WO2020031324A1 - ユーザ端末及び無線通信方法 - Google Patents
ユーザ端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2020031324A1 WO2020031324A1 PCT/JP2018/029898 JP2018029898W WO2020031324A1 WO 2020031324 A1 WO2020031324 A1 WO 2020031324A1 JP 2018029898 W JP2018029898 W JP 2018029898W WO 2020031324 A1 WO2020031324 A1 WO 2020031324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- signal
- reception
- unit
- band
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
- LTE Long Term Evolution
- LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
- LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
- a user terminal In an existing LTE system (for example, LTE@Rel.8-13), a user terminal (UE: User @ Equipment) detects a synchronization signal (SS: Synchronization @ Signal) and a network (for example, a base station (eNB: eNode @ B)). ) And identify the cell to be connected (for example, by cell ID (Identifier)). Such a process is also called a cell search.
- the synchronization signal includes, for example, PSS (Primary @ Synchronization @ Signal) and / or SSS (Secondary @ Synchronization @ Signal).
- the UE receives broadcast information (for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), etc.), and sets information (system information) for communication with the network. May be called).
- broadcast information for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), etc.
- SIB System Information Block
- the MIB may be transmitted on a broadcast channel (PBCH: Physical Broadcast Channel), and the SIB may be transmitted on a downlink (DL) shared channel (PDSCH: Physical Downlink Shared Channel).
- PBCH Physical Broadcast Channel
- PDSCH Physical Downlink Shared Channel
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- SSB Synchronization Signal Block
- SS-RSRP Synchronization signal reference signal received received power
- RSSI Received Signal Strength Indicator
- an object of the present disclosure is to provide a user terminal and a wireless communication method that appropriately acquire reception quality in a carrier to which a measurement signal is not transmitted.
- a user terminal is configured to: a receiving unit that receives a measurement signal on a first component carrier (CC) in one band, and set a measurement of reception power of the measurement signal in the first CC;
- a control unit configured to set at least one measurement of reception strength and reception quality in the second CC when the measurement signal is not transmitted in the second CC in the band.
- FIG. 1 is a diagram illustrating an example of in-band CA using a CC to which SSB is transmitted and a CC to which SSB is not transmitted.
- FIG. 2 is a diagram illustrating an example of RSRQ measurement in a CC to which SSB is transmitted and a CC to which SSB is not transmitted.
- FIG. 3 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
- FIG. 4 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
- FIG. 5 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
- FIG. 6 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
- FIG. 7 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
- FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
- the above-mentioned (1) in-frequency measurement that does not require MG is also called in-frequency measurement that does not require RF retuning.
- the above-described (2) in-frequency measurement that requires MG is also called in-frequency measurement that requires RF retuning. For example, when the signal to be measured is not included in the band of the active BWP (BandWidth @ Part), RF retuning is necessary even in the same frequency measurement, and thus the measurement of (2) is performed.
- the user terminal switches (retunes) the used frequency (RF: Radio @ Frequency) from the serving carrier to the non-serving carrier, measures using a reference signal or the like, and then measures the used frequency. Switch from non-serving carrier to serving carrier.
- RF Radio @ Frequency
- BWP corresponds to one or more partial frequency bands in a component carrier (CC: Component Carrier, carrier, cell, NR carrier) set to NR.
- BWP may be called a partial frequency band, a partial band, or the like.
- the BWP may include at least one of a downlink BWP (DL @ BWP) and an uplink BWP (UL @ BWP).
- the inter-frequency measurement of the above (3) is also called a different frequency measurement. It is assumed that the different frequency measurement uses MG. However, the UE sets the UE capability (UE capability) of the gapless measurement (gapless measurement) to a base station (for example, a BS (Base Station), a transmission / reception point (TRP: Transmission / Reception Point), an eNB (eNodeB), and a gNB (NR). NodeB) or the like), it is possible to perform different frequency measurement without MG.
- a base station for example, a BS (Base Station), a transmission / reception point (TRP: Transmission / Reception Point), an eNB (eNodeB), and a gNB (NR). NodeB) or the like
- TRP Transmission / Reception Point
- eNodeB Transmission / Reception Point
- NR gNodeB
- a reference signal reception power (RSRP: Reference Signal Received Power), a received signal strength (RSSI: Received Signal Strength Indicator) of the non-serving carrier, and a reference signal At least one of reception quality (RSRQ: Reference Signal Received Quality) and SINR (Signal to Interference plus Noise Ratio) may be measured.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- SINR Signal to Interference plus Noise Ratio
- RSRP is the received power of the desired signal, and is at least a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), or the like. Measured using one.
- RSSI is the total received power including the received power of the desired signal and the interference and noise power.
- RSRQ is the ratio of RSRP to RSSI.
- the desired signal may be a signal included in a synchronization signal block (SSB: Synchronization Signal Block).
- the SSB is a signal block including a synchronization signal (SS: Synchronization @ Signal) and a broadcast channel (also referred to as a broadcast signal, PBCH, NR-PBCH, etc.), and may be called an SS / PBCH block or the like.
- SS may include PSS (PrimaryrimSynchronization Signal), SSS (Secondary Synchronization Signal), NR-PSS, NR-SSS, and the like.
- the SSB is composed of one or more symbols (for example, OFDM symbols).
- the PSS, the SSS, and the PBCH may be arranged in one or more different symbols.
- the SSB may be configured by a total of four or five symbols including one symbol PSS, one symbol SSS, and two or three symbols of the PBCH.
- the measurement performed using SS may be referred to as SS (or SSB) measurement.
- SS (or SSB) measurement for example, SS-RSRP, SS-RSSI, SS-RSRQ, SS-SINR measurement, or the like may be performed.
- the user terminal determines a received signal strength (for example, SS-RSRP: Synchronization signal reference signal received received power) and a received signal strength in the NR carrier (for example, RSSI: Received Signal Strength Indicator, NR carrier RSSI). It is assumed that the reception quality of the synchronization signal (for example, SS-RSRQ: Synchronization signal reference signal received quality) is determined.
- a received signal strength for example, SS-RSRP: Synchronization signal reference signal received received power
- RSSI Received Signal Strength Indicator, NR carrier RSSI
- SS-SRRQ may be defined as follows.
- SS-RSRQ N ⁇ SS-RSRP / NR Carrier RSSI
- N may be the number of resource blocks included in the maximum bandwidth (maximum allowable bandwidth or measurement bandwidth) in which measurement of the NR carrier RSSI is allowed.
- SS-RSRP is defined by a linear average over the power contributions of the resource elements transmitting the synchronization signal (SS).
- a time resource for SS-RSRP measurement may be defined within the SMTC window period.
- the SS-RSRP may be measured only between reference signals corresponding to SS / PBCH blocks in the same SS / PBCH block index and the same physical layer cell ID (Physical-layer @ cell @ identity). If the higher layer indicates an SS / PBCH block for performing SS-RSRP measurement, the SS-RSRP may be measured in the indicated SS / PBCH block. Note that SS-RSRP may be measured using at least one of PSS, SSS, and another signal (for example, CSI-RS).
- the NR carrier RSSI constitutes a linear average of the total received power in the OFDM symbol with the measurement time resource and the measurement bandwidth.
- the measurement bandwidth may be composed of N resource blocks.
- the NR carrier RSSI may include interference and thermal noise from all sources, including co-channel serving and non-serving cells.
- a time resource for measuring the NR carrier RSSI may be defined within the SMTC window period.
- the NR carrier RSSI is being studied for measurement in SS / PBCH blocks, similar to SS-RSRP. That is, the maximum allowable bandwidth for measuring the NR carrier RSSI is being considered to be the SS / PBCH block bandwidth (for example, 20 PRB), like the SS-RSRP measurement bandwidth.
- the UE transmits an information element (Information Element: IE) indicating a measurement target (MeasObjectNR) by higher layer signaling for RSRQ (SS-RSRQ) measurement using SSB, RSRQ using CSI-RS (CSI-RSRQ), and the like. It may be set.
- Information Element: IE Information Element: IE
- SS-RSRQ measurement target
- CSI-RSRQ CSI-RSRQ
- the measurement target includes at least one of an SSB frequency (ssbFrequency), an SSB subcarrier interval (ssbSubcarrierSpacing), an SSB measurement timing setting (SSB-based measurement measurement timing configuration: SSB-MTC or SMTC), and a reference signal setting (referenceSignalConfig). May be.
- ssbFrequency indicates the center frequency of SSB.
- ssbSubcarrierSpacing indicates an SSB subcarrier interval.
- SMTC indicates the SSB measurement timing (cycle, offset, time length, etc.).
- ReferenceSignalConfig may include at least one of SSB configuration for mobility (ssb-ConfigMobility) and CSI-RS resource configuration for mobility (csi-rs-ResourceConfigMobility).
- the UE can set whether to use SSB or CSI-RS as a reference signal for measurement by referenceSignalConfig.
- Ssb-ConfigMobility may include at least one of measurement SSB (ssb-ToMeasure), synchronization serving cell timing (useServingCellTimingForSync), and SS-RSSI measurement (SS-RSSI-Measurement).
- ssb-ToMeasure indicates a set of SSB measured within the SMTC measurement period.
- ssb-ToMeasure indicates the SSB measured by the bitmap corresponding to the SSB index.
- useServingCellTimingForSync indicates whether to use the serving cell timing to derive the index of the SSB transmitted by the neighboring cell for the same frequency measurement (whether the neighboring cell and the serving cell are synchronized).
- SS-RSSI-Measurement sets RSSI measurement based on a synchronization reference signal (synchronization signal in SSB).
- SS-RSSI-Measurement may indicate at least one (time resource) of a slot and a symbol for performing SS-RSSI measurement.
- the above-mentioned mobility CSI-RS resource configuration may include at least one of a subcarrier interval (subcarrierSpacing) and a mobility CSI-RS cell list (csi-RS-CellList-Mobility).
- csi-RS-CellList-Mobility is a list of CSI-RS cells for mobility (CSI-RS-CellMobility).
- CSI-RS-CellMobility is a cell ID (cellId), a CSI-RS measurement bandwidth (csi-rs-MeasurementBW), a density (density), and a CSI-RS resource list for mobility (csi-rs-ResourceList-Mobility). At least one may be included.
- the csi-rs-MeasurementBW may include the number of PRBs in the measurement band (nrofPRBs) and the start PRB of the measurement band (startPRB). density may indicate the frequency domain density of the one-port CSI-RS for L3 mobility.
- csi-rs-ResourceList-Mobility is a list of CSI-RS resources for mobility (CSI-RS-Resource-Mobility).
- CSI-RS-Resource-Mobility includes CSI-RS index (csi-RS-Index), slot configuration (slotConfig), associated SSB (associated SSB), frequency domain allocation (frequencyDomainAllocation), first OFDM symbol in time domain (firstOFDMSymbolInTimeDomain), Sequence generation configuration (sequenceGenerationConfig) may be included.
- associatedSSB indicates an SSB associated with the CSI-RS resource, and may include an SSB index and presence / absence of QCL (Quasi-Co-Located).
- CCs in intra-band CA Carrier Aggregation
- RRM Radio Resource Management
- ⁇ Scenario 1> As shown in FIG. 1, there is a CC having an SSB (a SSB is transmitted) in the same band as a CC having no SSB, and a CC having no SSB and a CC having an SSB are the same base station. Operated in a co-located location.
- ⁇ Synchronization, RSRP, etc. are almost the same among a plurality of CCs in the same band operated at the same base station position.
- the UE performs at least one of the synchronization and the RSRP measurement on the CC having the SSB, so that the activation / deactivation of the cell of the other CC can be flexibly performed, and the RSRP of the other CC can be performed. There is no need to measure.
- the base station since the base station does not perform SSB transmission on some CCs, it is possible to reduce overhead of SSB transmission. Further, since the UE does not need to measure the RSRP in each CC, the measurement load can be reduced.
- UE performs RRM measurement using CSI-RS instead of SSB.
- the CSI-RS is transmitted on each CC, so that the UE can obtain the quality of each CC.
- the base station can manage the quality of each CC and can assign an appropriate CC (cell) to each UE.
- the traffic-dependent interference amount may differ depending on the CC.
- This case is a case where the base station distributes a plurality of UEs to a plurality of CCs.
- the traffic of CC # 0 is large (congested) and the traffic of CC # 1 is small (vacant).
- the base station distributes traffic by determining which CC to connect the UE to based on a measurement result including the amount of interference such as RSRQ and SINR.
- a measurement signal SSB, CSI-RS
- transmission overhead of the measurement signal increases.
- the present inventors have studied a method for suppressing an overhead for measuring at least one of reception strength and reception quality in a carrier to which a measurement signal is not transmitted, and have reached the present invention.
- the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
- the broadcast information may be, for example, a master information block (MIB: Master Information Block), a system information block (SIB: System Information Block), minimum system information (RMSI: Remaining Minimum System Information), or the like.
- a cell, a serving cell, a carrier, and a CC may be read interchangeably.
- the measurement signal, the reference signal, the synchronization signal, the SSB, and the CSI-RS may be interchanged.
- the UE If the UE has been configured for RSRP measurement using a measurement signal (reference signal) in at least one CC (first CC) in one band, the UE may be configured on a CC (second CC) in which measurement signals in that band are not transmitted.
- An RSRQ measurement may be configured.
- the measurement signal may be at least one of SSB and CSI-RS.
- the UE may be configured for SS-RSRQ measurement in a second CC in which SSB in the band is not transmitted.
- the UE may measure the RSRP at the first CC, measure the RSSI at the second CC, and calculate the RSRQ of the second CC based on the RSRP of the first CC and the RSSI of the second CC.
- the UE may use the SS-RSRP measured in the first CC in the calculation of the SS-RSRQ.
- the UE may regard the SS-RSRP of the first CC as the SS-RSRP of the second CC.
- the UE uses the SS-RSSI measured in the specific band in the second CC in calculating the SS-RSRQ.
- the specific band may be all or a part of the band of the active DL BWP in the second CC.
- the specific band may be a band centered on a designated frequency (for example, ssbFrequency) and having a predetermined bandwidth (for example, 20 PRB).
- the predetermined bandwidth may be the same as the bandwidth of the measurement signal (SSB or CSI-RS).
- the specific band may be a band having at least one of the center frequency and the bandwidth designated for RSSI measurement.
- the UE performs in-band CA using CCs # 0 to # 5 in one band, and SSB is transmitted only in CC # 2 (first CC).
- the UE measures SS-RSRP using the SSB of CC # 2.
- the UE measures the SS-RSSI in each of CCs # 0 to # 5.
- the UE calculates the SS-RSRQ in CC # 2 based on the SS-RSRP in CC # 2 and the SS-RSSI in CC # 2.
- the UE regards the SS-RSRP in CC # 2 as the SS-RSRP in other CCs (CC # 0, # 1, # 3, # 4, # 5). That is, the UE calculates SS-RSRQ in each CC based on SS-RSRP in CC # 2 and SS-RSSI in each CC.
- the measurement signal (SSB or CSI-RS) is not transmitted in some CCs, thereby transmitting the measurement signal. Can be reduced, and the measurement load of RSRP in the UE can be reduced.
- the UE can report the reception quality (RSRQ) even in the CC where the measurement signal is not transmitted.
- RSRQ reception quality
- the base station can allocate a plurality of CCs to a plurality of UEs based on the reception quality depending on the traffic and distribute the traffic. it can.
- the UE may be instructed to perform RSRQ measurement on a CC (second CC) where SSB is not transmitted according to one of the following RSRQ measurement instruction methods 1 to 3.
- the UE may be explicitly indicated to be an SS-RSRQ measurement without SSB (SSB less SS-RSRQ measurement).
- the upper layer signaling (MeasObjectNR) may include a 1-bit field to indicate SS-RSRQ measurement without SSB.
- the UE may not be notified of ssbFrequency and ssbSubcarrierSpacing when explicitly instructed to perform SS-RSRQ measurement without SSB.
- MeasObjectNR may not include ssbFrequency and ssbSubcarrierSpacing.
- the UE may be notified of the RSSI measurement band (center frequency, bandwidth) by another higher layer signaling, may use a fixed RSSI measurement band defined in the specification, or may use a predetermined rule.
- the RSSI measurement band may be determined from specific parameters.
- the UE may be implicitly indicated that the notified MeasObjectNR does not include the ssbSubcarrierSpacing, which is the SS-RSRQ measurement without the SSB.
- the UE may be instructed on the center frequency of the RSSI measurement band by ssbFrequency included in MeasObjectNR.
- ssbFrequency included in MeasObjectNR indicates the center frequency of the RSSI measurement band.
- the UE may be notified of the bandwidth of the RSSI measurement band by another higher layer signaling, may use a fixed bandwidth defined in the specification, or may use a predetermined rule to determine a bandwidth from a specific parameter.
- the width may be determined.
- the bandwidth of the RSSI measurement band may be a fixed bandwidth defined in the specification.
- the fixed bandwidth may be 20 PRB (for example, the number of SSB PRBs) in the subcarrier interval (SubCarrier Spacing: SCS) of the data (PDSCH) of the serving cell (second CC).
- SCS subcarrier Spacing
- the bandwidth of the RSSI measurement band may be set by another higher layer signaling.
- An IE related to the RSSI measurement bandwidth may be added as another higher layer signaling.
- RSRQ measurement instruction method 3 Even if the UE is informed of all 0s (there is no SSB to be measured) as ssb-ToMeasure (bitmap), the UE may implicitly indicate that the UE is the SS-RSRQ measurement without the SSB. Good.
- the UE may be instructed by ssbFrequency on the center frequency of the RSSI measurement band. Further, the UE may be instructed by the ssbSubcarrierSpacing on the SCS for determining the bandwidth of the RSSI measurement band. In other words, when ssb-ToMeasure is all 0, the UE may interpret that ssbFrequency indicates the center frequency of the RSSI measurement band, or that ssbSubcarrierSpacing indicates the SCS for determining the bandwidth of the RSSI measurement band. May be interpreted.
- the UE may be notified of the bandwidth of the RSSI measurement band by another higher layer signaling, may use a fixed bandwidth defined in the specification, or may derive from a specific parameter using a predetermined rule. May be used.
- the bandwidth of the RSSI measurement band may be a fixed bandwidth defined in the specification.
- the fixed number of PRBs in the RSSI measurement band may be defined in the specification.
- the UE may determine the bandwidth from the SSB @ SCS specified by ssbSubcarrierSpacing and the fixed number of PRBs (for example, the number of PRBs of 20 PRBs and SSBs), or the SCS of the data of the serving cell (second CC).
- a fixed number of PRBs for example, the number of PRBs of 20 PRBs and SSBs
- the bandwidth of the RSSI measurement band may be set by another information element.
- Upper layer signaling (MeasObjectNR) may include an information element related to the bandwidth of the RSSI measurement band.
- the UE can recognize that the RSRQ measurement is performed in the CC where the SSB is not transmitted, and the RSRQ measurement can be appropriately set.
- the UE may measure the RSSI in the second CC according to one of the following RSSI measurement methods 1 to 3.
- the UE may be explicitly notified of the center frequency and the bandwidth of the RSSI measurement band.
- Upper layer signaling may include an information element indicating a center frequency and a bandwidth of the RSSI measurement band.
- the bandwidth may be notified by an absolute value (for example, in MHz).
- a plurality of combinations of the SCS and the number of PRBs are defined in the specification, and the UE may be notified of the index of one combination and determine the bandwidth based on the combination.
- At least one candidate for the number of SCSs and PRBs is specified in the specification, and the UE may be notified of the index of one candidate and determine the bandwidth based on the candidate.
- One value of the SCS and the number of PRBs may be specified in the specification, and the UE may be notified of the other value, and may determine the bandwidth from the notified value and the value specified in the specification.
- the UE may be instructed by ssbFrequency on the center frequency of the RSSI measurement band. Further, the UE may use a fixed bandwidth specified in the specification for the RSSI measurement band, or may use a bandwidth derived from a specific parameter using a predetermined rule.
- the bandwidth of the RSSI measurement band may be a fixed bandwidth defined in the specification.
- the fixed number of PRBs of the RSSI measurement band (for example, the number of PRBs of 20 PRBs and SSBs) may be defined in the specification.
- the UE may determine the bandwidth from SSB SCS specified by ssbSubcarrierSpacing and a fixed number of PRBs.
- MeasObjectNR may not include ssbSubcarrierSpacing.
- the UE may determine a fixed PRB number bandwidth for the SCS of the data of the serving cell (second CC).
- the UE may determine a fixed PRB number bandwidth for the SCS of the active DL @ BWP.
- the UE may determine a fixed PRB number bandwidth for SSB @ SCS of the first CC.
- the UE may determine a fixed number of PRBs for SSB @ SCS of the first CC. . That is, the UE can determine the bandwidth even in the case of the RSSI measurement of the CC for which the serving cell configuration (configuration, SCS of data) is not notified.
- the UE may measure the RSSI in the RSSI measurement band in the active DL BWP of the CC whose RSSI is to be measured. RF retuning is not required for measurements within the active DL BWP.
- the RSSI measurement band may depend on the UE implementation, or may be a fixed band defined in the specification.
- the fixed band may be 20PRB (eg, SSB bandwidth) at the center of the active DL @ BWP.
- the UE can appropriately set the RSSI measurement band, and can appropriately set the RSSI measurement even in a CC where SSB is not transmitted, in a different frequency measurement (a CC that is not a serving cell), and in the same frequency measurement. Can be done.
- the UE may be configured with a time resource (at least one of a slot and a symbol) for RSSI measurement by SS-RSSI-Measurement included in ssb-ConfigMobility.
- the UE may use all symbols in the SMTC period (window) for RSSI measurement as a default.
- the UE may use receive beamforming (BF) in the RSRP measurement and the RSSI measurement. Even when the UE performs the RSRP measurement and the RSSI measurement in one CC, the UE may perform the RSSI measurement using the same reception BF as the reception BF used for the RSRP measurement. The UE may perform the RSSI measurement using the same reception BF as the reception BF used for the RSRP measurement even when the CC for the RSRP measurement and the CC for the RSSI measurement are different. This allows the UE to perform RSSI measurement using an appropriate beam.
- BF receive beamforming
- the UE may calculate the RSRQ of the second CC using the RSRP of the first CC and the RSSI of the second CC, and report the RSRQ.
- the UE may report the RSRP of the first CC as the RSRP of the second CC, or may report the RSRP of the first CC and not report the RSRP of the second CC.
- the UE may report the RSSI of the second CC.
- the UE may be configured for CSI-RSRQ measurement in a second CC in which CSI-RS in the band is not transmitted.
- the UE may use the CSI-RSRP for RSRQ measurement of another CC.
- CSI-RSRP CSI-RS
- SSThe SSB in the measurement using the above-mentioned SSB may be replaced with CSI-RS.
- the UE may be instructed to perform the RSRQ measurement in the CC (second CC) in which the CSI-RS is not transmitted in the same manner as one of the above-described RSRQ measurement instruction methods 1 to 3.
- the UE may measure the RSSI in the second CC in the same manner as one of the RSSI measurement methods 1 to 3 described above.
- the UE may be explicitly instructed to be CSI-RSRQ measurement without CSI-RS (CSI-RS less CSI-RSRQ measurement) in the same manner as in the above-described RSRQ measurement instruction method 1.
- upper layer signaling may include a 1-bit field indicating CSI-RSRQ measurement without CSI-RS.
- the UE may be instructed to perform the CSI-RSRQ measurement without the CSI-RS by setting only the CSI-RS resource (CSI-RS-Resource-Mobility) including the CSI-RS index of the specific value. Good.
- the UE measures the CSI-RSRP in the first CC where the CSI-RS is transmitted, measures the CSI-RSSI in each CC, and calculates the CSI-RSRP in the first CC, It can be considered as CSI-RSRP in each CC.
- the UE can calculate CSI-RSRQ in the second CC where CSI-RS is not transmitted.
- wireless communication system Wireless communication system
- communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
- FIG. 3 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- NR New Radio
- FRA Full Radio Access
- New-RAT Radio Access Technology
- the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- a base station 11 forming a macro cell C1 having relatively wide coverage
- a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
- user terminals 20 are arranged in the macro cell C1 and each small cell C2.
- the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
- the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CC).
- CC a plurality of cells
- Communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, or the like
- a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
- the same carrier as described above may be used. Note that the configuration of the frequency band used by each base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- a single numerology may be applied, or a plurality of different numerologies may be applied.
- Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
- the numerology may be referred to as different.
- the base station 11 and the base station 12 may be connected by wire (for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)) or wirelessly. Good.
- wire for example, an optical fiber or an X2 interface compliant with CPRI (Common Public Radio Interface)
- CPRI Common Public Radio Interface
- the base station 11 and each base station 12 are respectively connected to the upper station apparatus 30, and are connected to the core network 40 via the upper station apparatus 30.
- the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- each base station 12 may be connected to the higher station apparatus 30 via the base station 11.
- the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
- a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
- Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
- orthogonal frequency division multiple access Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier
- Frequency Division Multiple Access Frequency Division Multiple Access
- / or OFDMA is applied.
- OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
- SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used.
- the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
- SIB System @ Information @ Block
- MIB Master ⁇ Information ⁇ Block
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
- Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
- the DCI that schedules DL data reception may be called a DL assignment
- the DCI that schedules UL data transmission may be called an UL grant.
- PCFICH transmits the number of OFDM symbols used for PDCCH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
- HARQ Hybrid Automatic Repeat Repeat request
- the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
- PDSCH Downlink Shared Data Channel
- an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- user data higher layer control information, etc. are transmitted.
- downlink radio quality information CQI: Channel Quality Indicator
- acknowledgment information acknowledgment information
- scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
- the PRACH transmits a random access preamble for establishing a connection with a cell.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a reference signal for measurement SRS: Sounding Reference Signal
- DMRS reference signal for demodulation
- the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 4 is a diagram illustrating an example of the entire configuration of the base station according to the embodiment.
- the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
- the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
- RLC Radio Link Control
- MAC Medium Access
- Transmission / reception control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
- IFFT inverse fast Fourier transform
- the transmission / reception section 103 converts the baseband signal pre-coded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
- the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
- Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
- the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
- the transmitting and receiving unit 103 may further include an analog beamforming unit that performs analog beamforming.
- the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
- the transmitting / receiving antenna 101 may be constituted by, for example, an array antenna.
- FIG. 5 is a diagram illustrating an example of a functional configuration of a base station according to an embodiment of the present disclosure.
- functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
- the control unit (scheduler) 301 controls the entire base station 10.
- the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
- the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- scheduling for example, resource transmission
- a downlink data signal for example, a signal transmitted on the PDSCH
- a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
- control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
- the control unit 301 controls scheduling of a synchronization signal (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)) and a downlink reference signal (for example, CRS, CSI-RS, and DMRS).
- a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
- a downlink reference signal for example, CRS, CSI-RS, and DMRS.
- the control unit 301 includes an uplink data signal (for example, a signal transmitted on the PUSCH), an uplink control signal (for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, a PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
- an uplink data signal for example, a signal transmitted on the PUSCH
- an uplink control signal for example, a signal transmitted on the PUCCH and / or PUSCH, acknowledgment information, etc.
- a random access preamble for example, a PRACH.
- Transmission signal scheduling of uplink reference signals and the like.
- the control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission / reception unit 103. May be performed.
- the control unit 301 may perform control to form a beam based on downlink propagation path information, uplink propagation path information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
- Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
- the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
- the DL assignment and the UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 or the like.
- CSI Channel ⁇ State ⁇ Information
- Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
- Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Power for example, RSRP (Reference Signal Received Power)
- reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- channel information for example, CSI
- the measurement result may be output to the control unit 301.
- FIG. 6 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
- the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
- the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
- the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
- the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
- the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
- the transmitting / receiving antenna 201 may be constituted by, for example, an array antenna.
- the transmission / reception unit 203 transmits and / or receives data in a cell included in a carrier to which SMTC is set.
- the transmission / reception unit 203 may receive information on the same frequency measurement and / or the different frequency measurement from the base station 10.
- FIG. 7 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
- the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
- the control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed.
- the control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 404 and / or the measurement unit 405.
- control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
- Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
- the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
- the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
- CSI channel state information
- Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
- the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
- the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
- the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
- the measuring unit 405 measures the received signal.
- the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement using SSB on one or both of the first carrier and the second carrier.
- the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
- the measurement result may be output to the control unit 401.
- the transmission / reception unit 203 may receive a measurement signal (eg, SSB, CSI-RS, etc.) on a first component carrier (CC) in one band.
- a measurement signal eg, SSB, CSI-RS, etc.
- CC first component carrier
- the control unit 401 is configured to set the measurement of the reception power (for example, RSRP) of the measurement signal in the first CC, and when the measurement signal is not transmitted in the second CC in the band, the reception strength in the second CC (for example, , RSSI) measurement may be set.
- the reception power for example, RSRP
- RSSI reception strength in the second CC
- the control unit 401 may report a reception quality (for example, RSRQ) based on the reception power measured in the first CC and the reception strength measured in the second CC.
- a reception quality for example, RSRQ
- the control unit 401 may determine whether the measurement signal is transmitted in the second CC based on higher layer signaling (for example, MeasObjectNR).
- higher layer signaling for example, MeasObjectNR
- the control unit 401 controls at least one of upper layer signaling, a subcarrier interval of data in the second CC, a subcarrier interval of the measurement signal, and an active downlink partial band (for example, active DL @ BWP). Based on this, a band for measuring the reception intensity may be determined.
- the measurement signal may be a synchronization signal block (for example, SSB, SS / PBCH block).
- a synchronization signal block for example, SSB, SS / PBCH block.
- each functional block is realized by an arbitrary combination of at least one of hardware and software.
- a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
- the functional block may be implemented by combining one device or the plurality of devices with software.
- the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the realization method is not particularly limited.
- a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
- FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
- the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
- CPU Central Processing Unit
- the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
- the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
- a program program code
- a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
- the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
- the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
- the storage 1003 may be called an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
- the transmission / reception unit 103 (203) may be mounted physically or logically separated between the transmission unit 103a (203a) and the reception unit 103b (203b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
- the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- RS Reference Signal
- a component carrier may be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be configured by one or more periods (frames) in the time domain.
- the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
- a subframe may be configured by one or more slots in the time domain.
- the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
- the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
- Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
- SCS SubCarrier @ Spacing
- TTI Transmission @ Time @ Interval
- TTI Transmission @ Time @ Interval
- radio frame configuration transmission and reception.
- At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- Slots may include multiple mini-slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots.
- a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
- the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
- one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
- TTI Transmission @ Time @ Interval
- TTI Transmission Time interval
- a plurality of consecutive subframes may be called a TTI
- one slot or one minislot is called a TTI.
- You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
- the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
- the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
- the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
- radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
- a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms
- the TTI having the above-described TTI length may be replaced with the TTI.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
- the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
- the number of subcarriers included in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
- One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
- one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
- PRB Physical @ RB
- SCG Sub-Carrier @ Group
- REG Resource @ Element @ Group
- PRB pair an RB pair, and the like. May be called.
- a resource block may be composed of one or more resource elements (RE: Resource @ Element).
- RE Resource @ Element
- one RE may be a radio resource area of one subcarrier and one symbol.
- a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
- the common RB may be specified by an index of the RB based on the common reference point of the carrier.
- a PRB may be defined by a BWP and numbered within the BWP.
- $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
- BWP for a UE, one or more BWPs may be configured in one carrier.
- At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
- “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
- the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
- the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
- a radio resource may be indicated by a predetermined index.
- Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
- the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
- information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
- Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
- the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
- the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
- the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
- software, instructions, information, and the like may be transmitted and received via a transmission medium.
- a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
- system and “network” as used in this disclosure may be used interchangeably.
- precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
- base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
- a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
- a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
- a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
- RRH small indoor base station
- the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
- at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
- the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
- at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be replaced with a user terminal.
- communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
- words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
- an uplink channel, a downlink channel, and the like may be replaced with a side channel.
- a user terminal in the present disclosure may be replaced by a base station.
- a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
- the operation performed by the base station may be performed by an upper node (upper node) in some cases.
- various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
- the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
- elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
- LTE Long Term Evolution
- LTE-A Long Term Evolution
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication
- 5G 5th generation mobile communication system
- FRA Fluture Radio Access
- New-RAT Radio Access Technology
- NR New Radio
- NX New radio access
- FX Fluture generation radio access
- GSM Registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.11 Wi-Fi
- WiMAX registered trademark
- UWB Ultra-WideBand
- Bluetooth registered trademark
- a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
- a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
- any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
- determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
- determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
- judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
- “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
- the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
- connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
- the term “A and B are different” may mean that “A and B are different from each other”.
- the term may mean that “A and B are different from C”.
- Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
ユーザ端末は、1つのバンド内の第1コンポーネントキャリア(CC)において測定信号を受信する受信部と、前記第1CCにおいて前記測定信号の受信電力の測定を設定され、且つ前記バンド内の第2CCにおいて前記測定信号が送信されない場合、前記第2CCにおける受信強度及び受信品質の少なくとも1つの測定を設定される制御部と、を有する。本開示の一態様によれば、測定信号が送信されないキャリアにおける受信強度及び受信品質の少なくとも1つを適切に取得できる。
Description
本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
既存のLTEシステム(例えば、LTE Rel.8-13)において、ユーザ端末(UE:User Equipment)は、同期信号(SS:Synchronization Signal)を検出し、ネットワーク(例えば、基地局(eNB:eNode B))との同期をとるとともに、接続するセルを識別する(例えば、セルID(Identifier)によって識別する)。このような処理はセルサーチとも呼ばれる。同期信号は、例えば、PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal)を含む。
また、UEは、ブロードキャスト情報(例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)を受信して、ネットワークとの通信のための設定情報(システム情報などと呼ばれてもよい)を取得する。
MIBは、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)で送信されてもよいし、SIBは、下りリンク(DL)共有チャネル(PDSCH:Physical Downlink Shared Channel)で送信されてもよい。
将来の無線通信システム(例えば、3GPP Rel.15以降、NR、5G、5G+等ともいう)では、同期信号ブロック(SSB:Synchronization Signal Block)を用いた測定が利用される。
SSBを用いた測定では、例えば、同期信号の受信電力(例えば、SS-RSRP:Synchronization signal reference signal received power)及び受信信号強度(例えば、RSSI::Received Signal Strength Indicator)に基づいて、同期信号の受信品質(例えば、SS-RSRQ:Synchronization signal reference signal received quality)を決定することが想定される。
また、SSBを送信しないキャリア(例えば、Component Carrier:CC)をサポートすることが検討されている。しかしながら、測定信号が送信されないキャリアにおける受信品質が適切に得られない場合、システムの性能が劣化するおそれがある。
そこで、本開示は、測定信号が送信されないキャリアにおける受信品質を適切に取得するユーザ端末及び無線通信方法を提供することを目的の1つとする。
本開示の一態様に係るユーザ端末は、1つのバンド内の第1コンポーネントキャリア(CC)において測定信号を受信する受信部と、前記第1CCにおいて前記測定信号の受信電力の測定を設定され、且つ前記バンド内の第2CCにおいて前記測定信号が送信されない場合、前記第2CCにおける受信強度及び受信品質の少なくとも1つの測定を設定される制御部と、を有することを特徴とする。
本開示の一態様によれば、測定信号が送信されないキャリアにおける受信強度及び受信品質の少なくとも1つを適切に取得できる。
<測定>
将来の無線通信システム(例えば、3GPP Rel.15以降、NR、5G、5G+等ともいう)では、以下の測定(メジャメント)が検討されている:
(1)メジャメントギャップ(MG:Measurement Gap)不要の周波数内メジャメント(Intra-frequency measurement without MG)、
(2)MG要の周波数内メジャメント(Intra-frequency measurement with MG)、
(3)周波数間メジャメント(Inter-frequency measurement)。
将来の無線通信システム(例えば、3GPP Rel.15以降、NR、5G、5G+等ともいう)では、以下の測定(メジャメント)が検討されている:
(1)メジャメントギャップ(MG:Measurement Gap)不要の周波数内メジャメント(Intra-frequency measurement without MG)、
(2)MG要の周波数内メジャメント(Intra-frequency measurement with MG)、
(3)周波数間メジャメント(Inter-frequency measurement)。
上記(1)のMG不要の周波数内メジャメントは、RFリチューニングを必要としない同周波測定とも呼ばれる。上記(2)のMG要の周波数内メジャメントは、RFリチューニングを必要とする同周波測定とも呼ばれる。例えば、アクティブBWP(BandWidth Part)の帯域内に測定対象信号が含まれない場合、同周波測定でもRFリチューニングが必要なので、上記(2)の測定となる。
メジャメントギャップ(MG:Measurement Gap)において、ユーザ端末は、使用周波数(RF:Radio Frequency)をサービングキャリアから非サービングキャリアに切り替え(リチューニングし)、参照信号などを用いて測定した後、使用周波数を非サービングキャリアからサービングキャリアに切り替える。
ここで、BWPは、NRに設定されるコンポーネントキャリア(CC:Component Carrier、キャリア、セル、NRキャリア)内の、1つ以上の部分的な周波数帯域に該当する。BWPは、部分周波数帯域、部分帯域などと呼ばれてもよい。BWPは、下りBWP(DL BWP)及び上りBWP(UL BWP)の少なくとも一つを含んでもよい。
上記(3)の周波数間メジャメントは、異周波測定とも呼ばれる。当該異周波測定は、MGを使うことを想定する。しかしながら、UEがギャップなし測定(gap less measurement)のUE能力(UE capability)を基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)などと呼ばれてもよい)に報告する場合には、MGなしの異周波測定が可能である。
NRにおいて、MGを使って同周波キャリア又は異周波キャリアを測定している間は、RFを切り替えているためサービングセルでの送受信ができない。
LTE、NRなどにおいて、同周波測定及び異周波測定の少なくとも1つに関して、非サービングキャリアの参照信号受信電力(RSRP:Reference Signal Received Power)、受信信号強度(RSSI:Received Signal Strength Indicator)及び参照信号受信品質(RSRQ:Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、の少なくとも1つが測定されてもよい。
ここで、RSRPは、所望信号の受信電力であり、例えば、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)などの少なくとも1つを用いて測定される。RSSIは、所望信号の受信電力と、干渉及び雑音電力とを含む合計の受信電力である。RSRQは、RSSIに対するRSRPの比である。
当該所望信号は、同期信号ブロック(SSB:Synchronization Signal Block)に含まれる信号であってもよい。SSBは、同期信号(SS:Synchronization Signal)及びブロードキャストチャネル(ブロードキャスト信号、PBCH、NR-PBCHなどともいう)を含む信号ブロックであり、SS/PBCHブロックなどと呼ばれてもよい。
SSは、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、NR-PSS、NR-SSSなどを含んでもよい。SSBは、1以上のシンボル(例えば、OFDMシンボル)によって構成される。SSB内では、PSS、SSS及びPBCHがそれぞれ異なる1以上のシンボルに配置されてもよい。例えば、SSBは、1シンボルのPSS、1シンボルのSSS、及び2又は3シンボルのPBCHを含む、計4又は5シンボルによって構成されてもよい。
なお、SS(又はSSB)を用いて行われる測定はSS(又はSSB)測定と呼ばれてもよい。SS(又はSSB)測定としては、例えばSS-RSRP、SS-RSSI、SS-RSRQ、SS-SINR測定などが行われてもよい。
ところで、ユーザ端末は、同期信号の受信電力(例えば、SS-RSRP:Synchronization signal reference signal received power)及びNRキャリアにおける受信信号強度(例えば、RSSI:Received Signal Strength Indicator、NRキャリアRSSI)に基づいて、同期信号の受信品質(例えば、SS-RSRQ:Synchronization signal reference signal received quality)を決定することが想定される。
例えば、SS-SRRQは、以下のように規定されてもよい。
SS-RSRQ = N×SS-RSRP/NRキャリアRSSI
ここで、Nは、NRキャリアRSSIの測定が許容される最大帯域幅(最大許容帯域幅又は測定用帯域幅)に含まれるリソースブロック数であってもよい。
SS-RSRQ = N×SS-RSRP/NRキャリアRSSI
ここで、Nは、NRキャリアRSSIの測定が許容される最大帯域幅(最大許容帯域幅又は測定用帯域幅)に含まれるリソースブロック数であってもよい。
SS-RSRPは、同期信号(SS:Synchronization signal)を伝送するリソース要素の電力貢献(power contributions)に対する線形平均(liner average)によって規定される。SS-RSRPの測定用の時間リソースは、SMTCウィンドウ期間内で規定されてもよい。SS-RSRPは、同一のSS/PBCHブロックインデックス及び同一の物理レイヤセルID(Physical-layer cell identity)内のSS/PBCHブロックに対応する参照信号間でのみ測定されてもよい。上位レイヤがSS-RSRP測定を行うSS/PBCHブロックを指示(indicate)する場合、SS-RSRPは、指示されるSS/PBCHブロックで測定されてもよい。なお、SS-RSRPは、PSS、SSS及び他の信号(例えば、CSI-RS)の少なくとも一つを用いて測定されてもよい。
NRキャリアRSSIは、測定用の時間リソースのあるOFDMシンボル及び測定用帯域幅における総受信電力(total received power)の線形平均を構成する。測定用帯域幅は、N個のリソースブロックで構成されてもよい。NRキャリアRSSIは、同一周波数の(co-channel)サービングセル及び非サービングセルを含む全てのソースからの干渉及び熱雑音(thermal noise)を含んでもよい。NRキャリアRSSIの測定用の時間リソースは、SMTCウィンドウ期間内で規定されてもよい。
NRキャリアRSSIは、SS-RSRPと同様に、SS/PBCHブロックで測定することが検討されている。すなわち、NRキャリアRSSIの測定用の最大許容帯域幅は、SS-RSRPの測定用帯域幅と同様に、SS/PBCHブロックの帯域幅(例えば、20PRB)とすることが検討されている。
<RSRQ設定>
UEは、SSBを用いるRSRQ(SS-RSRQ)測定、CSI-RSを用いるRSRQ(CSI-RSRQ)などのために、上位レイヤシグナリングによって測定対象(MeasObjectNR)を示す情報要素(Information Element:IE)を設定されてもよい。
UEは、SSBを用いるRSRQ(SS-RSRQ)測定、CSI-RSを用いるRSRQ(CSI-RSRQ)などのために、上位レイヤシグナリングによって測定対象(MeasObjectNR)を示す情報要素(Information Element:IE)を設定されてもよい。
測定対象は、SSB周波数(ssbFrequency)、SSBサブキャリア間隔(ssbSubcarrierSpacing)、SSB測定タイミング設定(SSB-based measurement timing configuration:SSB-MTC又はSMTC)、参照信号設定(referenceSignalConfig)、の少なくとも1つを含んでもよい。ssbFrequencyは、SSBの中心周波数を示す。ssbSubcarrierSpacingは、SSBのサブキャリア間隔を示す。SMTCは、SSBの測定タイミング(周期、オフセット、時間長など)を示す。
referenceSignalConfigは、モビリティ用SSB設定(ssb-ConfigMobility)、モビリティ用CSI-RSリソース設定(csi-rs-ResourceConfigMobility)、の少なくとも1つを含んでもよい。UEは、referenceSignalConfigによって、測定のための参照信号として、SSBを用いるかCSI-RSを用いるかを設定されることができる。
ssb-ConfigMobilityは、測定用SSB(ssb-ToMeasure)、同期用サービングセルタイミング(useServingCellTimingForSync)、SS-RSSI測定(SS-RSSI-Measurement)、の少なくとも1つを含んでもよい。ssb-ToMeasureは、SMTC測定期間内において測定されるSSBのセットを示す。ssb-ToMeasureは、SSBインデックスに対応するビットマップによって、測定されるSSBを示す。useServingCellTimingForSyncは、同周波測定に対し、周辺セルによって送信されるSSBのインデックスを導出するためにサービングセルタイミングを用いるか(周辺セルとサービングセルが同期しているか)を示す。SS-RSSI-Measurementは、同期参照信号(SSB内の同期信号)に基づくRSSI測定を設定する。SS-RSSI-Measurementは、SS-RSSI測定を行うスロット、シンボル、の少なくとも1つ(時間リソース)を示してもよい。
前述のモビリティ用CSI-RSリソース設定(csi-rs-ResourceConfigMobility)は、サブキャリア間隔(subcarrierSpacing)、モビリティ用CSI-RSセルリスト(csi-RS-CellList-Mobility)、の少なくとも1つを含んでもよい。csi-RS-CellList-Mobilityは、モビリティ用CSI-RSセル(CSI-RS-CellMobility)のリストである。
CSI-RS-CellMobilityは、セルID(cellId)、CSI-RS測定帯域幅(csi-rs-MeasurementBW)、密度(density)、モビリティ用CSI-RSリソースリスト(csi-rs-ResourceList-Mobility)、の少なくとも1つを含んでもよい。csi-rs-MeasurementBWは、測定帯域のPRB数(nrofPRBs)、測定帯域の開始PRB(startPRB)、を含んでもよい。densityは、L3モビリティ用の1ポートCSI-RSの周波数ドメイン密度を示してもよい。csi-rs-ResourceList-Mobilityは、モビリティ用CSI-RSリソース(CSI-RS-Resource-Mobility)のリストである。
CSI-RS-Resource-Mobilityは、CSI-RSインデックス(csi-RS-Index)、スロット設定(slotConfig)、関連SSB(associatedSSB)、周波数ドメイン割り当て(frequencyDomainAllocation)、時間ドメインにおける先頭OFDMシンボル(firstOFDMSymbolInTimeDomain)、系列生成設定(sequenceGenerationConfig)、の少なくとも1つを含んでもよい。associatedSSBは、当該CSI-RSリソースに関連付けられたSSBを示し、SSBインデックス、QCL(Quasi-Co-Located)の有無、を含んでもよい。
<SSBを送信しないCCを用いる場合>
バンド内(intra-band)CA(Carrier Aggregation)の一部のCCにおいて、SSBを送信しない運用をサポートすることが検討されている。SSBが送信されないCCにおいて、UEがRRM(Radio Resource Management)測定をどのように行うかが問題となる。
バンド内(intra-band)CA(Carrier Aggregation)の一部のCCにおいて、SSBを送信しない運用をサポートすることが検討されている。SSBが送信されないCCにおいて、UEがRRM(Radio Resource Management)測定をどのように行うかが問題となる。
SSBを持たない(SSBが送信されない)CCを使うシナリオとして、次のシナリオ1、2が想定される。
<シナリオ1>
図1に示すように、SSBを持たないCCと同じバンド内に、SSBを持つ(SSBが送信される)CCがあり、SSBを持たないCCと、SSBを持つCCと、が、同じ基地局位置(co-located)で運用される。
図1に示すように、SSBを持たないCCと同じバンド内に、SSBを持つ(SSBが送信される)CCがあり、SSBを持たないCCと、SSBを持つCCと、が、同じ基地局位置(co-located)で運用される。
同じ基地局位置で運用される同じバンド内の複数のCCの間において、同期、RSRPなどは、ほとんど同じである。UEが、SSBを持つCCに対して、同期及びRSRP測定の少なくとも1つを行うことによって、他のCCのセルのアクティベーション/ディアクティベーションが柔軟に行われることができ、他のCCのRSRPを測定する必要がない。また、基地局が複数のCCの一部においてSSB送信を行わないことによって、SSB送信のオーバーヘッドを削減できる。また、UEが各CCでRSRPを測定する必要がないため、測定負荷を軽減できる。
<シナリオ2>
UEがSSBの代わりにCSI-RSを用いてRRM測定を行う。
UEがSSBの代わりにCSI-RSを用いてRRM測定を行う。
この場合、複数のCCが同じ基地局位置で運用されていなくても(異なる基地局位置で運用されていても)、各CCでCSI-RSが送信されることによって、UEは各CCの品質(RSRP、RSRQなど)を測定できる。基地局は、各CCの品質を管理でき、各UEに適切なCC(セル)を割り当てることができる。
シナリオ1においては、バンド内の複数のCCの間においてRSRPがほぼ同じであると想定できる。一方、トラフィックに依存する干渉量はCCによって異なるケースがある。このケースは、基地局が複数のUEを複数のCCに分散させる場合などである。例えば、図1において、CC#0のトラフィックが多く(混んでいる)、CC#1のトラフィックが少ない(空いている)場合がある。
基地局は、RSRQ、SINRなどのように干渉量を含む測定結果に基づいて、UEをどのCCに接続させるかを決定することによって、トラフィックを分散させることが考えられる。しかしながら、シナリオ1及びシナリオ2において、各CCの干渉量を含む測定結果を得るために、各CCにおいて測定信号(SSB、CSI-RS)を送信すると、測定信号の送信のオーバーヘッドが増加する。
そこで、本発明者らは、測定信号が送信されないキャリアにおける受信強度及び受信品質の少なくとも1つの測定のためのオーバーヘッドを抑える方法を検討し、本発明に至った。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。
また、以下において、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
本開示において、セル、サービングセル、キャリア及びCCは、相互に読み替えられてもよい。本開示において、測定信号、参照信号、同期信号、SSB、CSI-RSは、相互に読み替えられてもよい。
(実施形態)
UEが1つのバンド内の少なくとも1つのCC(第1CC)において測定信号(参照信号)を用いるRSRP測定を設定されている場合、UEは当該バンド内の測定信号が送信されないCC(第2CC)においてRSRQ測定を設定されてもよい。測定信号は、SSB及びCSI-RSの少なくとも1つであってもよい。
UEが1つのバンド内の少なくとも1つのCC(第1CC)において測定信号(参照信号)を用いるRSRP測定を設定されている場合、UEは当該バンド内の測定信号が送信されないCC(第2CC)においてRSRQ測定を設定されてもよい。測定信号は、SSB及びCSI-RSの少なくとも1つであってもよい。
例えば、1つのバンド内の少なくとも1つの第1CCにおいてSS-RSRP測定を設定されている場合、UEは当該バンド内のSSBが送信されない第2CCにおいてSS-RSRQ測定を設定されてもよい。
UEは、第1CCにおいてRSRPを測定し、第2CCにおいてRSSIを測定し、第1CCのRSRPと第2CCのRSSIとに基づいて、第2CCのRSRQを計算してもよい。
UEは、第2CCにおけるSS-RSRQを設定された場合、当該SS-RSRQの計算において、第1CCにおいて測定されたSS-RSRPを用いてもよい。言い換えれば、UEは、第2CCにおけるSS-RSRQを設定された場合、第1CCのSS-RSRPを、第2CCのSS-RSRPと見なしてもよい。
UEは、第2CCにおけるSS-RSRQを設定された場合、当該SS-RSRQの計算において、第2CC内の特定帯域において測定されたSS-RSSIを用いる。
特定帯域は、第2CC内のアクティブDL BWPの帯域の全部又は一部であってもよい。特定帯域は、指示された周波数(例えば、ssbFrequency)を中心とし、所定の帯域幅(例えば、20PRB)を有する帯域であってもよい。所定の帯域幅は、測定信号(SSB又はCSI-RS)の帯域幅と同じ帯域幅であってもよい。特定帯域は、RSSI測定用に指示された中心周波数及び帯域幅の少なくとも1つを有する帯域であってもよい。
例えば、図2に示すように、UEが、1つのバンド内のCC#0-#5を用いてバンド内CAを行い、CC#2(第1CC)のみにおいてSSBが送信されるとする。UEは、CC#2のSSBを用いてSS-RSRPを測定する。UEは、CC#0-#5のそれぞれにおいてSS-RSSIを測定する。UEは、CC#2におけるSS-RSRPと、CC#2におけるSS-RSSIと、に基づいて、CC#2におけるSS-RSRQを計算する。さらにUEは、CC#2におけるSS-RSRPを他のCC(CC#0、#1、#3、#4、#5)におけるSS-RSRPと見なす。すなわち、UEは、CC#2におけるSS-RSRPと、各CCにおけるSS-RSSIと、に基づいて、各CCにおけるSS-RSRQを計算する。
この実施形態によれば、1つのバンド内の複数のCCが同じ基地局位置で運用される場合に、一部のCCにおいて測定信号(SSB又はCSI-RS)が送信されないことによって、測定信号送信のオーバーヘッドを削減でき、UEにおけるRSRPの測定負荷を軽減できる。
UEは、測定信号が送信されないCCにおいても、受信品質(RSRQ)を報告できる。これによって、複数のCCの一部において測定信号が送信されない場合であっても、基地局はトラフィックに依存する受信品質に基づいて、複数のCCを複数のUEへ割り当て、トラフィックを分散させることができる。
以下、実施形態の詳細な内容について説明する。以下の各内容は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
<SSBが送信されないCCにおけるRSRQ測定の指示方法>
UEは、次のRSRQ測定指示方法1~3の1つに従って、SSBが送信されないCC(第2CC)におけるRSRQ測定を指示されてもよい。
UEは、次のRSRQ測定指示方法1~3の1つに従って、SSBが送信されないCC(第2CC)におけるRSRQ測定を指示されてもよい。
《RSRQ測定指示方法1》
UEは、SSBなしのSS-RSRQ測定(SSB less SS-RSRQ measurement)であることを明示的(explicit)に指示されてもよい。例えば、上位レイヤシグナリング(MeasObjectNR)は、SSBなしのSS-RSRQ測定であることを示す1ビットのフィールドを含んでもよい。
UEは、SSBなしのSS-RSRQ測定(SSB less SS-RSRQ measurement)であることを明示的(explicit)に指示されてもよい。例えば、上位レイヤシグナリング(MeasObjectNR)は、SSBなしのSS-RSRQ測定であることを示す1ビットのフィールドを含んでもよい。
UEは、SSBなしのSS-RSRQ測定であることを明示的に指示された場合、ssbFrequency及びssbSubcarrierSpacingを通知されなくてもよい。この場合、MeasObjectNRはssbFrequency及びssbSubcarrierSpacingを含まなくてもよい。
UEは、RSSI測定帯域(中心周波数、帯域幅)を別の上位レイヤシグナリングによって通知されてもよいし、仕様で規定される固定のRSSI測定帯域を用いてもよいし、所定のルールを用いて特定のパラメータからRSSI測定帯域を決定してもよい。
《RSRQ測定指示方法2》
UEは、通知されたMeasObjectNRがssbSubcarrierSpacingを含まないことによって、SSBなしのSS-RSRQ測定であることを暗示的(implicit)に指示されてもよい。
UEは、通知されたMeasObjectNRがssbSubcarrierSpacingを含まないことによって、SSBなしのSS-RSRQ測定であることを暗示的(implicit)に指示されてもよい。
さらにUEは、MeasObjectNRに含まれるssbFrequencyによって、RSSI測定帯域の中心周波数を指示されてもよい。言い換えれば、MeasObjectNRがssbSubcarrierSpacingを含まない場合、UEは、MeasObjectNRに含まれるssbFrequencyがRSSI測定帯域の中心周波数を示すと解釈してもよい。
UEは、RSSI測定帯域の帯域幅を別の上位レイヤシグナリングによって通知されてもよいし、仕様で規定される固定の帯域幅を用いてもよいし、所定のルールを用いて特定のパラメータから帯域幅を決定してもよい。
RSSI測定帯域の帯域幅は、仕様で規定される固定の帯域幅であってもよい。固定の帯域幅は、サービングセル(第2CC)のデータ(PDSCH)のサブキャリア間隔(SubCarrier Spacing:SCS)で20PRB(例えば、SSBのPRB数)であってもよい。
RSSI測定帯域の帯域幅は、別の上位レイヤシグナリングによって設定されてもよい。別の上位レイヤシグナリングとして、RSSI測定帯域幅に関するIEが追加されてもよい。
《RSRQ測定指示方法3》
UEは、ssb-ToMeasure(ビットマップ)として全て0(測定されるSSBがないこと)を通知されることによって、SSBなしのSS-RSRQ測定であることを暗示的(implicit)に指示されてもよい。
UEは、ssb-ToMeasure(ビットマップ)として全て0(測定されるSSBがないこと)を通知されることによって、SSBなしのSS-RSRQ測定であることを暗示的(implicit)に指示されてもよい。
さらにUEは、ssbFrequencyによって、RSSI測定帯域の中心周波数を指示されてもよい。さらにUEは、ssbSubcarrierSpacingによって、RSSI測定帯域の帯域幅を決めるためのSCSを指示されてもよい。言い換えれば、ssb-ToMeasureが全て0である場合、UEは、ssbFrequencyがRSSI測定帯域の中心周波数を示すと解釈してもよいし、ssbSubcarrierSpacingがRSSI測定帯域の帯域幅を決めるためのSCSを示すと解釈してもよい。
UEは、RSSI測定帯域の帯域幅を別の上位レイヤシグナリングによって通知されてもよいし、仕様で規定される固定の帯域幅を用いてもよいし、所定のルールを用いて特定のパラメータから導出される帯域幅を用いてもよい。
RSSI測定帯域の帯域幅は、仕様で規定される固定の帯域幅であってもよい。
RSSI測定帯域の固定のPRB数が仕様で規定されてもよい。例えば、UEは、ssbSubcarrierSpacingによって指定されるSSB SCSと、固定のPRB数(例えば、20PRB、SSBのPRB数)とから、帯域幅を決定してもよいし、サービングセル(第2CC)のデータのSCSに対して、固定のPRB数(例えば、20PRB、SSBのPRB数)を帯域幅として決定してもよい。
RSSI測定帯域の帯域幅は、別の情報要素によって設定されてもよい。上位レイヤシグナリング(MeasObjectNR)が、RSSI測定帯域の帯域幅に関する情報要素を含んでもよい。
以上のRSRQ測定指示方法によれば、UEは、SSBが送信されないCCにおいてRSRQ測定を行うことを認識でき、RSRQ測定を適切に設定されることができる。
<SSBが送信されないCCにおけるRSSI測定方法>
UEは、次のRSSI測定方法1~3の1つに従って、第2CCにおけるRSSIを測定してもよい。
UEは、次のRSSI測定方法1~3の1つに従って、第2CCにおけるRSSIを測定してもよい。
《RSSI測定方法1》
UEは、RSSI測定帯域の中心周波数及び帯域幅を明示的に通知されてもよい。上位レイヤシグナリングは、RSSI測定帯域の中心周波数及び帯域幅を示す情報要素を含んでもよい。
UEは、RSSI測定帯域の中心周波数及び帯域幅を明示的に通知されてもよい。上位レイヤシグナリングは、RSSI測定帯域の中心周波数及び帯域幅を示す情報要素を含んでもよい。
帯域幅は、絶対値(例えば、MHz単位)によって通知されてもよい。SCSとPRB数の複数の組み合わせが仕様に規定され、UEは、1つの組み合わせのインデックスを通知され、その組み合わせに基づいて帯域幅を決定してもよい。SCS及びPRB数の少なくとも1つの複数の候補が仕様に規定され、UEは、1つの候補のインデックスを通知され、その候補に基づいて帯域幅を決定してもよい。SCS及びPRB数の一方の値が仕様に規定され、UEは、他方の値を通知され、通知された値と、仕様に規定された値とから、帯域幅を決定してもよい。
《RSSI測定方法2》
UEは、ssbFrequencyによって、RSSI測定帯域の中心周波数を指示されてもよい。さらにUEは、RSSI測定帯域に対し、仕様で規定される固定の帯域幅を用いてもよいし、所定のルールを用いて特定のパラメータから導出される帯域幅を用いてもよい。
UEは、ssbFrequencyによって、RSSI測定帯域の中心周波数を指示されてもよい。さらにUEは、RSSI測定帯域に対し、仕様で規定される固定の帯域幅を用いてもよいし、所定のルールを用いて特定のパラメータから導出される帯域幅を用いてもよい。
RSSI測定帯域の帯域幅は、仕様で規定される固定の帯域幅であってもよい。
RSSI測定帯域の固定のPRB数(例えば、20PRB、SSBのPRB数)が仕様で規定されてもよい。例えば、UEは、ssbSubcarrierSpacingによって指定されるSSB SCSと固定のPRB数とから、帯域幅を決定してもよい。
MeasObjectNRがssbSubcarrierSpacingを含まなくてもよい。UEは、サービングセル(第2CC)のデータのSCSに対して、固定のPRB数の帯域幅を決定してもよい。UEは、アクティブDL BWPのSCSに対して、固定のPRB数の帯域幅を決定してもよい。UEは、第1CCのSSB SCSに対して、固定のPRB数の帯域幅を決定してもよい。
UEは、同一バンド内のサービングセルでないCCのRSSI測定(異周波測定(inter-frequency measurement))を行う場合、第1CCのSSB SCSに対して、固定のPRB数の帯域幅を決定してもよい。すなわち、UEは、サービングセル設定(configuration、データのSCS)を通知されないCCのRSSI測定であっても、帯域幅を決定できる。
《RSSI測定方法3》
同周波測定(intra-frequency measurement)において、UEは、RSSIの測定対象のCCのアクティブDL BWP内のRSSI測定帯域においてRSSIを測定してもよい。アクティブDL BWP内の測定であれば、RFリチューニングが不要になる。
同周波測定(intra-frequency measurement)において、UEは、RSSIの測定対象のCCのアクティブDL BWP内のRSSI測定帯域においてRSSIを測定してもよい。アクティブDL BWP内の測定であれば、RFリチューニングが不要になる。
RSSI測定帯域は、UE実装(implementation)に依存してもよいし、仕様に規定された固定の帯域であってもよい。例えば、固定の帯域は、アクティブDL BWPの中心の20PRB(例えば、SSB帯域幅)であってもよい。
以上のRSSI測定方法によれば、UEは、RSSI測定帯域を適切に設定されることができ、SSBが送信されないCC、異周波測定(サービングセルでないCC)、同周波測定においても、RSSI測定を適切に行うことができる。
<RSSI測定時間リソース>
UEは、ssb-ConfigMobilityに含まれるSS-RSSI-Measurementによって、RSSI測定の時間リソース(スロット、シンボルの少なくとも1つ)を設定されてもよい。
UEは、ssb-ConfigMobilityに含まれるSS-RSSI-Measurementによって、RSSI測定の時間リソース(スロット、シンボルの少なくとも1つ)を設定されてもよい。
UEは、SS-RSSI-Measurementを設定されない場合、UEは、デフォルトとして、SMTC期間(ウィンドウ)内の全シンボルをRSSI測定に用いてもよい。
<受信ビームフォーミング>
UEは、RSRP測定及びRSSI測定において、受信ビームフォーミング(BF)を用いてもよい。UEは、1つのCCにおいてRSRP測定とRSSI測定を行う場合であっても、RSRP測定に用いた受信BFと同じ受信BFを用いてRSSI測定を行ってもよい。UEは、RSRP測定のCCとRSSI測定のCCとが異なる場合であっても、RSRP測定に用いた受信BFと同じ受信BFを用いてRSSI測定を行ってもよい。これによって、UEは、適切なビームを用いてRSSI測定を行うことができる。
UEは、RSRP測定及びRSSI測定において、受信ビームフォーミング(BF)を用いてもよい。UEは、1つのCCにおいてRSRP測定とRSSI測定を行う場合であっても、RSRP測定に用いた受信BFと同じ受信BFを用いてRSSI測定を行ってもよい。UEは、RSRP測定のCCとRSSI測定のCCとが異なる場合であっても、RSRP測定に用いた受信BFと同じ受信BFを用いてRSSI測定を行ってもよい。これによって、UEは、適切なビームを用いてRSSI測定を行うことができる。
<報告内容>
UEは、第1CCのRSRPと第2CCのRSSIとを用いて第2CCのRSRQを計算し、当該RSRQを報告してもよい。UEは、第2CCのRSRPとして第1CCのRSRPを報告してもよいし、第1CCのRSRPを報告し、第2CCのRSRPを報告しなくてもよい。UEは、第2CCのRSSIを報告してもよい。
UEは、第1CCのRSRPと第2CCのRSSIとを用いて第2CCのRSRQを計算し、当該RSRQを報告してもよい。UEは、第2CCのRSRPとして第1CCのRSRPを報告してもよいし、第1CCのRSRPを報告し、第2CCのRSRPを報告しなくてもよい。UEは、第2CCのRSSIを報告してもよい。
<CSI-RSを用いる測定>
1つのバンド内の少なくとも1つの第1CCにおいてCSI-RSRP測定を設定されている場合、UEは当該バンド内のCSI-RSが送信されない第2CCにおいてCSI-RSRQ測定を設定されてもよい。
1つのバンド内の少なくとも1つの第1CCにおいてCSI-RSRP測定を設定されている場合、UEは当該バンド内のCSI-RSが送信されない第2CCにおいてCSI-RSRQ測定を設定されてもよい。
UEは、1つのバンド内の少なくとも1つのCCにおいて、CSI-RSを用いるRSRP(CSI-RSRP)を測定した場合、他のCCのRSRQ測定に当該CSI-RSRPを用いてもよい。
前述のSSBを用いる測定(SS-RSRP、SS-RSSI、SS-RSRQ)におけるSSBがCSI-RSに読み替えられてもよい。UEは、前述のRSRQ測定指示方法1~3の1つと同様にして、CSI-RSが送信されないCC(第2CC)におけるRSRQ測定を指示されてもよい。UEは、前述のRSSI測定方法1~3の1つと同様にして、第2CCにおけるRSSIを測定してもよい。
例えば、UEは、前述のRSRQ測定指示方法1と同様にして、CSI-RSなしのCSI-RSRQ測定(CSI-RS less CSI-RSRQ measurement)であることを明示的に指示されてもよい。例えば、上位レイヤシグナリング(MeasObjectNR)は、CSI-RSなしのCSI-RSRQ測定であることを示す1ビットのフィールドを含んでもよい。
UEは、特定値のCSI-RSインデックスを含むCSI-RSリソース(CSI-RS-Resource-Mobility)のみが設定されることによって、CSI-RSなしのCSI-RSRQ測定であることを指示されてもよい。
以上のCSI-RSを用いる測定によれば、UEは、CSI-RSが送信される第1CCにおいてCSI-RSRPを測定し、各CCにおいてCSI-RSSIを測定し、第1CCにおけるCSI-RSRPを、各CCにおけるCSI-RSRPと見なすことができる。また、UEは、CSI-RSが送信されない第2CCにおけるCSI-RSRQを計算できる。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図3は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<基地局>
図4は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
図4は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
図5は、本開示の一実施形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
図6は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
図6は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
送受信部203は、SMTCが設定されるキャリアに含まれるセルにおいて、データを送信及び/又は受信する。送受信部203は、同周波測定及び/又は異周波測定に関する情報などを、基地局10から受信してもよい。
図7は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、SSBを用いた同周波測定及び/又は異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
送受信部203は、1つのバンド内の第1コンポーネントキャリア(CC)において測定信号(例えば、SSB、CSI-RSなど)を受信してもよい。
制御部401は、前記第1CCにおいて前記測定信号の受信電力(例えば、RSRP)の測定を設定され、且つ前記バンド内の第2CCにおいて前記測定信号が送信されない場合、前記第2CCにおける受信強度(例えば、RSSI)の測定を設定されてもよい。
制御部401は、前記第1CCにおいて測定された前記受信電力と、前記第2CCにおいて測定された前記受信強度と、に基づく受信品質(例えば、RSRQ)を報告してもよい。
制御部401は、上位レイヤシグナリング(例えば、MeasObjectNR)に基づいて、前記第2CCにおいて前記測定信号が送信されるかを決定してもよい。
制御部401は、上位レイヤシグナリングと、前記第2CCにおけるデータのサブキャリア間隔と、前記測定信号のサブキャリア間隔と、アクティブな下りリンク部分帯域(例えば、アクティブDL BWP)と、の少なくとも1つに基づいて、前記受信強度の測定の帯域を決定してもよい。
前記測定信号は、同期信号ブロック(例えば、SSB、SS/PBCHブロック)であってもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103(203)は、送信部103a(203a)と受信部103b(203b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 1つのバンド内の第1コンポーネントキャリア(CC)において測定信号を受信する受信部と、
前記第1CCにおいて前記測定信号の受信電力の測定を設定され、且つ前記バンド内の第2CCにおいて前記測定信号が送信されない場合、前記第2CCにおける受信強度及び受信品質の少なくとも1つの測定を設定される制御部と、を有することを特徴とするユーザ端末。 - 前記制御部は、前記第1CCにおいて測定された前記受信電力と、前記第2CCにおいて測定された前記受信強度と、に基づく受信品質を報告することを特徴とする請求項1に記載のユーザ端末。
- 前記制御部は、上位レイヤシグナリングに基づいて、前記第2CCにおいて前記測定信号が送信されるかを決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
- 前記制御部は、上位レイヤシグナリングと、前記第2CCにおけるデータのサブキャリア間隔と、前記測定信号のサブキャリア間隔と、アクティブな下りリンク部分帯域と、の少なくとも1つに基づいて、前記受信強度の測定の帯域を決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
- 前記測定信号は、同期信号ブロックであることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
- 1つのバンド内の第1コンポーネントキャリア(CC)において測定信号を受信する工程と、
前記第1CCにおいて前記測定信号の受信電力の測定を設定され、且つ前記バンド内の第2CCにおいて前記測定信号が送信されない場合、前記第2CCにおける受信強度及び受信品質の少なくとも1つの測定を設定される工程と、を有することを特徴とするユーザ端末の無線通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020535420A JP7144520B2 (ja) | 2018-08-09 | 2018-08-09 | ユーザ端末及び無線通信方法 |
PCT/JP2018/029898 WO2020031324A1 (ja) | 2018-08-09 | 2018-08-09 | ユーザ端末及び無線通信方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/029898 WO2020031324A1 (ja) | 2018-08-09 | 2018-08-09 | ユーザ端末及び無線通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031324A1 true WO2020031324A1 (ja) | 2020-02-13 |
Family
ID=69414068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029898 WO2020031324A1 (ja) | 2018-08-09 | 2018-08-09 | ユーザ端末及び無線通信方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7144520B2 (ja) |
WO (1) | WO2020031324A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115176489A (zh) * | 2020-02-20 | 2022-10-11 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
JP2023521784A (ja) * | 2020-04-10 | 2023-05-25 | ノキア テクノロジーズ オサケユイチア | 通信の方法、デバイス、および、コンピュータ可読媒体 |
WO2023224736A1 (en) * | 2022-05-20 | 2023-11-23 | Qualcomm Incorporated | Synchronization signal block less carrier measurements |
WO2024007233A1 (en) * | 2022-07-07 | 2024-01-11 | Qualcomm Incorporated | Random access channel procedure in inter-band carrier aggregation with synchronization signal block-less carrier |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017014229A1 (ja) * | 2015-07-22 | 2017-01-26 | シャープ株式会社 | 端末装置、基地局装置、通信方法および集積回路 |
-
2018
- 2018-08-09 WO PCT/JP2018/029898 patent/WO2020031324A1/ja active Application Filing
- 2018-08-09 JP JP2020535420A patent/JP7144520B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017014229A1 (ja) * | 2015-07-22 | 2017-01-26 | シャープ株式会社 | 端末装置、基地局装置、通信方法および集積回路 |
Non-Patent Citations (2)
Title |
---|
"Remaining details for MO", 3GPP TSG-RAN WG2 #99BIS R2-1711338, 29 September 2017 (2017-09-29), pages 1 - 3, XP051343327 * |
"Remaining issues on measurement for mobility management", 3GPP TSG RAN WG1 #93 RL-1807055, 12 May 2018 (2018-05-12), pages 1 - 6, XP051462876 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115176489A (zh) * | 2020-02-20 | 2022-10-11 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
JP2023521784A (ja) * | 2020-04-10 | 2023-05-25 | ノキア テクノロジーズ オサケユイチア | 通信の方法、デバイス、および、コンピュータ可読媒体 |
JP7545491B2 (ja) | 2020-04-10 | 2024-09-04 | ノキア テクノロジーズ オサケユイチア | 通信の方法、デバイス、および、コンピュータ可読媒体 |
WO2023224736A1 (en) * | 2022-05-20 | 2023-11-23 | Qualcomm Incorporated | Synchronization signal block less carrier measurements |
US12010063B2 (en) | 2022-05-20 | 2024-06-11 | Qualcomm Incorporated | Synchronization signal block less carrier measurements |
WO2024007233A1 (en) * | 2022-07-07 | 2024-01-11 | Qualcomm Incorporated | Random access channel procedure in inter-band carrier aggregation with synchronization signal block-less carrier |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020031324A1 (ja) | 2021-09-16 |
JP7144520B2 (ja) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7379612B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2019244222A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020054036A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020026454A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019138500A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7426171B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
JP7398541B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2020021725A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020039484A1 (ja) | ユーザ端末 | |
WO2020003443A1 (ja) | ユーザ端末及び無線基地局 | |
WO2020031353A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7237976B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2020035947A1 (ja) | 無線通信装置及び無線通信方法 | |
WO2019203324A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020031354A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020031387A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020039557A1 (ja) | ユーザ端末 | |
WO2019111862A1 (ja) | ユーザ端末及び無線通信方法 | |
AU2018433296B2 (en) | User terminal | |
WO2020039824A1 (ja) | 無線通信装置及び無線通信方法 | |
WO2020054077A1 (ja) | 無線通信装置及び無線通信方法 | |
WO2019234929A1 (ja) | ユーザ端末及び無線通信方法 | |
JP7144520B2 (ja) | ユーザ端末及び無線通信方法 | |
WO2018229878A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
JP7116157B2 (ja) | 端末、無線通信方法、基地局及びシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929362 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020535420 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18929362 Country of ref document: EP Kind code of ref document: A1 |