給気・排気の切替を省き、合理的な運転が行える。 Further, also in the second embodiment, as in the first embodiment, it is possible to add a control for determining whether or not to switch depending on the amount of solar radiation, whereby unnecessary air supply / exhaust in cloudy or rainy weather can be added. You can perform rational operation by omitting the switching.

第2実施形態の換気システムは、夏期だけでなく中間期においても実施することができる。すなわち本換気システムは、冬期においては日射が当たる方角の窓1から外気を取り入れ、他の方角の窓1から内気を排出し、冬期以外は日射が当たる方角の窓1から内気を排出し、他の方角の窓1から外気を取り入れるようにすることで、年間を通じて冷暖房負荷を抑えることができる。 The ventilation system of the second embodiment can be implemented not only in the summer but also in the interim period. That is, in this ventilation system, the outside air is taken in from the window 1 in the direction of sunlight in winter, the inside air is discharged from the window 1 in the other direction, and the inside air is discharged from the window 1 in the direction in which sunlight is exposed except in winter. By taking in the outside air from the window 1 in the direction of, the heating / cooling load can be suppressed throughout the year.

以上に述べたように本換気システム(第1実施形態)は、建物の異なる方角の壁に設けた複数の窓1を備え、各窓1は、外側ガラス(外窓)2と内側ガラス(内窓)3を有し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように外気が流れることで日射熱を取得し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように内気が流れることで温熱損失を抑えるものであり、複数の窓1のうち、日射が当たる方角の窓1から外気を取り入れることで日射熱を取得でき、他の方角の窓1から内気を排出することで温熱損失が抑えられるので、暖房負荷を抑えることができる。 As described above, the present ventilation system (first embodiment) includes a plurality of windows 1 provided on walls in different directions of the building, and each window 1 has an outer glass (outer window) 2 and an inner glass (inner). It has a window) 3 and acquires solar heat by flowing outside air along the inner side surface of the outer glass 2 and the outer surface of the inner glass 3, and follows the inner side surface of the outer glass 2 and the outer surface of the inner glass 3. The heat loss is suppressed by the flow of the inside air as described above. Of the plurality of windows 1, the outside air can be obtained by taking in the outside air from the window 1 in the direction in which the sunlight hits, and the inside air can be obtained from the window 1 in the other direction. Since the heat loss is suppressed by discharging, the heating load can be suppressed.

本換気システム(第2実施形態)は、建物の異なる方角の壁に設けた複数の窓1を備え、各窓1は、外側ガラス2と内側ガラス3を有し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように外気が流れることで冷熱を回収し、外側ガラス2の内側面と内側ガラス3の外側面に沿うように内気が流れることで日射熱の取得を抑えるものであり、複数の窓1のうち、日射が当たる方角の窓1から内気を排出することで日射熱の取得を抑制でき、他の方角の窓1から外気を取り入れることで冷熱を回収できるので、冷房負荷を抑えることができる。 The present ventilation system (second embodiment) includes a plurality of windows 1 provided on walls in different directions of the building, each window 1 having an outer glass 2 and an inner glass 3, and the inner side surface of the outer glass 2. Cold heat is recovered by flowing the outside air along the outer surface of the inner glass 3, and the inside air flows along the inner side surface of the outer glass 2 and the outer surface of the inner glass 3 to suppress the acquisition of solar heat. There is, among a plurality of windows 1, the acquisition of solar heat can be suppressed by discharging the inside air from the window 1 in the direction in which the sunlight hits, and the cold heat can be recovered by taking in the outside air from the windows 1 in the other directions. The load can be suppressed.

本換気システム(第1及び第2実施形態)は、太陽の動きに連動して給気と排気の窓1が順次切り替わることで、上記の暖房負荷又は冷房負荷を抑える効果が一日を通して確実に発揮される。 In this ventilation system (first and second embodiments), the air supply and exhaust windows 1 are sequentially switched in synchronization with the movement of the sun, so that the above-mentioned effect of suppressing the heating load or the cooling load is surely achieved throughout the day. It will be demonstrated.

本発明は以上に述べた実施形態に限定されない。窓の構造は適宜変更することができ、外窓と内窓とを備える二重窓に限らず、外側ガラスと内側ガラスを1つのフレーム(枠、框等)に支持した単体サッシとすることもできる。室外空間から中間層に連通する通気部、中間層から室内空間に連通する通気部はどこに形成してあってもよく、例えば縦枠や下枠に設けてあったり、上框と上枠との隙間を通気部とし、その隙間から空気が流入・流出するもの等であってもよい。建物の構造は任意であり、壁面が必ずしも正確に東西南北に向いていなくてもよいし、横断面が四角形以外の多角形や円形であってもよい。本発明の換気システムは、ビルだけでなく、一般住宅で使用することもできる。本発明の換気システムは、ダクトを使わずに、窓だけで完結するものであってもよい。 The present invention is not limited to the embodiments described above. The structure of the window can be changed as appropriate, and it is not limited to a double-glazed window with an outer window and an inner window, but it can also be a single sash in which the outer glass and the inner glass are supported by one frame (frame, stile, etc.). it can. The ventilation part that communicates from the outdoor space to the intermediate layer and the ventilation part that communicates from the intermediate layer to the indoor space may be formed anywhere, for example, they are provided in the vertical frame or the lower frame, or the upper frame and the upper frame. The gap may be a ventilation portion, and air may flow in and out through the gap. The structure of the building is arbitrary, and the wall surface does not necessarily have to face north, south, east, and west, and the cross section may be a polygon or a circle other than a quadrangle. The ventilation system of the present invention can be used not only in buildings but also in ordinary houses. The ventilation system of the present invention may be completed only by windows without using ducts.

1 窓
2 外窓(外側ガラス)
3 内窓(内側ガラス)
1 Window 2 Outer window (outer glass)
3 Inner window (inner glass)

Claims (2)

建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで日射熱を取得し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで温熱損失を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から外気を取り入れ、他の方角の窓から内気を排出することを特徴とする換気システム。 It has multiple windows on the walls in different directions of the building, each window has an outer glass and an inner glass, and the outside air flows along the inner side surface of the outer glass and the outer surface of the inner glass to generate solar heat. The heat loss is suppressed by allowing the inside air to flow along the inner surface of the outer glass and the outer surface of the inner glass, and among multiple windows, the outside air is taken in from the window in the direction of sunlight, and others. A ventilation system characterized by exhausting inside air from windows in the direction of. 建物の異なる方角の壁に設けた複数の窓を備え、各窓は、外側ガラスと内側ガラスを有し、外側ガラスの内側面と内側ガラスの外側面に沿うように外気が流れることで冷熱を回収し、外側ガラスの内側面と内側ガラスの外側面に沿うように内気が流れることで日射熱の取得を抑えるものであり、複数の窓のうち、日射が当たる方角の窓から内気を排出し、他の方角の窓から外気を取り入れることを特徴とする換気システム。 It has multiple windows on the walls in different directions of the building, each window having an outer glass and an inner glass, and the outside air flows along the inner side surface of the outer glass and the outer surface of the inner glass to cool the heat. It is collected and the inside air flows along the inner surface of the outer glass and the outer surface of the inner glass to suppress the acquisition of solar heat. Of the multiple windows, the inside air is discharged from the window in the direction of the sunlight. A ventilation system characterized by taking in outside air through windows in other directions.
JP2019047261A 2019-03-14 2019-03-14 ventilation system Active JP7181819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019047261A JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047261A JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Publications (2)

Publication Number Publication Date
JP2020148038A true JP2020148038A (en) 2020-09-17
JP7181819B2 JP7181819B2 (en) 2022-12-01

Family

ID=72430433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047261A Active JP7181819B2 (en) 2019-03-14 2019-03-14 ventilation system

Country Status (1)

Country Link
JP (1) JP7181819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117366651A (en) * 2023-12-08 2024-01-09 山西迪安普特科技有限公司 Building heating device utilizing solar energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090187A (en) * 2003-09-19 2005-04-07 Takenaka Komuten Co Ltd Exhaust structure of building and building using this exhaust structure
JP2009150099A (en) * 2007-12-20 2009-07-09 Ykk Ap株式会社 Window device
JP2013217616A (en) * 2012-04-11 2013-10-24 Takenaka Komuten Co Ltd Humidity control system using double skin
JP2016138428A (en) * 2015-01-29 2016-08-04 高砂熱学工業株式会社 Double skin unit and air conditioning system using double skin unit
JP2017198371A (en) * 2016-04-26 2017-11-02 高砂熱学工業株式会社 Double skin unit and air conditioning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090187A (en) * 2003-09-19 2005-04-07 Takenaka Komuten Co Ltd Exhaust structure of building and building using this exhaust structure
JP2009150099A (en) * 2007-12-20 2009-07-09 Ykk Ap株式会社 Window device
JP2013217616A (en) * 2012-04-11 2013-10-24 Takenaka Komuten Co Ltd Humidity control system using double skin
JP2016138428A (en) * 2015-01-29 2016-08-04 高砂熱学工業株式会社 Double skin unit and air conditioning system using double skin unit
JP2017198371A (en) * 2016-04-26 2017-11-02 高砂熱学工業株式会社 Double skin unit and air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117366651A (en) * 2023-12-08 2024-01-09 山西迪安普特科技有限公司 Building heating device utilizing solar energy
CN117366651B (en) * 2023-12-08 2024-03-12 山西迪安普特科技有限公司 Building heating device utilizing solar energy

Also Published As

Publication number Publication date
JP7181819B2 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Saelens et al. Energy performance assessment of multiple-skin facades
CN106014165B (en) A kind of blinds shading system of intelligent control
Chandel et al. Performance evaluation of a passive solar building in Western Himalayas
Siddhartha et al. Effect of building orientation and window glazing on the energy consumption of HVAC system of an office building for different climate zones
Bliss The performance of an experimental system using solar energy for heating and night radiation for cooling a building
JP7463125B2 (en) Ventilation system
JP2020148038A (en) Ventilation system
JP2012220131A (en) Solar heating and cooling ventilator, and solar heating and cooling ventilation method using the same
JP7333026B2 (en) Ductless dynamic insulation and heat storage system
CN118819193A (en) A curtain wall dynamic shading and variable thermal control method
CN111395931A (en) Photovoltaic sun shading device and control method thereof
CN110259358A (en) A kind of photovoltaic sun-shading louver system and its control method
Saelens et al. Comparison of the energy demand of multiple-skin facades
JP2018080904A (en) Urban type passive design
Lamsal et al. Passive solar building design strategies in lalitpur, pokhara and dharan cities of nepal
Qurraie et al. The Energy Performance of Shading Element and Double Skin Facade System Integration into Office Buildings in Turkey
JP3837015B2 (en) Comfort experience device
EP1947404A2 (en) System for using, controlling and regulating renewable energies in self-sufficient buildings
KR101125311B1 (en) Intermediate level control system of the residential double skin system communicated with home network system
JPS5912242A (en) Heat recovery type ventilator
Pasini et al. Systems design of the Canadian solar decathlon house
Fisch et al. International solar centre, berlin-a comprehensive energy design
Cremers Long term monitoring of residential heat recovery ventilation with ground heat exchange
Kubo et al. CFD study with consideration of the surrounding buildings using a through-wall unit air conditioning system
KR101178218B1 (en) Intermediate level control system of the double skin system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221118

R150 Certificate of patent or registration of utility model

Ref document number: 7181819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150