[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7030276B2 - Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements - Google Patents

Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements Download PDF

Info

Publication number
JP7030276B2
JP7030276B2 JP2017249742A JP2017249742A JP7030276B2 JP 7030276 B2 JP7030276 B2 JP 7030276B2 JP 2017249742 A JP2017249742 A JP 2017249742A JP 2017249742 A JP2017249742 A JP 2017249742A JP 7030276 B2 JP7030276 B2 JP 7030276B2
Authority
JP
Japan
Prior art keywords
group
semiconductor fine
light emitting
fine particle
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249742A
Other languages
Japanese (ja)
Other versions
JP2019116394A (en
Inventor
俊一 鬼久保
秀一 木村
二郎 千阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017249742A priority Critical patent/JP7030276B2/en
Publication of JP2019116394A publication Critical patent/JP2019116394A/en
Application granted granted Critical
Publication of JP7030276B2 publication Critical patent/JP7030276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Optical Filters (AREA)

Description

本発明は、半導体微粒子組成物および量子ドット、およびそれらを含有する塗工液とインキ組成物、インクジェットインキ、およびそれらを使用した塗工物と印刷物、波長変換フィルム、カラーフィルター、発光素子に関する。 The present invention relates to semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, coating materials and printed materials using them, wavelength conversion films, color filters, and light emitting elements.

本発明の主要構成をなす量子ドットは、量子力学に従う独特な光学特性を発現させるために、電子を微小な空間に閉じ込めるために形成された極小さな粒(ドット)である。1粒の量子ドットの大きさは、直径1ナノメートルから数10ナノメートルであり、約1万個以下の原子で構成されている。発する蛍光の波長が、粒の大きさで連続的に制御できること、蛍光強度の波長分布が対称性の高いシャープな発光が得られることから近年注目を集めている。
量子ドットは、人体を透過しやすい波長に蛍光を調整でき、体内のあらゆる場所に送達できることより発光材料として生体イメージング用途(非特許文献1)、褪色の恐れがない波長変換材料として太陽電池用途(特許文献1)、鮮明な発光材料、波長変換材料としてエレクトロニクス・フォトニクス用途(特許文献2,3)への展開検討が行われている。
Quantum dots, which are the main constituents of the present invention, are extremely small particles (dots) formed to confine electrons in a minute space in order to exhibit unique optical properties according to quantum mechanics. The size of one quantum dot is from 1 nanometer to several tens of nanometers in diameter, and is composed of about 10,000 or less atoms. In recent years, attention has been focused on the fact that the wavelength of the emitted fluorescence can be continuously controlled by the grain size and that sharp emission with high symmetry in the wavelength distribution of the fluorescence intensity can be obtained.
Quantum dots can be adjusted for fluorescence to a wavelength that easily penetrates the human body and can be delivered to any location in the body, so they are used for bioimaging as a light emitting material (Non-Patent Document 1), and as a wavelength conversion material without the risk of fading (solar cell applications). Patent Document 1), a clear light emitting material, and a wavelength conversion material are being studied for development in electronics and photonics applications (Patent Documents 2 and 3).

これらの用途に展開するときに、微細なパターンを形成することが必要になる。パターン形成のために感光材料を用いて、レジスト液作成し、マスクを介して光照射する方法が提案されている(特許文献4)。しかし、感光材料や光照射時に量子ドットが劣化したり、現像で取り除く部分にも量子ドットが含まれ、量子ドット材料の利用効率が悪いなどの問題があった。
レジスト化しない方法としてインクジェット法が知られている。これまで、インクジェット法に用いることのできる量子ドットインキは作成されていない。
When developing for these applications, it is necessary to form fine patterns. A method of preparing a resist solution using a photosensitive material for pattern formation and irradiating it with light through a mask has been proposed (Patent Document 4). However, there are problems that the quantum dots are deteriorated when the photosensitive material or light is irradiated, and the quantum dots are also contained in the portion removed by development, and the utilization efficiency of the quantum dot material is poor.
The inkjet method is known as a method of not resisting. So far, quantum dot inks that can be used in the inkjet method have not been produced.

また量子ドット自体の課題として、発光効率(量子収率)を最大にし、強い蛍光発光を得るためには励起エネルギーの外部への漏洩を極力抑制する必要がある。さらに量子ドットを電界発光素子の発光材料に用いる際には、電極から注入された正負電荷を量子ドット内(または近傍)で再結合させて、量子ドットを励起状態にする必要があるが、これには電荷は円滑に移動できるが、励起エネルギーの移動は抑制されるという設計が必要である。
ここで、電荷移動を促進させる方法として、例えば量子ドットの外側に芳香環などの共役構造を導入して電荷が外から内に流れ込むような設計をしている(特許文献5)。しかし、この方法では、逆に励起エネルギーが内から外へ漏洩してしまう恐れが強く、十分な量子収率向上が難しい。
Further, as a problem of the quantum dot itself, in order to maximize the luminous efficiency (quantum yield) and obtain strong fluorescence emission, it is necessary to suppress the leakage of excitation energy to the outside as much as possible. Furthermore, when using quantum dots as a light emitting material for electroluminescent elements, it is necessary to recombine the positive and negative charges injected from the electrodes within (or near) the quantum dots to bring the quantum dots into an excited state. It is necessary to design that the electric charge can move smoothly, but the transfer of excitation energy is suppressed.
Here, as a method of promoting charge transfer, for example, a conjugated structure such as an aromatic ring is introduced on the outside of the quantum dot, and the design is such that the charge flows from the outside to the inside (Patent Document 5). However, in this method, on the contrary, there is a strong possibility that the excitation energy leaks from the inside to the outside, and it is difficult to sufficiently improve the quantum yield.

一方、発明者らは、以前に、有機電界発光素子において、発光部位となる中心骨格構造の周囲に、特異な骨格の構造を着けることで、当時は常識であったホスト/ドーパントの構成ではなく、ノンドープで非常に高効率な発光を得られる有機蛍光材料を開発した(特許文献6)。 On the other hand, the inventors have previously attached a unique skeletal structure around the central skeletal structure, which is the light emitting site, in the organic electroluminescent element, instead of the host / dopant configuration that was common at the time. , A non-doped organic fluorescent material that can obtain highly efficient light emission has been developed (Patent Document 6).

特開2006-216560号公報Japanese Unexamined Patent Publication No. 2006-216560 特開2008-112154号公報Japanese Unexamined Patent Publication No. 2008-11254 特開2009-251129号公報Japanese Unexamined Patent Publication No. 2009-251129 特開2015-127733号公報Japanese Unexamined Patent Publication No. 2015-127733 特開2010-209141号公報Japanese Unexamined Patent Publication No. 2010-209141 特開平10-251633号公報Japanese Unexamined Patent Publication No. 10-251633

神隆、「半導体量子ドット、その合成法と生命科学への応用」、生産と技術、第63巻、第2号、2011年、p58~p65Kamitaka, "Semiconductor Quantum Dots, Their Synthesis Methods and Applications to Life Sciences", Production and Technology, Vol. 63, No. 2, 2011, p58-p65 Journal of the American chemical society 2007 129 15432-15433Journal of the American chemical society 2007 129 15432-15433

本発明の目的は、半導体微粒子組成物の諸特性、特に量子ドットの蛍光特性を損なうことなく、塗工液やインキ、特にインクジェット法で印刷可能なインキを提供することであり、それを使用して、特性や経時安定性に優れた塗工物や印刷物、より具体的には、蛍光特性に優れた波長変換フィルムやカラーフィルター、発光素子を提供することである。 An object of the present invention is to provide a coating liquid or an ink, particularly an ink that can be printed by an inkjet method, without impairing various characteristics of the semiconductor fine particle composition, particularly the fluorescence characteristics of quantum dots, and the use thereof is used. Further, it is an object of the present invention to provide a coated or printed matter having excellent characteristics and stability over time, more specifically, a wavelength conversion film, a color filter and a light emitting element having excellent fluorescence characteristics.

本発明者は、前記課題を解決するために、鋭意検討した結果、量子ドットの被覆材料として特定構造の化合物を用いることで、量子ドットなどの諸特性を損なうことなく、前記塗工液やインキ、特にインクジェット法で印刷可能なインキを作製し、それらを使用した前記塗工物、印刷物、特にインキジェット法による印刷物、さらにはそれらを利用した波長変換フィルム、カラーフィルター、発光素子が提供可能であることを見出した。 As a result of diligent studies to solve the above problems, the present inventor has used a compound having a specific structure as a coating material for quantum dots, so that the coating liquid and ink without impairing various properties such as quantum dots. In particular, it is possible to produce inks that can be printed by the inkjet method, and to provide the coated matter and printed matter using them, particularly the printed matter by the ink jet method, and the wavelength conversion film, color filter, and light emitting element using them. I found that there is.

すなわち、本発明は、半導体微粒子と当該粒子の表面を覆う被覆材料からなり、被覆材料が、下記一般式(1)、一般式(2)、または一般式(3)で表される構造を有することを特徴とする半導体微粒子組成物に関する。

一般式(1)
Y-(Ar-X-Ar)

一般式(2)
Y-(Ar-X-Ar-X-Ar)

一般式(3)
Y-(Ar-X-Ar-X-Ar-X-Ar)

(但し、一般式(1)、(2)および(3)において、Yは半導体微粒子表面と連結する作用を生ずる吸着基であり、Ar~Arはそれぞれ独立に、置換基を有しても良い、芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基またはそれらの同じか異なる2種以上の環が2~10個連結した構造からなる基で、それぞれAr~Arは2価、Arは1価の基である。X~Xは、それぞれ独立に、アルキリデン、アルキレン、2価の脂肪族環基、2価の複素脂肪族環基である。nは1または2の整数である。)
That is, the present invention comprises semiconductor fine particles and a coating material that covers the surface of the particles, and the coating material has a structure represented by the following general formula (1), general formula (2), or general formula (3). The present invention relates to a semiconductor fine particle composition.

General formula (1)
Y- (Ar 1 -X 1 -Ar 4 ) n

General formula (2)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 4 ) n

General formula (3)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 3 -X 3 -Ar 4 ) n

(However, in the general formulas (1), (2) and (3), Y is an adsorbing group that exerts an action of linking to the surface of semiconductor fine particles, and Ar 1 to Ar 4 each independently have a substituent. It is also good, an aromatic ring group, a fused aromatic ring group, a heteroaromatic ring group, a fused heteroaromatic ring group, or a group having a structure in which 2 to 10 of the same or different two or more kinds of rings are linked, and Ar 1 to each. Ar 3 is a divalent group and Ar 4 is a monovalent group. X 1 to X 3 are independently alkyridine, alkylene, a divalent aliphatic ring group and a divalent complex aliphatic ring group, respectively. n is an integer of 1 or 2.)

また、本発明は、Ar~Arがそれぞれ芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基のいずれかであることを特徴とする請求項1記載の半導体微粒子組成物に関する。 The semiconductor fine particle composition according to claim 1, wherein Ar 1 to Ar 4 are any of an aromatic ring group, a fused aromatic ring group, a heteroaromatic ring group, and a condensed heteroaromatic ring group, respectively. Regarding things.

また、本発明は、前記X~Xが、それぞれ独立に、置換基同士で結合して環を形成しても良い、2置換のメチレン基であることを特徴とする前記の半導体微粒子組成物に関する。 Further, the present invention is characterized in that the semiconductor fine particle composition described above is characterized in that X 1 to X 3 are disubstituted methylene groups which may independently bond with each other to form a ring. Regarding things.

また、本発明は、前記半導体微粒子が量子ドットであることを特徴とする前記の半導体微粒子組成物に関する。 The present invention also relates to the semiconductor fine particle composition, which is characterized in that the semiconductor fine particles are quantum dots.

また、本発明は、さらに溶剤を含有することを特徴とする前記の半導体微粒子組成物に関する。 The present invention also relates to the above-mentioned semiconductor fine particle composition, which further contains a solvent.

また、本発明は、さらに樹脂を含有することを特徴とする前記の半導体微粒子組成物に関する。 The present invention also relates to the above-mentioned semiconductor fine particle composition, which further contains a resin.

また、本発明は、前記半導体微粒子組成物を含有することを特徴とする塗工液に関する。 The present invention also relates to a coating liquid containing the semiconductor fine particle composition.

また、本発明は、前記塗工液を使用してなる塗工物に関する。 The present invention also relates to a coated product using the coating liquid.

また、本発明は、前記半導体微粒子組成物を含有することを特徴とするインキ組成物に関する。 The present invention also relates to an ink composition comprising the semiconductor fine particle composition.

また、本発明は、前記インキ組成物を含有することを特徴とするインクジェットインキに関する。 The present invention also relates to an inkjet ink containing the ink composition.

また、本発明は、前記インキ組成物を用いてなる印刷物に関する。 The present invention also relates to a printed matter made by using the ink composition.

また、本発明は、基材上に、前記塗工液またはインキ組成物を用いて形成された波長変換フィルムに関する。 The present invention also relates to a wavelength conversion film formed on a substrate by using the coating liquid or the ink composition.

また、本発明は、基材上に、前記塗工液またはインキ組成物を用いて形成されたカラーフィルターに関する。 The present invention also relates to a color filter formed on a substrate by using the coating liquid or the ink composition.

また、本発明は、発光層が前記塗工液またはインキ組成物を用いて形成された発光素子に関する。 The present invention also relates to a light emitting device in which the light emitting layer is formed by using the coating liquid or the ink composition.

本発明により、半導体微粒子組成物の諸特性、特に量子ドットの蛍光特性を損なうことなく、塗工液やインキ、特にインクジェット法で印刷可能なインキが提供される。また、それを使用して、特性や経時安定性に優れた塗工物や印刷物、より具体的には、蛍光特性に優れた波長変換フィルムやカラーフィルター、発光素子が提供される。 INDUSTRIAL APPLICABILITY The present invention provides a coating liquid or an ink, particularly an ink that can be printed by an inkjet method, without impairing various characteristics of the semiconductor fine particle composition, particularly the fluorescence characteristics of quantum dots. Further, by using it, a coated or printed matter having excellent characteristics and stability over time, more specifically, a wavelength conversion film, a color filter and a light emitting element having excellent fluorescence characteristics are provided.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

<半導体微粒子組成物と量子ドット>
本発明の主要構成をなす量子ドットは、特定の半導体微粒子からなる組成物であり、半導体微粒子は、無機物を成分とする半導体であり、一般的には、単一組成でも、コアシェル型でも、3層以上の複数層になっていてもよい。
本発明の半導体は、2族元素、10属元素、11族元素、12族元素、13族元素、14族元素、15族元素および16族元素で示される元素の群から選ばれる単体、または2種以上の元素を含む化合物からなる半導体である。前記のうち好ましくは化合物半導体である。化合物半導体は、Zn、Cd、B、Al、Ga、In、C、Si、Ge、Sn、N、P、As、Sb、Pb、S,Se,Teで示される元素群から選ばれる少なくとも2種の元素を含む化合物からなる半導体である。
さらに好ましくは、人に対する安全性が懸念される元素を除いた、Zn、B、Al、Ga、In、C、Si、Ge、Sn、N、P、S,Teで示される元素群から選ばれる少なくとも2種の元素を含む化合物からなる半導体である。可視光を発光する用途では、バンドギャップの狭さからInを構成元素として含む半導体が、さらに好ましい。
材質として、より具体的には、炭素(C)(不定形炭素、グラファイト、グラフェン、カーボンナノチューブ、ダイアモンド等)、ケイ素(Si)、ゲルマニウム(Ge)、錫(Sn)等の周期表第IV族元素の単体、リン(P)(黒リン)等の周期表第V族元素の単体、セレン(Se)、テルル(Te)等の周期表第VI族元素の単体、酸化錫(IV)窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、アンチモン化ガリウム(GaSb)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、アンチモン化インジウム(InSb)等の周期表第III族元素と周期表第V族元素との化合物硫化アルミニウム(Al)、セレン化アルミニウム(AlSe)、硫化ガリウム(Ga)、セレン化ガリウム(GaSe、GaSe)テルル化ガリウム(GaTe、GaTe)、酸化インジウム(In)、硫化インジウム(In、InS)、セレン化インジウム(InSe)、テルル化インジウム(InTe)等の周期表第III族元素と周期表第VI族元素との化合物、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)等の周期表第II族元素と周期表第VI族元素との化合物、酸化銅(I)(CuO)等の周期表第I族元素と周期表第VI族元素との化合物、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、塩化銀(AgCl)、臭化銀(AgBr)等の周期表第I族元素と周期表第VII族元素との化合物などが挙げられ、必要によりこれらの2種以上を併用しても良い。これらの半導体には、構成元素以外の元素が含有されていても構わない。例えばIII-V族を例にとれば、INGaP、INGaNの様な合金系であってもよい。また上記材料中に、希土類元素あるいは遷移金属元素がドープされた半導体微粒子も使われる。例えば、ZnS:Mn、ZnS:Tb、ZnS:Ce、LaPO:Ceなどが挙げられる。
この中でもケイ素(Si)、ゲルマニウム(Ge)、窒化ガリウム(GaN)、リン化ガリウム(GaP)、砒化ガリウム(GaAs)、窒化インジウム(InN)、リン化インジウム(InP)、砒化インジウム(InAs)、セレン化ガリウム(GaSe、GaSe)、硫化インジウム(In、InS)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)、酸化カドミウム(CdO)、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、InGaP、InGaNなどの合金系などが好ましく用いられ、特に、リン化インジウム(InP)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)が特に好ましく用いられる。
<Semiconductor fine particle composition and quantum dots>
The quantum dots constituting the main constituent of the present invention are compositions composed of specific semiconductor fine particles, and the semiconductor fine particles are semiconductors containing an inorganic substance as a component. Generally, a single composition or a core-shell type may be used. It may be a plurality of layers or more.
The semiconductor of the present invention is a single element selected from the group of elements represented by Group 2 elements, Group 10 elements, Group 11 elements, Group 12 elements, Group 13 elements, Group 14 elements, Group 15 elements and Group 16 elements, or 2 It is a semiconductor made of a compound containing more than one kind of element. Of the above, a compound semiconductor is preferable. The compound semiconductor is at least two kinds selected from the element group represented by Zn, Cd, B, Al, Ga, In, C, Si, Ge, Sn, N, P, As, Sb, Pb, S, Se and Te. It is a semiconductor composed of a compound containing the above elements.
More preferably, it is selected from the group of elements represented by Zn, B, Al, Ga, In, C, Si, Ge, Sn, N, P, S and Te, excluding the elements that may be safe for humans. It is a semiconductor composed of a compound containing at least two kinds of elements. For applications that emit visible light, semiconductors containing In as a constituent element are more preferable because of the narrow bandgap.
More specifically, as the material, Group IV of the Periodic Table of carbon (C) (atypical carbon, graphite, graphene, carbon nanotubes, diamonds, etc.), silicon (Si), germanium (Ge), tin (Sn), etc. Single element, Periodic table group V element such as phosphorus (P) (black phosphorus), single element of periodic table VI element such as selenium (Se), tellurium (Te), tin oxide (IV) boron nitride (BN), boron phosphide (BP), boron arsenide (BAs), aluminum nitride (AlN), aluminum phosphide (AlP), aluminum arsenide (AlAs), aluminum antimonized (AlSb), gallium nitride (GaN), phosphorus. Periodic Table III of Periodic Table III of gallium oxide (GaP), gallium arsenide (GaAs), gallium antimonized (GaSb), indium nitride (InN), indium phosphate (InP), indium arsenide (InAs), indium antimonized (InSb), etc. Compounds of Group Elements and Group V Elements of the Periodic Table Aluminum (Al 2 S 3 ), Aluminum Serene (Al 2 Se 3 ), Gallium Sulfide (Ga 2 S 3 ), Gallium Selenium (Ga Se, Ga 2 Se 3 ) ) Gallium tellalide (GaTe, Ga 2 Te 3 ), indium oxide (In 2 O 3 ), indium sulfide (In 2 S 3 , In S), indium selenium (In 2 Se 3 ), indium tellurate (In 2 Te) 3 ) Compounds of Group III elements of the Periodic Table and Group VI of the Periodic Table, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenium (ZnSe), zinc telluride (ZnTe), cadmium oxide (ZnTe) Group II elements of the Periodic Table such as CdO), cadmium sulfide (CdS), cadmium selenium (CdSe), cadmium tellurized (CdTe), mercury sulfide (HgS), mercury selenium (HgSe), mercury tellurized (HgTe), etc. And a compound of the Group VI element of the Periodic Table, a compound of the Group I element of the Periodic Table and the Group VI element of the Periodic Table such as copper (I) (Cu 2O ), copper chloride (I) (CuCl), odor. Compounds of Group I elements of the Periodic Table and Group VII elements of the Periodic Table such as copper (I) (CuBr), copper (I) (CuI), silver chloride (AgCl), silver bromide (AgBr), etc. However, if necessary, two or more of these may be used in combination. These semiconductors may contain elements other than the constituent elements. For example, taking Group III-V as an example, an alloy system such as INGaP or INGaN may be used. Further, semiconductor fine particles doped with rare earth elements or transition metal elements are also used in the above materials. For example, ZnS: Mn, ZnS: Tb, ZnS: Ce, LaPO 4 : Ce and the like can be mentioned.
Among them, silicon (Si), germanium (Ge), gallium nitride (GaN), gallium sulfide (GaP), gallium sulfide (GaAs), indium nitride (InN), indium sulfide (InP), indium sulfide (InAs), Gallium selenide (GaSe, Ga 2 Se 3 ), indium sulfide (In 2 S 3 , InS), zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenium (ZnSe), zinc tellurate (ZnTe), oxidation. Alloys such as cadmium (CdO), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), InGaP, InGaN, etc. are preferably used, and in particular, indium phosphate (InP) and cadmium selenide are preferably used. (CdSe), zinc sulfide (ZnS), and zinc selenium (ZnSe) are particularly preferably used.

また、半導体微粒子の材質としては、ペロブスカイト結晶も好ましく用いることができる。本発明の量子ドットとして好適なペロブスカイト結晶は、下記一般式(2)で表される組成を有し、3次元結晶構造を持つものである。
一般式(2)
ABZ
式(2)において、Aはメチルアンモニウム(CHNH)、および、ホルムアミジニウム(NHCHNH)から選ばれる少なくとも1つであるアミン化合物の1価陽イオンであるか、または、ルビジウム(Rb)、セシウム(Ce)、および、フランシウム(Fr)から選ばれる少なくとも1つのアルカリ金属元素の1価陽イオンであり、Bは鉛(Pb)および錫(Sn)から選ばれる少なくとも1つである金属元素の2価陽イオンであり、Zはヨウ素(I)、臭素(Br)、および塩素(Cl)から選ばれる少なくとも1つのハロゲン元素の1価陰イオンである。
Further, as the material of the semiconductor fine particles, perovskite crystals can also be preferably used. The perovskite crystal suitable as the quantum dot of the present invention has a composition represented by the following general formula (2) and has a three-dimensional crystal structure.
General formula (2)
ABZ 3
In formula (2), A is a monovalent cation of at least one amine compound selected from methylammonium (CH 3 NH 2 ) and formamidinium (NH 2 CHNH), or rubidium (CH 3 NH 2). It is a monovalent cation of at least one alkali metal element selected from Rb), cesium (Ce), and franchium (Fr), and B is at least one selected from lead (Pb) and tin (Sn). It is a divalent cation of a metal element, where Z is a monovalent anion of at least one halogen element selected from iodine (I), bromine (Br), and chlorine (Cl).

本発明で好適に用いられるコア/シェル型の半導体微粒子は、コアを形成する半導体成分と異なる半導体成分でコア構造を被覆された構造となる。外部がバントギャップの大きい半導体をすることで、光などのエネルギー励起によって生成された励起子(電子-正孔対)はコア内に閉じ込められる。その結果、半導体微粒子表面での無輻射遷移の確率が減少し、発光の量子収率および半導体量子ドットの蛍光特性の安定性が向上する。量子ドットとして使用される場合に、前記の条件を満たす好適な材料の組合せとしては、CdSe/ZnS、CdSe/ZnSe、CdS/ZnS、CdSe/CdS、CdTe/CdS、InP/ZnS、PbSe/PbS、GaP/ZnS、Si/ZnS、InN/GaN、InP/CdSSe、InP/ZnSeTe、InGaP/ZnSe、InGaP/ZnS、Si/AlP、InP/ZnSTe、InGaP/ZnSTe、InGaP/ZnSSeなどが挙げられる。
また、微粒子のシェル成分としては、ZnS、CdS、ZnSeなどが良く用いられるが、この中でも微粒子のコア成分がInを構成元素として含む半導体微粒子の場合、ZnSが元素毒性がなく、量子ドットとしての励起子閉じ込めなどの特性的にも特に優れており、好適に使用される。
The core / shell type semiconductor fine particles preferably used in the present invention have a structure in which the core structure is coated with a semiconductor component different from the semiconductor component forming the core. When the outside is a semiconductor with a large bunt gap, excitons (electron-hole pairs) generated by energy excitation such as light are confined in the core. As a result, the probability of non-radiative transition on the surface of the semiconductor fine particles is reduced, and the quantum yield of light emission and the stability of the fluorescence characteristics of the semiconductor quantum dots are improved. When used as quantum dots, suitable combinations of materials satisfying the above conditions include CdSe / ZnS, CdSe / ZnSe, CdS / ZnS, CdSe / CdS, CdTe / CdS, InP / ZnS, PbSe / PbS, and the like. Examples thereof include GaP / ZnS, Si / ZnS, InN / GaN, InP / CdSSe, InP / ZnSeTe, InGaP / ZnSe, InGaP / ZnS, Si / AlP, InP / ZnSTe, InGaP / ZnSTe, and InGaP / ZnSSe.
Further, ZnS, CdS, ZnSe and the like are often used as the shell component of the fine particles. Among them, when the core component of the fine particles is a semiconductor fine particle containing In as a constituent element, ZnS has no element toxicity and is used as a quantum dot. It is particularly excellent in characteristics such as exciton confinement, and is preferably used.

本発明の半導体微粒子の無機材料部分の平均粒径は0.5nm~100nmであることが好ましく、所望の特性が得られる粒径を選択することができる。コア/シェル型の場合、一つの半導体微粒子の中に複数のシェル微粒子を含有してもよい。単一半導体組成である場合の半導体微粒子の平均粒径および、コア/シェル型のコアの平均粒径は0.5nm~10nmであることが好ましい。平均粒径が0.5nm未満となる合成は困難であり、また、量子ドットの場合、10nmを超えると量子閉じ込め効果が得られず、求める蛍光が得られない。量子ドットにおいては同じ材料であってもコア粒径を変えることで蛍光波長を任意に変化出来ることが特徴であり、求める蛍光波長に応じて粒径を設定することになる。シェルの平均厚みは無機材料部分の粒子半径とコア粒子半径の差に相当するが、シェルの厚みが薄いとシェルの強度や閉じ込め効果が十分でなく、厚すぎると全体粒径が大きくなるため塗工液やインキにした場合の分散性に劣ったり、量子ドットの場合、励起方法によってはコアを励起させることが難しくなる。また、被覆材料を含む微粒子全体の平均粒径は2nm~1μmであることが好ましい。半導体微粒子の形状は、球状に限らず、棒状、円盤状、そのほかの形状であっても良い。 The average particle size of the inorganic material portion of the semiconductor fine particles of the present invention is preferably 0.5 nm to 100 nm, and a particle size that gives desired characteristics can be selected. In the case of the core / shell type, a plurality of shell fine particles may be contained in one semiconductor fine particle. The average particle size of the semiconductor fine particles in the case of a single semiconductor composition and the average particle size of the core / shell type core are preferably 0.5 nm to 10 nm. It is difficult to synthesize an average particle size of less than 0.5 nm, and in the case of quantum dots, if it exceeds 10 nm, the quantum confinement effect cannot be obtained and the desired fluorescence cannot be obtained. The feature of quantum dots is that the fluorescence wavelength can be arbitrarily changed by changing the core particle size even if the same material is used, and the particle size is set according to the desired fluorescence wavelength. The average thickness of the shell corresponds to the difference between the particle radius of the inorganic material part and the core particle radius. In the case of quantum dots, it is difficult to excite the core depending on the excitation method. Further, the average particle size of the entire fine particles including the coating material is preferably 2 nm to 1 μm. The shape of the semiconductor fine particles is not limited to a spherical shape, and may be a rod shape, a disk shape, or any other shape.

本発明の半導体微粒子が量子ドットの場合、塗工液やインキ中の量子ドットは、赤色と緑色のように、複数の発光ピークを得るために、それに対応した粒径の異なる複数種の量子ドットを混合して用いることもでき、その比率は合計でインキ中の含有率の範囲で、自由に選択することができる。 When the semiconductor fine particles of the present invention are quantum dots, the quantum dots in the coating liquid or ink have a plurality of types of quantum dots having different particle sizes in order to obtain a plurality of emission peaks, such as red and green. Can be mixed and used, and the ratio can be freely selected within the range of the content in the ink in total.

<被覆材料>
本発明の半導体微粒子は無機材料部分が剥き出しで用いることも可能であるが、微粒子作成時に必要であったり、塗工液やインキとしたときの安定性や、塗工、印刷適性、さらに塗工物や印刷物として最終形態になった時の特性発揮や経時安定性などの環境耐性を向上させるために、有機物で被覆処理されていることが好ましい。これらの有機物は被覆材料または保護材料と称されたり、特に合成時には微粒子表面の処理剤、さらには量子ドットの場合には、リガンドまたは配位子と呼ばれることも多い。
<Coating material>
The semiconductor fine particles of the present invention can be used by exposing the inorganic material portion, but they are necessary for making fine particles, stability when used as a coating liquid or ink, coating, printability, and coating. It is preferably coated with an organic substance in order to exhibit characteristics when it is in the final form as a printed matter or printed matter and to improve environmental resistance such as stability over time. These organic substances are often referred to as coating materials or protective materials, and are often referred to as treatment agents for the surface of fine particles, especially in the case of quantum dots, or ligands or ligands in the case of quantum dots.

本発明における被覆材料は、一般式(1)、一般式(2)、または一般式(3)で示される構造を有することを特徴とする。
一般式(1)
Y-(Ar-X-Ar)

一般式(2)
Y-(Ar-X-Ar-X-Ar)

一般式(3)
Y-(Ar-X-Ar-X-Ar-X-Ar)

(但し、一般式(1)、(2)および(3)において、Yは半導体微粒子表面と連結する作用を生ずる吸着基であり、Ar~Arはそれぞれ独立に、置換基を有しても良い、芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基またはそれらの同じか異なる2種以上の環が2~10個連結した構造からなる基で、それぞれAr~Arは2価、Arは1価の基である。X~Xは、それぞれ独立に、アルキリデン、アルキレン、2価の脂肪族環基、2価の複素脂肪族環基である。nは1または2の整数である。)
本化合物の最大の特徴は、((Ar-X-Ar))、(Ar-X-Ar-X-Ar) 、または(Ar-X-Ar-X-Ar-X-Ar)の部分(以下、この部分をQグループとする。)が、芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基からなる、2個以上の共役環(かそれらが数個連結した部分構造)が非共役構造で連結していることにある。これにより、半導体微粒子内の励起エネルギーが外へ漏洩するのを抑制し、量子効率が向上している。また、電界発光素子に使用した場合に、発光効率の向上と共に駆動電圧低下にも寄与している。この理由の詳細は不明であるが、非共役構造によって、π共役で伝播するエネルギー移動の経路は遮断されるが、分子間および分子内の共役環の重なりは維持されるため、電荷ホッピングに因る正孔、電子の移動が起こり、特に電界発光素子に使用した場合に量子ドット近傍で電荷再結合による励起子発生が起こりやすくなっているのではと推定される。
The coating material in the present invention is characterized by having a structure represented by the general formula (1), the general formula (2), or the general formula (3).
General formula (1)
Y- (Ar 1 -X 1 -Ar 4 ) n

General formula (2)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 4 ) n

General formula (3)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 3 -X 3 -Ar 4 ) n

(However, in the general formulas (1), (2) and (3), Y is an adsorbing group that exerts an action of linking to the surface of semiconductor fine particles, and Ar 1 to Ar 4 each independently have a substituent. It is also good, an aromatic ring group, a fused aromatic ring group, a heteroaromatic ring group, a fused heteroaromatic ring group, or a group having a structure in which 2 to 10 of the same or different two or more kinds of rings are linked, and Ar 1 to each. Ar 3 is a divalent group and Ar 4 is a monovalent group. X 1 to X 3 are independently alkyridine, alkylene, a divalent aliphatic ring group and a divalent complex aliphatic ring group, respectively. n is an integer of 1 or 2.)
The most important feature of this compound is ((Ar 1 -X 1 -Ar 4 )), (Ar 1 -X 1 -Ar 2 -X 2 -Ar 4 ), or (Ar 1 -X 1 -Ar 2 -X). The portion of 2 -Ar 3 -X 3 -Ar 4 ) (hereinafter, this portion is referred to as Q group) is composed of an aromatic ring group, a fused aromatic ring group, a heteroaromatic ring group, and a condensed heteroarominal ring group. More than one conjugated ring (or a partial structure in which several of them are connected) is connected in a non-conjugated structure. As a result, the excitation energy in the semiconductor fine particles is suppressed from leaking to the outside, and the quantum efficiency is improved. Further, when used for an electroluminescent element, it contributes to an improvement in luminous efficiency and a decrease in drive voltage. The details of this reason are unknown, but due to charge hopping, the non-conjugated structure blocks the path of energy transfer propagating in π-conjugation, but maintains the overlap of intermolecular and intramolecular exciton rings. It is presumed that the movement of holes and electrons occurs, and excitons are likely to be generated by charge recombination in the vicinity of quantum dots, especially when used in an electric field light emitting element.

本発明のAr~Arの具体例としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、ピレン、クリセン、ナフタセン、ペリレン、アズレン、フルオレノン、アントラキノン、ジベンゾスベレノン、テトラシアノキノジメタン等の置換もしくは未置換の芳香環もしくは縮合芳香環からなる基、ないしは、フラン、チオフェン、ピロール、ピリジン、ピロン、オキサゾール、ピラジン、オキサジアゾール、トリアゾール、チアジアゾール、インドール、キノリン、イソキノリン、カルバゾール、アクリジン、チオキサントン、クマリン、アクリドン、ジフェニレンスルホン、キノキサリン、ベンゾチアゾール、フェナジン、フェナントロリン、フェノチアジン、キナクリドン、フラバンスロン、インダンスロン等の置換もしくは未置換の複素芳香環もしくは縮合複素芳香環からなる基である。さらには、ビフェニル、ターフェニル、ビナフチル、ビフルオレニリデン、ビピリジン、ビキノリン、フラボン、フェニルトリアジン、ビスベンゾチアゾール、ビチオフェン、フェニルベンゾトリアゾール、フェニルベンズイミダゾール、フェニルアクリジン、ビス(ベンゾオキサゾリル)チオフェン、ビス(フェニルオキサゾリル)ベンゼン、ビフェニリルフェニルオキサジアゾール、ジフェニルベンゾキノン、ジフェニルイソベンゾフラン、ジフェニルピリジン、スチルベン、ジベンジル、ジフェニルメタン、ビス(フェニルイソプロピル)ベンゼン、ジフェニルフルオレン、ジフェニルヘキサフルオロプロパン、ジベンジルナフチルケトン、ジベンジリデンシクロヘキサノン、ジスチリルナフタレン、(フェニルエチル)ベンジルナフタレン、ジフェニルエーテル、メチルジフェニルアミン、ベンゾフェノン、安息香酸フェニル、ジフェニル尿素、ジフェニルスルフィド、ジフェニルスルホン、ジフェノキシビフェニル、ビス(フェノキシフェニル)スルホン、ビス(フェノキシフェニル)プロパン、ジフェノキシベンゼン、エチレングリコールジフェニルエーテル、ネオペンチルグリコールジフェニルエーテル、ジピコリルアミン、ジピリジルアミン等の同種または異なる2種以上の環構造単位が2個以上連結した骨格を有する基である。このうち、好ましくは、例示前半の置換もしくは未置換の芳香環、縮合芳香環、複素芳香環、縮合複素芳香環として挙げた化合物からなる基である。 Specific examples of Ar 1 to Ar 4 of the present invention include benzene, toluene, xylene, ethylbenzene, naphthalene, anthracene, phenanthrene, fluorene, pyrene, chrysen, naphthacene, perylene, azulene, fluorenone, anthracinone, dibenzosverenone and tetracyano. A group consisting of a substituted or unsubstituted aromatic ring or fused aromatic ring such as quinodimethane, or furan, thiophene, pyrrole, pyridine, pyron, oxazole, pyrazine, oxadiazole, triazole, thiadiazol, indol, quinoline, isoquinoline, Consists of substituted or unsubstituted heteroaromatic rings or fused heteroaromatic rings such as carbazole, aclysine, thioxanthone, coumarin, acridone, diphenylene sulfone, quinoxalin, benzothiazole, phenazine, phenanthroline, phenothiazine, quinacridone, flavanthrone, and indanslon. It is the basis. Furthermore, biphenyl, terphenyl, binaphthyl, bifluorenylidene, bipyridine, biquinolin, flavon, phenyltriazine, bisbenzothiazole, bithiophene, phenylbenzotriazole, phenylbenzimidazole, phenylaclydin, bis (benzoxazolyl) thiophene, Bis (phenyloxazolyl) benzene, biphenylylphenyloxadiazole, diphenylbenzoquinone, diphenylisobenzofuran, diphenylpyridine, stilben, dibenzyl, diphenylmethane, bis (phenylisopropyl) benzene, diphenylfluorene, diphenylhexafluoropropane, dibenzylnaphthyl Ketone, dibenzylidenecyclohexanone, distyrylnaphthalene, (phenylethyl) benzylnaphthalene, diphenyl ether, methyldiphenylamine, benzophenone, phenylbenzoate, diphenylurea, diphenylsulfide, diphenylsulfone, diphenoxybiphenyl, bis (phenoxyphenyl) sulfone, bis ( Phenoxyphenyl) A group having a skeleton in which two or more ring structure units of the same type or different types such as propane, diphenoxybenzene, ethylene glycol diphenyl ether, neopentyl glycol diphenyl ether, dipicorylamine, and dipyridylamine are linked. Of these, a group consisting of the compounds listed as the substituted or unsubstituted aromatic ring, condensed aromatic ring, heteroaromatic ring, and condensed heteroaromatic ring in the first half of the example is preferable.

本発明のX~Xの具体例としては、置換もしくは未置換の、メチレン、エチリデン、プロピリデン、ブチリデンなどのアルキリデン基、エチレン、プロピレン、ブチレンなどのアルキレン基等の鎖状の炭化水素からなる2価の基や、シクロペンタン、シクロヘキサン、シクロヘキセン、4-メチルシクロヘキサン、シクロヘプタンなどの飽和または一部不飽和の脂肪族環、テトラヒドロフラン、テトラドロチオフェン、ピロリン、ピロリジン、イミダゾリン、イミダゾリジン、ピラゾリン、ピラゾリジン、ピペリジン、ピヘラジン、モルホリン、ジヒドロオキサゾール、ジヒドロチアゾール、インドリンなどの飽和または一部不飽和の複素脂肪族環等からなる2価の基が挙げられる。さらには、インデン、フルオレン、フェナレン、2H-ピロール、ピラン、4H-クロメン、キサンテンなどの環上sp3炭素が、全て置換して4級炭素基となる場合は、本発明の置換基を有するメチレンに含まれる。このうち、2,2-プロピリデン、1,1-シクロヘキシリデン、9,9-フルオレニリデンなど2つの共役環を同一の炭素原子で連結する2置換のメチレン基が特に好ましい。これらが好ましい理由はメチレン基のsp3炭素によって置換基が捻られる構造となるため、共役環の配向や積層など全体として秩序だった構造を取りにくく、塗工液やインキにした際に分散状態を保ちやすく、また塗工物、印刷物などにした際に結晶化などによる膜状態劣化が抑制できることが挙げられる。 Specific examples of X 1 to X 3 of the present invention consist of substituted or unsaturated chain hydrocarbons such as an alkylidene group such as methylene, ethylidene, propyridene and butylidene, and an alkylene group such as ethylene, propylene and butylene. Divalent groups, saturated or partially unsaturated aliphatic rings such as cyclopentane, cyclohexane, cyclohexene, 4-methylcyclohexane, cycloheptane, tetrahydrofuran, tetradrothiophene, pyrrolin, pyrrolidine, imidazoline, imidazolidine, pyrazoline, Examples thereof include a divalent group consisting of a saturated or partially unsaturated complex aliphatic ring such as pyrazolidine, piperidine, piherazine, morpholin, dihydrooxazole, dihydrothiazole, and indolin. Furthermore, when all the sp3 carbons on the ring such as inden, fluorene, phenalene, 2H-pyrrole, pyran, 4H-chromen, and xanthene are substituted to form a quaternary carbon group, methylene having a substituent of the present invention is used. included. Of these, a disubstituted methylene group in which two conjugated rings such as 2,2-propanol, 1,1-cyclohexylidene, and 9,9-fluorenylidene are linked by the same carbon atom is particularly preferable. The reason why these are preferable is that the substituent is twisted by the sp3 carbon of the methylene group, so that it is difficult to take an orderly structure as a whole such as the orientation and lamination of the conjugated ring, and the dispersed state is maintained when the coating liquid or ink is used. It is easy to maintain, and deterioration of the film state due to crystallization or the like can be suppressed when it is made into a coated or printed matter.

ここまでの説明で述べてきた構造(Qグループ)の代表例を表1に具体的に例示するが、本発明は、この代表例に限定されるものではない。
Table 1 specifically exemplifies typical examples of the structures (Q groups) described in the above description, but the present invention is not limited to these representative examples.

Figure 0007030276000001
Figure 0007030276000001

Figure 0007030276000002
Figure 0007030276000002

本発明の半導体微粒子への吸着基Yは、後述の半導体微粒子の合成時の処理剤の末端部分と同じものであり、有機水酸化物、有機酸、有機アミン、硫黄含有有機物、リン含有有機物、これらの部分構造や非共有電子対を有するヘテロ原子含有炭素鎖、複素環などからなるキレート配位子等が挙げられる。本発明のYの具体例を挙げると、-OH、-C(=O)OH、-C(=O)O-、-C(=O)CH(O=)C-、-C(=O)O(O=)C-、-NH、=NH、-PH、=PH、-P(=O)H、=P(=O)H、-P(=O)(OH)、=P(=O)(OH)、-P(=O)(OH)O-、-SH、-SS-、-S(=O)(OH)、=S(=O)、-S(=O)O- などである。ここで、各組成式の左端または右端の-は、1個のQグループと結合することを示し、左端の=は2個のQグループと結合することを示す。(=O)または(O=)は=側の元素と二重結合を有する酸素原子を示す。(OH)は左端の原子と結合するヒドロキシル基を示す。ここで、半導体微粒子への吸着は、ヘテロ原子に結合した水素原子を有するものは、一般的に水素原子が脱離し、微粒子を構成する金属とイオン結合または共有結合を形成する。水素原子を有さないヘテロ原子は、その非共有電子対を金属原子に供与することで吸着する。また、分子中に結合または吸着部位が複数存在するとより強固に吸着し、脱離しにくくなる。 The adsorption group Y to the semiconductor fine particles of the present invention is the same as the terminal portion of the treatment agent at the time of synthesizing the semiconductor fine particles described later, and is an organic hydroxide, an organic acid, an organic amine, a sulfur-containing organic substance, a phosphorus-containing organic substance, and the like. Examples thereof include a heteroatom-containing carbon chain having these partial structures and an unshared electron pair, a chelate ligand composed of a heterocycle and the like. Specific examples of Y in the present invention include -OH, -C (= O) OH, -C (= O) O-, -C (= O) CH 2 (O =) C-, and -C (=). O) O (O =) C-, -NH 2 , = NH, -PH 2 , = PH, -P (= O) H 2 , = P (= O) H, -P (= O) (OH) 2 , = P (= O) (OH), -P (= O) (OH) O-, -SH, -SS-, -S (= O) 2 (OH), = S (= O) 2 , -S (= O) 2 O- and so on. Here,-at the left end or the right end of each composition formula indicates that it is bound to one Q group, and = at the left end indicates that it is bound to two Q groups. (= O) or (O =) indicates an oxygen atom having a double bond with the element on the = side. (OH) indicates a hydroxyl group bonded to the leftmost atom. Here, in the adsorption to the semiconductor fine particles, those having a hydrogen atom bonded to the hetero atom generally desorb the hydrogen atom and form an ionic bond or a covalent bond with the metal constituting the fine particles. Heteroatoms that do not have a hydrogen atom are adsorbed by donating their unshared electron pair to a metal atom. Further, when a plurality of binding or adsorbing sites are present in the molecule, the molecule is more strongly adsorbed and is less likely to be detached.

本発明の吸着基Yには価数に応じて本発明のQグループが1個または2個付くことになる。吸着基Yの種類によっては、Qグループを3個以上有することも可能であるが、Qグループが嵩高いため吸着基全体を覆ってしまい、半導体微粒子に近づくことが出来ない場合や、吸着可能であっても、複数の被覆材料間のQグループ同士の干渉で微粒子上に必要数の被覆材料を着けることが出来ない恐れが高くなる。このため、本発明においては被覆材料1分子が有するQグループの個数は1または2個が好ましい。本発明においてQグループが付くべき部位のうちの一部や、吸着基部の水素原子が、後述の半導体微粒子合成時の処理剤などで一般的に用いられる炭化水素鎖など、本発明のQグループ以外の置換基で置換されていても良い。 The adsorption group Y of the present invention has one or two Q groups of the present invention depending on the valence. Depending on the type of adsorption group Y, it is possible to have three or more Q groups, but if the Q group is bulky and covers the entire adsorption group, it cannot approach the semiconductor fine particles, or it can be adsorbed. Even if there is, there is a high possibility that the required number of coating materials cannot be attached on the fine particles due to the interference between the Q groups between the plurality of coating materials. Therefore, in the present invention, the number of Q groups contained in one molecule of the coating material is preferably 1 or 2. Other than the Q group of the present invention, such as a part of the sites to which the Q group should be attached in the present invention and the hydrocarbon chain in which the hydrogen atom at the adsorption base is generally used in a treatment agent for synthesizing semiconductor fine particles described later. It may be substituted with a substituent of.

以下に、本発明の被覆材料(一般式(1)~(3))の代表例を、表2に具体的に例示するが、本発明は、この代表例に限定されるものではない。 Hereinafter, representative examples of the covering materials (general formulas (1) to (3)) of the present invention are specifically exemplified in Table 2, but the present invention is not limited to these representative examples.

Figure 0007030276000003
Figure 0007030276000003

Figure 0007030276000004
Figure 0007030276000004

本発明の被覆材料(一般式(1)~(3))の合成は、その構造に応じて、Qグループ構造に吸着基Yを修飾する、Qグループの非共役結合部で接合する、Qグループが1つ付いた化合物にもう1つを付加するなどの方法や、その組合せにより、適宜、行うことが出来る。例えば表3の化合物B-6は置換基が臭素である前駆体をアミンに置換することで合成可能である。また、4-α-クミルフェノールや表3の化合物B-2、B-3は試薬や工業用原料として市販されているものであり、そのまま本発明の被覆材料として用いることや、本発明の被覆材料となる別の化合物の原料として使用することが出来る。 In the synthesis of the coating material (general formulas (1) to (3)) of the present invention, the Q group structure is modified with the adsorbent group Y according to the structure, and the Q group is bonded at the non-conjugated bond portion of the Q group. It can be appropriately carried out by a method such as adding the other to the compound having one attached, or a combination thereof. For example, compound B-6 in Table 3 can be synthesized by substituting an amine for a precursor having a substituent of bromine. Further, 4-α-cumylphenol and compounds B-2 and B-3 in Table 3 are commercially available as reagents and industrial raw materials, and can be used as they are as the coating material of the present invention or the present invention. It can be used as a raw material for another compound that serves as a coating material.

本発明の被覆材料は、半導体微粒子の合成時の処理剤として使用することも可能であるが、性質の相違により、合成がうまく行かなかったり、被覆材料自体が合成時に変質してしまう恐れがある。このため、合成時には一般的な処理剤を用い、後から本発明の被覆材料に交換する方がどちらかというと好ましい。 The coating material of the present invention can be used as a treatment agent during the synthesis of semiconductor fine particles, but due to differences in properties, the synthesis may not be successful or the coating material itself may be deteriorated during the synthesis. .. Therefore, it is preferable to use a general treatment agent at the time of synthesis and later replace it with the coating material of the present invention.

本発明の半導体微粒子の合成時の処理剤として用いることのできる有機物としては、無機半導体微粒子の金属部分に吸着する強い極性、または非共有電子対を有し、さらに、炭素鎖や芳香環が連結した構造、ポリアルキレングリコール構造などを有することで、塗液やインキとして使用する溶剤や樹脂との親和性が高い部分構造を有する有機物である。このような有機物は一般的には、有機および無機顔料や無機化合物材料の分散剤や、洗剤やエマルジョン形成などの際に使用される界面活性剤、乳化剤として良く知られているものであり、本発明でもこれらの化合物を使用することが出来る。また、金属錯体の配位子(リガンド)として使用される部分構造を有する化合物、特に金属への配位座を2個以上有するキレート配位子構造を有する化合物は、半導体微粒子の金属部分へ吸着しやすく、かつ脱離しにくいため、使用することが可能である。特に本発明で合成時に処理剤として用いることのできる有機物は沸点が高く、アルキル鎖部分の相互作用が期待できる、炭素数8以上のアルキル基を部分構造として有する有機物が好ましい。また、半導体微粒子への作用を強固にするために極性基を有した方が良く、処理できる有機物として、有機酸、有機アミン、硫黄含有有機物、リン含有有機物があげられる。 The organic substance that can be used as a treatment agent for the synthesis of the semiconductor fine particles of the present invention has a strong polarity or an unshared electron pair that adsorbs to the metal portion of the inorganic semiconductor fine particles, and further, a carbon chain or an aromatic ring is linked. It is an organic substance having a partial structure having a high affinity with a solvent or a resin used as a coating liquid or an ink by having a structure, a polyalkylene glycol structure, or the like. Such organic substances are generally well known as dispersants for organic and inorganic pigments and inorganic compound materials, and surfactants and emulsifiers used in detergents and emulsion formation. These compounds can also be used in the invention. Further, a compound having a partial structure used as a ligand of a metal complex, particularly a compound having a chelate ligand structure having two or more coordination bonds with a metal, is adsorbed on the metal portion of the semiconductor fine particles. It is easy to use and difficult to remove, so it can be used. In particular, the organic substance that can be used as a treatment agent in the present invention is preferably an organic substance having an alkyl group having 8 or more carbon atoms as a partial structure, which has a high boiling point and can be expected to interact with an alkyl chain portion. Further, it is better to have a polar group in order to strengthen the action on the semiconductor fine particles, and examples of the organic substances that can be treated include organic acids, organic amines, sulfur-containing organic substances, and phosphorus-containing organic substances.

有機酸としては、末端にカルボン酸を有する化合物を用いることができ、芳香環、エーテル基を含むことができ、分子中にカルボン酸を複数有していても構わない。具体例として、安息香酸、ビフェニルカルボン酸、ブチル安息香酸、ヘキシル安息香酸、シクロヘキシル安息香酸、ナフタレンカルボン酸、ヘキサン酸、ヘプタン酸、オクタン酸、エチルヘキサン酸、ヘキセン酸、オクテン酸、シトロネル酸、スベリン酸、エチレングリコールビス(4-カルボキシフェニル)エーテル、(2-ブトキシエトキシ)酢酸などがあげられる。
炭素数8以上のアルキル基を部分構造として有する有機酸としては、有機酸のうち、炭素数8以上のアルキル基を有する化合物であり、具体的には、ノナン酸、デカン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、トリコサン酸、リグノセリン酸、オレイン酸、エイコサジエン酸、リノレン酸、セバシン酸、(2-オクチルオキシ)酢酸、等があげられる。
As the organic acid, a compound having a carboxylic acid at the terminal can be used, an aromatic ring and an ether group can be contained, and a plurality of carboxylic acids may be contained in the molecule. Specific examples include benzoic acid, biphenylcarboxylic acid, butylbenzoic acid, hexylbenzoic acid, cyclohexylbenzoic acid, naphthalenecarboxylic acid, hexanoic acid, heptanic acid, octanoic acid, ethylhexanoic acid, hexenoic acid, octenoic acid, citronellic acid, and sverin. Acids, ethylene glycol bis (4-carboxyphenyl) ether, (2-butoxyethoxy) acetic acid and the like can be mentioned.
The organic acid having an alkyl group having 8 or more carbon atoms as a partial structure is a compound having an alkyl group having 8 or more carbon atoms among the organic acids, and specifically, nonanoic acid, decanoic acid, lauric acid, and myristine. Examples thereof include acids, palmitic acid, stearic acid, trichosanoic acid, lignoseric acid, oleic acid, eicosazienoic acid, linolenic acid, sebacic acid, (2-octyloxy) acetic acid and the like.

有機アミンとしては、末端にアミノ基を有する化合物を用いることができ、芳香環
n-ブチルアミン、iso-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、シクロヘキシルアミンがあげられる。
炭素数8以上のアルキル基を部分構造として有する有機アミンとしては、
オクチルアミン、ドデカアミン、ヘプタデカン-9-アミン、N,N-ジメチル-n-オクチルアミンなどがあげられる。
As the organic amine, a compound having an amino group at the terminal can be used, and examples thereof include aromatic ring n-butylamine, iso-butylamine, tert-butylamine, n-hexylamine, n-heptylamine, and cyclohexylamine.
As an organic amine having an alkyl group having 8 or more carbon atoms as a partial structure,
Examples thereof include octylamine, dodecaamine, heptadecane-9-amine, N, N-dimethyl-n-octylamine and the like.

硫黄含有有機物としては、チオール類とジスルフィド類があげられる。
チオール類としては、アリルメルカプタン、1,3-ベンゼンジメタンチオール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾールブタンチオール、n-ヘキサンチオール、n-ヘプタンチオール、などがあげられる。
炭素数8以上のアルキル基を部分構造として有するチオール類の硫黄含有有機物としては、ドデカンチオール、1-ドコサンチオール、tert-ドデシルメルカプタン等があげられる。
ジスルフィド類としては、ビス(4-クロロ-2-ニトロフェニル)ジスルフィド、ヘキシルスルフィド、3,3',5,5'-テトラクロロジフェニルジスルフィド等があげられる。
炭素数8以上のアルキル基を部分構造として有するスルフィド類の硫黄含有有機物としては、ドデシルジスルフィド、オクタデシルジスルフィド、ドデシルオクタデシルジスルフィドなどがあげられる。
Examples of sulfur-containing organic substances include thiols and disulfides.
Thiols include allyl mercaptan, 1,3-benzenedimethanethiol, 2-amino-5-mercapto-1,3,4-thiadiazol, 3-amino-5-mercapto-1,2,4-triazolebutanethiol. , N-hexanethiol, n-heptanethiol, and the like.
Examples of sulfur-containing organic substances of thiols having an alkyl group having 8 or more carbon atoms as a partial structure include dodecanethiol, 1-docosanthiol, tert-dodecyl mercaptan and the like.
Examples of disulfides include bis (4-chloro-2-nitrophenyl) disulfide, hexyl sulfide, 3,3', 5,5'-tetrachlorodiphenyl disulfide and the like.
Examples of the sulfur-containing organic substances of sulfides having an alkyl group having 8 or more carbon atoms as a partial structure include dodecyl disulfide, octadecyl disulfide, and dodecyl octadecyl disulfide.

リン含有有機物としては、リン酸ブチル、リン酸ヘキシル、リン酸ジイソプロピル、(2-エチルヘキシル)ホスホン酸モノ-2-エチルヘキシル、プロピルホスホン酸、ヘキシルホスホン酸、ヘキシルホスホン酸メチル、イソプロピルホスホン酸ヘキシルなどがあげられる。
炭素数8以上のアルキル基を部分構造として有するリン含有有機物としては、リン酸オクチル、リン酸ジドデシル、リン酸ドデシル、ドデシルホスホン酸、ヘキシルホスホン酸ドデシル、デシルホスホン酸、デシルホスホン酸イソプロピルなどがあげられる。
Examples of phosphorus-containing organic substances include butyl phosphate, hexyl phosphate, diisopropyl phosphate, mono-2-ethylhexyl phosphonate (2-ethylhexyl), propylphosphonic acid, hexylphosphonic acid, methyl hexylphosphonate, and hexyl isopropylphosphonate. can give.
Examples of the phosphorus-containing organic substance having an alkyl group having 8 or more carbon atoms as a partial structure include octyl phosphate, didodecyl phosphate, dodecyl phosphate, dodecylphosphonic acid, dodecyl hexylphosphonate, decylphosphonic acid, and isopropyl decylphosphonate. Be done.

本発明の半導体微粒子の合成方法としては、ガラス中で作成する方法、水溶液中で合成する方法、有機溶媒中で合成する方法など、一般的に知られている方法を用いることができる。特に、InP/ZnSコアシェル型量子ドットに関しては技術文献「Journal of American Chemical Society.2007,129,15432-15433」、「Journal of American Chemical Society.2016,138,5923-5929」、InCuS2/ZnSコアシェル型量子ドットに関しては技術文献「Journal of American Chemical Society.2009,131,5691-5697」 技術文献 「Chemistry of Materials.2009,21,2422-2429」、Si量子ドットに関しては技術文献「Journal of American Chemical Society.2010,132,248-253」記載されている方法を参照して合成することができる。 As a method for synthesizing the semiconductor fine particles of the present invention, generally known methods such as a method for producing in glass, a method for synthesizing in an aqueous solution, and a method for synthesizing in an organic solvent can be used. In particular, regarding InP / ZnS core-shell type quantum dots, technical documents "Journal of American Chemical Society. 2007, 129, 15432-15433", "Journal of American Chemical Society. 2016, 138, 5923-59", "Journal of American Chemical Society. 2016, 138, 5923-59" Regarding quantum dots, the technical document "Journal of American Chemical Society. 2009, 131, 5691-5697", the technical document "Chemistry of Chemicals. 2009, 21,242-2249", and the technical document "Journal of the American Chemical Society" for Si quantum dots. It can be synthesized by referring to the method described in "2010, 132, 248-253".

合成時に用いた処理剤で表面処理された半導体微粒子組成物の本発明の被覆材料への交換は、表面処理された半導体微粒子組成物と本発明の被覆材料を混合し、溶剤中で撹拌するか、表面処理された半導体微粒子組成物を遠心沈降などで溶剤をおおよそ取り除いた後、本発明の被覆材料を含む溶剤に半導体微粒子を再分散させる方法などで行うことができる。これによって塗工液やインキに好適な所望の溶剤や樹脂との親和性の高い被覆材料に表面処理することで、目的とする塗工物や印刷物という最終形態を得ることができ、前記の通り、半導体微粒子組成物、特に量子ドットとして非常に高特性の組成物として最終形態に好適に使用できることになる。なお、合成時や塗工液、インキとする際に、本発明の被覆材料と、前記の一般的な合成時の処理剤を被覆材料として併用しても構わない。 To replace the surface-treated semiconductor fine particle composition with the treatment agent used at the time of synthesis with the coating material of the present invention, the surface-treated semiconductor fine particle composition and the coating material of the present invention are mixed and stirred in a solvent or the surface. The treated semiconductor fine particle composition can be roughly removed by centrifugal sedimentation or the like, and then the semiconductor fine particles are redispersed in the solvent containing the coating material of the present invention. As a result, by surface-treating a coating material having a high affinity with a desired solvent or resin suitable for the coating liquid or ink, the final form of the desired coated or printed matter can be obtained, as described above. , A semiconductor fine particle composition, particularly a composition having very high characteristics as a quantum dot, can be suitably used in the final form. The coating material of the present invention and the above-mentioned general synthetic treatment agent may be used in combination as a coating material at the time of synthesis, coating liquid, or ink.

<溶剤と樹脂、添加剤>
本発明で使用される溶剤としては、トルエン、1,2,3-トリクロロプロパン、1,3-ブチレングリコール、1,3-ブチレングリコールジアセテート、1,4-ジオキサン、2-ヘプタノン、2-メチル-1,3-プロパンジオール、3,5,5-トリメチル-2-シクロヘキセン-1-オン、3,3,5-トリメチルシクロヘキサノン、3-エトキシプロピオン酸エチル、3-メチル-1,3-ブタンジオール、3-メトキシ-3-メチル-1-ブタノール、3-メトキシ-3-メチルブチルアセテート、3-メトキシブタノール、3-メトキシブチルアセテート、4-ヘプタノン、m-キシレン、m-ジエチルベンゼン、m-ジクロロベンゼン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、n-ブチルアルコール、n-ブチルベンゼン、n-プロピルアセテート、N-メチルピロリドン、o-キシレン、o-クロロトルエン、o-ジエチルベンゼン、o-ジクロロベンゼン、P-クロロトルエン、P-ジエチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、γ―ブチロラクトン、水、メタノール、エタノール、イソプロピルアルコール、ターシャルターシャルブタノール、イソブチルアルコール、イソホロン、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノターシャリーブチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジイソブチルケトン、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、シクロヘキサノール、シクロヘキサノールアセテート、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ダイアセトンアルコール、トリアセチン、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、ベンジルアルコール、メチルイソブチルケトン、メチルシクロヘキサノール、酢酸n-アミル、酢酸n-ブチル、酢酸イソアミル、酢酸イソブチル、酢酸プロピル、及び二塩基酸エステル等が挙げられる。
このうちインクジェット法で印刷するためには、吐出ヘッドでの乾燥を防ぐために、常圧における沸点が120℃以上の溶剤である必要がある。常圧における沸点が120℃以上の溶剤の例を挙げる。1,4-ブタンジオール(228℃)、1,3-ブタンジオール(208℃)、2-エチル-1-ヘキサノール(185℃)、ベンジルアルコール(205℃)、ジイソブチルケトン(168℃)、シクロヘキサノン(156℃)、ジアセトンアルコール(168℃)、酢酸ブチル(121℃)、酢酸メトキシブチル(171℃)、酢酸セロソルブ(156℃)、プロピレングリコールモノメチルエーテルアセテート(146℃)、酢酸アミル(130℃)、乳酸メチル(145℃)乳酸エチル(154℃)、乳酸ブチル(188℃)、エチレングリコールモノメチルエーテルアセテート(145℃)、エチレングリコールモノメチルエーテル(125℃)、エチレングリコールモノエチルエーテル(134℃)、エチレングリコールモノブチルエーテル(171℃)、エチレングリコール(197℃)、プロピレングリコール(187℃)、プロピレングリコールモノメチルエーテル(121℃)、メトキシメチルブタノール(173℃)、ジエチレングリコールジメチルエーテル(162℃)、エチレングリコールジエチルエーテル(121℃)、パークロロエチレン(121℃)、ジクロロベンゼン(180℃)、N-メチル-2-ピロリドン(202℃)、ジメチルホルムアミド(153℃)、3-エトキシプロピオン酸エチル(170℃)、γ―ブチロラクトン(203℃)、ジメチルスルホキシシド(189℃)などがあげられる。
溶解性から炭化水素系の常圧における沸点が120℃以上の溶剤が好ましく、特に芳香族炭化水素系の常圧における沸点が120℃以上の溶剤は好ましい。
<Solvent and resin, additives>
The solvent used in the present invention includes toluene, 1,2,3-trichloropropane, 1,3-butylene glycol, 1,3-butylene glycol diacetate, 1,4-dioxane, 2-heptanone, and 2-methyl. -1,3-Propanediol, 3,5,5-trimethyl-2-cyclohexene-1-one, 3,3,5-trimethylcyclohexanone, ethyl 3-ethoxypropionate, 3-methyl-1,3-butanediol , 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutanol, 3-methoxybutyl acetate, 4-heptanone, m-xylene, m-diethylbenzene, m-dichlorobenzene , N, N-dimethylacetamide, N, N-dimethylformamide, n-butyl alcohol, n-butylbenzene, n-propyl acetate, N-methylpyrrolidone, o-xylene, o-chlorotoluene, o-diethylbenzene, o- Dichlorobenzene, P-chlorotoluene, P-diethylbenzene, sec-butylbenzene, tert-butylbenzene, γ-butyrolactone, water, methanol, ethanol, isopropyl alcohol, tershal tarshalbutanol, isobutyl alcohol, isophorone, ethylene glycol diethyl ether, Ethylene glycol dibutyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monotarsial butyl ether, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol monopropyl ether, ethylene glycol Monohexyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, diisobutyl ketone, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, cyclo Hexanol, cyclohexanol acetate, cyclohexanone, dipropylene glycol dimethyl ether, dipropylene glyco Lumethyl Ether Acetate, Dipropylene Glycol Monoethyl Ether, Dipropylene Glycol Monobutyl Ether, Dipropylene Glycol Monopropyl Ether, Dipropylene Glycol Monomethyl Ether, Diacetone Alcohol, Triacetin, Tripropylene Glycol Monobutyl Ether, Tripropylene Glycol Monomethyl Ether, Propylene Glycol diacetate, propylene glycol phenyl ether, propylene glycol monoethyl ether, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether propio Nate, benzyl alcohol, methylisobutylketone, methylcyclohexanol, n-amyl acetate, n-butyl acetate, isoamyl acetate, isobutyl acetate, propyl acetate, dibasic acid ester and the like can be mentioned.
Of these, in order to print by the inkjet method, it is necessary to use a solvent having a boiling point of 120 ° C. or higher at normal pressure in order to prevent drying at the ejection head. An example of a solvent having a boiling point of 120 ° C. or higher at normal pressure is given. 1,4-Butanediol (228 ° C), 1,3-Butanediol (208 ° C), 2-ethyl-1-hexanol (185 ° C), benzyl alcohol (205 ° C), diisobutylketone (168 ° C), cyclohexanone (18 ° C) 156 ° C), diacetone alcohol (168 ° C), butyl acetate (121 ° C), methoxybutyl acetate (171 ° C), cellosolve acetate (156 ° C), propylene glycol monomethyl ether acetate (146 ° C), amyl acetate (130 ° C). , Methyl lactate (145 ° C), ethyl lactate (154 ° C), butyl lactate (188 ° C), ethylene glycol monomethyl ether acetate (145 ° C), ethylene glycol monomethyl ether (125 ° C), ethylene glycol monoethyl ether (134 ° C), Ethylene glycol monobutyl ether (171 ° C), ethylene glycol (197 ° C), propylene glycol (187 ° C), propylene glycol monomethyl ether (121 ° C), methoxymethylbutanol (173 ° C), diethylene glycol dimethyl ether (162 ° C), ethylene glycol diethyl. Ether (121 ° C), perchloroethylene (121 ° C), dichlorobenzene (180 ° C), N-methyl-2-pyrrolidone (202 ° C), dimethylformamide (153 ° C), ethyl 3-ethoxypropionate (170 ° C) , Gamma-butyrolactone (203 ° C.), dimethylsulfoxyside (189 ° C.) and the like.
From the viewpoint of solubility, a hydrocarbon-based solvent having a boiling point of 120 ° C. or higher at normal pressure is preferable, and an aromatic hydrocarbon-based solvent having a boiling point of 120 ° C. or higher at normal pressure is particularly preferable.

常圧における沸点が120℃以上の炭化水素系溶剤としては、オクタン(125℃)、デカン(174℃)、1-デセン(171℃)、デカヒドロナフタレン(191℃)、ブチルシクロヘキサン(180℃)、2,3,-ジメチルヘプタン(140℃)などがあげられる。
常圧における沸点が120℃以上の芳香族炭化水素系溶剤としては、キシレン(138℃)、メシチレン(164℃)、メチルナフタレン(245℃)、tert-ブチルベンゼン(168℃)、n-ブチルベンゼン(183℃)等があげられる。
Hydrocarbon solvents having a boiling point of 120 ° C or higher at normal pressure include octane (125 ° C), decane (174 ° C), 1-decene (171 ° C), decahydronaphthalene (191 ° C), and butylcyclohexane (180 ° C). , 2,3, -Dimethylheptane (140 ° C.) and the like.
Examples of the aromatic hydrocarbon solvent having a boiling point of 120 ° C. or higher at normal pressure include xylene (138 ° C.), mesitylene (164 ° C.), methylnaphthalene (245 ° C.), tert-butylbenzene (168 ° C.), and n-butylbenzene. (183 ° C) and the like.

また、本発明のインクジェットインキでは、沸点が120℃未満の溶剤も含有することができる。含有する溶媒としては、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、ブタノール、イソブタノール、ターシャリーブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸メチル、酢酸ノルマルプロピル、酢酸イソプロピル、1,4-ジオキサン、メチルターシャリーブチルエーテル、イソプロピルエーテル)、エチレングリコールジメチルエーテル、塩化メチレン、トリクロロエチレン、フルオロカーボン、ブロモプロパン、クロロホルム、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル、1,3-ジオキソランなどを挙げることができる。
沸点が120℃未満の溶剤は、揮発分中0~60%の範囲内で混合することが好ましい。これ以上の含有率では、インキの乾燥が早くなり、インクジェットの吐出が困難になる。
Further, the inkjet ink of the present invention can also contain a solvent having a boiling point of less than 120 ° C. Solvents contained include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, butanol, isobutanol, tertiary butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, methyl acetate, normal propyl acetate, isopropyl acetate, 1,4. -Dioxane, methyl tertiary butyl ether, isopropyl ether), ethylene glycol dimethyl ether, methylene chloride, trichloroethylene, fluorocarbon, bromopropane, chloroform, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, acetonitrile, 1,3-dioxolane and the like.
Solvents having a boiling point of less than 120 ° C. are preferably mixed within the range of 0 to 60% of the volatile content. If the content is higher than this, the ink dries quickly and it becomes difficult to eject the ink jet.

樹脂としては、石油系樹脂、マレイン酸樹脂、ニトロセルロース、セルロースアセテートブチレート、環化ゴム、塩化ゴム、アルキド樹脂、アクリル樹脂、ポリエステル樹脂、アミノ樹脂、ビニル樹脂、又はブチラール樹脂等があげられ、塗工、印刷方式や基材により適時選択することができる。さらに、含有してもよい樹脂として、直鎖オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂およびシルセスキオキサン系紫外線硬化樹脂などが挙げられる。 Examples of the resin include petroleum-based resin, maleic acid resin, nitrocellulose, cellulose acetate butyrate, cyclized rubber, rubber chloride, alkyd resin, acrylic resin, polyester resin, amino resin, vinyl resin, butyral resin and the like. It can be selected in a timely manner depending on the coating, printing method and base material. Further, as the resin that may be contained, a linear olefin resin, an aromatic polyether resin, a polyimide resin, a fluorene polycarbonate resin, a fluorene polyester resin, a polycarbonate resin, a polyamide (aramid) resin, and a polyarylate Resins, polysulfone resins, polyether sulfone resins, polyparaphenylene resins, polyamideimide resins, polyethylene naphthalate (PEN) resins, fluorinated aromatic polymer resins, (modified) acrylic resins, epoxy Examples thereof include based resins, allyl ester-based curable resins and silsesquioxane-based ultraviolet curable resins.

本発明の塗工液、インキには、表面張力を調整し印刷基材上でのインキの濡れ性を確保する目的で、界面活性剤を添加してもよい。本発明では、陽イオン性、陰イオン性、両性、非イオン性の何れの界面活性剤も用いる事が可能である。
陽イオン性界面活性剤としては、脂肪酸アミン塩、脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩などが挙げられる。
A surfactant may be added to the coating liquid and the ink of the present invention for the purpose of adjusting the surface tension and ensuring the wettability of the ink on the printing substrate. In the present invention, any cationic, anionic, amphoteric, or nonionic surfactant can be used.
Examples of the cationic surfactant include fatty acid amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, and imidazolinium salts.

陰イオン性界面活性剤としては、脂肪酸石鹸、N-アシル-N-メチルグリシン塩、N-アシル-N-メチル-β-アラニン塩、N-アシルグルタミン酸塩、アシル化ペプチド、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルホン酸塩、N-アシルメチルタウリン、硫酸化油、高級アルコール硫酸エステル塩、 第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、第二級高級アルコールエトキシサルフェート、脂肪酸アルキロールアミド硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩などが挙げられる。
両性界面活性剤としては、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタインなどが挙げられる。
非イオン界面活性剤としては、例えばポリオキシエチレン二級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体ポリオキシエチレンポリプロピレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油、硬化ヒマシ油、ポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アルキルアミンオキサイド、アセチレングリコール、アセチレンアルコールなどが挙げられる。
Anionic surfactants include fatty acid soaps, N-acyl-N-methylglycine salts, N-acyl-N-methyl-β-alanine salts, N-acylglutamates, acylated peptides, alkylsulfonates, etc. Alkylbenzene sulphonate, alkylnaphthalen sulphonate, dialkyl sulfosuccinic acid ester salt, alkyl sulfoacetate salt, α-olefin sulfonate, N-acylmethyl taurine, sulfated oil, higher alcohol sulfate ester salt, secondary higher alcohol Examples thereof include sulfate ester salts, alkyl ether sulfate salts, secondary higher alcohol ethoxysulfates, fatty acid alkylolamide sulfate ester salts, alkyl ether phosphate ester salts, and alkyl phosphate ester salts.
Examples of the amphoteric tenside include carboxybetaine type, sulfobetaine type, aminocarboxylate, and imidazolinium betaine.
Examples of the nonionic surfactant include polyoxyethylene secondary alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative polyoxyethylene polypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, and poly. Oxyethylene castor oil, hardened castor oil, polyoxyethylene sorbitol fatty acid ester, polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, sucrose fatty acid ester, fatty acid alkanolamide, polyoxyethylene Examples thereof include fatty acid amides, polyoxyethylene alkylamines, alkylamine oxides, acetylene glycols and acetylene alcohols.

界面活性剤のなかでも、印刷基材への濡れ性を向上させるためにも、表面張力調整剤を用いる事が好ましく、具体的には、アセチレンジオール系、シリコン系、アクリル系、フッ素系が好ましい。上記の界面活性剤は単独で用いてもよいし、2種以上を併用してもよい。 Among the surfactants, it is preferable to use a surface tension adjusting agent in order to improve the wettability to the printing substrate, and specifically, acetylenediol-based, silicon-based, acrylic-based, and fluorine-based are preferable. .. The above-mentioned surfactant may be used alone or in combination of two or more.

本発明の塗工液、インキは可塑剤、紫外線防止剤、光安定化剤、酸化防止剤、加水分解防止剤等の種々の添加剤も使用することができる。 As the coating liquid and ink of the present invention, various additives such as plasticizers, ultraviolet inhibitors, light stabilizers, antioxidants, and hydrolysis inhibitors can also be used.

<印刷方式>
本発明の塗工物、印刷物は、基材上に本発明の塗工液を成膜、または塗布することで得ることができる。公知の湿式成膜法、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリ-コート法、ノズルコート法等の塗布法を用いて作製することができる。
基材としては、ガラス板や樹脂板などが挙げられる。
<Printing method>
The coated matter and printed matter of the present invention can be obtained by forming or coating the coating liquid of the present invention on a substrate. Known wet film forming methods such as spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, It can be produced by using a coating method such as a flexo printing method, an offset printing method, an inkjet printing method, a capillary coating method, and a nozzle coating method.
Examples of the base material include a glass plate and a resin plate.

このうち本発明に用いるインクジェット印刷方式として、記録媒体に対しインクジェットインキを1回だけ吐出して記録するシングルパス方式、及び、記録媒体の最大記録幅の間を、記録媒体の搬送方向と直行する方向に短尺のシャトルヘッドを往復走査させながら記録を行うシリアル型方式の何れを採用しても良い。またインクジェット記録装置としては、インクジェットインキを吐出するインクジェットヘッド(インク吐出手段)と、インクジェットヘッドから吐出されたインキを乾燥させる乾燥工程を備える必要がある。インクジェットヘッドからインキが吐出されると、吐出されたインキは印刷基材上に着弾し画像が記録され、画像は印刷基材が搬送されるに従い、乾燥装置内に搬送され、乾燥処理が行われる。 Of these, the inkjet printing method used in the present invention is a single-pass method in which inkjet ink is ejected to a recording medium only once for recording, and a method perpendicular to the transport direction of the recording medium between the maximum recording width of the recording medium. Any serial type method in which recording is performed while reciprocating scanning a short shuttle head in the direction may be adopted. Further, the inkjet recording device needs to include an inkjet head (ink ejection means) for ejecting inkjet ink and a drying step for drying the ink ejected from the inkjet head. When the ink is ejected from the inkjet head, the ejected ink lands on the printing substrate and an image is recorded, and the image is conveyed into the drying device as the printing substrate is conveyed, and the drying process is performed. ..

インクジェット法には特に制限は無く、公知の方法、例えば静電誘引力を利用してインキを吐出させる電荷制御方法、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインキに照射して放射圧を利用しインキを吐出させる音響インクジェット方式、及びインキを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式等の何れであっても良い。 The inkjet method is not particularly limited, and is known as a known method, for example, a charge control method for ejecting ink by using an electrostatic attraction, a drop-on-demand method (pressure pulse method) using the vibration pressure of a piezo element, or an electric signal. An acoustic inkjet method that converts the ink into an acoustic beam and irradiates the ink to eject the ink using radiation pressure, and a thermal inkjet method that heats the ink to form bubbles and uses the generated pressure (Bubble Jet (registered trademark)). Any method may be used.

またインクジェット法で用いるインクジェットヘッドは、オンデマンド方式でもコンティニアス方式でも構わない。さらに吐出法式としては、電気‐機械変換方式(例:シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアモード型、シェアードウォール型等)、電気‐熱変換方式(例:サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例:電解制御型、スリットジェット型等)、及び放電方式(例:スパークジェット型等)などを具体的な例として挙げる事ができるが、何れの吐出方式を用いても構わない。なお、インクジェット法により記録を行う際に使用するインクノズル等については特に制限はなく、目的に応じて適宜選択する事ができる。 The inkjet head used in the inkjet method may be an on-demand method or a continuous method. Further, as the discharge method, an electric-mechanical conversion method (eg, single cavity type, double cavity type, bender type, piston type, shared mode type, shared wall type, etc.), an electric-heat conversion method (eg, thermal inkjet). Specific examples include molds, bubble jet (registered trademark) types, electrostatic suction methods (eg, electrolytic control type, slit jet type, etc.), and discharge methods (eg, spark jet type, etc.). However, any discharge method may be used. The ink nozzle or the like used when recording by the inkjet method is not particularly limited, and can be appropriately selected according to the purpose.

インクジェットヘッドから吐出されるインキの液滴量としては、乾燥負荷軽減効果が大きく、画像品質の向上という点でも、0.2~20ピコリットル(pL)が好ましく、1~15ピコリットル(pL)がより好ましい。 As for the amount of ink droplets ejected from the inkjet head, 0.2 to 20 picolitres (pL) are preferable from the viewpoint of greatly reducing the drying load and improving image quality, and 1 to 15 picolitres (pL). Is more preferable.

本発明の最終形態である波長変換フィルムおよびカラーフィルターは、光源からの光を吸収させ、吸収されなかった透過光または光吸収によって生じた蛍光発光によって所望の波長の光を取り出す際に用いられるものである。特に本発明において量子ドットを使用する場合には、優れた量子収率の蛍光発光を利用することになる。本発明の波長変換フィルムは、本発明の塗工液またはインキ組成物を基材に塗布することで得られ、緑色と赤色の蛍光色を発する量子ドットを含有させた塗工または印刷フィルムで、主にディスプレイパネルや照明において光源の青色光を白色光に変換する、あるいは色調の整っていない疑似白色光などを所望の色調に調整する平面状の部材である。
基材としては、ガラス板や樹脂板などが挙げられる。
The wavelength conversion film and color filter, which are the final forms of the present invention, are used for absorbing light from a light source and extracting light of a desired wavelength by transmitted light that has not been absorbed or fluorescence emission generated by light absorption. Is. In particular, when quantum dots are used in the present invention, fluorescence emission with an excellent quantum yield will be used. The wavelength conversion film of the present invention is a coating or printing film obtained by applying the coating liquid or the ink composition of the present invention to a substrate and containing quantum dots emitting fluorescent colors of green and red. It is a planar member that converts blue light of a light source into white light mainly in a display panel or lighting, or adjusts pseudo-white light having an irregular color tone to a desired color tone.
Examples of the base material include a glass plate and a resin plate.

また、本発明のカラーフィルターは本発明の塗工液またはインキ組成物を用いてフィルターセグメントの少なくとも一つのセグメントを形成することで得られるカラーフィルターであり、特に液晶ディスプレイパネルに使用されるものであり、具体的には、ガラス等の透明な基板の表面に3種以上の異なる色相の微細なストライプ状のフィルターセグメントを平行または交差して配置したもの、あるいは微細なモザイク状のフィルターセグメントを縦横一定の配列に配置したものからなっている。本発明においては、従来の白色光源から青、緑、赤の光を取り出す光吸収型カラーフィルターとは異なり、主に青色LEDなどを光源に、蛍光フィルターによって緑、赤を取り出すものである。量子ドットを使用した場合、光吸収による減光ではなく量子収率の高い蛍光での取出しになるためエネルギーロスが減るとともに、波長分布が狭く純色に近い色が得られるため、高効率のディスプレイを作製可能である。 Further, the color filter of the present invention is a color filter obtained by forming at least one segment of a filter segment using the coating liquid or the ink composition of the present invention, and is particularly used for a liquid crystal display panel. Specifically, there are three or more kinds of fine striped filter segments having different hues arranged in parallel or crossed on the surface of a transparent substrate such as glass, or fine mosaic-like filter segments are arranged vertically and horizontally. It consists of those arranged in a certain arrangement. In the present invention, unlike the light absorption type color filter that extracts blue, green, and red light from a conventional white light source, green and red are extracted mainly by a blue LED or the like as a light source and a fluorescent filter. When quantum dots are used, energy loss is reduced because the fluorescence is extracted with high quantum yield instead of dimming due to light absorption, and the wavelength distribution is narrow and colors close to pure colors can be obtained, resulting in a highly efficient display. It can be manufactured.

カラーフィルターの製造は、一般的には、ベタ塗りの薄膜を作製後に、パターニング露光と現像での不要部取り除きというレジスト法によって作製することが多く、本発明における微粒子組成物においても適用することは可能であるが、工程数の違いによる生産性および現像工程での材料ロスがないという低コスト観点から、本発明においてはインクジェット法を適用することが有利である。 In general, a color filter is often manufactured by a resist method of patterning exposure and removing unnecessary parts in development after producing a solid thin film, and it cannot be applied to the fine particle composition of the present invention. Although it is possible, it is advantageous to apply the inkjet method in the present invention from the viewpoint of productivity due to the difference in the number of processes and low cost of no material loss in the developing process.

また、本発明の最終形態の一つである塗工液またはインキ組成物を使用して形成された発光層を有する発光素子について詳細に説明する。 Further, a light emitting device having a light emitting layer formed by using a coating liquid or an ink composition, which is one of the final forms of the present invention, will be described in detail.

本発明における発光素子は、一般には電界発光素子と称され、陽極と陰極間に一層または多層の有機層を形成した素子から構成されるが、ここで、一層型電界発光素子とは、陽極と陰極との間に発光層のみからなる素子を指す。一方、多層型電界発光素子とは、発光層の他に、発光層への正孔や電子の注入を容易にしたり、発光層内での正孔と電子との再結合を円滑に行わせたりすることを目的として、正孔注入層、正孔輸送層、正孔阻止層、電子注入層などを積層させたものを指す。また、発光層と陽極との間で発光層に隣接して存在し、発光層と陽極、又は発光層と、正孔注入層若しくは正孔輸送層とを隔離する役割をもつ層であるインターレイヤー層を挿入しても良い。したがって、多層型電界発光素子の代表的な素子構成としては、(1)陽極/正孔注入層/発光層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/陰極、(3)陽極/正孔注入層/発光層/電子注入層/陰極、(4)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極、(5)陽極/正孔注入層/発光層/正孔阻止層/電子注入層/陰極、(6)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子注入層/陰極、(7)陽極/発光層/正孔阻止層/電子注入層/陰極、(8)陽極/発光層/電子注入層/陰極(9)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/陰極、(10)陽極/正孔注入層/インターレイヤー層/発光層/電子注入層/陰極、(11)陽極/正孔注入層/正孔輸送層/インターレイヤー層/発光層/電子注入層/陰極、等の多層構成で積層した素子構成が考えられる。 The light-emitting device in the present invention is generally referred to as an electroluminescent device, and is composed of an element in which a single-layer or multi-layered organic layer is formed between an anode and a cathode. Refers to an element consisting only of an electroluminescent layer between it and the cathode. On the other hand, the multi-layer electroluminescent element facilitates the injection of holes and electrons into the light emitting layer in addition to the light emitting layer, and facilitates the recombination of holes and electrons in the light emitting layer. It refers to a stack of a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer, and the like. Further, an interconnect layer that exists adjacent to the light emitting layer between the light emitting layer and the anode and has a role of separating the light emitting layer and the anode or the light emitting layer from the hole injection layer or the hole transport layer. Layers may be inserted. Therefore, typical element configurations of the multilayer electro-emitting element are (1) anode / hole injection layer / light emitting layer / cathode, and (2) anode / hole injection layer / hole transport layer / light emitting layer / cathode. , (3) anode / hole injection layer / light emitting layer / electron injection layer / cathode, (4) anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode, (5) anode / positive Pore injection layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (6) anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron injection layer / cathode, (7) Anodic / light emitting layer / hole blocking layer / electron injection layer / cathode, (8) anode / light emitting layer / electron injection layer / cathode (9) anode / hole injection layer / hole transport layer / interlayer layer / light emitting layer / Cathode, (10) Anodic / hole injection layer / interlayer layer / light emitting layer / electron injection layer / cathode, (11) anode / hole injection layer / hole transport layer / interlayer layer / light emitting layer / electron injection It is conceivable that the element configuration is laminated with a multi-layer configuration such as a layer / cathode.

また、上述した各層は、それぞれ二層以上の層構成により形成されても良く、いくつかの層が繰り返し積層されていても良い。そのような例として、近年、光取り出し効率の向上を目的に、上述の多層型電界発光素子の一部の層を多層化する「マルチ・フォトン・エミッション」と呼ばれる素子構成が提案されている。これは例えば、ガラス基板/陽極/正孔輸送層/電子輸送性発光層/電子注入層/電荷発生層/発光ユニット/陰極から構成される電界発光素子に於いて、電荷発生層と発光ユニットの部分を複数層積層するといった方法が挙げられる。 Further, each of the above-mentioned layers may be formed by a layer structure of two or more layers, or several layers may be repeatedly laminated. As such an example, in recent years, for the purpose of improving the light extraction efficiency, an element configuration called "multi-photon emission" in which a part of the layers of the above-mentioned multi-layer electroluminescent element is multi-layered has been proposed. This is, for example, in an electroluminescent element composed of a glass substrate / anode / hole transport layer / electron transporting light emitting layer / electron injection layer / charge generating layer / light emitting unit / cathode. A method of laminating a plurality of layers of the portions can be mentioned.

正孔注入層には、発光層に対して優れた正孔注入効果を示し、かつ陽極界面との密着性と薄膜形成性に優れた正孔注入層を形成できる正孔注入材料が用いられる。また、このような材料を多層積層させ、正孔注入効果の高い材料と正孔輸送効果の高い材料とを多層積層させた場合、それぞれに用いる材料を正孔注入材料、正孔輸送材料と呼ぶことがある。本発明の電界発光素子用材料は、正孔注入材料、正孔輸送材料いずれにも好適に使用することができる。これら正孔注入材料や正孔輸送材料は、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい必要がある。このような正孔注入層としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-6cm/V・秒であるものが好ましい。本発明の電界発光素子用材料と混合して使用することができる、他の正孔注入材料および正孔輸送材料としては、上記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、電界発光素子の正孔注入層に使用されている公知のものの中から任意のものを選択して用いることができる。 For the hole injection layer, a hole injection material that exhibits an excellent hole injection effect on the light emitting layer and can form a hole injection layer having excellent adhesion to the anode interface and thin film forming property is used. Further, when such a material is laminated in multiple layers and a material having a high hole injection effect and a material having a high hole transport effect are laminated in multiple layers, the materials used for each are referred to as a hole injection material and a hole transport material. Sometimes. The material for an electroluminescent device of the present invention can be suitably used for both a hole injection material and a hole transport material. These hole injection materials and hole transport materials need to have a large hole mobility and a small ionization energy of usually 5.5 eV or less. As such a hole injection layer, a material that transports holes to the light emitting layer with a lower electric field strength is preferable, and further, when an electric field with a hole mobility of, for example, 104 to 106 V / cm is applied, at least. It is preferably 10-6 cm 2 / V · sec. The other hole injecting material and hole transporting material that can be mixed with the electroluminescent device material of the present invention are not particularly limited as long as they have the above-mentioned preferable properties. Any material can be selected and used from those commonly used as hole charge transport materials in transmission materials and known materials used for the hole injection layer of electroluminescent devices.

このような正孔注入材料や正孔輸送材料としては、具体的には、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系誘導体、アニリン系共重合体、導電性高分子オリゴマー(特にチオフェンオリゴマー)等をあげることができる。 Specific examples of such hole injecting materials and hole transporting materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, and arylamine derivatives. , Amino-substituted carcon derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, polysilane-based derivatives, aniline-based copolymers, conductive polymer oligomers (particularly thiophene oligomers), etc. can.

このうち、好適なものとして、ポルフィリン化合物、芳香族第三級アミン化合物およびスチリルアミン化合物を用いることもできる。例えば、2個の縮合芳香族環を分子内に有する4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル等や、トリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス(N-(3-メチルフェニル)-N-フェニルアミノ)トリフェニルアミン等をあげることができる。また、正孔注入材料として銅フタロシアニンや水素フタロシアニン等のフタロシアニン誘導体も挙げられる。さらに、その他、芳香族ジメチリデン系化合物、p型Si、p型SiC等の無機化合物も正孔注入材料や正孔輸送材料として使用することができる。 Of these, porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can also be used as suitable ones. For example, 4,4'-bis (N- (1-naphthyl) -N-phenylamino) biphenyl having two fused aromatic rings in the molecule, or three triphenylamine units linked in a starburst type. Examples thereof include 4,4', 4 "-tris (N- (3-methylphenyl) -N-phenylamino) triphenylamine, etc., and copper phthalocyanine, hydrogen phthalocyanine, etc. as the hole injection material. Further, phthalocyanine derivatives can also be mentioned. In addition, inorganic compounds such as aromatic dimethylidene compounds, p-type Si and p-type SiC can also be used as hole injection materials and hole transport materials.

さらに、正孔注入層に使用できる材料としては、酸化モリブデン(MnO)、酸化バナジウム(VO)、酸化ルテニウム(RuO)、酸化銅(CuO)、酸化タングステン(WO)、酸化イリジウム(IrO)などの無機酸化物もあげられる。 Further, materials that can be used for the hole injection layer include molybdenum oxide (MnO x ), vanadium oxide (VO x ), ruthenium oxide (RuO x ), copper oxide (CuO x ), tungsten oxide (WO x ), and iridium oxide. Inorganic oxides such as (IrO x ) can also be mentioned.

上に説明した正孔注入層を形成するには、上述の化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化する。正孔注入層の膜厚は、特に制限はないが、通常は5nm~5μmである。 In order to form the hole injection layer described above, the above-mentioned compound is thinned by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. The film thickness of the hole injection layer is not particularly limited, but is usually 5 nm to 5 μm.

インターレイヤー層に用いる材料として、ポリビニルカルバゾール及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体等の芳香族アミンを含むポリマーが例示される。また、インターレイヤー層の成膜方法は、高分子量の材料を用いる場合には、溶液からの成膜による方法が例示される。 Examples of the material used for the interlayer layer include polyvinylcarbazole and its derivatives, polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, and polymers containing aromatic amines such as triphenyldiamine derivatives. Further, as the film forming method of the interlayer layer, when a high molecular weight material is used, a method of forming a film from a solution is exemplified.

溶液からのインターレイヤー層の成膜には、公知の湿式成膜法、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法、キャピラリ-コート法、ノズルコート法等の塗布法を用いることができる。 For the film formation of the interlayer layer from the solution, known wet film forming methods such as spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, etc. A coating method such as a dip coating method, a spray coating method, a screen printing method, a flexo printing method, an offset printing method, an inkjet printing method, a capillary coating method, or a nozzle coating method can be used.

インターレイヤー層の厚さは、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよく、通常、1nm~1μmであり、好ましくは2~500nmであり、より好ましくは5~200nmである。 The optimum value of the thickness of the interlayer layer differs depending on the material used, and it may be selected so that the drive voltage and the luminous efficiency are appropriate values. Usually, it is 1 nm to 1 μm, preferably 2 to 500 nm. More preferably, it is 5 to 200 nm.

一方、電子注入層には、発光層に対して優れた電子注入効果を示し、かつ陰極界面との密着性と薄膜形成性に優れた電子注入層を形成できる電子注入材料が用いられる。そのような電子注入材料の例としては、金属錯体化合物、含窒素五員環誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、ペリレンテトラカルボン酸誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、カルシウムアセチルアセトナート、酢酸ナトリウムなどが挙げられる。また、セシウム等の金属をバソフェナントロリンにドープした無機/有機複合材料や、第50回応用物理学関連連合講演会講演予稿集、No.3、1402頁、2003年発行記載のBCP、TPP、T5MPyTZ等も電子注入材料の例として挙げられるが、素子作成に必要な薄膜を形成し、陰極からの電子を注入できて、電子を輸送できる材料であれば、特にこれらに限定されるものではない。 On the other hand, as the electron injection layer, an electron injection material that exhibits an excellent electron injection effect on the light emitting layer and can form an electron injection layer having excellent adhesion to the cathode interface and thin film forming property is used. Examples of such electron-injected materials include metal complex compounds, nitrogen-containing five-membered ring derivatives, fluorenone derivatives, anthraquinodimethane derivatives, diphenoquinone derivatives, thiopyrandioxide derivatives, perylenetetracarboxylic acid derivatives, fleolenilidenemethane. Examples thereof include derivatives, anthron derivatives, silol derivatives, triarylphosphin oxide derivatives, polyquinolin and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, calcium acetylacetonate, sodium acetate and the like. Inorganic / organic composite materials in which a metal such as cesium is doped with vasophenanthroline, and the proceedings of the 50th Joint Lecture Meeting on Applied Physics, No. BCP, TPP, T5MPyTZ, etc. described on page 3, 1402, published in 2003 are also given as examples of electron injection materials, but they can form a thin film necessary for device fabrication, inject electrons from the cathode, and transport electrons. As long as it is a material, it is not particularly limited to these.

上記電子注入材料の中で好ましいものとしては、金属錯体化合物、含窒素五員環誘導体、シロール誘導体、トリアリールホスフィンオキシド誘導体が挙げられる。本発明に使用可能な好ましい金属錯体化合物としては、8-ヒドロキシキノリンまたはその誘導体の金属錯体が好適である。8-ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(4-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(5-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(5-フェニル-8-ヒドロキシキノリナート)アルミニウム、ビス(8-ヒドロキシキノリナート)(1-ナフトラート)アルミニウム、ビス(8-ヒドロキシキノリナート)(2-ナフトラート)アルミニウム、ビス(8-ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(8-ヒドロキシキノリナート)(4-シアノ-1-ナフトラート)アルミニウム、ビス(4-メチル-8-ヒドロキシキノリナート)(1-ナフトラート)アルミニウム、ビス(5-メチル-8-ヒドロキシキノリナート)(2-ナフトラート)アルミニウム、ビス(5-フェニル-8-ヒドロキシキノリナート)(フェノラート)アルミニウム、ビス(5-シアノ-8-ヒドロキシキノリナート)(4-シアノ-1-ナフトラート)アルミニウム、ビス(8-ヒドロキシキノリナート)クロロアルミニウム、ビス(8-ヒドロキシキノリナート)(o-クレゾラート)アルミニウム等のアルミニウム錯体化合物、トリス(8-ヒドロキシキノリナート)ガリウム、トリス(2-メチル-8-ヒドロキシキノリナート)ガリウム、トリス(4-メチル-8-ヒドロキシキノリナート)ガリウム、トリス(5-メチル-8-ヒドロキシキノリナート)ガリウム、トリス(2-メチル-5-フェニル-8-ヒドロキシキノリナート)ガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)(1-ナフトラート)ガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)(2-ナフトラート)ガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)(4-シアノ-1-ナフトラート)ガリウム、ビス(2、4-ジメチル-8-ヒドロキシキノリナート)(1-ナフトラート)ガリウム、ビス(2、5-ジメチル-8-ヒドロキシキノリナート)(2-ナフトラート)ガリウム、ビス(2-メチル-5-フェニル-8-ヒドロキシキノリナート)(フェノラート)ガリウム、ビス(2-メチル-5-シアノ-8-ヒドロキシキノリナート)(4-シアノ-1-ナフトラート)ガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)クロロガリウム、ビス(2-メチル-8-ヒドロキシキノリナート)(o-クレゾラート)ガリウム等のガリウム錯体化合物の他、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛等の金属錯体化合物が挙げられる。 Among the electron-injected materials, preferred examples include a metal complex compound, a nitrogen-containing five-membered ring derivative, a silol derivative, and a triarylphosphine oxide derivative. As a preferable metal complex compound that can be used in the present invention, a metal complex of 8-hydroxyquinoline or a derivative thereof is suitable. Specific examples of the metal complex of 8-hydroxyquinoline or a derivative thereof include tris (8-hydroxyquinolinate) aluminum, tris (2-methyl-8-hydroxyquinolinate) aluminum, and tris (4-methyl-8-). Hydroxyquinolinate) Aluminum, Tris (5-Methyl-8-Hydroxyquinolinate) Aluminum, Tris (5-phenyl-8-Hydroxyquinolinate) Aluminum, Bis (8-Hydroxyquinolinate) (1-naphtholat) ) Aluminum, bis (8-hydroxyquinolinate) (2-naphtholat) Aluminum, bis (8-hydroxyquinolinate) (phenorate) aluminum, bis (8-hydroxyquinolinate) (4-cyano-1-naphtholate) ) Aluminum, bis (4-methyl-8-hydroxyquinolinate) (1-naphtholate) aluminum, bis (5-methyl-8-hydroxyquinolinate) (2-naphtholate) aluminum, bis (5-phenyl-8) -Hydroxyquinolinate) (phenorate) aluminum, bis (5-cyano-8-hydroxyquinolinate) (4-cyano-1-naphtholate) aluminum, bis (8-hydroxyquinolinate) chloroaluminum, bis (8) -Aluminum complex compounds such as hydroxyquinolinate (o-cresolate) aluminum, tris (8-hydroxyquinolinate) gallium, tris (2-methyl-8-hydroxyquinolinate) gallium, tris (4-methyl- 8-Hydroxyquinolinate) gallium, tris (5-methyl-8-hydroxyquinolinate) gallium, tris (2-methyl-5-phenyl-8-hydroxyquinolinate) gallium, bis (2-methyl-8) -Hydroxyquinolinate) (1-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) (2-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) (phenorate) gallium , Bis (2-methyl-8-hydroxyquinolinate) (4-cyano-1-naphtholate) gallium, bis (2,4-dimethyl-8-hydroxyquinolinate) (1-naphtholate) gallium, bis (2) , 5-Dimethyl-8-Hydroxyquinolinate) (2-naphtholate) gallium, bis (2-methyl-5-phenyl-8-hydroxyquinolinate) (phenorate) gallium, bis (2-methyl-5- Cyano-8-hydroxyquinolinate) (4-cyano-1-naphtholate) gallium, bis (2-methyl-8-hydroxyquinolinate) chlorogallium, bis (2-methyl-8-hydroxyquinolinate) ( In addition to gallium complex compounds such as o-cresolate gallium, 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese, bis (10-hydroxybenzo [h] ] Kinolinate) Metal complex compounds such as berylium, bis (8-hydroxyquinolinate) zinc, and bis (10-hydroxybenzo [h] quinolinate) zinc can be mentioned.

また、本発明に使用可能な電子注入材料の内、好ましい含窒素五員環誘導体としては、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体があげられ、具体的には、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5 -フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4’-tert- ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン等が挙げられる。 Among the electron-injected materials that can be used in the present invention, preferred examples of the nitrogen-containing five-membered ring derivative include an oxadiazole derivative, a thiazole derivative, an oxadiazole derivative, a thiadiazole derivative, and a triazole derivative. , 5-bis (1-phenyl) -1,3,4-oxadiazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5-bis (1-phenyl) -1, 3,4-Oxadiazole, 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) 1,3,4-oxadiazole, 2,5-bis (1-naphthyl) -1 , 3,4-Oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyloxadiazolyl) -4-tert-butyl Benzene], 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-thiadiazole, 2,5-bis (1-naphthyl) -1,3,4-thiadiazole , 1,4-Bis [2- (5-phenylthiazolyl)] benzene, 2- (4'-tert-butylphenyl) -5- (4 "-biphenyl) -1,3,4-triazole, 2 , 5-Bis (1-naphthyl) -1,3,4-triazole, 1,4-bis [2- (5-phenyltriazolyl)] benzene and the like can be mentioned.

さらに、電子注入層に使用できる材料としては、酸化亜鉛(ZnO)、酸化チタン(TiO)などの無機酸化物もあげられる。 Further, examples of the material that can be used for the electron injection layer include inorganic oxides such as zinc oxide (ZnO) and titanium oxide (TiO 2 ).

さらに、正孔阻止層には、発光層を経由した正孔が電子注入層に達するのを防ぎ、薄膜形成性に優れた層を形成できる正孔阻止材料が用いられる。そのような正孔阻止材料の例としては、ビス(8-ヒドロキシキノリナート)(4-フェニルフェノラート)アルミニウム等のアルミニウム錯体化合物や、ビス(2-メチル-8-ヒドロキシキノリナート)(4-フェニルフェノラート)ガリウム等のガリウム錯体化合物、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)等の含窒素縮合芳香族化合物が挙げられる。 Further, as the hole blocking layer, a hole blocking material that can prevent holes that have passed through the light emitting layer from reaching the electron injection layer and can form a layer having excellent thin film forming properties is used. Examples of such hole blocking materials include aluminum complex compounds such as bis (8-hydroxyquinolinate) (4-phenylphenolate) aluminum and bis (2-methyl-8-hydroxyquinolinate) ( Examples thereof include gallium complex compounds such as 4-phenylphenolate) gallium and nitrogen-containing condensed aromatic compounds such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).

本発明の電界発光素子の発光層としては、以下の機能を併せ持つものが好適である。
注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ、陰極または電子注入層より電子を注入することができる機能
輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさには、違いがあってもよく、また正孔と電子の移動度で表される輸送能に大小があってもよい。
As the light emitting layer of the electroluminescent element of the present invention, one having the following functions is suitable.
Injection function; A function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer. Transport function; Function to move by the force of light emission function; A function to provide a field for recombination of electrons and holes and connect this to light emission. Also, the transport capacity expressed by the mobility of holes and electrons may be large or small.

本発明の塗工液またはインキ組成物を使用して形成された発光層は好適に用いることが出来る。本発明の塗工液またはインキ組成物を使用して形成された発光層を得るために、本発明の塗工液またはインキ組成物に他の発光性の化合物と組み合わせて発光層を形成することができる。 The light emitting layer formed by using the coating liquid or the ink composition of the present invention can be preferably used. In order to obtain a light emitting layer formed by using the coating liquid or ink composition of the present invention, the light emitting layer is formed by combining the coating liquid or ink composition of the present invention with other light emitting compounds. Can be done.

本発明の塗工液またはインキ組成物を使用して形成された発光層をえるために、本発明の塗工液またはインキ組成物に添加しても良い、青色から緑色の発光を示す化合物としては、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物を用いることができる。 As a compound exhibiting blue to green light emission that may be added to the coating liquid or ink composition of the present invention in order to obtain a light emitting layer formed by using the coating liquid or ink composition of the present invention. Can be used as a fluorescent whitening agent such as benzothiazole-based, benzimidazole-based, benzoxazole-based, metal chelated oxynoid compound, and styrylbenzene-based compound.

前記金属キレート化オキシノイド化合物としては、トリス(8-キノリノール)アルミニウム等の8-ヒドロキシキノリン系金属錯体や、ジリチウムエピントリジオン等が好適な化合物としてあげることができる。 Examples of the metal chelated oxinoid compound include 8-hydroxyquinoline-based metal complexes such as tris (8-quinolinol) aluminum and dilithium epintridione as suitable compounds.

また、前記スチリルベンゼン系化合物としては、例えば、ジスチリルピラジン誘導体も、発光層の材料として用いることができる。このほか、ポリフェニル系化合物も、本発明の塗工液またはインキ組成物に加えても良い。 Further, as the styrylbenzene compound, for example, a distyrylpyrazine derivative can also be used as a material for the light emitting layer. In addition, a polyphenyl compound may be added to the coating liquid or ink composition of the present invention.

さらに、上述した蛍光増白剤、金属キレート化オキシノイド化合物およびスチリルベンゼン系化合物等以外に、例えば12-フタロペリノン、1,4-ジフェニル-1,3-ブタジエン、1,1,4,4-テトラフェニル-1,3-ブタジエン、ナフタルイミド誘導体、ペリレン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラジリン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、スチリルアミン誘導体、クマリン系化合物、高分子化合物、9,9’,10,10’-テトラフェニル-2,2’-ビアントラセン、PPV(ポリパラフェニレンビニレン)誘導体、ポリフルオレン誘導体やそれら共重合体等が挙げられる。さらにビス(2-メチル-8-キノリノラート)(パラ-フェニルフェノラート)アルミニウム(III)、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム(III)等のフェノラート配位子と、置換8-キノリノラート配位子を同時に有する金属錯体が挙げられる。 Further, in addition to the above-mentioned fluorescent whitening agent, metal chelated oxynoid compound, styrylbenzene compound and the like, for example, 12-phthaloperinone, 1,4-diphenyl-1,3-butadiene, 1,1,4,4-tetraphenyl -1,3-butadiene, naphthalimide derivative, perylene derivative, oxadiazole derivative, aldazine derivative, pyrazirin derivative, cyclopentadiene derivative, pyrolopyrrole derivative, styrylamine derivative, coumarin compound, polymer compound, 9,9', Examples thereof include 10,10'-tetraphenyl-2,2'-biantrasen, PPV (polyparaphenylene vinylene) derivatives, polyfluorene derivatives and their copolymers. Further, with phenolic ligands such as bis (2-methyl-8-quinolinolate) (para-phenylphenolate) aluminum (III) and bis (2-methyl-8-quinolinolate) (1-naphtholate) aluminum (III), Examples thereof include metal complexes having a substituted 8-quinolinolate ligand at the same time.

白色の発光を得る場合の発光層としては特に制限はないが、下記のものを用いることができる。電界発光積層構造体の各層のエネルギー準位を規定し、トンネル注入を利用して発光させるもの(欧州特許第0390551号公報)。
同じくトンネル注入を利用する素子で実施例として白色発光素子が記載されているもの(特開平3-230584号公報)。二層構造の発光層が記載されているもの(特開平2-220390号公報および特開平2-216790号公報)。発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの(特開平4-51491号公報)。青色発光体(蛍光ピーク380~480nm)と緑色発光体(480~580nm)とを積層させ、さらに赤色蛍光体を含有させた構成のもの(特開平6-207170号公報)。青色発光層が青色蛍光色素を含有し、緑色発光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のもの(特開平7-142169号公報)。
The light emitting layer for obtaining white light emission is not particularly limited, but the following can be used. An electroluminescent laminated structure that defines the energy level of each layer and emits light by using tunnel injection (European Patent No. 0390551).
Similarly, an element using tunnel injection and a white light emitting element is described as an example (Japanese Patent Laid-Open No. 3-230584). A light emitting layer having a two-layer structure is described (Japanese Patent Laid-Open No. 2-220390 and JP-A-2-216790). A light emitting layer is divided into a plurality of layers and each is composed of a material having a different emission wavelength (Japanese Patent Laid-Open No. 4-51491). A structure in which a blue light emitter (fluorescence peak 380 to 480 nm) and a green light emitter (480 to 580 nm) are laminated and further contained a red phosphor (Japanese Patent Laid-Open No. 6-207170). A structure in which the blue light emitting layer contains a blue fluorescent dye, the green light emitting layer has a region containing a red fluorescent dye, and further contains a green phosphor (Japanese Unexamined Patent Publication No. 7-142169).

さらに、本発明の電界発光素子の陽極に使用される材料は、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物またはこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO、ZnO等の導電性材料が挙げられる。この陽極を形成するには、これらの電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成させることができる。この陽極は、上記発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくなるような特性を有していることが望ましい。また、陽極のシート抵抗は、数百Ω/□以下としてあるものが好ましい。さらに、陽極の膜厚は、材料にもよるが通常10nm~1μm、好ましくは10~200nmの範囲で選択される。 Further, as the material used for the anode of the electric field light emitting element of the present invention, a metal having a large work function (4 eV or more), an electrically conductive compound, or a mixture thereof is preferably used as an electrode material. Specific examples of such an electrode material include metals such as Au and conductive materials such as CuI, ITO, SnO 2 , and ZnO. In order to form this anode, these electrode materials can be formed into a thin film by a method such as a thin film deposition method or a sputtering method. When the light emitted from the light emitting layer is taken out from the anode, it is desirable that the anode has a property that the transmittance of the anode with respect to the light emitted is larger than 10%. Further, the sheet resistance of the anode is preferably several hundred Ω / □ or less. Further, the film thickness of the anode is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm, although it depends on the material.

また、本発明の電界発光素子の陰極に使用される材料は、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm~1μm、好ましくは50~200nmである。 Further, as the material used for the cathode of the electric field light emitting element of the present invention, a metal having a small work function (4 eV or less), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, rare earth metal and the like. This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Here, when the light emitted from the light emitting layer is taken out from the cathode, the transmittance of the cathode with respect to the light emitted is preferably larger than 10%. The sheet resistance of the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.

本発明の電界発光素子を作製する方法については、上記の材料および方法により陽極、発光層、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し、最後に陰極を形成すればよい。また、陰極から陽極へ、前記と逆の順序で電界発光素子を作製することもできる。 Regarding the method for producing the electroluminescent device of the present invention, an anode, a light emitting layer, a hole injection layer if necessary, and an electron injection layer if necessary are formed by the above materials and methods, and finally a cathode is formed. do it. Further, the electroluminescent device can be manufactured from the cathode to the anode in the reverse order of the above.

この電界発光素子は、透光性の基板上に作製する。この透光性基板は電界発光素子を支持する基板であり、その透光性については、400~700nmの可視領域の光の透過率が50%以上、好ましくは90%以上であるものが望ましく、さらに平滑な基板を用いるのが好ましい。 This electroluminescent device is manufactured on a translucent substrate. This translucent substrate is a substrate that supports an electroluminescent element, and its translucency is preferably such that the transmittance of light in the visible region of 400 to 700 nm is 50% or more, preferably 90% or more. It is preferable to use a smoother substrate.

これら基板は、機械的、熱的強度を有し、透明であれば特に限定されるものではないが、例えば、ガラス板、合成樹脂板などが好適に用いられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などで成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルサルファイド樹脂、ポリサルフォン樹脂などの板が挙げられる。 These substrates are not particularly limited as long as they have mechanical and thermal strength and are transparent, but for example, a glass plate, a synthetic resin plate, or the like is preferably used. Examples of the glass plate include plates formed of soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like. Examples of the synthetic resin plate include a plate such as a polycarbonate resin, an acrylic resin, a polyethylene terephthalate resin, a polyether sulfide resin, and a polysulfon resin.

本発明の電界発光素子の発光層を除く各層の形成方法としては、真空蒸着、電子線ビーム照射、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法、もしくはスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれかの方法を適用することができる。また、特表2002-534782や、S.T.Lee, et al., Proceedings of SID’02, p.784(2002)に記載されているLITI(Laser Induced Thermal Imaging、レーザー熱転写)法や、印刷(オフセット印刷、フレキソ印刷、グラビア印刷、スクリーン印刷)、インクジェット等の方法を適用することもできる。 As a method for forming each layer excluding the light emitting layer of the electric field light emitting element of the present invention, a dry film forming method such as vacuum deposition, electron beam irradiation, sputtering, plasma, ion plating, spin coating, dipping, flow coating and the like can be used. Any method of the wet film forming method can be applied. In addition, special table 2002-534782 and S.A. T. Lee, et al. , Proceedings of SID'02, p. The LITI (Laser Induced Thermal Imaging) method described in 784 (2002), printing (offset printing, flexographic printing, gravure printing, screen printing), inkjet printing, and the like can also be applied.

ポリマー材料を除く有機層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。また特開昭57-51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、有機層を形成することができる。各層の膜厚は特に限定されるものではないが、膜厚が厚すぎると一定の光出力を得るために大きな印加電圧が必要となり効率が悪くなり、逆に膜厚が薄すぎるとピンホール等が発生し、電界を印加しても充分な発光輝度が得にくくなる。したがって、各層の膜厚は、1nmから1μmの範囲が適しているが、10nmから0.2μmの範囲がより好ましい。 The organic layer excluding the polymer material is particularly preferably a molecular deposition film. Here, the molecular deposition film is a thin film deposited and formed from a material compound in a gas phase state, or a film solidified and formed from a material compound in a solution state or a liquid phase state, and is usually this molecular deposition film. Can be classified from the thin film (molecular cumulative film) formed by the LB method by the difference in aggregate structure, higher-order structure, and the functional difference caused by the difference. Further, as disclosed in Japanese Patent Application Laid-Open No. 57-57181, a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like. , An organic layer can be formed. The film thickness of each layer is not particularly limited, but if the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in inefficiency. On the contrary, if the film thickness is too thin, pinholes, etc. Is generated, and it becomes difficult to obtain sufficient emission brightness even when an electric field is applied. Therefore, the film thickness of each layer is preferably in the range of 1 nm to 1 μm, but more preferably in the range of 10 nm to 0.2 μm.

また、電界発光素子の温度、湿度、雰囲気等に対する安定性向上のために、素子の表面に保護層を設けたり、樹脂等により素子全体を被覆や封止を施したりしても良い。特に素子全体を被覆や封止する際には、光によって硬化する光硬化性樹脂が好適に使用される。 Further, in order to improve the stability of the electroluminescent element with respect to temperature, humidity, atmosphere and the like, a protective layer may be provided on the surface of the element, or the entire element may be coated or sealed with a resin or the like. In particular, when coating or sealing the entire element, a photocurable resin that is cured by light is preferably used.

本発明の電界発光素子に印加する電流は通常、直流であるが、パルス電流や交流を用いてもよい。電流値、電圧値は、素子破壊しない範囲内であれば特に制限はないが、素子の消費電力や寿命を考慮すると、なるべく小さい電気エネルギーで効率良く発光させることが望ましい。 The current applied to the electroluminescent device of the present invention is usually direct current, but pulse current or alternating current may be used. The current value and voltage value are not particularly limited as long as they do not destroy the element, but considering the power consumption and life of the element, it is desirable to efficiently emit light with as little electric energy as possible.

本発明の電界発光素子の駆動方法は、パッシブマトリクス法のみならず、アクティブマトリックス法での駆動も可能である。また、本発明の電界発光素子から光を取り出す方法としては、陽極側から光を取り出すボトム・エミッションという方法のみならず、陰極側から光を取り出すトップ・エミッションという方法にも適用可能である。これらの方法や技術は、城戸淳二著、「電界発光のすべて」、日本実業出版社(2003年発行)に記載されている。 The method for driving the electroluminescent element of the present invention can be driven not only by the passive matrix method but also by the active matrix method. Further, as a method of extracting light from the electroluminescent element of the present invention, it can be applied not only to a method of bottom emission in which light is extracted from the anode side but also to a method of top emission in which light is extracted from the cathode side. These methods and techniques are described in Junji Kido, "All about electroluminescence", Nihon Jitsugyo Publishing Co., Ltd. (published in 2003).

本発明の電界発光素子のフルカラー化方式の主な方式としては、3色塗り分け方式、色変換方式、カラーフィルター方式が挙げられる。3色塗り分け方式では、シャドウマスクを使った蒸着法や、インクジェット法や印刷法が挙げられる。また、特表2002-534782や、S.T.Lee, et al., Proceedings of SID’02, p.784(2002)に記載されているレーザー熱転写法(Laser Induced Thermal Imaging、LITI法ともいわれる)も用いることができる。色変換方式では、青色発光の発光層を使って、蛍光色素を分散した色変換(CCM)層を通して、青色より長波長の緑色と赤色に変換する方法である。カラーフィルター方式では、白色発光の電界発光素子を使って、液晶用カラーフィルターを通して3原色の光を取り出す方法であるが、これら3原色に加えて、一部白色光をそのまま取り出して発光に利用することで、素子全体の発光効率をあげることもできる。 The main method of the full colorization method of the electroluminescent element of the present invention includes a three-color painting method, a color conversion method, and a color filter method. Examples of the three-color painting method include a vapor deposition method using a shadow mask, an inkjet method, and a printing method. In addition, special table 2002-534782 and S.A. T. Lee, et al. , Proceedings of SID'02, p. The laser thermal transfer method described in 784 (2002) (also referred to as Laser Induced Thermo Imaging, LITI method) can also be used. The color conversion method is a method of converting from blue to green and red having a longer wavelength than blue through a color conversion (CCM) layer in which a fluorescent dye is dispersed by using a light emitting layer that emits blue light. The color filter method uses an electroluminescent element that emits white light to extract light of the three primary colors through a color filter for liquid crystal. In addition to these three primary colors, some white light is extracted as it is and used for light emission. As a result, the luminous efficiency of the entire element can be increased.

さらに、本発明の電界発光素子は、マイクロキャビティ構造を採用しても構わない。これは、電界発光素子は、発光層が陽極と陰極との間に挟持された構造であり、発光した光は陽極と陰極との間で多重干渉を生じるが、陽極及び陰極の反射率、透過率などの光学的な特性と、これらに挟持された有機層の膜厚とを適当に選ぶことにより、多重干渉効果を積極的に利用し、素子より取り出される発光波長を制御するという技術である。これにより、発光色度を改善することも可能となる。この多重干渉効果のメカニズムについては、J.Yamada等によるAM-LCD Digest of Technical Papers,OD-2,p.77~80(2002)に記載されている。 Further, the electroluminescent device of the present invention may adopt a microcavity structure. This is because the electric field light emitting element has a structure in which a light emitting layer is sandwiched between an anode and a cathode, and the emitted light causes multiple interference between the anode and the cathode, but the reflectance and transmittance of the anode and the cathode are transmitted. It is a technology that positively utilizes the multiple interference effect and controls the emission wavelength extracted from the element by appropriately selecting the optical characteristics such as the rate and the film thickness of the organic layer sandwiched between them. .. This also makes it possible to improve the emission chromaticity. For the mechanism of this multiple interference effect, refer to J.M. AM-LCD Digital Papers by Yamada et al., OD-2, p. 77-80 (2002).

以上述べたように、本発明の塗工液またはインキ組成物を使用して形成された発光層を用いた電界発光素子は、低い駆動電圧で長時間の発光を得ることが可能である。故に、本電界発光素子は、壁掛けテレビ等のフラットパネルディスプレイや各種の平面発光体として、さらには、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等への応用が考えられる。 As described above, the electroluminescent device using the light emitting layer formed by using the coating liquid or the ink composition of the present invention can obtain long-term light emission with a low driving voltage. Therefore, this electric field light emitting element can be used as a flat panel display such as a wall-mounted television or various flat light emitters, as well as a light source such as a copier or a printer, a light source such as a liquid crystal display or an instrument, a display board, an indicator light or the like. Can be applied.

以下、実施例をあげて本発明を具体的に説明するが、本発明は実施例に特に限定されるものではない。なお、実施例中、「部」および「%」は「重量部」および「重量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not particularly limited to the examples. In the examples, "parts" and "%" represent "parts by weight" and "% by weight".

<半導体微粒子(量子ドット)分散液の合成・調製>
QD:InP/ZnSコアシェル型量子ドットは技術文献「Inorganic Chemistry 2016,(17)、pp8381-8386」の記載に従い、次のように合成した。
塩化インジウム0.22部、オクチルアミン8.25部を反応容器に入れ、窒素バブリングを行いながら、180℃に加熱した。塩化インジウムが溶解した後、ジエチルアミノホスフィン0.86部を短時間で注入し、20分間180℃に制御した。その後、40℃まで急冷した。別途、無水酢酸亜鉛0.55部、表2の化合物B-6の15.0部を加熱溶解した添加液を注入し、220℃で5時間加熱した後に、室温まで放冷した。放冷後、ヘキサンとエタノールを用いて再沈殿法で精製を行った。さらにトルエンを用いて、固形分濃度10%に調製し、B-6で表面被覆処理された量子ドット分散液QD-1を得た。
<Semiconductor fine particle (quantum dot) dispersion liquid synthesis / preparation>
QD: InP / ZnS core-shell quantum dots were synthesized as follows according to the description of the technical document "Inorganic Chemistry 2016, (17), pp883-18386".
0.22 parts of indium chloride and 8.25 parts of octylamine were placed in a reaction vessel and heated to 180 ° C. while performing nitrogen bubbling. After indium chloride was dissolved, 0.86 part of diethylaminophosphine was injected in a short time and controlled at 180 ° C. for 20 minutes. Then, it was rapidly cooled to 40 ° C. Separately, an additive solution prepared by heating and dissolving 0.55 parts of acetic anhydride and 15.0 parts of compound B-6 in Table 2 was injected, heated at 220 ° C. for 5 hours, and then allowed to cool to room temperature. After allowing to cool, purification was carried out by a reprecipitation method using hexane and ethanol. Further, using toluene, the solid content concentration was adjusted to 10%, and a quantum dot dispersion liquid QD-1 surface-coated with B-6 was obtained.

塩化インジウム0.22部、オクチルアミン8.25部を反応容器に入れ、窒素バブリングを行いながら、165℃に加熱した。塩化インジウムが溶解した後、ジエチルアミノホスフィン0.86部を短時間で注入し、20分間165℃に制御した。その後、40℃まで急冷した。別途、無水酢酸亜鉛0.55部、ドデカンチオール7.0部、オレイルアミン5.0部を加熱溶解した添加液を注入し、240℃2時間加熱した後に、室温まで放冷した。放冷後、ヘキサンとエタノールを用いて再沈殿法で精製を行った。さらにトルエンを用いて、固形分濃度10%に調製し、ドデカンチオール(C-1)で表面被覆処理された量子ドット分散液QD-2を得た。 0.22 parts of indium chloride and 8.25 parts of octylamine were placed in a reaction vessel and heated to 165 ° C. while performing nitrogen bubbling. After indium chloride was dissolved, 0.86 part of diethylaminophosphine was injected in a short time and controlled at 165 ° C. for 20 minutes. Then, it was rapidly cooled to 40 ° C. Separately, an additive solution prepared by heating and dissolving 0.55 parts of acetic anhydride, 7.0 parts of dodecanethiol and 5.0 parts of oleylamine was injected, heated at 240 ° C. for 2 hours, and then allowed to cool to room temperature. After allowing to cool, purification was carried out by a reprecipitation method using hexane and ethanol. Further, using toluene, the solid content concentration was adjusted to 10%, and a quantum dot dispersion liquid QD-2 surface-coated with dodecanethiol (C-1) was obtained.

この分散液QD-2を、トルエンを用いてさらに固形分濃度1%まで希釈した。表2の化合物B-3の5%トルエン溶液を調製して同量添加し、12時間撹拌した。ヘキサンとエタノールを用いて再沈殿法で精製を行った。トリメチルベンゼンを用いて、固形分濃度10%に調製し、化合物B-3で表面被覆処理された量子ドット分散液QD-3を得た。 This dispersion QD-2 was further diluted with toluene to a solid content concentration of 1%. A 5% toluene solution of compound B-3 in Table 2 was prepared, added in the same amount, and stirred for 12 hours. Purification was performed by the reprecipitation method using hexane and ethanol. A quantum dot dispersion QD-3 was obtained, which was prepared to have a solid content concentration of 10% using trimethylbenzene and surface-coated with compound B-3.

分散液QD-3の表面被覆処理剤である化合物B-3を、表3に記載のとおり、それぞれ表2の化合物B-2、B-4、B-8、B-10、B-12、B-16に変えて、表面被覆処理し、前記と同様の精製、調製を行うことで、本発明のそれぞれの化合物で表面被覆処理された量子ドット分散液QD-4~9を得た。また、同様の方法で、本発明の化合物の対象ではないビス(ビフェニリル)アミン(C-2)およびドデシルベンゼンスルホン酸(C-3)で表面被覆処理された量子ドット分散液QD-10、11を得た。 As shown in Table 3, the compounds B-3, which are the surface coating treatment agents for the dispersion liquid QD-3, are compounded in Table 2, B-2, B-4, B-8, B-10, B-12, respectively. By changing to B-16, surface-coating treatment, and purifying and preparing in the same manner as described above, quantum dot dispersion liquids QD-4 to 9 surface-coated with each compound of the present invention were obtained. Quantum dot dispersions QD-10, 11 surface-coated with bis (biphenylyl) amine (C-2) and dodecylbenzene sulfonic acid (C-3), which are not the targets of the compound of the present invention, in the same manner. Got

<樹脂溶液の調製>
パラフィンワックス155(日本精蝋製)をデカンにNV10%となるように溶解し、樹脂溶液1を調製した。
<Preparation of resin solution>
Paraffin wax 155 (manufactured by Nippon Seiro) was dissolved in decan so as to have an NV of 10% to prepare a resin solution 1.

セパラブル4口フラスコに温度計、冷却管、窒素ガス導入管、撹拌装置を取り付けた反応容器にキシレン70.0部を仕込み、80℃に昇温し、反応容器内を窒素置換した後、滴下管よりn-ブチルメタクリレート18.0部、メタクリル酸メチル12.0部、2,2’-アゾビスイソブチロニトリル0.4部の混合物を2時間かけて滴下した。滴下終了後、更に3時間反応を継続し、重量平均分子量(Mw)26000のアクリル樹脂の溶液を得た。室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20重量%になるようにキシレンを添加して樹脂溶液2を調製した。 A reaction vessel equipped with a thermometer, a cooling tube, a nitrogen gas introduction tube, and a stirrer was charged with 70.0 parts of xylene in a separable 4-neck flask, the temperature was raised to 80 ° C., the inside of the reaction vessel was replaced with nitrogen, and then the dropping tube was used. A mixture of 18.0 parts of n-butyl methacrylate, 12.0 parts of methyl methacrylate and 0.4 parts of 2,2'-azobisisobutyronitrile was added dropwise over 2 hours. After completion of the dropping, the reaction was continued for another 3 hours to obtain a solution of an acrylic resin having a weight average molecular weight (Mw) of 26000. After cooling to room temperature, about 2 g of the resin solution was sampled and dried by heating at 180 ° C. for 20 minutes to measure the non-volatile content, and xylene was added to the previously synthesized resin solution so that the non-volatile content was 20% by weight. The resin solution 2 was prepared.

<インクジェットインキの作成>
(実施例1~8、比較例1~3)
表3に示したインキ組成にて、密閉できる容器に、量子ドット溶液、微粒子(B)溶液(比較例には添加しない)、樹脂溶液、溶剤の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
<Creation of inkjet ink>
(Examples 1 to 8, Comparative Examples 1 to 3)
With the ink composition shown in Table 3, weigh the quantum dot solution, the fine particle (B) solution (not added to the comparative example), the resin solution, and the solvent in this order in a container that can be sealed, and then seal and seal 3 Penetrated for minutes to create an inkjet ink.

<評価方法>
(粘度測定)
25℃にて、振動式粘度計ビスコメイトVM-10A-L(SEKONIC社製)を用いて、測定した。
(外観検査)
インキ外観濁りなく透明な状態を〇、濁りを△、析出物が生じたものを×として、△~×ではインキを作成することができない。
インクジェット吐出性印刷パターン通りに吐出できたものを〇、ノズルつまり等異常があったものを×とし、×では印刷することができない。
印刷物外観印字パターン通りの画像を〇、かすれが見られる場合を〇△、歪んだ画像を△、印刷パターンの形跡なく付着した状態を×として、△~×は不適である。
(インクジェット吐出試験条件)
印刷機DimatixMaterialsPrinter
カートリッジ10DimatixMaterialsCartriges、10pL
印刷パターン1mm間隔の格子模様
基板丸カバーガラス・松浪ガラス工業製
基板温度30℃
印刷後乾燥40℃20分
(量子収率測定)
測定機絶対PL量子収率測定装置C9920-02
励起波長400nm積分範囲375~425nm
蛍光積分範囲430~800nm
QY維持率は印刷初期のQYを1として、4週間後の比率を示した。
なお、QYとは量子収率を表す。
<Evaluation method>
(Viscosity measurement)
The measurement was performed at 25 ° C. using a vibrating viscometer Viscomate VM-10A-L (manufactured by SEKONIC).
(Visual inspection)
Ink appearance It is not possible to make ink with Δ to ×, where 〇 is a transparent state without turbidity, Δ is turbidity, and × is a precipitate.
Inkjet ejection property 〇 is the one that can be ejected according to the printing pattern, × is the one that has an abnormality such as nozzle clogging, and × cannot be printed.
Appearance of printed matter The image according to the print pattern is 〇, the case where faintness is seen is 〇 △, the distorted image is Δ, and the state where the printed pattern is attached without evidence is ×, and Δ to × are inappropriate.
(Inkjet ejection test conditions)
Printing Press DimaticsMaterialsPrinter
Cartridge 10DimaticsMaterialsCartriges, 10pL
Printing pattern Lattice pattern with 1 mm intervals Substrate Round cover glass, manufactured by Matsunami Glass Industry Substrate temperature 30 ° C
Dry after printing 40 ° C for 20 minutes (quantum yield measurement)
Measuring machine Absolute PL quantum yield measuring device C9920-02
Excitation wavelength 400nm Integral range 375-425nm
Fluorescence integration range 430-800 nm
The QY maintenance rate was set to 1 at the initial stage of printing, and the ratio after 4 weeks was shown.
Note that QY represents the quantum yield.

Figure 0007030276000005
Figure 0007030276000005

本発明のインクジェットインキを用いると、インクジェット印刷可能であり、量子収率も高く印刷できることが確認された。その他の塗工液、インキを用いて他の塗工法、印刷法で作製した塗工物、印刷物もほぼ同等の特性を有すると想定され、これらを使用した波長変換フィルム、カラーフィルターが所望の性能を発揮できることが示された。 It was confirmed that the inkjet ink of the present invention can be used for inkjet printing and can be printed with a high quantum yield. It is assumed that other coating liquids, coatings made by printing methods using ink, and printed matter have almost the same characteristics, and wavelength conversion films and color filters using these have the desired performance. It was shown that it can exert.

<電界発光素子の作成>
以下に記載のとおり、電界発光素子を作成した。実施例においては、特に断りのない限り、混合比は全て重量比を示す。蒸着(真空蒸着)は10-6Torrの真空中にて、基板の加熱や冷却といった温度制御はしない条件下で行った。
インクジェット吐出試験条件
印刷機DimatixMaterialsPrinter
カートリッジ10DimatixMaterialsCartriges、10pL
印刷パターン ベタ(2mm×2mmの素子が合計6つ形成される1.2cm×1.2cm範囲の面積)
基板温度30℃
印刷後乾燥40℃20分
また、素子の発光特性は、発光素子面積2mm×2mmの電界発光素子を用いて特性を測定した。
<Creation of electroluminescent element>
As described below, an electroluminescent device was created. In the examples, all mixing ratios indicate weight ratios unless otherwise specified. Thin-film deposition (vacuum vapor deposition) was performed in a vacuum of 10-6 Torr under conditions where temperature control such as heating and cooling of the substrate was not performed.
Inkjet ejection test conditions Printing machine DimaticsMaterialsPrinter
Cartridge 10DimaticsMaterialsCartriges, 10pL
Print pattern solid (area in the range of 1.2 cm x 1.2 cm where a total of 6 elements of 2 mm x 2 mm are formed)
Substrate temperature 30 ° C
After printing and drying at 40 ° C. for 20 minutes, the light emitting characteristics of the element were measured using an electroluminescent element having a light emitting element area of 2 mm × 2 mm.

(実施例9)
密閉できる容器に、量子ドット分散液QD-1を1部、樹脂溶液1を1部、次いで、溶剤としてデカンを30部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
洗浄したITO電極付きガラス板上に、PEDOT/PSS(ポリ(3,4-エチレンジオキシ)-2,5-チオフェン/ポリスチレンスルホン酸、Heraeus社製CLEVIOUS(登録商標) P VP CH8000)をスピンコート法にて製膜し、110℃にて20分間乾燥させて膜厚35nmの正孔注入層を得た。次いで、ポリ(N―ビニルカルバゾール)を、1.0重量%の濃度でモノクロロベンゼンに溶解させ、スピンコート法で製膜し110℃にて20分間乾燥させて、35nmの膜厚の正孔輸送層を形成した。その上に、作成したインクジェットインキを用い、上述の条件でインクジェット吐出性印刷で20nmの膜厚の発光層を形成したその上に、Avantama社製 酸化亜鉛のイソプロパノール分散液 N-10を、スピンコート法で製膜し、80nmの電子輸送層を形成した。最後に、アルミニウム(Al)を200nm蒸着して電極を形成し、電界発光素子を得た。この素子は、8Vにて外部量子効率5.2%、発光輝度35000(cd/m)の赤色発光を示し、その発光スペクトルのピーク波長は658nmであり、半値全幅は50nmであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は1000時間以上であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は6.5(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.88であった。
(Example 9)
In a container that can be sealed, weigh 1 part of quantum dot dispersion QD-1, 1 part of resin solution 1, and 30 parts of decane as a solvent, then seal and infiltrate for 3 minutes for inkjet. I made an ink.
PEDOT / PSS (poly (3,4-ethylenedioxy) -2,5-thiophene / polystyrene sulfonic acid, CLEVIOUS (registered trademark) PVP CH8000 manufactured by Heraeus) is spin-coated on the cleaned glass plate with ITO electrode. A film was formed by the method and dried at 110 ° C. for 20 minutes to obtain a hole injection layer having a film thickness of 35 nm. Next, poly (N-vinylcarbazole) was dissolved in monochlorobenzene at a concentration of 1.0% by weight, a film was formed by a spin coating method, and dried at 110 ° C. for 20 minutes to transport holes having a film thickness of 35 nm. Formed a layer. Using the prepared inkjet ink, a light emitting layer having a film thickness of 20 nm was formed by inkjet ejection printing under the above conditions, and then spin-coated with an isopropanol dispersion N-10 of zinc oxide manufactured by Avantama. A film was formed by the method to form an electron transport layer of 80 nm. Finally, aluminum (Al) was vapor-deposited at 200 nm to form an electrode, and an electroluminescent device was obtained. This element exhibited red emission at 8 V with an external quantum efficiency of 5.2% and an emission luminance of 35,000 (cd / m 2 ), the peak wavelength of the emission spectrum was 658 nm, and the full width at half maximum was 50 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 1000 hours or more. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 6.5 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.88.

(実施例10)
密閉できる容器に、量子ドット分散液QD-4を1部、樹脂溶液2を1部、次いで、溶剤としてトリメチルベンゼンを30部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
これを実施例9のインクジェットインキに変えて発光層を形成する以外は実施例9と同様に各層を作成し、電界発光素子を得た。この素子は、8Vにて外部量子効率6.8%、発光輝度53000(cd/m)の緑色発光を示し、その発光スペクトルのピーク波長は544nmであり、半値全幅は40nmであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は1000時間以上であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は7.5(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.95であった。
(Example 10)
Weigh 1 part of quantum dot dispersion QD-4, 1 part of resin solution 2 and 30 parts of trimethylbenzene as a solvent in a container that can be sealed, then seal and infiltrate for 3 minutes. Inkjet ink was created.
Each layer was prepared in the same manner as in Example 9 except that this was replaced with the inkjet ink of Example 9 to form a light emitting layer, and an electroluminescent element was obtained. This element exhibited green emission at 8 V with an external quantum efficiency of 6.8% and an emission luminance of 53000 (cd / m 2 ), the peak wavelength of the emission spectrum was 544 nm, and the full width at half maximum was 40 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 1000 hours or more. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 7.5 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.95.

(実施例11)
密閉できる容器に、量子ドット分散液QD-6を1部、樹脂溶液2を1部、次いで、溶剤としてトリメチルベンゼンを30部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
これを実施例9のインクジェットインキに変えて発光層を形成する以外は実施例9と同様に各層を作成し、電界発光素子を得た。この素子は、8Vにて外部量子効率5.7%、発光輝度49000(cd/m)の緑色発光を示し、その発光スペクトルのピーク波長は540nmであり、半値全幅は30nmであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は1000時間以上であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は6.9(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.92であった。
(Example 11)
In a container that can be sealed, weigh 1 part of the quantum dot dispersion QD-6, 1 part of the resin solution 2, and then 30 parts of trimethylbenzene as the solvent, then seal and infiltrate for 3 minutes. Inkjet ink was created.
Each layer was prepared in the same manner as in Example 9 except that this was replaced with the inkjet ink of Example 9 to form a light emitting layer, and an electroluminescent element was obtained. This element exhibited green emission with an external quantum efficiency of 5.7% and an emission luminance of 49000 (cd / m 2 ) at 8 V, the peak wavelength of the emission spectrum was 540 nm, and the full width at half maximum was 30 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 1000 hours or more. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 6.9 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.92.

(実施例12)
密閉できる容器に、量子ドット分散液QD-1を1部、QD-4を1部、樹脂溶液2を2部、次いで、溶剤としてトリメチルベンゼンを60部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
これを実施例9のインクジェットインキに変えて発光層を形成する以外は実施例9と同様に各層を作成し、電界発光素子を得た。この素子は、8Vにて外部量子効率6.2%、発光輝度42000(cd/m)黄色発光を示し、その発光スペクトルのピーク波長は545nmと652nmの2ピークであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は1000時間以上であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は7.1(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.90であった。
(Example 12)
In a container that can be sealed, 1 part of the quantum dot dispersion QD-1, 1 part of QD-4, 2 parts of the resin solution 2, and then 60 parts of trimethylbenzene as a solvent are weighed in this order, and then sealed. Inkjet ink was prepared by infiltrating for 3 minutes.
Each layer was prepared in the same manner as in Example 9 except that this was replaced with the inkjet ink of Example 9 to form a light emitting layer, and an electroluminescent element was obtained. This element exhibited an external quantum efficiency of 6.2% and a emission brightness of 42000 (cd / m 2 ) yellow emission at 8 V, and its emission spectrum had two peak wavelengths of 545 nm and 652 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 1000 hours or more. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 7.1 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.90.

(比較例4)
密閉できる容器に、量子ドット分散液QD-1を1部、QD-10を1部、樹脂溶液2を2部、次いで、溶剤としてトリメチルベンゼンを60部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
これを実施例9のインクジェットインキに変えて発光層を形成する以外は実施例9と同様に各層を作成し、電界発光素子を得た。この素子は、8Vにて外部量子効率3.2%、発光輝度23000(cd/m)の緑色発光を示し、その発光スペクトルのピーク波長は552nmであり、半値全幅は65nmであった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は950時間であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は2.9(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.72であった。
(Comparative Example 4)
In a container that can be sealed, 1 part of the quantum dot dispersion QD-1, 1 part of QD-10, 2 parts of the resin solution 2, and then 60 parts of trimethylbenzene as a solvent are weighed in this order, and then sealed. Inkjet ink was prepared by infiltrating for 3 minutes.
Each layer was prepared in the same manner as in Example 9 except that this was replaced with the inkjet ink of Example 9 to form a light emitting layer, and an electroluminescent element was obtained. This element exhibited green emission with an external quantum efficiency of 3.2% and an emission luminance of 23000 (cd / m 2 ) at 8 V, the peak wavelength of the emission spectrum was 552 nm, and the full width at half maximum was 65 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 950 hours. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 2.9 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.72.

(比較例5)
密閉できる容器に、シグマ-アルドリッチ社の赤色系InP/ZnS量子ドット分散液を1部、QD-10を1部、樹脂溶液2を2部、次いで、溶剤としてトリメチルベンゼンを60部の順番で計量し、その後、密閉して、3分間、浸透してインクジェットインキを作成した。
これを実施例9のインクジェットインキに変えて発光層を形成する以外は実施例9と同様に各層を作成し、電界発光素子を得た。この素子は、8Vにて外部量子効率2.7%、発光輝度18000(cd/m)の橙色発光を示し、その発光スペクトルのピーク波長は585nmの幅広のピークとなった。この素子を発光輝度1000(cd/m)で室温にて定電流駆動したときの輝度半減寿命は700時間であった。また、電流密度10(mA/cm)で駆動させた時の発光効率は2.4(cd/A)、および80℃の環境で100時間連続駆動させた後の相対輝度(=(100時間後の輝度)/(初期輝度))は0.65であった。
(Comparative Example 5)
In a container that can be sealed, weigh 1 part of Sigma-Aldrich's red InP / ZnS quantum dot dispersion, 1 part of QD-10, 2 parts of resin solution 2, and then 60 parts of trimethylbenzene as a solvent. Then, the ink was sealed and infiltrated for 3 minutes to prepare an inkjet ink.
Each layer was prepared in the same manner as in Example 9 except that this was replaced with the inkjet ink of Example 9 to form a light emitting layer, and an electroluminescent element was obtained. This element exhibited orange emission at 8 V with an external quantum efficiency of 2.7% and an emission luminance of 18,000 (cd / m 2 ), and the peak wavelength of the emission spectrum was a wide peak of 585 nm. When this device was driven at a constant current at room temperature with a luminous brightness of 1000 (cd / m 2 ), the luminance half life was 700 hours. The luminous efficiency when driven at a current density of 10 (mA / cm 2 ) is 2.4 (cd / A), and the relative brightness after 100 hours of continuous driving in an environment of 80 ° C. (= (100 hours). Later brightness) / (initial brightness)) was 0.65.

本発明の半導体微粒子組成物からなるインクジェットインキを用いてイ発光素子を作成することにより、発光特性および安定性に優れた素子を作成することができた。その他の塗工液、インキを用いて他の塗工法、印刷法で作製した発光素子においても優れた特性を発揮できると想定される。

By producing a light emitting device using the inkjet ink made of the semiconductor fine particle composition of the present invention, it was possible to produce an element having excellent light emitting characteristics and stability. It is expected that excellent characteristics can be exhibited in light emitting devices manufactured by other coating methods and printing methods using other coating liquids and inks.

Claims (14)

半導体微粒子と当該粒子の表面を覆う被覆材料からなり、被覆材料が、下記一般式(1)、一般式(2)、または一般式(3)で表される構造を有することを特徴とする半導体微粒子組成物。

一般式(1)
Y-(Ar1-X1-Ar4)n

一般式(2)
Y-(Ar1-X1-Ar2-X2-Ar4)n

一般式(3)
Y-(Ar1-X1-Ar2-X2-Ar3-X3-Ar4)n

(但し、一般式(1)、(2)および(3)において、Yは半導体微粒子表面と連結する作用を生ずる吸着基であり、-OH、-C(=O)OH、-C(=O)O-、-C(=O)CH 2 (O=)C-、-C(=O)O(O=)C-、-NH 2 、=NH、-PH 2 、=PH、-P(=O)H 2 、=P(=O)H、-P(=O)(OH) 2 、=P(=O)(OH)、-P(=O)(OH)O-、-SH、-SS-、-S(=O) 2 (OH)、=S(=O) 2 、-S(=O) 2 O-のいずれかである。Ar1~Ar4はそれぞれ独立に、置換基を有しても良い、芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基またはそれらの同じか異なる2種以上の環が2~10個連結した構造からなる基で、それぞれAr1~Ar3は2価、Ar4は1価の基である。X1~X3は、それぞれ独立に、メチレン基、エチレン基、2,2-プロピリデン基、1,1-シクロヘキシリデン基、9,9-フルオレニリデン基のいずれかである。nは1または2の整数である。)
A semiconductor comprising semiconductor fine particles and a coating material covering the surface of the particles, wherein the coating material has a structure represented by the following general formula (1), general formula (2), or general formula (3). Fine particle composition.

General formula (1)
Y- (Ar 1 -X 1 -Ar 4 ) n

General formula (2)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 4 ) n

General formula (3)
Y- (Ar 1 -X 1 -Ar 2 -X 2 -Ar 3 -X 3 -Ar 4 ) n

(However, in the general formulas (1), (2) and (3), Y is an adsorbent group having an action of connecting to the surface of semiconductor fine particles, and is -OH, -C (= O) OH, -C (= O). ) O-, -C (= O) CH 2 (O =) C-, -C (= O) O (O =) C- , -NH 2 , = NH, -PH 2 , = PH, -P ( = O) H 2 , = P (= O) H, -P (= O) (OH) 2 , = P (= O) (OH), -P (= O) (OH) O-, -SH, -SS-, -S (= O) 2 (OH), = S (= O) 2 , -S (= O) 2 O-. Ar 1 to Ar 4 are independent substituents. A group consisting of an aromatic ring group, a fused aromatic ring group, a heteroaromatic ring group, a condensed heteroaromatic ring group, or a structure in which 2 to 10 of the same or different two or more rings thereof are linked. Ar 1 to Ar 3 are divalent groups and Ar 4 is a monovalent group, respectively. X 1 to X 3 are independently methylene group, ethylene group, 2,2-propyridene group, and 1,1-cyclohexyli. It is either a den group or a 9,9-fluorenylidene group . N is an integer of 1 or 2.)
Ar1~Ar4がそれぞれ独立に、芳香環基、縮合芳香環基、複素芳香環基、縮合複素芳香環基のいずれかであることを特徴とする請求項1記載の半導体微粒子組成物。 The semiconductor fine particle composition according to claim 1, wherein Ar 1 to Ar 4 are independently any of an aromatic ring group, a condensed aromatic ring group, a heteroaromatic ring group, and a condensed heteroaromatic ring group. 半導体微粒子が量子ドットであることを特徴とする請求項1または2記載の半導体微粒子組成物。 The semiconductor fine particle composition according to claim 1 or 2 , wherein the semiconductor fine particles are quantum dots. さらに溶剤を含有することを特徴とする請求項1ないしいずれか記載の半導体微粒子組成物。 The semiconductor fine particle composition according to any one of claims 1 to 3 , further comprising a solvent. 溶剤が、炭化水素系溶剤を含有することを特徴とする請求項1ないし4いずれか記載の半導体微粒子組成物。 The semiconductor fine particle composition according to any one of claims 1 to 4, wherein the solvent contains a hydrocarbon-based solvent . さらに樹脂を含有することを特徴とする請求項1ないし5いずれか記載の半導体微粒子組成物。 The semiconductor fine particle composition according to any one of claims 1 to 5, further comprising a resin. 請求項1ないし6いずれか記載の半導体微粒子組成物を含有することを特徴とする塗工液。 A coating liquid comprising the semiconductor fine particle composition according to any one of claims 1 to 6. 請求項7記載の塗工液を使用してなる塗工物。 A coated product using the coating liquid according to claim 7. 請求項1ないし6いずれか記載の半導体微粒子組成物を含有することを特徴とするインキ組成物。 An ink composition comprising the semiconductor fine particle composition according to any one of claims 1 to 6. 請求項9記載のインキ組成物を含有することを特徴とするインクジェットインキ。 An inkjet ink comprising the ink composition according to claim 9. 請求項9記載のインキ組成物を用いてなる印刷物。 A printed matter using the ink composition according to claim 9. 基材上に、請求項7記載の塗工液、または請求項9記載のインキ組成物を用いて形成された波長変換フィルム。 A wavelength conversion film formed on a substrate by using the coating liquid according to claim 7 or the ink composition according to claim 9. 基材上に、請求項7記載の塗工液、または請求項9記載のインキ組成物を用いて形成されたカラーフィルター。 A color filter formed on a substrate by using the coating liquid according to claim 7 or the ink composition according to claim 9. 発光層が請求項7記載の塗工液、または請求項9記載のインキ組成物を用いて形成された発光素子。

A light emitting device in which the light emitting layer is formed by using the coating liquid according to claim 7 or the ink composition according to claim 9.

JP2017249742A 2017-12-26 2017-12-26 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements Active JP7030276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017249742A JP7030276B2 (en) 2017-12-26 2017-12-26 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249742A JP7030276B2 (en) 2017-12-26 2017-12-26 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements

Publications (2)

Publication Number Publication Date
JP2019116394A JP2019116394A (en) 2019-07-18
JP7030276B2 true JP7030276B2 (en) 2022-03-07

Family

ID=67305115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249742A Active JP7030276B2 (en) 2017-12-26 2017-12-26 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements

Country Status (1)

Country Link
JP (1) JP7030276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7567267B2 (en) 2019-08-29 2024-10-16 artience株式会社 Quantum dots, ink composition, electroluminescent element, and photoelectric conversion element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001693A1 (en) 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
JP2008214363A (en) 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2016081055A (en) 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001693A1 (en) 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
JP2008214363A (en) 2007-02-28 2008-09-18 Canon Inc Nanoparticle luminescent material, electroluminescent element using the same, ink composition and display apparatus
JP2016081055A (en) 2014-10-14 2016-05-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition

Also Published As

Publication number Publication date
JP2019116394A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP4598282B2 (en) Amine compound and organic electroluminescent device containing the compound
JP7003621B2 (en) Semiconductor nanoparticles, dispersions containing the particles, semiconductor layers, methods for manufacturing laminates, and electroluminescent devices.
DE102005014284A1 (en) Use of compounds containing aromatic or heteroaromatic rings containing groups via carbonyl groups as matrix materials in organic light-emitting diodes
EP1920478A2 (en) White organic illuminating diodes (oleds) based on exciplex double blue fluorescent compounds
JP2020066733A (en) Luminescence material, and electroluminescence element, ink composition and printed matter using the same
JP2020041080A (en) Composition for forming luminescent film, luminescent film and electroluminescence element
JP2020095936A (en) Electroluminescence element
JP7469891B2 (en) Quantum dot light emitting device and display device
JP7567267B2 (en) Quantum dots, ink composition, electroluminescent element, and photoelectric conversion element
JP7147408B2 (en) Semiconductor Fine Particle Composition, Coating Liquid Using the Composition, Ink Composition, Inkjet Ink, Coated Matter, Printed Matter, Wavelength Conversion Film, Color Filter, Light Emitting Device
JP7342679B2 (en) Ink composition, luminescent layer and electroluminescent device
JP7030276B2 (en) Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements
JP2019081868A (en) Inkjet ink, and printed matter and electroluminescence device prepared using the same
JP6969351B2 (en) Semiconductor fine particle compositions, quantum dots, coating liquids containing them, ink compositions, and their uses.
JP2019114668A (en) Electroluminescent element, method for manufacturing electroluminescent element, and dispersion liquid
JP2021005479A (en) Electroluminescent element
JP2019116525A (en) Ink composition containing quantum dot, inkjet ink using the same, and application of these
JP4263872B2 (en) Amine compound and organic electroluminescent device containing the compound
JP2003282268A (en) Organic electroluminescent device and new thiophene compound
JP3739184B2 (en) Organic electroluminescence device
JP7582403B2 (en) INK COMPOSITION, LIGHT-EMITTING LAYER AND ELECTROLUMINESCENT DEVICE
JP4672899B2 (en) Organic electroluminescent device, light emitting material of organic electroluminescent device, and hole injection transport material
JP3770691B2 (en) Organic electroluminescence device
JP2021027002A (en) Quantum dot light emitting element and display device
JP2020161369A (en) Semiconductor particulate composition, and electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R151 Written notification of patent or utility model registration

Ref document number: 7030276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533