LTEにおけるモビリティ制御の一例についてまず説明する。LTE Rel.11で、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が仕様化され、UEが複数の送受信ポイント(TRP:Transmission Reception Point)に関してチャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)に基づく測定及び報告を行って、動的に通信するTRPを切り替える動的ポイント選択(DPS:Dynamic Point Selection)が可能となっている。
なお、TRPは、例えば基地局であり、単に送信ポイント(TP:Transmission Point)、受信ポイント(RP:Reception Point)などと呼ばれてもよい。
DPSの手順の一例において、まず、UEは、同期信号(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))及びセル固有参照信号(CRS:Cell-specific Reference Signal)に基づいてセルを検出し、RRM(Radio Resource Management)測定報告を行う。
RRM測定報告では、UEは、例えば受信電力(例えば、RSRP(Reference Signal Received Power))を測定し、当該受信電力に関する情報を報告してもよい。なお、本明細書では、「測定報告」は、「測定及び/又は報告」と互換的に使用されてもよい。
UEは、接続セルから、各TRPをそれぞれCSI測定するための複数のCSIプロセス(最大4つ)を設定される。UEは、CSIプロセスの設定に基づいて各TRPから送信されるCSI-RSを測定報告し、ネットワークは当該報告結果に基づいて、UEとの送受信に用いるTRPを動的に切り替える(DPS)。
CSI測定報告では、UEは、チャネル品質指標(CQI:Channel Quality Indicator)、プリコーディング行列指標(PMI:Precoding Matrix Indicator)、プリコーディングタイプ指標(PTI:Precoding Type Indicator)、ランク指標(RI:Rank Indicator)などの少なくとも1つに関するCSIを報告してもよい。
ネットワークは、UEから報告される測定結果に基づいて、UEにおいて信号の受信品質が最も高いTRPを判断し、当該TRPをUEとの送受信に用いてもよい。
このように、複数のCSIプロセスを用いることにより、同じセル内でUEが移動してもセルを切り替えたりRRC(Radio Resource Control)情報の再設定を行ったりすることなく、UEの通信先のTRPを切り替えながらネットワークとの通信を継続できる。セル内移動時の通信の管理(維持)は、レイヤ1/レイヤ2モビリティ(L1/L2(Layer 1/Layer 2) mobility)とも呼ばれる。
なお、セルをまたぐ移動(例えば、セルをまたぐハンドオーバー)が生じる場合、L1/L2モビリティは維持できず、接続セルの切り替え及びRRC情報の再設定が必要である。セル間移動時の通信の管理(維持)は、レイヤ3モビリティ(L3 mobility)とも呼ばれる。
ところで、NRでは、1つのセルが複数のTRP及び/又は複数のビームによって構成されるシナリオが検討されている。図1は、NRで検討されるシナリオの一例を示す図である。図1Aは複数のTRPが同じベースバンドユニット(BBU:Base Band Unit)に接続される例を示し、図1Bは1つのTRPがBBUに接続される例を示すが、BBUはいずれかのTRPに含まれてもよい。
図1Aの場合、同じセル識別子(物理セルID(PCI:Physical Cell Identity)、セルIDなどと呼ばれてもよい)に基づいて各TRPの送受信が制御されてもよく、各TRPのカバレッジエリアを総合したエリアが同じセルとして扱われてもよい。また、図1Bの場合、各ビームのカバレッジエリアを総合したエリアが同じセルとして扱われてもよい。
ここで、1つ1つのビーム/TRPでカバーされるエリアが狭い場合、UEが移動するとすぐにこれまで通信を行っていたTRP/ビームのエリアから外れてしまうことが想定される。1つ1つのビーム/TRPをそれぞれ「セル」とみなして、移動とともにハンドオーバーを行う手段では、例えば以下のような問題が生じる:(1)ハンドオーバーに伴うシグナリングが大量に発生する、(2)ハンドオーバー処理の間に接続元セル(ソースセル)と通信不可となるくらいエリアの外に出てしまい、初期接続からやり直しとなる。なお、本明細書では、「ビーム/TRP」は、「ビーム及び/又はTRP」と互換的に使用されてもよい。
このため、NRでは、接続セル切り替えのためのセルレベル測定に加え、UEに対する最適ビーム/TRPを認識、更新などするためのビーム/TRPレベル測定が検討されている。具体的には、NRでは、UEのRRCアイドルモード(RRC_IDLE mode)用に少なくともセルレベル測定がサポートされ、RRC接続モード(RRC_CONNECTED mode)用にセルレベル測定及びビーム/TRPレベル測定の少なくとも一方がサポートされることが検討されている。
なお、セルレベル測定は、セル単位の測定、セルレベルのRRM測定(同じセルの信号であれば、どのビーム/TRPから送信された信号かを区別しない測定)などと読み替えられてもよく、ビーム/TRPレベル測定は、ビーム/TRP単位の測定、ビーム/TRPレベルのRRM測定(異なるビーム/TRPの測定結果を区別する測定)などと読み替えられてもよい。以下では、ビーム/TRPレベル測定を単にビームレベル測定ともいう。
NRにおいては、RRCシグナリングを要するL3モビリティ及びRRCシグナリングを要しないL1/L2モビリティの両方を、RRC接続モードにおいてサポートすることが合意されている。
また、NRにおいては、セルが複数のビームによって構成されるシナリオにおけるL1/L2ビーム制御方法として、CSI-RS(CSI測定用RS)又はモビリティ参照信号(MRS:Mobility Reference Signal)を用いて、ビーム選択のための測定報告を行うことが検討されている。
ここで、MRSは、RRM測定用RSとして用いることができる信号であればよく、既存の同期信号(例えば、PSS/SSS)、既存の参照信号(例えば、CRS、CSI-RS)又はこれらを拡張/変更した信号などであってもよい。例えば、MRSは、NR用のPSS(NR-PSS)及び/又はSSS(NR-SSS)であってもよいし、RRM測定用にデザインされる新たな参照信号であってもよい。MRSは、1つ又は複数のアンテナポートを用いて、1つ又は複数のビームで送信されてもよい。また、MRSは測定用信号、ビーム固有RS、ビームごとに送信されるRSなどと呼ばれてもよい。
また、NRでは、接続モード及びアイドルモード用のセル内RRM測定に、同じ信号を用いるか、異なる信号を用いるか、なども検討されている。
しかしながら、SSS及び/又はMRSを用いてセルレベル測定を行う場合について、ビームレベル測定はどのように行うか、また、UEはどのようにこれらの信号とビームの括り付けを認識するかが検討されていない。さらに、MRSを用いてRRM測定を行う場合について、UEは周辺セルのMRSリソース構成をどのように認識(区別)するかが検討されていない。これらを明確にしなければ、UEが好適にビームレベル測定を実施できず、適切でない制御が行われて通信スループットが劣化するおそれがある。
なお、モビリティのための測定については、UE固有でないRS(MRSなど)は、多くの設定情報なしでUEに発見可能であることが好ましい。
そこで、本発明者らは、UEがビームに基づいて測定を行う場合において、アイドル/接続モードでのセルレベル測定、接続モードでのビームレベル測定などを低シグナリング負荷で実現する方法を着想した。
以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
なお、本明細書では、伝送時間間隔(TTI:Transmission Time Interval)は、所定の時間単位(例えば、サブフレーム、スロット、ミニスロット、短縮TTI(sTTI:shortened TTI)など)と読み替えられてもよい。TTIは、所定のインデックス(例えば、サブフレームインデックス、スロットインデックス、ミニスロットインデックス、sTTIインデックスなど)で特定されてもよい。なお、TTIは、ロングTTIと呼ばれてもよいし、ショートTTIと呼ばれてもよい。
(無線通信方法)
<第1の実施形態>
本発明の第1の実施形態について説明する前に、まずSS(同期信号)ブロックについて説明する。図2は、SSブロックの概念説明図である。SSブロックは、PSS、SSS及びブロードキャストチャネル(PBCH:Physical Broadcast Channel)の少なくとも1つを含むリソース(又はリソースセット)のことをいう。
例えば、UEは、同じSSブロックインデックスに対応するSSブロックで受信するPSS、SSS及びPBCHは、同一のビームで送信されたと想定してもよい。なお、以下では、PSS、SSS及びPBCHは、それぞれNR用のPSS(NR-PSS)、NR用のSSS(NR-SSS)及びNR用のPBCH(NR-PBCH)と読み替えられてもよい。
1つ又は複数のSSブロックの集合は、SSバーストと呼ばれてもよい。図2には、SSバースト長=Lの例が示されている。本例では、SSバーストは時間的に連続するL個のSSブロック(SSブロックインデックス#0から#L-1)から構成されるが、これに限られない。例えば、SSバーストは、周波数及び/又は時間リソースが連続するSSブロックで構成されてもよいし、周波数及び/又は時間リソースが非連続のSSブロックで構成されてもよい。
SSバーストは、所定の周期(SSバースト周期と呼ばれてもよい)ごとに送信されることが好ましい。また、1つ又は複数のSSバーストは、SSバーストセット(SSバーストシリーズ)と呼ばれてもよい。例えば、基地局及び/又はUEは、1つのSSバーストセットに含まれる1つ以上のSSバーストを用いて、PSS/SSS/PBCHをビームスイーピング(beam sweeping)して送信してもよい。なお、SSバーストセットは周期的に(SSバーストセット周期で)送信されるとUEは想定してもよい。
第1の実施形態では、SSS及び/又はPBCH用の復調用参照信号(DMRS:DeModulation Reference Signal)をセルレベル測定に用いる場合に、基地局はSSブロックインデックスをPBCHに含めて送信する。例えば、SSブロックインデックスは、ブロードキャスト情報(例えば、MIB(Master Information Block))に含まれてUEに通知されてもよい。
UEは、PSS/SSSからPCIを取得し、同一PCIの1つ又は複数のSSブロックに基づいてセルレベル測定を行ってもよい。また、UEは、受信したPBCHからSSブロックインデックスを把握し、同じPCIかつ同じSSブロックインデックスに対応するSSブロックに基づいてビームレベル測定を行ってもよい。つまり、UEは、ビームレベル測定を各PCIのSSブロックインデックス毎に行ってもよい。
ここで、PSS/SSSとPBCHとの対応関係(association)は仕様上で固定されることが好ましい。また、第1の実施形態においては、同じSSブロックインデックスに対応するPSS/SSS/PBCHは、同じビームを用いて送信されることが好ましい。この場合、UEは、例えばPBCHに含まれるSSブロックインデックスに基づいて異なるビームを認識し、当該インデックスに対応するSSブロックに含まれるSSS(及びPBCH用のDMRS)を用いてRRM測定してもよい。
PSS/SSSとPBCHは、時分割多重(TDM:Time Division Multiplexing)されてもよいし、周波数分割多重(FDM:Frequency Division Multiplexing)されてもよい。PSS/SSSとPBCHとの対応関係について、図3から図5を参照して説明する。
図3は、PSS/SSS/PBCHを異なるTTIでTDMする場合の一例を示す図である。図3では、SSバーストセット周期は例えば40msであり、当該周期内で複数のSSバーストが送信されるものとする。1つのSSバースト内では、複数のビームにそれぞれ対応する複数のSSブロックが送信される。
図3の例では、SSバースト内では、PSS、SSS及びPBCHが、この順番で、それぞれ1TTIの期間、ビームスイープして送信される。また、図示される各TTI内の複数の信号は、例えばSSブロックインデックス#0(先頭)から#13(末尾)に対応する。
例えば、UEは、SSインデックス#0、#1及び#2のPBCHを受信したことをPBCHに含まれる情報から認識すると、それぞれのSSインデックスのリソースでPSS及び/又はSSSを受信し、各インデックスについてビームレベル測定結果を取得してもよい。また、これらのSSインデックスで取得されたPCIが同じである場合、UEは、SSインデックス#0、#1及び#2の測定結果に基づいてセルレベル測定結果を取得してもよい。
図3の例では、PBCH復調用の参照信号(PBCH用DMRS)が、PBCHとFDMされることが好ましい。PBCHのリソースがPSS/SSSと時間的に離れているため、別の信号をPBCH復調用に用いることで、PBCHの復調精度を高めることができる。
図4は、PSS/SSS/PBCHを隣接シンボルでTDMする場合の一例を示す図である。図4の例では、SSバースト内では、3シンボルから成るSSブロック単位でビームスイープして送信される。つまり、同じSSブロックを構成するPSS、SSS及びPBCHが時間的に連続して送信される。図示されるSSバースト内の複数のSSブロックは、例えばそれぞれSSブロックインデックス#0から#13に対応する。図4のような構成では、図3に比べて1つのSSブロックの測定が短時間で完了できる。
図5は、PSS/SSS/PBCHを同一シンボルでFDMする場合の一例を示す図である。図5の例では、SSバースト内では、1シンボルから成るSSブロック単位でビームスイープして送信される。つまり、同じSSブロックを構成するPSS、SSS及びPBCHが同じ時間で送信される。図示されるSSバースト内の複数のSSブロックは、例えばそれぞれSSブロックインデックス#0から#13に対応する。図5のような構成では、図4に比べて1つのSSブロックの測定がさらに短時間で完了できる。
UEは、ビームレベル測定結果を基地局に対して報告する場合、測定に用いたSSブロックインデックスを測定結果とともに又は測定結果とは別に報告してもよい。この場合、ネットワークは、報告されたSSブロックインデックスに基づいて、UEが測定に用いたビームのビームIDを把握できる。
以上説明した第1の実施形態によれば、SSブロックを利用することで、UEは、SSS及び/又はPBCH用のDMRSを用いて、アイドル/接続モードでのセルレベル測定及び/又は接続モードでのビームレベル測定を、低シグナリング負荷で行うことができる。
<第2の実施形態>
本発明の第2の実施形態では、UEがMRSをセルレベル測定及び/又はビームレベル測定に用いる場合、UEは、サーチ対象(測定対象)のMRSの構成に関する情報(MRS構成情報などと呼ばれてもよい)及び/又はサーチ対象のID情報を通知される。
これらの情報の通知は、上位レイヤシグナリング(例えば、RRCシグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)など))、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)又はこれらの組み合わせを用いて行われてもよい。
MRS構成情報は、MRSリソース情報(例えば、時間及び/又は周波数リソースの範囲(タイミング、帯域幅など)、周期、オフセット、アンテナポート数)であってもよいし、MRS構成インデックスであってもよい。MRSが送信され得る時間及び/又は周波数リソースは、MRSリソースプールと呼ばれてもよい。UEは、MRS構成情報に基づいて、測定すべきMRSリソースを特定してモニタ(測定)することができる。
ID情報は、RRM測定すべきMRSを送信するセル(TRP)及び/又はビームを特定可能な情報である。ID情報は、1つ以上のPCI及び/又はビームIDに関する情報であってもよく、例えば、PCI(及び/又はビームID)の範囲、リスト、セットなどであってもよい。MRSは、PCI及び/又はビームIDに基づいてスクランブルされた系列であってもよい。この場合、UEは、ID情報に基づいてデスクランブルできたMRSについて、測定処理を行うことができる。
なお、MRS構成情報及び/又はID情報は、サービングセル及び周辺セル(隣接セル)で共通に用いられることが好ましい。この場合、セルごとにこれらの情報をUEに送信する必要がなくなるため、シグナリングのオーバヘッド及びUEのMRSサーチ負担を低減できる。
また、基地局は、アイドルモード用のMRS構成情報をブロードキャスト情報(例えば、SIB)で送信し、接続モードのUEに対しては、アイドルモード用のMRS構成情報から変更されたパラメータ(周期、帯域幅など)のみを、上位レイヤシグナリング(例えば、RRCシグナリング)を用いて差分として通知してもよい。また、接続モードのUE向けに、MRSリソース構成情報の一部又は全部のパラメータについて、SIBで通知される値とは異なる値を、RRCシグナリングによって通知してもよい。
図6A及び6Bは、第2の実施形態においてMRS構成情報で特定されるMRSリソースプールの一例を示す図である。図6Aの例では、UEは、受信したSIBによりサーチ対象のMRSリソースプールの帯域幅、期間(例えば、シンボル数)及び周期を判断し、MRSを測定する。
なお、MRSリソースプールは、SSバーストセット周期で送信されるSS/PBCHのリソースを含んで構成されてもよいし、含まないように構成されてもよい。また、MRSは、SSブロックに多重されてもよいし、SSブロック外に多重されてもよい。
図6Bの例では、UEは、受信したSIBによりサーチ対象のMRSリソースプールを判断し、MRSを測定する。また、本例に示すように、UEはRRC接続後、RRCシグナリングにより、SIBで特定されるリソースプールより帯域幅が広く、周期が短いMRSリソースプールを設定されてもよい。これにより、RRC接続中のUEは短時間でMRS測定報告できる一方、アイドルUEは低頻度のMRS測定処理により電力消費を抑制できる。
異なるビームを区別(判断)するために、UEは、MRS基本構成情報(MRSビーム構成情報と呼ばれてもよい)を用いてもよい。MRS基本構成情報は、例えば、所定の時間及び/又は周波数リソース(例えば、リソースブロック(RB:Resource Block)内又はRBプール)内のMRSリソースパターン(MRS分割リソースパターン、多重リソースパターン)の情報(例えば、インデックス)であってもよい。MRS基本構成情報は、MRSリソースパターン(例えば、MRSリソースインデックス)とビーム(例えば、ビームID)の対応関係を含んでもよい。
MRS基本構成情報は、仕様で規定されてもよいし、UEに対して、上位レイヤシグナリング(例えば、RRCシグナリング、SIBなど)で通知されてもよい。UEは、MRS基本構成情報に基づいて、異なるビームを区別してMRSを用いたビームレベル測定を行ってもよい。例えば、UEは、MRS基本構成情報で特定されるMRSリソースインデックスに対応するリソースでMRSをモニタ(測定)してもよい。なお、UEは、MRS構成情報及び/又はID情報が通知されていない場合であっても、MRS基本構成情報に基づいてMRSを測定してもよい。
図7A及び7Bは、MRSリソースパターンの一例を示す図である。本例では、1RBペア分の領域のMRSリソースパターンが示されているが、これに限られない。また、MRSに割り当てられる最小のリソース単位(最小MRSリソース、MRSリソースなどと呼ばれてもよい)が2リソースエレメント(RE)であるものとして説明するが、これに限られない。
MRSは、あるビームを用いて送信される場合、複数のMRSリソースのうち少なくとも1つで送信されてもよい。図7においては、単一のビームに紐付けられるリソースのグルーピング単位が破線で示されている。当該グルーピング単位は、図7Aでは、時間及び周波数方向に連続する複数のMRSリソースであり、図7Bでは、周波数方向に離散的に配置される複数のMRSリソースである。なお、グループは1つ以上のMRSリソースから構成されてもよく、各MRSリソースがそれぞれ異なるビームに関連付けられてもよい。
例えば、図7Aの場合、UEは、MRSリソース#0、#1、#12及び#13で送信されるMRSは同一のビームで送信されたと想定してもよい。また、図7Bの場合、UEは、MRSリソース#0、#4及び#8で送信されるMRSは同一のビームで送信されたと想定してもよい。
UEは、MRS基本構成情報として、MRSリソースインデックスとグループとの対応関係(グルーピング構成)、実際に使用される(又はされない)MRSリソースインデックスの情報などを通知されてもよい。例えば、図7BではMRSリソース#2はMRS送信に利用されないため、基地局は使用されないMRSリソースの情報としてインデックス#2をUEに通知してもよい。
UEは、ビームレベル測定結果を基地局に対して報告する場合、RB内又はRBプール内のMRSリソースインデックス(測定したMRSのリソースインデックス)を測定結果とともに又は測定結果とは別に報告してもよい。この場合、ネットワークは、報告されたMRSリソースインデックスに基づいて、UEが測定に用いたビームのビームIDを把握できるため、MRSでビームIDに関する情報を送信しなくてもよい。
以上説明した第2の実施形態によれば、UEは、サービングセル及び周辺セルのMRSリソース構成を低シグナリング負荷で認識して、セルレベル測定及び/又はビームレベル測定を行うことができる。
<第3の実施形態>
本発明の第3の実施形態では、MRSを、PCIに基づく系列を送信する第1の部分と、ビームIDを伝送する第2の部分と、から構成する。これにより、MRSを用いて、異なるビームを区別して好適にビームレベル測定を実施できる。
上記2つの部分は、同じアンテナポート上で送信されるものとする。PCIに基づく系列の生成方法は、PSS及び/又はSSSと同一であってもよい(PSS及び/又はSSSと同じ系列が用いられてもよい)。例えば、第1の部分では、PCIでスクランブルされた系列が送信されてもよい。
また、ビームIDは、同じMRS内でPCIとともに送信され、同一ビームIDのMRSであってもPCIが異なれば区別できる。このため、ビームIDはセル内で重複しないことが好ましい。
ビームIDは、当該ビームIDに基づいて生成される系列によって暗示的に伝送されてもよいし、メッセージ(変調データ)として明示的に伝送されてもよい。前者の場合、第2の部分では、ビームIDでスクランブルされた系列が送信されてもよい。また、後者の場合、UEは、MRSの第1の部分を、第2の部分を復調するための参照信号として用いてもよい。
第1の部分及び第2の部分は、TDM、FDM及び符号分割多重(CDM:Code Division Multiplexing)のいずれか又はこれらの組み合わせを用いて多重されてもよい。図8A及び8Bは、第3の実施形態に係るMRSのリソースマッピングの一例を示す図である。MRSの第1の部分及び第2の部分は、図8AではTDMを用いてマッピングされ、図8BではFDMを用いてマッピングされている。なお、周波数及び/又は時間領域にマッピングされる各部分のリソースサイズ、個数、位置などは、図8の例に限られない。
なお、第3の実施形態では第1の部分でPCIが伝送されるものとしたが、セル(TRP)を特定可能な情報が伝送されるのであれば、他の情報が伝送されてもよい。
また、第3の実施形態では第2の部分でビームIDが伝送されるものとしたが、ビームを特定可能な情報が伝送されるのであれば、他の情報が伝送されてもよい。例えば、第3の実施形態におけるビームIDは、SSブロックインデックスで読み替えられてもよい。
また、第3の実施形態ではMRSが2つの部分から構成されるものとしたが、これに限られない。例えば、MRSは、PCI及びビームIDの両方でスクランブルされた単一の系列で構成されてもよく、UEは受信したMRSの系列を復調することでPCI及びビームIDを特定してもよい。
以上説明した第3の実施形態によれば、UEは、MRSとビームとの対応関係を低シグナリング負荷で認識して、ビームレベル測定を行うことができる。
<変形例>
なお、各実施形態に係る無線通信方法は、適宜切り替えて(組み合わせて)用いられてもよい。例えば、UEは、アイドルモードでは第1の実施形態に従ってSSSに基づくセルレベル測定を実施し、接続モードでは第2及び/又は第3の実施形態に従ってMRSに基づくセルレベル/ビームレベル測定を実施してもよい。
また、本明細書において、ビームは、下記(1)-(9)のうち少なくとも1つによって区別される(複数のビームの違いが判断される)ものとするが、これに限られるものではない:(1)リソース(例えば、時間及び/又は周波数リソース)、(2)SSブロック(SSブロックインデックス)、(3)アンテナポート、(4)プリコーディング(例えば、プリコーディングの有無、プリコーディングウェイト)、(5)送信電力、(6)位相回転、(7)ビーム幅、(8)ビームの角度(例えば、チルト角)、(9)レイヤ数。
また、本明細書で使用される「ビーム」という用語は、上記(1)-(9)の少なくとも1つと互換的に使用されてもよく、例えば「ビーム」は、「リソース」、「アンテナポート」などで読み替えられてもよい。
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図9は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示すものに限られない。例えば、各セルは複数の送受信ポイント(TRP:Transmission Reception Point)によって形成されてもよく、無線基地局11及び/又は無線基地局12は、1つ又は複数のTRPを制御してもよい。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)が適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、下り制御情報(DCI:Downlink Control Information)(例えば、PDSCH及び/又はPUSCHのスケジューリング情報を含む)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図10は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナにより構成してもよい。
送受信部103は、ユーザ端末20に対して、所定の信号(例えば、MRS、SSS、DMRSなど)を送信する。また、送受信部103は、ユーザ端末20から、測定結果(例えば、RRM測定結果、CSI測定結果)を受信してもよい。
送受信部103は、MRS構成情報、ID情報、MRS基本構成情報などを送信してもよい。送受信部103は、報知チャネル(例えば、PBCH)を用いてSSブロックインデックスを送信してもよい。送受信部103は、測定された所定の信号のリソースインデックス、SSブロックインデックスなどを受信してもよい。
図11は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御する。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成するように制御してもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。なお、送信ビームを用いる送信は、所定のプリコーディングが適用された信号の送信などと言い換えられてもよい。
制御部301は、1つ又は複数の所定の信号(例えば、MRS、SSS、DMRSなどであってもよく、測定用信号と呼ばれてもよい)を送信する制御を行う。制御部301は、ユーザ端末20に対して、上記所定の信号とビームとの対応関係に関する情報(例えば、MRS基本構成情報など)を送信し、ユーザ端末20に異なるビームを区別させるように制御してもよい。
制御部301は、同じSSブロックインデックスに対応するSSブロックを同一のビームで送信する制御を行ってもよい。
制御部301は、上記所定の信号を、セルを特定可能な情報(例えば、PCI)に基づく第1の部分と、ビームを特定可能な情報(例えば、ビームID)に基づく第2の部分と、から構成してもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
図12は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナにより構成してもよい。
送受信部203は、無線基地局10から、所定の信号(例えば、MRS、SSS、DMRSなど)を受信する。また、送受信部203は、無線基地局10に対して、測定部405から出力された測定結果(例えば、RRM測定結果、CSI測定結果)を報告(送信)してもよい。
送受信部203は、SSブロックインデックス、MRS構成情報、ID情報、MRS基本構成情報などを受信してもよい。送受信部203は、測定した所定の信号のリソースインデックス、SSブロックインデックスなどを送信してもよい。
図13は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成するように制御してもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成するように制御してもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
制御部401は、所定の信号(例えば、MRS、SSS、DMRSなど)に基づく測定部405の測定を制御してもよい。
また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
測定部405は、所定の信号(例えば、MRS、SSS、DMRSなど)に基づくセルレベル測定を行ってもよい。また、測定部405は、所定の信号(例えば、MRS、SSS、DMRSなど)とビームとの対応関係を用いて異なるビームを区別(異なるビームで送信される上記所定の信号を区別)して、当該所定の信号に基づくビームレベル測定を行ってもよい。なお、セルレベル測定及び/又はビームレベル測定は、RRM測定であってもよいし、その他の測定であってもよい。
例えば、測定部405は、受信信号処理部404から取得されたSSブロックインデックス(例えば、報知チャネル(PBCH)により受信)に対応するSSブロックが同一のビームで送信されると判断してもよい。この場合、測定部405は、同じSSブロックインデックスに対応するSSブロックに含まれる上記所定の信号に基づくビームレベル測定を行ってもよい。
測定部405は、1つ又は複数のSSブロックに関する測定結果のうち、所定のPCIに対応するSSブロックの測定結果を用いて、当該所定のPCIのセルに関するセルレベル測定結果を導出してもよい。また、測定部405は、1つ又は複数のSSブロックに関する測定結果のうち、同一PCIかつ同一SSブロックインデックスに対応するSSブロックの測定結果を用いて、当該所定のPCIのセルの所定のビームに関するビームレベル測定結果を導出してもよい。
測定部405は、上記所定の信号に関する構成情報(例えば、MRS構成情報)と、ID情報(例えば、1つ以上のPCI及び/又はビームIDに関する情報)と、の少なくとも1つを用いて、上記所定の信号に基づくセルレベル測定及び/又はビームレベル測定を行ってもよい。例えば、測定部405は、上記所定の信号のリソースインデックスとビームとの対応関係の情報に基づいて異なるビームを区別して、上記所定の信号に基づくビームレベル測定を行ってもよい。
測定部405は、セルを特定可能な情報(例えば、PCI)に基づいて生成される第1の部分と、ビームを特定可能な情報(例えば、ビームID)に基づいて生成される第2の部分と、から構成される上記所定の信号を用いて、当該所定の信号に基づくビームレベル測定を行ってもよい。この場合、測定部405は、上記第2の部分に基づいて異なるビームを区別してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送受信ポイント(TRP:Transmission Reception Point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書又は特許請求の範囲において使用される用語「又は(or)」は、排他的論理和ではないことが意図される。
本明細書又は特許請求の範囲で使用する「AとBが異なる」という用語は、AとBが互いに異なることを表してもよい。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
本出願は、2017年1月6日出願の特願2017-001440に基づく。この内容は、全てここに含めておく。