[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7095278B2 - Vehicle weight estimation device and vehicle weight estimation method - Google Patents

Vehicle weight estimation device and vehicle weight estimation method Download PDF

Info

Publication number
JP7095278B2
JP7095278B2 JP2017249663A JP2017249663A JP7095278B2 JP 7095278 B2 JP7095278 B2 JP 7095278B2 JP 2017249663 A JP2017249663 A JP 2017249663A JP 2017249663 A JP2017249663 A JP 2017249663A JP 7095278 B2 JP7095278 B2 JP 7095278B2
Authority
JP
Japan
Prior art keywords
value
vehicle
estimated value
estimated
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017249663A
Other languages
Japanese (ja)
Other versions
JP2019117051A (en
Inventor
修一 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017249663A priority Critical patent/JP7095278B2/en
Priority to PCT/JP2018/046489 priority patent/WO2019131310A1/en
Priority to CN201880084032.0A priority patent/CN111512126B/en
Publication of JP2019117051A publication Critical patent/JP2019117051A/en
Application granted granted Critical
Publication of JP7095278B2 publication Critical patent/JP7095278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/03Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本開示は、車両重量推定装置及び車両重量推定方法に関し、より詳細には、車両の重量を高精度に推定する車両重量推定装置及び車両重量推定方法に関する。 The present disclosure relates to a vehicle weight estimation device and a vehicle weight estimation method, and more particularly to a vehicle weight estimation device and a vehicle weight estimation method for estimating the weight of a vehicle with high accuracy.

推定した車両重量を平滑化した値が予め設定した範囲から外れた場合は、その値をその範囲に収まるように補正する装置が提案されている(例えば、特許文献1参照)。この装置は、範囲として車両重量最大値に基づく上限値と車両重量最小値に基づく下限値とを用いることで、車両の重量の推定を行っている。 When the smoothed value of the estimated vehicle weight deviates from the preset range, a device for correcting the value so as to fall within the range has been proposed (see, for example, Patent Document 1). This device estimates the weight of a vehicle by using an upper limit value based on the maximum value of the vehicle weight and a lower limit value based on the minimum value of the vehicle weight as a range.

特開2004-301576号公報Japanese Unexamined Patent Publication No. 2004-301576

ところで、推定された車両の重量は車両の走行に関する制御に用いられている。それ故、推定に用いたパラメータにノイズなどの影響による誤差が生じて、推定された車両の重量が変化するごとに、車両の走行に関する制御も変化する。このような制御の変化としては、変速機の変速段を変更するタイミングの変化が例示される。この制御の変化は、運転者へ違和感を与えて、運転性(ドライバビリティ)を低下させる要因となっている。 By the way, the estimated weight of the vehicle is used for controlling the running of the vehicle. Therefore, an error occurs in the parameters used for estimation due to the influence of noise and the like, and each time the estimated weight of the vehicle changes, the control regarding the running of the vehicle also changes. As such a change in control, a change in timing for changing the shift stage of the transmission is exemplified. This change in control gives the driver a sense of discomfort and is a factor that reduces drivability.

つまり、上記一例の装置において、実際の車両の重量が変化していなくても、その推定した車両の重量に更新されることになるため、車両の走行に関する制御に変化が生じる頻度が多くなる可能性が有る。 That is, in the device of the above example, even if the actual weight of the vehicle does not change, it is updated to the estimated weight of the vehicle, so that the control regarding the running of the vehicle may change frequently. There is sex.

本開示は、上記のことを鑑みてなされたものであり、その目的は、車両の重量が変化したタイミングに合わせて、車両の重量を高精度に推定する車両重量推定装置及び車両重量推定方法を提供することである。 The present disclosure has been made in view of the above, and an object thereof is a vehicle weight estimation device and a vehicle weight estimation method for estimating the weight of a vehicle with high accuracy according to the timing when the weight of the vehicle changes. To provide.

上記の目的を達成する本発明の一態様の車両重量推定装置は、車両の走行中に変化するパラメータを取得するパラメータ取得手段と、前記パラメータが入力されて、そのパラメータに基づいた前記車両の重量の推定値を出力する推定手段と、前記推定値が入力される選択手段と、を備えて、前記選択手段により、前記推定値及び予め設定された基準値の差分が所定の範囲から外れた場合に、その推定値に応じた出力値が選択されて、その差分が前記所定の範囲に収まった場合に、前記推定値を推定するよりも前に前記選択手段から出力された出力値である前回出力値が選択されて、選択された前記出力値又は前記前回出力値のいずれか一方が出力される構成にすることを特徴とする。 The vehicle weight estimation device of one aspect of the present invention that achieves the above object is a parameter acquisition means for acquiring parameters that change while the vehicle is running, and the weight of the vehicle based on the parameters input. When the difference between the estimated value and the preset reference value deviates from a predetermined range by the selection means including an estimation means for outputting the estimated value of the above and a selection means for inputting the estimated value. In addition, when an output value corresponding to the estimated value is selected and the difference falls within the predetermined range, the previous time, which is the output value output from the selection means before estimating the estimated value. It is characterized in that an output value is selected and either the selected output value or the previous output value is output.

上記の目的を達成する本発明の一態様の車両重量推定方法は、車両の走行中に変化するパラメータを取得し、前記パラメータに基づいて、前記車両の重量として推定値を推定し、推定した前記推定値及び予め設定された基準値の差分を算出し、算出した前記差分が所定の範囲から外れたか否かを判定し、前記差分が前記所定の範囲から外れたと判定した場合に、前記車両の重量として前記推定値に応じた出力値を選択し、前記差分が前記所定の範囲に収まったと判定した場合に、前記推定値を推定するよりも前に前記車両の重量として出力された出力値である前回出力値を選択し、選択された前記出力値又は前記前回出力値のいずれか一方を出力することを特徴とする。 In the vehicle weight estimation method of one aspect of the present invention that achieves the above object, the parameters that change during the running of the vehicle are acquired, and the estimated value is estimated and estimated as the weight of the vehicle based on the parameters. The difference between the estimated value and the preset reference value is calculated, it is determined whether or not the calculated difference is out of the predetermined range, and when it is determined that the difference is out of the predetermined range, the vehicle. When an output value corresponding to the estimated value is selected as the weight and it is determined that the difference falls within the predetermined range, the output value output as the weight of the vehicle before estimating the estimated value is used. It is characterized in that a certain previous output value is selected and either the selected output value or the previous output value is output.

本発明の一態様によれば、車両の重量が変化したタイミングに合わせて、車両の重量を高精度に推定することができる。 According to one aspect of the present invention, the weight of the vehicle can be estimated with high accuracy according to the timing when the weight of the vehicle changes.

車両重量推定装置の第一実施形態を例示する説明図である。It is explanatory drawing which illustrates the 1st Embodiment of the vehicle weight estimation apparatus. 図1の制御装置を例示するブロック図である。It is a block diagram which illustrates the control device of FIG. 図2の車両重量演算部を例示するブロック図の一部である。It is a part of the block diagram illustrating the vehicle weight calculation unit of FIG. 図2の車両重量演算部を例示するブロック図の一部である。It is a part of the block diagram illustrating the vehicle weight calculation unit of FIG. 車両重量推定方法の第一実施形態を例示するフロー図である。It is a flow figure which illustrates the 1st Embodiment of the vehicle weight estimation method. エンジン回転速度及び燃料噴射量と、エンジントルクとの関係を例示する関係図である。It is a relational figure which illustrates the relationship between an engine rotation speed and a fuel injection amount, and an engine torque.

以下に、車両重量推定装置及び車両重量推定方法の実施形態について説明する。 Hereinafter, embodiments of the vehicle weight estimation device and the vehicle weight estimation method will be described.

図1~図4に例示する実施形態の車両重量推定装置30は、車両10に搭載されて、その車両10の走行中に変化するパラメータに基づいて車両10の重量を推定する装置である。以下、符号にx、yが付随するものは変数であり、センサなどの検出値や推定値を示し、符号にkが付随するものは時系列を示し、このkはサンプリング周期tsごとに「1」ずつ増加する。 The vehicle weight estimation device 30 of the embodiment illustrated in FIGS. 1 to 4 is a device mounted on the vehicle 10 and estimates the weight of the vehicle 10 based on the parameters changing during the traveling of the vehicle 10. Hereinafter, those with x and y attached to the code are variables, and indicate the detected values and estimated values of the sensor, etc., and those with k attached to the code indicate the time series, and this k indicates "1" for each sampling period ts. "Increases by.

図1に例示するように、車両重量推定装置30が搭載される車両10は、シャーシ11の前方側に運転室(キャブ)12が配置され、シャーシ11の後方側にボディ13が配置される。 As illustrated in FIG. 1, in the vehicle 10 on which the vehicle weight estimation device 30 is mounted, the driver's cab (cab) 12 is arranged on the front side of the chassis 11, and the body 13 is arranged on the rear side of the chassis 11.

シャーシ11には、エンジン14、クラッチ15、トランスミッション16、プロペラシャフト17、及びディファレンシャルギア18が設置される。エンジン14の回転動力は、クラッチ15を介してトランスミッション16に伝達される。トランスミッション16で変速された回転動力は、プロペラシャフト17を通じてディファレンシャルギア18に伝達され、後輪である一対の駆動輪19にそれぞれ駆動力として分配される。エンジン14とクラッチ15との間にトルクコンバータを介在させてもよい。 The engine 14, the clutch 15, the transmission 16, the propeller shaft 17, and the differential gear 18 are installed in the chassis 11. The rotational power of the engine 14 is transmitted to the transmission 16 via the clutch 15. The rotational power shifted by the transmission 16 is transmitted to the differential gear 18 through the propeller shaft 17 and distributed as driving force to the pair of driving wheels 19 which are the rear wheels. A torque converter may be interposed between the engine 14 and the clutch 15.

制御装置20は、エンジン14、クラッチ15、トランスミッション16、及び各種センサに一点鎖線で示す信号線を介して電気的に接続される。各種センサとして、運転室12には、アクセルペダル21の踏み込み量からアクセル開度Axを検出するアクセル開度センサ22、シフトレバー23のレバーポジションPxを検出するポジションセンサ24が設置される。シャーシ11には、エンジン14の図示しないクランクシャフトの回転速度Nxを検出する回転速度センサ25、車速センサ26、及び、加速度センサ27が設置される。 The control device 20 is electrically connected to the engine 14, the clutch 15, the transmission 16, and various sensors via a signal line indicated by an alternate long and short dash line. As various sensors, an accelerator opening sensor 22 that detects the accelerator opening Ax from the amount of depression of the accelerator pedal 21 and a position sensor 24 that detects the lever position Px of the shift lever 23 are installed in the driver's cab 12. A rotation speed sensor 25, a vehicle speed sensor 26, and an acceleration sensor 27 for detecting the rotation speed Nx of the crankshaft (not shown) of the engine 14 are installed in the chassis 11.

制御装置20は、各種情報処理を行うCPU、その各種情報処理を行うために用いられるプログラムや情報処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成されるハードウェアである。 The control device 20 is hardware composed of a CPU that performs various information processing, an internal storage device that can read and write programs and information processing results used for performing the various information processing, and various interfaces.

図2に例示するように、制御装置20は、エンジン14、クラッチ15、及びトランスミッション16を制御する制御部28と、車両10の重量を演算する車両重量演算部31と、を各機能要素として有する。この実施形態で、各機能要素は、プログラムとして内部
記憶装置に記憶されるが、各機能要素が個別のハードウェアで構成されてもよい。
As illustrated in FIG. 2, the control device 20 has a control unit 28 for controlling an engine 14, a clutch 15, and a transmission 16 and a vehicle weight calculation unit 31 for calculating the weight of the vehicle 10 as functional elements. .. In this embodiment, each functional element is stored as a program in the internal storage device, but each functional element may be configured by individual hardware.

車両重量推定装置30は、ポジションセンサ24、回転速度センサ25、車速センサ26、加速度センサ27、制御部28、及び車両重量演算部31を備える。車両重量演算部31は、パラメータ取得手段、推定手段、及び選択手段として機能して、それらのセンサの検出値や演算部の演算結果が入力され、各検出値や演算結果に基づいて演算した結果を出力値mxとして出力する。 The vehicle weight estimation device 30 includes a position sensor 24, a rotation speed sensor 25, a vehicle speed sensor 26, an acceleration sensor 27, a control unit 28, and a vehicle weight calculation unit 31. The vehicle weight calculation unit 31 functions as a parameter acquisition means, an estimation means, and a selection means, and the detection values of those sensors and the calculation results of the calculation unit are input, and the calculation results are calculated based on each detection value and the calculation result. Is output as the output value mx.

制御部28は、パラメータ取得手段の一部として機能する機能要素であり、この実施形態では、サンプリング周期tsごとにエンジン14における燃料噴射量Qxを取得する。燃料噴射量Qxは、エンジン14の図示しないインジェクタの噴射時間(駆動パルス)に比例することから噴射時間の合計値から求められる。 The control unit 28 is a functional element that functions as a part of the parameter acquisition means, and in this embodiment, the fuel injection amount Qx in the engine 14 is acquired for each sampling cycle ts. Since the fuel injection amount Qx is proportional to the injection time (drive pulse) of the injector (not shown) of the engine 14, it can be obtained from the total value of the injection times.

制御部28は、アクセル開度センサ22により検出したアクセル開度Axが入力されて、そのアクセル開度Axに基づいて、基準噴射時間を算出する。次いで、制御部28は、車両10に搭載されてエンジン14により駆動する車載装置の駆動の有無、エンジン14から排出された排気ガスを浄化する排気ガス浄化装置の再生の有無などに基づいて、追加噴射時間を算出する。この追加噴射時間に基づいた燃料噴射量が噴射されると、車載装置の駆動力を補ったり、排気ガス浄化装置を再生したりする。次いで、制御部28は、サンプリング周期tsごとに基準噴射時間及び追加噴射時間の合計値に基づいて燃料噴射量Qxを算出する。 The control unit 28 inputs the accelerator opening degree Ax detected by the accelerator opening degree sensor 22, and calculates the reference injection time based on the accelerator opening degree Ax. Next, the control unit 28 is added based on whether or not the in-vehicle device mounted on the vehicle 10 and driven by the engine 14 is driven, and whether or not the exhaust gas purifying device that purifies the exhaust gas discharged from the engine 14 is regenerated. Calculate the injection time. When the fuel injection amount based on this additional injection time is injected, the driving force of the in-vehicle device is supplemented or the exhaust gas purification device is regenerated. Next, the control unit 28 calculates the fuel injection amount Qx based on the total value of the reference injection time and the additional injection time for each sampling cycle ts.

制御部28としては、エンジン14における実際に噴射された燃料噴射量Qxを取得できればよく、この構成に限定されない。制御部28としては、図示しないインテークマニホールドの内圧、体積効率、及び要求空燃比から、あるいは、吸入空気量及びエンジン回転速度Nxから基準噴射時間を算出してもよい。車載装置としては、エアコンプレッサやモータジェネレータなどが例示できる。排気ガス浄化装置としては、排気ガス中の粒子状物質を捕集する捕集フィルタが例示できる。 The control unit 28 is not limited to this configuration as long as it can acquire the fuel injection amount Qx actually injected in the engine 14. The control unit 28 may calculate the reference injection time from the internal pressure, volumetric efficiency, and required air-fuel ratio of the intake manifold (not shown), or from the intake air amount and the engine rotation speed Nx. Examples of the in-vehicle device include an air compressor and a motor generator. As the exhaust gas purification device, a collection filter that collects particulate matter in the exhaust gas can be exemplified.

ポジションセンサ24は、パラメータ取得手段の一部として機能する装置であり、車両10の運転者によって操作されるシフトレバー23の位置を電気的に検出することによって運転者が要求するレバーポジションPxを検出する。ポジションセンサ24は、サンプリング周期tsごとにレバーポジションPxに応じたトランスミッション16のギア比ixを検出する。レバーポジションPxとしては、駐車ポジション(Pポジション)、後進ポジション(Rポジション)、ニュートラルポジション(Nポジション)、前進ポジション(Dレンジ)などが例示できる。前進ポジションは、例えば、1速~6速の複数段が設定されている。各前進ポジションには、1速から段数が上がるごとに小さくなるギア比ixが設定されている。トランスミッション16がAMTで構成されている場合は、ポジションセンサ24の代わりに、制御部28で制御されたトランスミッション16の変速段を読み取る機能を有したものを用いてもよい。また、制御部28の制御信号からトランスミッション16のギア比ixを取得する場合に、そのギア比ixは、車速vxとエンジン回転速度Nxとに基づいて求めることもできる。 The position sensor 24 is a device that functions as a part of the parameter acquisition means, and detects the lever position Px requested by the driver by electrically detecting the position of the shift lever 23 operated by the driver of the vehicle 10. do. The position sensor 24 detects the gear ratio ix of the transmission 16 according to the lever position Px for each sampling cycle ts. Examples of the lever position Px include a parking position (P position), a reverse position (R position), a neutral position (N position), and a forward position (D range). As the forward position, for example, a plurality of 1st to 6th speeds are set. In each forward position, a gear ratio ix that decreases as the number of gears increases from the first gear is set. When the transmission 16 is composed of AMT, one having a function of reading the shift stage of the transmission 16 controlled by the control unit 28 may be used instead of the position sensor 24. Further, when the gear ratio ix of the transmission 16 is acquired from the control signal of the control unit 28, the gear ratio ix can be obtained based on the vehicle speed vx and the engine rotation speed Nx.

車速センサ26は、パラメータ取得手段の一部として機能する装置であり、プロペラシャフト17の回転速度に比例したパルス信号を読み取り、制御装置20の図示しない車速演算処理によりサンプリング周期tsごとに車速vxを取得するセンサである。車速センサ26が回転速度に比例したパルス信号に基づいて車速vxを取得することから、取得された車速vxは、負ではなくゼロ以上の値になる。車速センサ26としては、トランスミッション16の図示しないアウトプットシャフト、駆動輪19、従動輪などの回転速度から車速vxを取得するセンサを用いてもよい。なお、駆動輪19、従動輪などの回転速度から車速vxを取得するセンサを用いる場合には、左右一対の車輪のそれぞれの回転速度を取得して、その平均値を車速vxとするとよい。 The vehicle speed sensor 26 is a device that functions as a part of the parameter acquisition means, reads a pulse signal proportional to the rotation speed of the propeller shaft 17, and calculates the vehicle speed vx for each sampling cycle ts by the vehicle speed calculation process (not shown) of the control device 20. It is a sensor to acquire. Since the vehicle speed sensor 26 acquires the vehicle speed vx based on the pulse signal proportional to the rotation speed, the acquired vehicle speed vx is not a negative value but a value of zero or more. As the vehicle speed sensor 26, a sensor that acquires the vehicle speed vx from the rotation speed of the output shaft, the drive wheel 19, the driven wheel, etc. (not shown) of the transmission 16 may be used. When a sensor that acquires the vehicle speed vx from the rotation speeds of the driving wheels 19, the driven wheels, and the like is used, it is preferable to acquire the rotation speeds of each of the pair of left and right wheels and use the average value as the vehicle speed vx.

加速度センサ27は、パラメータ取得手段の一部として機能する装置であり、車両10の前後方向での速度変化に伴う加速度成分と車両10の姿勢変化に伴う重力加速度成分とによって動作する。加速度センサ27は、サンプリング周期tsごとに、それらを合成した路面に平行な加速度成分、すなわち車両10の前後方向の加速度Gxを取得するセンサである。加速度センサ27としては、機械的変位測定方式、光学的方式、半導体方式などが例示できる。 The acceleration sensor 27 is a device that functions as a part of the parameter acquisition means, and operates by an acceleration component accompanying a speed change in the front-rear direction of the vehicle 10 and a gravitational acceleration component accompanying a posture change of the vehicle 10. The acceleration sensor 27 is a sensor that acquires an acceleration component parallel to the road surface, that is, an acceleration Gx in the front-rear direction of the vehicle 10, for each sampling period ts. Examples of the acceleration sensor 27 include a mechanical displacement measurement method, an optical method, and a semiconductor method.

図3及び図4に例示するように、この実施形態で、車両重量演算部31は、各機能要素として、パラメータ取得部32、推定部33、及び選択部34を有する。車両重量演算部31の各機能要素は、プログラムとして内部記憶装置に記憶されるが、各機能要素が個別のハードウェアで構成されてもよい。 As illustrated in FIGS. 3 and 4, in this embodiment, the vehicle weight calculation unit 31 has a parameter acquisition unit 32, an estimation unit 33, and a selection unit 34 as functional elements. Each functional element of the vehicle weight calculation unit 31 is stored in the internal storage device as a program, but each functional element may be configured by individual hardware.

パラメータ取得部32は、パラメータ取得手段として機能しており、制御部28及び各センサの検出値が入力される。パラメータ取得部32は、サンプリング周期tsごとに車両10が走行中に変化するパラメータとして第一パラメータΦxと第二パラメータΦyとを推定部33に出力する機能要素である。パラメータ取得部32は、第一パラメータ算出ブロック32a、第二パラメータ算出ブロック32b、及びエンジントルク算出ブロック32cを有している。 The parameter acquisition unit 32 functions as a parameter acquisition means, and the detection values of the control unit 28 and each sensor are input. The parameter acquisition unit 32 is a functional element that outputs the first parameter Φx and the second parameter Φy as parameters that change while the vehicle 10 is traveling in each sampling cycle ts to the estimation unit 33. The parameter acquisition unit 32 has a first parameter calculation block 32a, a second parameter calculation block 32b, and an engine torque calculation block 32c.

第一パラメータ算出ブロック32aは、加速度Gxが入力されて、第一パラメータΦxを算出する機能要素である。第二パラメータ算出ブロック32bは、車速vx、トランスミッション16のギア比ix、及びエンジントルクTeが入力されて、第二パラメータΦyを算出する機能要素である。エンジントルク算出ブロック32cは、エンジン回転速度Nx、燃料噴射量Qxが入力されて、エンジン14から実際に出力されるエンジントルクTeを算出する機能要素である。 The first parameter calculation block 32a is a functional element in which the acceleration Gx is input and the first parameter Φx is calculated. The second parameter calculation block 32b is a functional element for calculating the second parameter Φy by inputting the vehicle speed vx, the gear ratio ix of the transmission 16, and the engine torque Te. The engine torque calculation block 32c is a functional element that calculates the engine torque Te that is actually output from the engine 14 by inputting the engine rotation speed Nx and the fuel injection amount Qx.

推定部33は、推定手段として機能しており、第一パラメータΦx、第二パラメータΦyが入力されて、それらとサンプリング周期tsにおける一つ前に推定した前回推定値mx(k-1)とに基づいて、平滑化処理を用いて推定した推定値mx(k)を出力する機能要素である。推定部33は、RLS推定ブロックから構成されている。RLS推定ブロックは、推定演算における変数をサンプリング周期tsごとに更新している。つまり、RLS推定ブロックは、新たなパラメータが入力される時に、前回推定値mx(k-1)、共分散行列P(k-1)、RLSアルゴリズムで計算されるゲインK(k-1)が記憶された状態になっている。 The estimation unit 33 functions as an estimation means, and the first parameter Φx and the second parameter Φy are input to them and the previously estimated value mx (k-1) estimated immediately before in the sampling cycle ts. Based on this, it is a functional element that outputs an estimated value mx (k) estimated by using the smoothing process. The estimation unit 33 is composed of an RLS estimation block. The RLS estimation block updates the variables in the estimation operation every sampling period ts. That is, the RLS estimation block has the previously estimated value mx (k-1), the covariance matrix P (k-1), and the gain K (k-1) calculated by the RLS algorithm when a new parameter is input. It is in a memorized state.

選択部34は、選択手段として機能しており、推定部33から出力された推定値mx(k)が逐次入力される。選択部34は、推定値mx(k)及び基準値maの差分に基づいて、出力値mxとして推定値mx(k)又は前回出力値m(x-1)のいずれか一方を選択して出力する機能要素である。 The selection unit 34 functions as a selection means, and the estimated value mx (k) output from the estimation unit 33 is sequentially input. The selection unit 34 selects and outputs either the estimated value mx (k) or the previous output value m (x-1) as the output value mx based on the difference between the estimated value mx (k) and the reference value ma. It is a functional element to do.

推定値mx(k)及び基準値maの差分は、推定値mx(k)が入力された時までの基準値maから推定値mx(k)までの間の経時的な変化の積算値Σmx(k)である。つまり、選択部34は、入力された推定値mx(k)及び前回推定値mx(k-1)の差分である変化量Δmx(k)を前回推定値mx(k-1)及び基準値maの差分Δmx(k-1)に積算した積算値Σmx(k)を算出する機能要素である。 The difference between the estimated value mx (k) and the reference value ma is the integrated value Σmx ( k). That is, the selection unit 34 sets the change amount Δmx (k), which is the difference between the input estimated value mx (k) and the previous estimated value mx (k-1), into the previous estimated value mx (k-1) and the reference value ma. It is a functional element that calculates the integrated value Σmx (k) integrated into the difference Δmx (k-1) of.

基準値maは、推定値mx(k)が出力値mxとして出力されたタイミングで更新され
る値である。基準値maの初期値としては、基準車重W0が例示される。基準車重W0としては、空車時の車両10の重量である車両重量、つまり、車両10の本体(シャーシ11、運転室12、ボディ13)の重量(エンジン14なども含む)が例示される。なお、車両重量としては、燃料、オイル、冷却水、スペアタイヤ及び工具などの重量を含めてもよい。また、基準値maとしては、車両総重量、つまり、車両重量に、最大乗車定員の合計体重と最大積載量の荷の重量とを合計した重量も例示される。
The reference value ma is a value updated at the timing when the estimated value mx (k) is output as the output value mx. As the initial value of the reference value ma, the reference vehicle weight W0 is exemplified. As the reference vehicle weight W0, the vehicle weight which is the weight of the vehicle 10 when the vehicle is empty, that is, the weight of the main body (chassis 11, driver's cab 12, body 13) of the vehicle 10 (including the engine 14 and the like) is exemplified. The vehicle weight may include the weight of fuel, oil, cooling water, spare tire, tool, and the like. Further, as the reference value ma, the total weight of the vehicle, that is, the weight obtained by adding the total weight of the maximum passenger capacity and the weight of the load having the maximum load capacity to the vehicle weight is also exemplified.

この実施形態で、選択部34は、前回推定値取得ブロック(ディレイブロック)34a、加算ブロック34b、積算ブロック(積分器又はインテグレータともいう)34c、絶対値ブロック34d、比較ブロック34e、スイッチブロック34f、及び前回出力値取得ブロック(ディレイブロック)34gを有する。 In this embodiment, the selection unit 34 includes a previous estimation value acquisition block (delay block) 34a, an addition block 34b, an integration block (also referred to as an integrator or an integrator) 34c, an absolute value block 34d, a comparison block 34e, and a switch block 34f. It also has a previous output value acquisition block (delay block) of 34 g.

前回推定値取得ブロック34a、加算ブロック34b、及び積算ブロック34cは、入力された推定値mx(k)及び基準値maの差分を算出する機能要素であり、その差分として積算値Σmx(k)を算出する機能要素である。具体的に、前回推定値取得ブロック34a、加算ブロック34b、及び積算ブロック34cは、一定周期(サンプリング時間)ごとに推定値mx(k-1)及び前回推定値mx(k-1)の差分である変化量Δmx(k)を算出し、算出した変化量Δmx(k)を積算した積算値Σmx(k)を算出する機能要素である。 The previous estimated value acquisition block 34a, the addition block 34b, and the integration block 34c are functional elements for calculating the difference between the input estimated value mx (k) and the reference value ma, and the integrated value Σmx (k) is used as the difference. It is a functional element to be calculated. Specifically, the previous estimated value acquisition block 34a, the addition block 34b, and the integration block 34c are the differences between the estimated value mx (k-1) and the previous estimated value mx (k-1) at regular intervals (sampling time). It is a functional element that calculates a certain change amount Δmx (k) and calculates an integrated value Σmx (k) by integrating the calculated change amount Δmx (k).

変化量Δmx(k)は、取得した現在の推定値mx(k)と前回取得した前回推定値mx(k-1)との差分である。変化量Δmx(k)としては、例えば、一定周期(サンプリング時間)あたりの変化量を用いてもよい。変化量Δmx(k)は、前回推定値mx(k-1)から推定値mx(k)に増加した場合を正(+)とし、減少の場合を負(-)とする。積算値Σmx(k)は、一定周期(サンプリング時間)ごとに算出される変化量Δmx(k)の総和であり、リセットされてから現時点までの一定周期ごとの変化量Δmx(k)を順次、加算して算出される。例えば、前回の周期でリセットされた場合に積算値Σmx(k)は変化量Δmx(k)となり、一度もリセットされていない場合に積算値Σmx(k)は変化量Δmx(1)~変化量Δmx(k)の総和となる。積算ブロック34cは、比較ブロック34eから発進された二値信号である「1」が入力されると、積算値Σmx(k)をリセット、つまりゼロ(「0」)にする。なお、積算値Σmx(k)をリセットすることは、実質的に、基準値maを推定値mx(k)に更新する、つまり、推定値mx(k)を次回の基準値maに設定することと同義である。 The amount of change Δmx (k) is the difference between the acquired current estimated value mx (k) and the previously acquired previously estimated value mx (k-1). As the amount of change Δmx (k), for example, the amount of change per fixed period (sampling time) may be used. The amount of change Δmx (k) is positive (+) when it increases from the previous estimated value mx (k-1) to the estimated value mx (k), and negative (-) when it decreases. The integrated value Σmx (k) is the sum of the change amount Δmx (k) calculated for each fixed cycle (sampling time), and the change amount Δmx (k) for each fixed cycle from the reset to the present time is sequentially sequentially calculated. Calculated by adding. For example, when reset in the previous cycle, the integrated value Σmx (k) becomes the change amount Δmx (k), and when it has never been reset, the integrated value Σmx (k) changes from the change amount Δmx (1) to the change amount. It is the sum of Δmx (k). When the binary signal "1" started from the comparison block 34e is input, the integration block 34c resets the integrated value Σmx (k), that is, sets it to zero ("0"). In addition, resetting the integrated value Σmx (k) substantially updates the reference value ma to the estimated value mx (k), that is, sets the estimated value mx (k) to the next reference value ma. Is synonymous with.

絶対値ブロック34d及び比較ブロック34eは、積算値Σmx(k)が誤差の範囲(-Wa~+Wa)から外れたか否かを判定する機能要素である。比較ブロック34eは、積算値Σmx(k)が誤差の範囲から外れた場合に(|ΣWx|>Wa)、二値信号として「1」(真を示す信号)を発信する。一方、積算値Σmx(k)が誤差の範囲に収まった場合に(|ΣWx|≦Wa)、二値信号として「0」(偽を示す信号)を発信する。なお、本明細書において、積算値Σmx(k)が+Wa又は-Waの値の場合は、誤差の範囲に収まったものとする。 The absolute value block 34d and the comparison block 34e are functional elements for determining whether or not the integrated value Σmx (k) is out of the error range (−Wa to + Wa). The comparison block 34e transmits "1" (a signal indicating true) as a binary signal when the integrated value Σmx (k) is out of the error range (| ΣWx |> Wa). On the other hand, when the integrated value Σmx (k) falls within the error range (| ΣWx | ≦ Wa), "0" (a signal indicating false) is transmitted as a binary signal. In addition, in this specification, when the integrated value Σmx (k) is a value of + Wa or -Wa, it is assumed that it is within the range of error.

次に、この実施形態の推定部33による推定値mx(k)の推定演算について説明する。推定部33は、各パラメータ及び前回推定値mx(k-1)に基づいて、車両10の前後方向の運動方程式を伝達関数として見做して、平滑化処理として適応アルゴリズムを用いて推定値mx(k)を推定する。適応アルゴリズムとしては、RLS(Recursive Least Square)アルゴリズム(逐次最小二乗法アルゴリズム)を用いている。 Next, the estimation calculation of the estimated value mx (k) by the estimation unit 33 of this embodiment will be described. Based on each parameter and the previous estimated value mx (k-1), the estimation unit 33 regards the equation of motion in the front-rear direction of the vehicle 10 as a transfer function, and uses an adaptive algorithm as a smoothing process to estimate the value mx. (K) is estimated. As an adaptive algorithm, an RLS (Recursive Last Squares) algorithm (sequential least squares algorithm) is used.

車両10の前後方向の運動方程式は、下記の数式(1)で表される。数式(1)におい
て、vx’は車速vxを時間微分した微分値を、Twは駆動輪19に伝達される駆動トルクを、rwは駆動輪19の車輪径を、Δmxは後述する回転部分相当質量を、Bは定数を、gは重力加速度を、μは転がり抵抗係数をそれぞれ示している。定数Bは、「0.5」、空気密度ρ、車両10の前面投影面積Af、及び空気抵抗係数Cdを乗算した定数である。車輪径rw、定数B、転がり抵抗係数μは、車両10に固有の値として求められる。
The equation of motion of the vehicle 10 in the front-rear direction is expressed by the following equation (1). In the formula (1), vx'is a derivative value obtained by time-differentiating the vehicle speed vx, Tw is the drive torque transmitted to the drive wheel 19, rw is the wheel diameter of the drive wheel 19, and Δmx is the mass corresponding to the rotating portion described later. , B is a constant, g is a gravitational acceleration, and μ is a rolling resistance coefficient. The constant B is a constant multiplied by "0.5", the air density ρ, the front projected area Af of the vehicle 10, and the air resistance coefficient Cd. The wheel diameter rw, the constant B, and the rolling resistance coefficient μ are obtained as values peculiar to the vehicle 10.

Figure 0007095278000001
上記の数式(1)を変形すると、車両10の重量mxは、下記の数式(2)に表される。
Figure 0007095278000001
By modifying the above formula (1), the weight mx of the vehicle 10 is expressed by the following formula (2).

Figure 0007095278000002
上記の数式(2)は、第一パラメータΦxを入力値、第二パラメータΦyを出力値、推定値mxを変数とした伝達関数として見做せる。そこで、その伝達関数(Φy(k)=Φx(k)・mx(k))を、RLSアルゴリズムに従って自己適応させて、推定値mx(k)を推定する。推定値mx(k)は以下の数式(3)~(5)で表される。以下の数式で、mx(k-1)はサンプリング周期tsにおける一つ前に推定した推定値である前回推定値を、K(k)はRLSアルゴリズムで計算されるゲインを、P(k)は共分散行列を、Iは単位行列を、「T」は転置行列をそれぞれ示している。
Figure 0007095278000002
The above formula (2) can be regarded as a transfer function in which the first parameter Φx is an input value, the second parameter Φy is an output value, and the estimated value mx is a variable. Therefore, the transfer function (Φy (k) = Φx (k) · mx (k)) is self-adapted according to the RLS algorithm to estimate the estimated value mx (k). The estimated value mx (k) is expressed by the following mathematical formulas (3) to (5). In the following formula, mx (k-1) is the previous estimated value estimated immediately before in the sampling period ts, K (k) is the gain calculated by the RLS algorithm, and P (k) is. The covariance matrix, I represents the identity matrix, and " T " represents the transposed matrix.

Figure 0007095278000003
Figure 0007095278000003

Figure 0007095278000004
Figure 0007095278000004

Figure 0007095278000005
共分散行列P(k)の初期値P(0)を定めれば、パラメータΦxにより、上記の数式(5)に基づいて共分散行列P(k)を、及び数式(4)に基づいてゲインK(k)をそれぞれ算出できる。つまり、新しく第一パラメータΦx及び第二パラメータΦyが得られる度に、共分散行列P(k)とゲインK(k)を新たに更新する。そして、それらと数式(3)に基づいて、直前に推定した前回推定値mx(k-1)を修正していく方式で推定
値mx(k)を算出できる。
Figure 0007095278000005
If the initial value P (0) of the covariance matrix P (k) is determined, the covariance matrix P (k) is obtained based on the above equation (5) and the gain is obtained based on the equation (4) according to the parameter Φx. K (k) can be calculated respectively. That is, every time the first parameter Φx and the second parameter Φy are newly obtained, the covariance matrix P (k) and the gain K (k) are newly updated. Then, based on these and the mathematical formula (3), the estimated value mx (k) can be calculated by a method of modifying the previously estimated value mx (k-1) estimated immediately before.

初期値P(0)は、定数αと単位行列Iとの積で表される。定数αとしては、通常1000程度の値が用いられるが、ノイズが大きい場合には定数αを小さく設定するとよい。この定数αは、ノイズの大きさにより決定される。また、初期値m(0)としては、例えば、運転者や荷を除いた空車時の車両重量、最大積載時の車両総重量、あるいは推定値mx(k)の平均値を用いるとよい。 The initial value P (0) is represented by the product of the constant α and the identity matrix I. As the constant α, a value of about 1000 is usually used, but when the noise is large, the constant α may be set small. This constant α is determined by the magnitude of noise. Further, as the initial value m (0), for example, the vehicle weight when the vehicle is empty excluding the driver and the load, the gross vehicle weight when the maximum load is applied, or the average value of the estimated values mx (k) may be used.

共分散行列P(k)が大きくなると、推定値mx(k)は真値から遠ざかり、共分散行列P(k)が小さく収束すると、推定値mx(k)は真値に近づく。 When the covariance matrix P (k) becomes large, the estimated value mx (k) moves away from the true value, and when the covariance matrix P (k) converges small, the estimated value mx (k) approaches the true value.

このように、上記の数式(2)を伝達関数として見做して、推定値mx(k)を適応アルゴリズムにより推定することで、推定値mx(k)を逐次、平滑化処理できる。これにより、真値への収束の高速化と、雑音、外乱、あるいは各センサの検出値の統計的性質の変化などに対するロバスト性の向上には有利になり、推定誤差を低減できる。これに伴い、車両10の重量を高精度に推定できる。 As described above, by considering the above mathematical formula (2) as a transfer function and estimating the estimated value mx (k) by the adaptive algorithm, the estimated value mx (k) can be sequentially smoothed. This is advantageous for speeding up the convergence to the true value and improving the robustness against noise, disturbance, or changes in the statistical properties of the detected values of each sensor, and the estimation error can be reduced. Along with this, the weight of the vehicle 10 can be estimated with high accuracy.

この実施形態では、適応アルゴリズムのうちのRLSアルゴリズムを用いることで、上記の数式(3)~数式(5)により推定値mx(k)を求めることができる。これにより、オンライン推定には有利になり、リアルタイムで推定値mx(k)を算出できる。また、各センサで取得した検出値に対してローパスフィルタによりノイズを除去する方式と比して、車両10の重量の推定の応答性の確保には有利になる。 In this embodiment, the estimated value mx (k) can be obtained from the above mathematical formulas (3) to (5) by using the RLS algorithm among the adaptive algorithms. This is advantageous for online estimation, and the estimated value mx (k) can be calculated in real time. Further, as compared with the method of removing noise by a low-pass filter for the detected value acquired by each sensor, it is advantageous for ensuring the responsiveness of the estimation of the weight of the vehicle 10.

加えて、サンプリング周期tsごとに前回推定値mx(k-1)、共分散行列P(k-1)、ゲインK(k-1)を更新するだけでよく、制御装置20の内部記憶装置に記憶させる数値を最小限にできる。それ故、制御装置20の内部記憶装置に車両10の不確定な走行期間に対して無限の記憶領域を確保しなければならないオフライン推定(バッチ処理推定)による方式に比して、推定に要する記憶容量の削減には有利になる。なお、ここでいうオフライン推定とは、一括処理最小二乗法や、全ての推定値mx(0)~mx(k)の平均値を算出する方法などが例示できる。 In addition, it is only necessary to update the previously estimated value mx (k-1), the covariance matrix P (k-1), and the gain K (k-1) for each sampling period ts, and the internal storage device of the control device 20 can be used. The number to be memorized can be minimized. Therefore, the storage required for estimation is compared with the method by offline estimation (batch processing estimation) in which an infinite storage area must be secured in the internal storage device of the control device 20 for an uncertain traveling period of the vehicle 10. It is advantageous for reducing the capacity. The offline estimation referred to here can be exemplified by a batch processing least squares method, a method of calculating the average value of all estimated values mx (0) to mx (k), and the like.

さらに、RLSアルゴリズムを用いることで、サンプリング周期tsごとに推定値mx(k)を算出できる。これにより車両10の状態(例えば、ギア比ixや駆動トルクTw)が変化したときや所定の距離を走行したときに推定する方式に比して、リアルタイムでの推定には有利になる。 Further, by using the RLS algorithm, the estimated value mx (k) can be calculated for each sampling period ts. This is advantageous for real-time estimation as compared with the method of estimating when the state of the vehicle 10 (for example, gear ratio ix or drive torque Tw) changes or when the vehicle travels a predetermined distance.

次に、車両重量推定方法について、図5のフロー図を参照しながら、車両重量演算部31の各機能として説明する。以下の車両重量推定方法は、車両10の制御装置20が通電すると開始されて、サンプリング周期tsごとに繰り返し行われてリアルタイムに車両10の重量を推定する。つまり、スタートからリターンまでを一つのサンプリング周期tsで処理する。そして、制御装置20が停電すると終了する。 Next, the vehicle weight estimation method will be described as each function of the vehicle weight calculation unit 31 with reference to the flow chart of FIG. The following vehicle weight estimation method is started when the control device 20 of the vehicle 10 is energized, and is repeatedly performed every sampling cycle ts to estimate the weight of the vehicle 10 in real time. That is, processing from the start to the return is performed in one sampling period ts. Then, when the control device 20 loses power, it ends.

スタートすると、車両重量演算部31は、パラメータ取得部32の機能により、車両10の走行中に変化するパラメータを取得する(S110)。パラメータは、第一パラメータΦx、及び第二パラメータΦyである。 When started, the vehicle weight calculation unit 31 acquires parameters that change while the vehicle 10 is traveling by the function of the parameter acquisition unit 32 (S110). The parameters are the first parameter Φx and the second parameter Φy.

具体的に、パラメータ取得部32は、制御部28及び各センサにより検出した検出値からそれらのパラメータを取得する。まず、制御部28により燃料噴射量Qxを、ポジションセンサ24によりトランスミッション16のギア比ixを、回転速度センサ25によりエンジン回転速度Nxを、車速センサ26により車速vxを、加速度センサ27により加
速度Gxをそれぞれ取得する。
Specifically, the parameter acquisition unit 32 acquires those parameters from the detection values detected by the control unit 28 and each sensor. First, the control unit 28 determines the fuel injection amount Qx, the position sensor 24 determines the gear ratio ix of the transmission 16, the rotation speed sensor 25 determines the engine rotation speed Nx, the vehicle speed sensor 26 determines the vehicle speed vx, and the acceleration sensor 27 determines the acceleration Gx. Get each.

次いで、第一パラメータ算出ブロック32aは、各ブロックにより下記の数式(6)に示す第一パラメータΦxを算出する。 Next, the first parameter calculation block 32a calculates the first parameter Φx shown in the following mathematical formula (6) by each block.

Figure 0007095278000006
加速度Gxは、上述したとおり車両10の前後方向での速度変化に伴う加速度成分と車両10の姿勢変化に伴う重力加速度成分とを合成した路面に平行な加速度成分である。つまり、加速度Gxは、微分値vx’と重力加速度成分g・sinβとを加算した値になる。したがって、数式(6)は、上記の数式(2)の分子と同義である。
Figure 0007095278000006
As described above, the acceleration Gx is an acceleration component parallel to the road surface, which is a combination of an acceleration component accompanying a speed change in the front-rear direction of the vehicle 10 and a gravitational acceleration component accompanying a posture change of the vehicle 10. That is, the acceleration Gx is a value obtained by adding the differential value vx'and the gravitational acceleration component g · sin β. Therefore, the mathematical formula (6) is synonymous with the numerator of the above mathematical formula (2).

第一パラメータΦxの変数としては、上記の数式(2)に示すように、加速度Gxの代わりに、車速vxの微分値vx’と、車両10の走行している路面勾配に基づいた重力加速度成分g・sinβとを用いてもよい。この場合は、加速度センサ27の代わりに、車速センサ26と車両10が走行している路面勾配を取得する勾配センサや路面勾配を演算する機能要素を用いるとよい。 As the variables of the first parameter Φx, as shown in the above formula (2), instead of the acceleration Gx, the differential value vx'of the vehicle speed vx and the gravitational acceleration component based on the road surface gradient on which the vehicle 10 is traveling. You may use g · sinβ. In this case, instead of the acceleration sensor 27, it is preferable to use a vehicle speed sensor 26, a gradient sensor that acquires the road surface gradient on which the vehicle 10 is traveling, and a functional element that calculates the road surface gradient.

次いで、エンジントルク算出ブロック32cは、燃料噴射量Qxとエンジン回転速度Nxとに基づいて、エンジン14から出力される実際のエンジントルクTeを算出する。 Next, the engine torque calculation block 32c calculates the actual engine torque Te output from the engine 14 based on the fuel injection amount Qx and the engine rotation speed Nx.

図6に例示するように、エンジン14から出力されるエンジントルクTeは、エンジン回転速度Nx及び燃料噴射量Qxのそれぞれに対して正の関係にあり、エンジン回転速度Nxが速く且つ燃料噴射量Qxが大きいほど、大きくなる。このマップデータは予め実験や試験により求めておき、データブロックであるエンジントルク算出ブロック32cに記憶させておく。 As illustrated in FIG. 6, the engine torque Te output from the engine 14 has a positive relationship with each of the engine rotation speed Nx and the fuel injection amount Qx, and the engine rotation speed Nx is high and the fuel injection amount Qx. The larger the value, the larger the value. This map data is obtained in advance by experiments and tests, and is stored in the engine torque calculation block 32c, which is a data block.

この実施形態では、エンジン回転速度Nx及び燃料噴射量Qxの関係からエンジントルクTeを算出したが、燃料噴射量Qxの代わりにアクセル開度センサ22が取得したアクセル開度Axを用いてもよいし、他の取得方法でもよい。 In this embodiment, the engine torque Te is calculated from the relationship between the engine rotation speed Nx and the fuel injection amount Qx, but the accelerator opening Ax acquired by the accelerator opening sensor 22 may be used instead of the fuel injection amount Qx. , Other acquisition methods may be used.

次いで、第二パラメータ算出ブロック32bは、下記の数式(7)を用いて、駆動輪19に伝達される駆動トルクTwを算出する。数式(7)において、ifはディファレンシャルギア18のギア比を、ηはギア比で異なる伝達効率をそれぞれ示している。駆動トルクTwはトルクセンサを用いて得てもよいし、他の方法で得てもよい。 Next, the second parameter calculation block 32b calculates the drive torque Tw transmitted to the drive wheels 19 by using the following mathematical formula (7). In the formula (7), if indicates the gear ratio of the differential gear 18, and η indicates the transmission efficiency different depending on the gear ratio. The drive torque Tw may be obtained by using a torque sensor or by another method.

Figure 0007095278000007
次いで、第二パラメータ算出ブロック32bは、ルックアップテーブルブロック32dにより回転部分相当質量Δmxを算出する。
Figure 0007095278000007
Next, the second parameter calculation block 32b calculates the rotating portion equivalent mass Δmx by the look-up table block 32d.

回転部分相当質量Δmxは、変数であるギア比ixに応じて決まる値である。ルックアップテーブルブロック32dは、ギア比ixごとの複数の回転部分相当質量Δmxが設定されており、ギア比ixに応じたものを選択する。回転部分相当質量Δmxは、空車時の車両重量、ギア比ix、及び所定の係数との関係から算出してもよい。 The mass corresponding to the rotating portion Δmx is a value determined according to the gear ratio ix which is a variable. The lookup table block 32d is set with a plurality of masses Δmx corresponding to a plurality of rotating portions for each gear ratio ix, and the one corresponding to the gear ratio ix is selected. The mass corresponding to the rotating portion Δmx may be calculated from the relationship with the vehicle weight when the vehicle is empty, the gear ratio ix, and a predetermined coefficient.

次いで、第二パラメータ算出ブロック32bは、各ブロックにより下記の数式(8)に示す第二パラメータΦyを算出する。 Next, the second parameter calculation block 32b calculates the second parameter Φy shown in the following mathematical formula (8) by each block.

Figure 0007095278000008
この実施形態では、第二パラメータΦyを上記の数式(8)で示したが、エンジン14、クラッチ15、トランスミッション16、ディファレンシャルギア18などに働く摩擦トルクTfを考慮してもよい。この場合は、駆動トルクTwから摩擦トルクTfを減算した値を駆動輪19の車輪径rwで除算するとよい。摩擦トルクTfを考慮すると、推定精度の向上には有利になる。
Figure 0007095278000008
In this embodiment, the second parameter Φy is shown by the above equation (8), but the friction torque Tf acting on the engine 14, the clutch 15, the transmission 16, the differential gear 18, and the like may be taken into consideration. In this case, the value obtained by subtracting the friction torque Tf from the drive torque Tw may be divided by the wheel diameter rw of the drive wheel 19. Considering the friction torque Tf, it is advantageous for improving the estimation accuracy.

以上のように各パラメータを取得すると、車両重量演算部31は、推定部33の上述した推定方法により、推定値mx(k)を推定する(S120)。 When each parameter is acquired as described above, the vehicle weight calculation unit 31 estimates the estimated value mx (k) by the above-mentioned estimation method of the estimation unit 33 (S120).

次いで、車両重量演算部31は、選択部34により、入力された推定値mx(k)と、この推定値mx(k)が入力される直前に入力された値である前回推定値mx(k-1)との差分である変化量Δmx(k)を算出する(S130)。具体的に、このステップでは、前回推定値取得ブロック34a及び加算ブロック34bにより変化量Δmx(k)を算出する。なお、変化量Δmx(k)は、単位時間あたりの推定値mx(k)の変化量として算出してもよい。また、制御装置20が通電された直後の前回推定値mx(k-1)は、制御装置20が停止される直前に入力された推定値でもよく、前述した基準値maの初期値である基準車重W0でもよい。 Next, the vehicle weight calculation unit 31 has the estimated value mx (k) input by the selection unit 34 and the previous estimated value mx (k) which is a value input immediately before the estimated value mx (k) is input. The amount of change Δmx (k), which is the difference from -1), is calculated (S130). Specifically, in this step, the amount of change Δmx (k) is calculated by the previous estimated value acquisition block 34a and the addition block 34b. The amount of change Δmx (k) may be calculated as the amount of change in the estimated value mx (k) per unit time. Further, the previous estimated value mx (k-1) immediately after the control device 20 is energized may be an estimated value input immediately before the control device 20 is stopped, and is a reference which is an initial value of the above-mentioned reference value ma. The vehicle weight may be W0.

次いで、車両重量演算部31は、選択部34により、推定値mx(k)が入力された時までの基準値maから推定値mx(k)までの間の経時的な変化の積算値Σmx(k)を算出する(S140)。具体的に、このステップでは、積算ブロック34cにより、前回推定値mx(k-1)及び基準値maの差分である前回の積算値Σmx(k-1)に、ステップS130で算出された変化量Δmx(k)を加算して、積算値Σmx(k)を算出する。つまり、前回の積算値Σmx(k-1)がゼロ(「0」)の場合に、このステップで算出される積算値Σmx(k)は、変化量Δmx(k)となる。 Next, the vehicle weight calculation unit 31 uses the selection unit 34 to integrate the change over time from the reference value ma up to the time when the estimated value mx (k) is input to the estimated value mx (k) Σmx ( k) is calculated (S140). Specifically, in this step, the amount of change calculated in step S130 from the previous integrated value Σmx (k-1), which is the difference between the previous estimated value mx (k-1) and the reference value ma, by the integration block 34c. The integrated value Σmx (k) is calculated by adding Δmx (k). That is, when the previous integrated value Σmx (k-1) is zero (“0”), the integrated value Σmx (k) calculated in this step is the amount of change Δmx (k).

次いで、車両重量演算部31は、選択部34により積算値Σmx(k)が誤差の範囲(-Wa~+Wa)から外れるか否かを判定する(S150)。このステップでは、選択部34により積算値Σmx(k)の絶対値が誤差の範囲の数値Waを超えた場合は、仮推定値mx(k)を出力値mxとして出力するステップへ進む。一方、積算値Σmx(k)の絶対値が誤差の範囲の数値Wa以下の場合は、前回出力値m(x-1)を維持するステップへ進む。 Next, the vehicle weight calculation unit 31 determines whether or not the integrated value Σmx (k) is out of the error range (−Wa to + Wa) by the selection unit 34 (S150). In this step, when the absolute value of the integrated value Σmx (k) exceeds the numerical value Wa in the error range by the selection unit 34, the process proceeds to the step of outputting the tentative estimated value mx (k) as the output value mx. On the other hand, if the absolute value of the integrated value Σmx (k) is equal to or less than the numerical value Wa in the error range, the process proceeds to the step of maintaining the previous output value m (x-1).

積算値Σmx(k)の絶対値が誤差の範囲の数値Waを超えた場合に、車両重量演算部31は、選択部34により推定値mx(k)を選択する(S160)。次いで、車両重量演算部31は、選択部34により積算値Σmx(k)をリセットする(S170)。このステップでは、積算値Σmx(k)をリセットしてその値をゼロにすることで、実質的に、基準値maを推定値mx(k)に更新する。次いで、車両重量演算部31は、選択部34により選択された推定値mx(k)を出力値mxとして出力して(S180)、スタートへリターンする。 When the absolute value of the integrated value Σmx (k) exceeds the numerical value Wa in the error range, the vehicle weight calculation unit 31 selects the estimated value mx (k) by the selection unit 34 (S160). Next, the vehicle weight calculation unit 31 resets the integrated value Σmx (k) by the selection unit 34 (S170). In this step, the integrated value Σmx (k) is reset to zero, so that the reference value ma is substantially updated to the estimated value mx (k). Next, the vehicle weight calculation unit 31 outputs the estimated value mx (k) selected by the selection unit 34 as the output value mx (S180), and returns to the start.

一方、積算値Σmx(k)の絶対値が誤差の範囲の数値Wa以下の場合に、車両重量演算部31は、選択部34により、前回出力値m(x-1)を選択する(S190)。次いで、車両重量演算部31は、選択部34により選択された前回出力値m(x-1)を出力
値mxとして出力して(S180)、スタートへリターンする。
On the other hand, when the absolute value of the integrated value Σmx (k) is equal to or less than the numerical value Wa in the error range, the vehicle weight calculation unit 31 selects the previous output value m (x-1) by the selection unit 34 (S190). .. Next, the vehicle weight calculation unit 31 outputs the previous output value m (x-1) selected by the selection unit 34 as the output value mx (S180), and returns to the start.

具体的に、選択部34では、比較ブロック34eにより積算値Σmx(k)の絶対値が誤差の範囲の数値Waを超えたか否かを判定する(S150)。積算値Σmx(k)の絶対値が誤差の範囲の数値Waを超えた場合は、比較ブロック34eから発進された二値信号である「1」が入力されたスイッチブロック34fにより、推定値mx(k)が選択される(S160)。次いで、比較ブロック34eから発進された二値信号である「1」が入力された積算ブロック34cにより積算値Σmx(k)がリセットされる(S170)。 Specifically, the selection unit 34 determines whether or not the absolute value of the integrated value Σmx (k) exceeds the numerical value Wa in the error range by the comparison block 34e (S150). When the absolute value of the integrated value Σmx (k) exceeds the numerical value Wa in the error range, the estimated value mx ( k) is selected (S160). Next, the integrated value Σmx (k) is reset by the integrated block 34c to which the binary signal "1" started from the comparison block 34e is input (S170).

一方、積算値Σmx(k)の絶対値が誤差の範囲の数値Wa以下の場合は、スイッチブロック34fにより、前回出力値m(x-1)が選択される(S190)。 On the other hand, when the absolute value of the integrated value Σmx (k) is equal to or less than the numerical value Wa in the error range, the previous output value m (x-1) is selected by the switch block 34f (S190).

以上のように、車両重量演算部31は、積算値Σmx(k)が誤差の範囲(-Wa~+Wa)から外れた時を車両の重量が変化したタイミングと見做して、その時に推定された推定値mx(k)を出力値mxとして出力する。一方、車両重量演算部31は、積算値Σmx(k)が誤差の範囲(-Wa~+Wa)に収まった時を車両の重量が変化していない時と見做して、その時に前回出力値m(x-1)の出力を維持する。 As described above, the vehicle weight calculation unit 31 considers the time when the integrated value Σmx (k) is out of the error range (-Wa to + Wa) as the timing when the weight of the vehicle changes, and estimates at that time. The estimated value mx (k) is output as the output value mx. On the other hand, the vehicle weight calculation unit 31 regards the time when the integrated value Σmx (k) falls within the error range (-Wa to + Wa) as the time when the weight of the vehicle has not changed, and at that time, the previous output value. Maintain the output of m (x-1).

つまり、車両重量演算部31は、センシングにおける誤差を排除して、車両10の重量が変化したタイミングを見極めて、出力値mxを出力することで、車両10の重量が更新される頻度を抑えるには有利になる。また、推定値mx(k)が誤差の範囲に収まった値で徐々に変化した場合でも、その変化を積算値Σmx(k)で判断することで、車両10の重量の変化を見逃す事態を回避するには有利になる。このように、車両重量演算部31は、車両10の重量が変化したタイミングに合わせて、その重量を高精度に推定できるので、その重量を用いる制御の変動を起因とした違和感を運転者に与えずに運転性(ドライバビリティ)を向上することができる。 That is, the vehicle weight calculation unit 31 eliminates the error in sensing, determines the timing when the weight of the vehicle 10 changes, and outputs the output value mx to suppress the frequency of updating the weight of the vehicle 10. Will be advantageous. Further, even if the estimated value mx (k) gradually changes within the error range, the change is judged by the integrated value Σmx (k) to avoid the situation where the change in the weight of the vehicle 10 is overlooked. Will be advantageous. In this way, the vehicle weight calculation unit 31 can estimate the weight of the vehicle 10 with high accuracy according to the timing when the weight of the vehicle 10 changes, so that the driver feels uncomfortable due to the fluctuation of the control using the weight. It is possible to improve drivability without having to.

例えば、車両10の重量を用いる制御がトランスミッション16の変速制御の場合に、車両10の重量が更新されると、その更新に伴ってトランスミッション16における変速タイミングが変化する。そこで、実施形態の車両重量演算部31は、車両10の重量が実際に変化したときに出力値mxを更新する。それ故、車両10の重量の変化に合わせて変速タイミングを変化させることができるので、変速タイミングの変化による違和感を運転者に与えずに運転性を向上することができる。 For example, when the control using the weight of the vehicle 10 is the shift control of the transmission 16, when the weight of the vehicle 10 is updated, the shift timing in the transmission 16 changes with the update. Therefore, the vehicle weight calculation unit 31 of the embodiment updates the output value mx when the weight of the vehicle 10 actually changes. Therefore, since the shift timing can be changed according to the change in the weight of the vehicle 10, the drivability can be improved without giving the driver a sense of discomfort due to the change in the shift timing.

また、車両重量演算部31は、積算値Σmx(k)が誤差の範囲に収まる場合に、つまり、実際に車両の重量が変化していない場合に、前回出力値m(x-1)の出力を維持するので、車重の推定誤差を低減するには有利になる。 Further, the vehicle weight calculation unit 31 outputs the previous output value m (x-1) when the integrated value Σmx (k) falls within the error range, that is, when the weight of the vehicle does not actually change. Therefore, it is advantageous to reduce the estimation error of the vehicle weight.

車両重量演算部31は、積算値Σmx(k)に対する閾値として誤差の範囲を用いたが、車両の重量が変化したことを判定可能な範囲であれば誤差の範囲以外の範囲を用いてもよい。但し、誤差の範囲を用いることで、各センサの精度や感度による誤差や、車両10の振動に起因するセンサの振動による誤差の影響を排除することが可能になり、路面勾配の推定誤差を低減するには有利になる。 The vehicle weight calculation unit 31 uses an error range as a threshold value for the integrated value Σmx (k), but a range other than the error range may be used as long as it can be determined that the weight of the vehicle has changed. .. However, by using the error range, it is possible to eliminate the influence of the error due to the accuracy and sensitivity of each sensor and the error due to the vibration of the sensor caused by the vibration of the vehicle 10, and the estimation error of the road surface gradient is reduced. It will be advantageous to.

既述した実施形態では、推定値mx(k)及び基準値maの差分として、積算値Σmx(k)を算出する構成を例示したが、基準値maをリセットごとにリセットされたときの推定値mx(k)に更新する構成にして、推定値mx(k)及び基準値maの差分を一定周期(サンプリング時間)ごとに算出してもよい。 In the above-described embodiment, a configuration in which the integrated value Σmx (k) is calculated as the difference between the estimated value mx (k) and the reference value ma is illustrated, but the estimated value when the reference value ma is reset each time. It may be configured to update to mx (k), and the difference between the estimated value mx (k) and the reference value ma may be calculated at regular intervals (sampling time).

この実施形態では、推定値mx(k)の推定演算としてRLSアルゴリズムを用いた例を説明したが、推定部33としては、車両10の重量を推定できればよく、推定演算はこれに限定されない。例えば、RLSアルゴリズムの代わりに、適応アルゴリズムとしてLMS(Least Mean Square)アルゴリズムやNLMS(Nomalized Least Mean Square)アルゴリズムなどを用いてもよい。また、推定した全ての推定値mx(0)~推定値mx(k)の平均値を出力する平均化処理を施してもよい。なお、平均化処理は、平滑化処理の特定のパターンである。 In this embodiment, an example in which the RLS algorithm is used as the estimation calculation of the estimated value mx (k) has been described, but the estimation unit 33 only needs to be able to estimate the weight of the vehicle 10, and the estimation calculation is not limited to this. For example, instead of the RLS algorithm, an LMS (Least Mean Square) algorithm, an NLMS (Nomalized Last Mean Square) algorithm, or the like may be used as an adaptive algorithm. Further, an averaging process may be performed to output the average value of all the estimated estimated values mx (0) to the estimated value mx (k). The averaging process is a specific pattern of the smoothing process.

仮推定値mx(k)は簡易的な方法で算出することができればよく、上記の数式(2)で示す車両10の前後方向の運動方程式のみを用いる方式に限定しない。例えば、車両10がエアサスペンションを搭載している場合は、車両10の上下方向の変化に基づく方式を用いてもよい。また、変速の前後のトランスミッションに入力されるトルクとそのトランスミッションから出力される回転数の変化量とに基づく方式を用いてもよい。また、積載量の変化に伴うボディ13の重量をロードセルなどの重量センサで取得した値に空車時の車両重量を加算した値を仮推定値Mxとしてもよい。 The tentative estimated value mx (k) may be calculated by a simple method, and is not limited to the method using only the equation of motion in the front-rear direction of the vehicle 10 shown in the above mathematical formula (2). For example, when the vehicle 10 is equipped with an air suspension, a method based on a change in the vehicle 10 in the vertical direction may be used. Further, a method based on the torque input to the transmission before and after the shift and the amount of change in the number of revolutions output from the transmission may be used. Further, the tentative estimated value Mx may be a value obtained by adding the weight of the body 13 due to the change in the load capacity to the value acquired by a weight sensor such as a load cell and the weight of the vehicle when the vehicle is empty.

また、既述した実施形態では、車両重量推定装置30が、車両重量演算部31と各センサなどから構成された例を説明したが、本開示はこれに限定されない。例えば、車両重量推定装置30がパラメータ取得手段及び仮推定手段として機能する一つのセンサと、推定手段及び維持手段として機能するハードウェアとから構成されていてもよい。 Further, in the above-described embodiment, an example in which the vehicle weight estimation device 30 is composed of the vehicle weight calculation unit 31 and each sensor has been described, but the present disclosure is not limited to this. For example, the vehicle weight estimation device 30 may be composed of one sensor that functions as a parameter acquisition means and a provisional estimation means, and hardware that functions as an estimation means and a maintenance means.

10 車両
24 ポジションセンサ
25 回転速度センサ
26 車速センサ
27 加速度センサ
28 制御部
30 車両重量推定装置
31 車両重量演算部
32 パラメータ取得部
33 推定部
34 選択部
Φx 第一パラメータ
Φy 第二パラメータ
mx(k) 推定値
mx(k-1) 前回出力値
mx 出力値
ma 基準値
Δmx(k) 変化量
Σmx(k) 推定値及び基準値の差分(変化量の積算値)
10 Vehicle 24 Position sensor 25 Rotation speed sensor 26 Vehicle speed sensor 27 Acceleration sensor 28 Control unit 30 Vehicle weight estimation device 31 Vehicle weight calculation unit 32 Parameter acquisition unit 33 Estimating unit 34 Selection unit Φx First parameter Φy Second parameter mx (k) Estimated value mx (k-1) Previous output value mx Output value ma Reference value Δmx (k) Change amount Σmx (k) Difference between estimated value and reference value (integrated value of change amount)

Claims (8)

車両の走行中に変化するパラメータを取得するパラメータ取得手段と、
前記パラメータが入力されて、そのパラメータに基づいた前記車両の重量の推定値を出力する推定手段と、
前記推定値が入力される選択手段と、を備えて、
前記選択手段により、前記推定値及び予め設定された基準値の差分が所定の範囲から外れた場合に、その推定値に応じた出力値が選択されて、その差分が前記所定の範囲に収まった場合に、前記推定値を推定するよりも前に前記選択手段から出力された出力値である前回出力値が選択されて、選択された前記出力値又は前記前回出力値のいずれか一方が出力される構成にすることを特徴とする車両重量推定装置。
Parameter acquisition means for acquiring parameters that change while the vehicle is running, and
An estimation means in which the parameter is input and an estimated value of the weight of the vehicle based on the parameter is output.
With a selection means in which the estimated value is input,
When the difference between the estimated value and the preset reference value deviates from a predetermined range by the selection means, an output value corresponding to the estimated value is selected, and the difference falls within the predetermined range. In this case, the previous output value, which is the output value output from the selection means, is selected before the estimated value is estimated, and either the selected output value or the previous output value is output. A vehicle weight estimation device characterized by having such a configuration.
前記選択手段は、前記推定値及び前記基準値の差分を、前記推定値が入力される時までの前記基準値から前記推定値までの変化の積算値として算出する手段である請求項1に記載の車両重量推定装置。 The first aspect of the present invention is the means for calculating the difference between the estimated value and the reference value as an integrated value of changes from the reference value to the estimated value until the estimated value is input. Vehicle weight estimation device. 前記選択手段は、前記推定値及び前記基準値の差分が前記所定の範囲から外れたときに、その推定値を次回の基準値に設定する手段である請求項1又は2のいずれか1項に記載の車両重量推定装置。 The selection means according to any one of claims 1 or 2, which is a means for setting the estimated value to the next reference value when the difference between the estimated value and the reference value deviates from the predetermined range. The vehicle weight estimation device described. 前記選択手段は、前記積算値が前記所定の範囲から外れたと判定したときに、その積算値をゼロにする手段である請求項2に記載の車両重量推定装置。 The vehicle weight estimation device according to claim 2, wherein the selection means is a means for setting the integrated value to zero when it is determined that the integrated value is out of the predetermined range. 前記推定手段は、前記推定値を予め設定された誤差の範囲で推定する手段であり、
前記所定の範囲が、前記誤差の範囲に設定される請求項1~4のいずれか1項に記載の車両重量推定装置。
The estimation means is a means for estimating the estimated value within a preset error range.
The vehicle weight estimation device according to any one of claims 1 to 4, wherein the predetermined range is set within the error range.
前記推定手段は、入力された前記パラメータ及びそのパラメータを取得するよりも前に推定した推定値である前回推定値に基づいて平滑化処理を用いて前記推定値を推定する手段である請求項1~5のいずれか1項に記載の車両重量推定装置。 The estimation means is a means for estimating the estimated value by using a smoothing process based on the input parameter and the previous estimated value which is an estimated value estimated before acquiring the parameter. The vehicle weight estimation device according to any one of 5 to 5. 前記推定手段は、前記パラメータ及び前記前回推定値に基づいて、前記車両の前後方向の運動方程式を伝達関数として見做して、前記平滑化処理として適応アルゴリズムを用いて前記推定値を推定する手段である請求項6に記載の車両重量推定装置。 The estimation means is a means for estimating the estimated value by using an adaptive algorithm as the smoothing process by regarding the equation of motion in the front-rear direction of the vehicle as a transmission function based on the parameter and the previous estimated value. The vehicle weight estimation device according to claim 6. 車両の走行中に変化するパラメータを取得し、
前記パラメータに基づいて、前記車両の重量として推定値を推定し、
推定した前記推定値及び予め設定された基準値の差分を算出し、
算出した前記差分が所定の範囲から外れたか否かを判定し、
前記差分が前記所定の範囲から外れたと判定した場合に、前記車両の重量として前記推定値に応じた出力値を選択し、
前記差分が前記所定の範囲に収まったと判定した場合に、前記推定値を推定するよりも前に前記車両の重量として出力された出力値である前回出力値を選択し、
選択された前記出力値又は前記前回出力値のいずれか一方を出力することを特徴とする車両重量推定方法。
Get the parameters that change while the vehicle is running,
Based on the parameters, an estimated value as the weight of the vehicle is estimated.
Calculate the difference between the estimated estimated value and the preset reference value,
It is determined whether or not the calculated difference is out of the predetermined range, and the difference is determined.
When it is determined that the difference is out of the predetermined range, an output value corresponding to the estimated value is selected as the weight of the vehicle.
When it is determined that the difference is within the predetermined range, the previous output value, which is the output value output as the weight of the vehicle before estimating the estimated value, is selected.
A vehicle weight estimation method comprising outputting either the selected output value or the previous output value.
JP2017249663A 2017-12-26 2017-12-26 Vehicle weight estimation device and vehicle weight estimation method Active JP7095278B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017249663A JP7095278B2 (en) 2017-12-26 2017-12-26 Vehicle weight estimation device and vehicle weight estimation method
PCT/JP2018/046489 WO2019131310A1 (en) 2017-12-26 2018-12-18 Vehicle weight estimating device and vehicle weight estimating method
CN201880084032.0A CN111512126B (en) 2017-12-26 2018-12-18 Vehicle weight estimation device and vehicle weight estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249663A JP7095278B2 (en) 2017-12-26 2017-12-26 Vehicle weight estimation device and vehicle weight estimation method

Publications (2)

Publication Number Publication Date
JP2019117051A JP2019117051A (en) 2019-07-18
JP7095278B2 true JP7095278B2 (en) 2022-07-05

Family

ID=67067340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017249663A Active JP7095278B2 (en) 2017-12-26 2017-12-26 Vehicle weight estimation device and vehicle weight estimation method

Country Status (3)

Country Link
JP (1) JP7095278B2 (en)
CN (1) CN111512126B (en)
WO (1) WO2019131310A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264056A (en) * 2021-05-25 2021-08-17 三一汽车制造有限公司 Vehicle weight estimation method, device, vehicle and readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168715A (en) 2008-01-18 2009-07-30 Hitachi Ltd Vehicle weight estimation system
EP2933614A1 (en) 2014-04-15 2015-10-21 Scania CV AB Method and system for detection of change in vehicle mass
CN106926845A (en) 2017-03-02 2017-07-07 中国第汽车股份有限公司 A kind of method for dynamic estimation of vehicle status parameters

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838726B2 (en) * 1980-04-03 1983-08-25 株式会社デンソー Vehicle range display method
JPH02310429A (en) * 1989-05-26 1990-12-26 Yokohama Rubber Co Ltd:The Metering device of capacitance type
US5772238A (en) * 1995-12-12 1998-06-30 Automotive Technologies International Inc. Efficient airbag module
JP2884026B2 (en) * 1992-02-22 1999-04-19 建設省関東地方建設局長 Vehicle weight measurement device
US5383680A (en) * 1992-12-21 1995-01-24 Cadillac Gage Textron Inc. Anti-roll system for wheeled vehicles
JP3579898B2 (en) * 1994-06-06 2004-10-20 マツダ株式会社 Vehicle vibration control device and vibration control method
US7504663B2 (en) * 2004-05-28 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with a floating gate electrode that includes a plurality of particles
ATE528749T1 (en) * 2007-05-21 2011-10-15 Harman Becker Automotive Sys METHOD FOR PROCESSING AN ACOUSTIC INPUT SIGNAL FOR THE PURPOSE OF TRANSMITTING AN OUTPUT SIGNAL WITH REDUCED VOLUME
CN100489466C (en) * 2007-08-10 2009-05-20 中国航天科技集团公司第四研究院第四十四研究所 Self-adaptive filtering method of dynamic axle weighing signal of vehicle
JP2009047216A (en) * 2007-08-17 2009-03-05 Isuzu Motors Ltd Speed change controller of vehicular transmission
JP5191856B2 (en) * 2008-10-07 2013-05-08 大和製衡株式会社 Wheel / axle weight measurement system
JP2010261825A (en) * 2009-05-08 2010-11-18 Omron Corp Weight-measuring device of traveling vehicle, and sensitivity correction method for weight sensor
CN101701843A (en) * 2009-11-13 2010-05-05 中国农业大学 Dynamic electronic scale for loader
CN101875379A (en) * 2010-05-18 2010-11-03 重庆隆鑫机车有限公司 Warning light installation assembly of bestriding vehicle
JP5566244B2 (en) * 2010-10-01 2014-08-06 大和製衡株式会社 Vehicle weighing system
JP5492745B2 (en) * 2010-11-16 2014-05-14 株式会社日立製作所 Electric vehicle traveling control device
JP5229338B2 (en) * 2011-02-17 2013-07-03 トヨタ自動車株式会社 Vehicle state quantity estimation device
CN102353433B (en) * 2011-06-03 2013-03-06 石家庄开发区天远科技有限公司 Method for dynamically measuring load of vehicle
DE102012211222B4 (en) * 2011-07-05 2022-02-17 Denso Corporation Target information measuring device with high possible accuracy of measured information
US9266520B2 (en) * 2011-11-11 2016-02-23 Ford Global Technologies, Llc Dynamic tuning of engine auto stop criteria
CN202471205U (en) * 2012-01-17 2012-10-03 郑州森鹏电子技术有限公司 Dynamic vehicle load detection device
US20130229290A1 (en) * 2012-03-01 2013-09-05 Eaton Corporation Instrument panel bus interface
FR2995399B1 (en) * 2012-09-11 2015-05-22 Renault Sa DEVICE AND METHOD FOR ESTIMATING THE LOAD OF A MOTOR VEHICLE
DE102012222993A1 (en) * 2012-12-12 2014-06-12 Continental Teves Ag & Co. Ohg Method for stabilizing vehicle combination of two-axle towing vehicle, involves triggering reciprocal braking interventions to wheels on rear axle, when amplitudes of half-waves met entrance threshold value
US20140324302A1 (en) * 2013-04-26 2014-10-30 Caterpillar Inc. Method of Estimating Mass of a Payload in a Hauling Machine
JP2015059901A (en) * 2013-09-20 2015-03-30 いすゞ自動車株式会社 Weight estimation apparatus of vehicle
EP3084371B1 (en) * 2013-12-19 2018-02-21 Volvo Truck Corporation Method and vehicle with arrangement for estimating mass of the vehicle
CN104848923A (en) * 2014-05-05 2015-08-19 北汽福田汽车股份有限公司 Vehicle load detection method and detection device
KR101543007B1 (en) * 2014-07-24 2015-08-07 현대자동차 주식회사 Apparatus and method for controlling switch function in vehicle
JP6449001B2 (en) * 2014-11-28 2019-01-09 株式会社三菱総合研究所 Vehicle weight monitoring system
CN105139044B (en) * 2015-05-27 2018-07-27 北京万集科技股份有限公司 Overload of vehicle overrun testing method, apparatus based on vehicle electron identifying and system
CN105675101B (en) * 2016-03-10 2018-10-02 赛度科技(北京)有限责任公司 Vehicle mass dynamic measurement device based on OBD and measurement method
CN106768232A (en) * 2016-12-16 2017-05-31 陕西电器研究所 A kind of new information of vehicles identifying system and recognition methods
CN106846869B (en) * 2017-02-21 2019-03-08 驼队重卡(北京)物流信息技术有限责任公司 A kind of update method of lorry navigation road auxiliary information
CN107490423A (en) * 2017-09-08 2017-12-19 北京汽车研究总院有限公司 A kind of complete vehicle weight method of testing, system and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168715A (en) 2008-01-18 2009-07-30 Hitachi Ltd Vehicle weight estimation system
EP2933614A1 (en) 2014-04-15 2015-10-21 Scania CV AB Method and system for detection of change in vehicle mass
CN106926845A (en) 2017-03-02 2017-07-07 中国第汽车股份有限公司 A kind of method for dynamic estimation of vehicle status parameters

Also Published As

Publication number Publication date
CN111512126A (en) 2020-08-07
WO2019131310A1 (en) 2019-07-04
JP2019117051A (en) 2019-07-18
CN111512126B (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP4600381B2 (en) Vehicle wheel torque estimation device and vibration suppression control device
JP4967878B2 (en) Road slope estimation device
US6173226B1 (en) Control apparatus and method for powertrain of a vehicle
KR102484938B1 (en) System and method for estimating wheel speed of vehicle
JP2007516409A (en) Method and apparatus for estimating the total mass of an automobile
JP4534742B2 (en) Rollover suppression control device for vehicle
JP6622543B2 (en) Wheelie determination device, vehicle, and wheel lift amount determination method
JP6743507B2 (en) Road gradient estimating device and road gradient estimating method
JP6769273B2 (en) Vehicle weight estimation device and vehicle weight estimation method
JP3693097B2 (en) Vehicle weight detection device
JP7095278B2 (en) Vehicle weight estimation device and vehicle weight estimation method
JP2018179543A (en) Estimation device and estimation method
JP6794806B2 (en) Vehicle weight estimation device and vehicle weight estimation method
JP6747087B2 (en) Road gradient estimating device and road gradient estimating method
US8095334B2 (en) Procedure for estimating the torque transmitted by a friction clutch controlled by an actuator
JPH11351864A (en) Road slope estimating equipment
JP5556548B2 (en) Vehicle total weight estimation device
JP2015021810A (en) Calculation method for estimated vehicle weight, and vehicle
JP6769272B2 (en) Vehicle weight estimation device and vehicle weight estimation method
JP2020085554A (en) Vehicle weight estimation device and vehicle weight estimation method
JP2010203455A (en) Damping control device of vehicle
JP7359240B2 (en) Vehicle parameter calculation device and calculation method
JP6740742B2 (en) Road gradient estimating device and road gradient estimating method
JP2019108085A (en) Control numerical value setting device and control numerical value setting method
JP6808994B2 (en) Road surface slope estimation device and road surface slope estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150