[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6937568B2 - Laser rangefinder - Google Patents

Laser rangefinder Download PDF

Info

Publication number
JP6937568B2
JP6937568B2 JP2016236179A JP2016236179A JP6937568B2 JP 6937568 B2 JP6937568 B2 JP 6937568B2 JP 2016236179 A JP2016236179 A JP 2016236179A JP 2016236179 A JP2016236179 A JP 2016236179A JP 6937568 B2 JP6937568 B2 JP 6937568B2
Authority
JP
Japan
Prior art keywords
light
slit opening
optical axis
diaphragm member
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236179A
Other languages
Japanese (ja)
Other versions
JP2018091764A (en
JP2018091764A5 (en
Inventor
雅明 矢部
雅明 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016236179A priority Critical patent/JP6937568B2/en
Publication of JP2018091764A publication Critical patent/JP2018091764A/en
Publication of JP2018091764A5 publication Critical patent/JP2018091764A5/ja
Application granted granted Critical
Publication of JP6937568B2 publication Critical patent/JP6937568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測定物で反射された測定光を受光する受光光学系と、測定物に測定光を照射する射出光学系とを備え、目標までの距離を測定する光波距離計に関する。 The present invention relates to a light wave rangefinder that includes a light receiving optical system that receives measurement light reflected by a measurement object and an emission optical system that irradiates the measurement object with measurement light to measure a distance to a target.

上述の光波距離計は、変調した所定波長領域の測定光を被測定物に照射し、被測定物からの反射光を受光して、内部参照光と受光された測定光との位相差から測定物までの距離を測定する。 The above-mentioned light wave range finder irradiates the object to be measured with measured light in a modulated predetermined wavelength region, receives the reflected light from the object to be measured, and measures from the phase difference between the internal reference light and the received measurement light. Measure the distance to an object.

図6は従来の光波距離計の構成を示す断面図である。この光波距離計400は、対物レンズ410と、2つの反射面を備えるプリズム420と、光源430と、射出光学系440と、反射鏡450と、ダイクロイックミラー460と、視準光学系470と、受光素子480とを備える。 FIG. 6 is a cross-sectional view showing the configuration of a conventional laser rangefinder. The light wave rangefinder 400 includes an objective lens 410, a prism 420 having two reflecting surfaces, a light source 430, an emission optical system 440, a reflecting mirror 450, a dichroic mirror 460, a collimation optical system 470, and light receiving. It includes an element 480.

対物レンズ410は、光軸Oaに配置した3枚のレンズで構成される。プリズム420は、対物レンズ410の後方の光軸Oa上に配置され、光軸Oaに対して45度の角度をなす平行2つの反射面、即ち測定光を射出する方向に反射する射出用反射面421と、入射した測定光を受光素子480に向け反射する受光用反射面422とを備える。 The objective lens 410 is composed of three lenses arranged on the optical axis Oa. The prism 420 is arranged on the optical axis Oa behind the objective lens 410, and has two parallel reflecting surfaces forming an angle of 45 degrees with respect to the optical axis Oa, that is, an ejection reflecting surface that reflects the measurement light in the emitting direction. It includes a 421 and a light receiving reflecting surface 422 that reflects the incident measurement light toward the light receiving element 480.

光源430は所定波長領域の光を発生する。射出光学系440は、光軸Oaと平行な光軸Obに配置され、光源430からの光を平行光にするコリメータ441と、測定光を断続的に遮断する光チョッパ442と、絞り部材443とを備える。反射鏡450は、光軸Obに45度の角度で配置され射出光学系440からの測定光の方向を90度変更して、プリズム420の射出用反射面421に向け、光軸Ocに沿って測定光を反射する。この射出用反射面421で反射された測定光は、対物レンズ410を経て測定物に射出される。 The light source 430 generates light in a predetermined wavelength region. The injection optical system 440 is arranged on an optical axis Ob parallel to the optical axis Oa, and includes a collimeter 441 that makes the light from the light source 430 parallel light, an optical chopper 442 that intermittently blocks the measurement light, and a throttle member 443. To be equipped with. The reflector 450 is arranged on the optical axis Ob at an angle of 45 degrees, changes the direction of the measurement light from the emission optical system 440 by 90 degrees, and faces the ejection reflection surface 421 of the prism 420 along the optical axis Oct. Reflects the measurement light. The measurement light reflected by the ejection reflecting surface 421 is emitted to the object to be measured through the objective lens 410.

測定物からの反射光は、対物レンズ410を経てダイクロイックミラー460に至る。ダイクロイックミラー460は、入射した光から、所定波長帯域の測定光を反射し、他の光を透過させ視準光学系470に射出する。ダイクロイックミラー460で反射された測定光は、プリズム420の受光用反射面422で反射され、受光素子480に入射する。 The reflected light from the object to be measured passes through the objective lens 410 and reaches the dichroic mirror 460. The dichroic mirror 460 reflects the measurement light in a predetermined wavelength band from the incident light, transmits the other light, and emits it to the collimation optical system 470. The measurement light reflected by the dichroic mirror 460 is reflected by the light receiving reflecting surface 422 of the prism 420 and is incident on the light receiving element 480.

このような光波距離計において絞り部材は、光源からの光を絞るものであり、光源から射出される光の配光特性に合わせて選択される。即ち、光源からの光が最も効率よく射出されるように選定され、設置される。 In such a light wave rangefinder, the diaphragm member narrows the light from the light source and is selected according to the light distribution characteristics of the light emitted from the light source. That is, it is selected and installed so that the light from the light source is emitted most efficiently.

特開2014−149171号公報Japanese Unexamined Patent Publication No. 2014-149171

このタイプの光波距離計では、精密測定を行うため被測定物に再帰性のプリズムを配置しプリズムに測定光を照射するプリズムモードと、被測定物に直接測定光を照射して測定を行うノンプリズムモードとで測定を行うことができる。そして、プリズムモードでは、絞り部材443を使用し、ノンプリズムモードでは絞り部材443を使用せずに測定を行う。ノンプリズムモードでは、絞り部材443を光軸Obから外すように移動し、大光束の測定光を被測定物に照射して測定を行う。 In this type of light wave rangefinder, a retrospective prism is placed on the object to be measured and the prism is irradiated with the measurement light for precise measurement, and a non-measurement is performed by directly irradiating the object to be measured with the measurement light. Measurement can be performed in prism mode. Then, in the prism mode, the diaphragm member 443 is used, and in the non-prism mode, the measurement is performed without using the diaphragm member 443. In the non-prism mode, the diaphragm member 443 is moved so as to be removed from the optical axis Ob, and the object to be measured is irradiated with the measurement light having a large luminous flux to perform the measurement.

このため、絞り部材443は絞り部材を保持するアーム部材を、軸を中心に回動させて、絞り部材443を光軸Obに配置することと、絞り部材443を光軸Obから外すことができる。そして、絞り部材443に設けられる絞りの開口形状は、上述したように、水平方向に形成されたスリット形状であり、例えば幅寸法が例えば0.7mm程度である。このスリットの幅寸法は、測定精度と、測定光の到達距離とのバランスで定められており、一般的に装置の種類によらず同程度である。従来この絞り部材443には、光源430からの光束がコリメータ441を介して照射される。 Therefore, the diaphragm member 443 can rotate the arm member holding the diaphragm member around the axis to arrange the diaphragm member 443 on the optical axis Ob, and the diaphragm member 443 can be removed from the optical axis Ob. .. The opening shape of the diaphragm provided in the diaphragm member 443 is a slit shape formed in the horizontal direction as described above, and the width dimension is, for example, about 0.7 mm. The width dimension of this slit is determined by the balance between the measurement accuracy and the reach of the measurement light, and is generally about the same regardless of the type of device. Conventionally, the diaphragm member 443 is irradiated with the luminous flux from the light source 430 via the collimator 441.

しかし、従来の光波距離計にあっては、絞り部材443の位置調整が煩雑であるという問題がある。即ち、絞り部材は製造時にプリズムモードで使用する状態において、光源からの光束が正しく照射されるように正確に光軸Obに配置されるように位置調整する必要がある。また、光波距離計400を長期間使用していると、絞り部材443の配置位置がずれることがあり、この場合も絞り部材443の位置を調整しなければならない。 However, the conventional light wave range finder has a problem that the position adjustment of the diaphragm member 443 is complicated. That is, it is necessary to adjust the position of the diaphragm member so that it is accurately arranged on the optical axis Ob so that the light flux from the light source is correctly irradiated in the state of being used in the prism mode at the time of manufacturing. Further, when the light wave rangefinder 400 is used for a long period of time, the arrangement position of the aperture member 443 may shift, and in this case as well, the position of the aperture member 443 must be adjusted.

本発明は上述した課題に鑑みてなされたものであり、製造時や経年使用時において絞り部材の位置調整を行わなくとも距離測定を正確に行うことができる光波距離計を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a light wave range finder capable of accurately measuring a distance without adjusting the position of a diaphragm member during manufacturing or aged use. do.

前記課題を解決するため、請求項1に記載の発明は、反射光と内部参照光とを比較して 被測定物までの距離を測定する光波距離計であって、所定の広がりの光束を光軸に沿って射出する光源と、前記光軸上に配置可能であり、前記光軸と直交して水平方向に伸びるスリット開口を備え、前記光源からの前記光束の広がり幅を絞る絞り部材と、前記絞り部材を保持するアーム部材と、前記アーム部材を回動させて前記絞り部材を光軸に対し出し入れ可能に光軸上配置し、前記光源と前記絞り部材との間に配置され、前記光束が前記スリット開口と、このスリット開口を上下に挟み、前記スリット開口の高さ寸法の15倍以上の高さ寸法の領域に射出する光束拡開手段と、を含み、前記光波距離計で設定された測定距離における前記被測定物からの前記反射光が距離測定可能な基準値以上になるように前記光源の光量を設定した、ことを特徴とする光波距離計である。 In order to solve the above problems, the invention according to claim 1 is a light wave distance meter that measures a distance to an object to be measured by comparing reflected light and internal reference light, and emits a light flux having a predetermined spread. A light source that emits light along an axis, a narrowing member that can be arranged on the optical axis, has a slit opening that extends in the horizontal direction perpendicular to the optical axis, and narrows the spread width of the light flux from the light source. The arm member holding the throttle member and the throttle member are arranged on the optical axis so as to be able to move in and out of the optical axis by rotating the arm member, and are arranged between the light source and the throttle member to obtain the luminous flux. Includes the slit opening and a light flux expanding means that sandwiches the slit opening up and down and emits light into a region having a height dimension that is 15 times or more the height dimension of the slit opening, and is set by the light wave distance meter. The light wave distance meter is characterized in that the amount of light of the light source is set so that the reflected light from the object to be measured at the measured distance becomes equal to or more than a reference value capable of measuring the distance.

請求項2に記載の発明は、請求項1に記載の光波距離計において、前記絞り部材は、前記スリット開口を上下方向に調整する調整部材を備えることを特徴とする。 The invention according to claim 2 is characterized in that, in the light wave rangefinder according to claim 1, the diaphragm member includes an adjusting member for adjusting the slit opening in the vertical direction.

請求項3に記載の発明は、請求項1に記載の光波距離計において、前記絞り部材は、前記スリット開口を前記絞り部材の使用時には上下方向に調整できない状態に固定されていることを特徴とする。 The invention according to claim 3 is characterized in that, in the light wave rangefinder according to claim 1, the slit opening is fixed in a state in which the slit opening cannot be adjusted in the vertical direction when the diaphragm member is used. do.

請求項4に記載の発明は、請求項1から請求項3までの何れか一項に記載の光波距離計において、前記光束拡開手段は、コリメートレンズであることを特徴とする。 The invention according to claim 4 is the light wave rangefinder according to any one of claims 1 to 3, wherein the luminous flux expanding means is a collimating lens.

本発明に係る光波距離計によれば、製造時や経年使用時において絞り部材の位置調整を行わなくとも距離測定を正確に行うことができる。 According to the light wave range finder according to the present invention, distance measurement can be performed accurately without adjusting the position of the diaphragm member during manufacturing or aged use.

即ち請求項1に記載の光波距離計によれば、光源からの光束は光束拡開手段により拡開されて、絞り部材の位置で、スリット開口の高さ寸法の15倍以上の高さ寸法の領域に射出されるとともに測定距離における前記被測定物からの前記反射光が距離測定可能な基準値以上になり、スリット開口の光軸に対する位置変化の許容度が大きくなる。このため、製造時において絞り部材を、位置の調整をしないで取付けベースに取付けたとしてもスリット開口の取付け位置を基準内に収めることができる。また、経年変化による絞り部材の位置変化は、基準内に収まる。よって、製造時や経年使用時において絞り部材の位置調整を行わなくとも距離測定を正確に行うことができる。 That is, according to the light wave distance meter according to claim 1, the luminous flux from the light source is expanded by the luminous flux expanding means, and the height dimension is 15 times or more the height dimension of the slit opening at the position of the aperture member. At the same time as being emitted into the region, the reflected light from the object to be measured at the measurement distance becomes equal to or more than the reference value at which the distance can be measured, and the tolerance for the position change of the slit opening with respect to the optical axis becomes large. Therefore, even if the diaphragm member is mounted on the mounting base without adjusting the position at the time of manufacturing, the mounting position of the slit opening can be kept within the reference. In addition, the change in the position of the diaphragm member due to aging is within the standard. Therefore, it is possible to accurately measure the distance without adjusting the position of the diaphragm member during manufacturing or aged use.

また、請求項2に記載の光波距離計によれば、絞り部材は、前記スリット開口を上下方向に調整する調整部材を備えるので、絞り部材が大きく移動した場合には絞り部材の位置調整を行うことができる。 Further, according to the light wave range finder according to claim 2, since the diaphragm member includes an adjusting member for adjusting the slit opening in the vertical direction, the position of the diaphragm member is adjusted when the diaphragm member moves significantly. be able to.

また、請求項3に記載の光波距離計によれば、絞り部材は、前記スリット開口を絞り部材の使用時には上下方向に調整できない状態に固定されるので、位置調整のための機構を省略できる。 Further, according to the light wave range finder according to claim 3, since the slit opening is fixed in a state where the slit opening cannot be adjusted in the vertical direction when the diaphragm member is used, the mechanism for adjusting the position can be omitted.

そして、請求項4に記載の光波距離計によれば、光束拡開手段は、コリメートレンズという簡単な光学素子で実現できる。 According to the light wave range finder according to claim 4, the luminous flux expanding means can be realized by a simple optical element called a collimating lens.

本発明の実施形態に係る光波距離計を示す正面図である。It is a front view which shows the light wave range finder which concerns on embodiment of this invention. 同光波距離計を示す断面図である。It is sectional drawing which shows the same light wave range finder. 同光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。The optical system of the light wave rangefinder is shown, (a) is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission. 同光波距離計の内部機構の構成を示す光波距離計の斜視図である。It is a perspective view of the light wave range finder which shows the structure of the internal mechanism of the light wave range finder. 同光波距離計の絞り部材の配置状態を示す斜視図である。It is a perspective view which shows the arrangement state of the diaphragm member of the light wave range finder. 従来の光波距離計の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light wave range finder.

本発明を実施するための形態に係る光波距離計について説明する。 A light wave rangefinder according to a mode for carrying out the present invention will be described.

図1は本発明の実施形態に係る光波距離計を示す正面図である。第1実施形態に係る光波距離計100は、図1に示すように、三脚(図示せず)に取付けられる基台部101に架台102が設けられ、この架台102には光学系を含む望遠鏡部103が支持されている。前記基台部101は整準ねじ104を有し、架台102が水平となる様に整準可能となっている。架台102は鉛直軸心を中心に回転可能であり、望遠鏡部103は水平軸心を中心に回転可能となっている。また、架台102には表示部106を有する操作入力部107が設けられ、前記表示部106には測定対象物までの距離の測定値等が表示される。 FIG. 1 is a front view showing a light wave rangefinder according to an embodiment of the present invention. As shown in FIG. 1, in the light wave rangefinder 100 according to the first embodiment, a pedestal 102 is provided on a base portion 101 attached to a tripod (not shown), and the pedestal 102 includes a telescope unit including an optical system. 103 is supported. The base portion 101 has a leveling screw 104, and can be leveled so that the base 102 is horizontal. The gantry 102 is rotatable about the vertical axis, and the telescope unit 103 is rotatable about the horizontal axis. Further, the gantry 102 is provided with an operation input unit 107 having a display unit 106, and the display unit 106 displays a measured value of a distance to a measurement object or the like.

次に光波距離計100の光学系について説明する。図2は同光波距離計を示す断面図、図3は同光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。 Next, the optical system of the light wave rangefinder 100 will be described. FIG. 2 is a cross-sectional view showing the same light wave rangefinder, FIG. 3 shows the optical system of the same light wave rangefinder, (a) is a schematic view showing a state of measurement light emission, and (b) is an internal reference light emission. It is a schematic diagram which shows the state of.

光波距離計100は、筐体110内に、鏡筒120と、ベース部130が形成されている。また、図2に示すように、光波距離計100は、光学系200として、受光光学系である対物レンズ系210と、測定光を射出して測定物に照射する射出光学系220と、対物レンズ系210からの測定光を光ファイバ260に導く射出反射光学系240とを備える。また光学系200は、受光反射光学系250と、視準光学系270とを備える。光ファイバ260は、光センサー261(図3参照)に測定光を導く。視準光学系270は対物レンズ系210からの被測定物像を目視できるようにして、光波距離計100の方向を決定したり補正したりするために使用される。 In the light wave rangefinder 100, a lens barrel 120 and a base portion 130 are formed in the housing 110. Further, as shown in FIG. 2, the light wave distance meter 100 includes an objective lens system 210 which is a light receiving optical system, an injection optical system 220 which emits measurement light to irradiate a measurement object, and an objective lens as an optical system 200. It includes an injection reflection optical system 240 that guides the measurement light from the system 210 to the optical fiber 260. Further, the optical system 200 includes a light receiving and reflecting optical system 250 and a collimation optical system 270. The optical fiber 260 guides the measurement light to the optical sensor 261 (see FIG. 3). The collimation optical system 270 is used to make the image of the object to be measured from the objective lens system 210 visible, and to determine or correct the direction of the laser rangefinder 100.

ベース部130は、合金物型からのブランク材からなり、後加工を行っていない。寸法精度は例えば0.3mmとしている。このため、ベース部130には、光学系の各部材の取付け部を形成することにより、各部材を調整することなしに各方向に、±0.15mmの精度で配置することができる。 The base portion 130 is made of a blank material from an alloy mold and has not been post-processed. The dimensional accuracy is, for example, 0.3 mm. Therefore, by forming a mounting portion for each member of the optical system on the base portion 130, the base portion 130 can be arranged in each direction with an accuracy of ± 0.15 mm without adjusting each member.

対物レンズ系210は、鏡筒120に配置され、被測定物であるプリズム280に向かう第1光軸O1を備え、被測定物からの光を集光する。対物レンズ系210は、3枚のレンズを備えており、各種収差が補正され全体で正のパワーを備える。射出光学系220は、ベース部130に配置され、第1光軸O1と平行な第2光軸O2を備え、光源230からの光を平行光である測定光として射出する。光源230は、例えば赤外線を発生するレーザーダイオードである。 The objective lens system 210 is arranged in the lens barrel 120, includes a first optical axis O1 directed to the prism 280, which is the object to be measured, and collects light from the object to be measured. The objective lens system 210 includes three lenses, and various aberrations are corrected to provide positive power as a whole. The emission optical system 220 is arranged on the base portion 130, includes a second optical axis O2 parallel to the first optical axis O1, and emits light from the light source 230 as measurement light which is parallel light. The light source 230 is, for example, a laser diode that generates infrared rays.

射出光学系220は、光束拡開手段であるコリメートレンズ221と、射出光を断続的に遮断し射出光を、光源から取得された内部参照光として取り出す台形プリズム225を備えたチョッパ226と、マイコンなどにより制御されて外光束光量を調整するサーキュラー222と手動で回転位置を設定することにより内部参照光の光量を調整する濃度フィルター310、と絞り部材224とを備える。濃度フィルター310は、円周上に濃度勾配を備えた円板状の部材である。また、サーキュラー222は、測定光出射光量の調整用に円周上に濃度勾配がついている濃度フィルターを備え、サーキュラー駆動モータ223で回転駆動される円板状の部材である。 The emission optical system 220 includes a collimating lens 221 as a means for expanding the luminous flux, a chopper 226 equipped with a trapezoidal prism 225 that intermittently blocks the emission light and extracts the emission light as internal reference light acquired from the light source, and a microcomputer. It is provided with a circular 222 that is controlled by such means to adjust the amount of external luminous flux, a density filter 310 that adjusts the amount of internal reference light by manually setting a rotation position, and a throttle member 224. The density filter 310 is a disk-shaped member having a density gradient on its circumference. Further, the circular 222 is a disk-shaped member provided with a density filter having a density gradient on the circumference for adjusting the amount of light emitted from the measured light, and is rotationally driven by the circular drive motor 223.

コリメートレンズ221は、光源230からの光束を所定の広がり寸法を備える平行光束にする。コリメートレンズ221から射出される光束の広がり幅を絞り部材224における直径dとして例えば15mmとする。この光束の直径dは、後述する絞り部材224のスリット開口224aの高さ寸法hの少なくとも15倍とする。図4に絞り部材224に照射した光束の領域Lfを示した。本実施形態では、スリット開口224aの高さ寸法hを0.7mmとし、コリメートレンズ221は、光源230からの光束を、高さ寸法hの20倍としている。これにより、絞り部材224のスリット開口224aの配置位置精度の許容量が増す。また、絞り部材224は、絞り駆動モータ323で第2光軸O2から外すことができる。詳細については後述する。 The collimating lens 221 makes the luminous flux from the light source 230 a parallel luminous flux having a predetermined spreading dimension. The spread width of the light flux emitted from the collimating lens 221 is set to, for example, 15 mm as the diameter d of the diaphragm member 224. The diameter d of the luminous flux is at least 15 times the height dimension h of the slit opening 224a of the diaphragm member 224, which will be described later. FIG. 4 shows the region Lf of the luminous flux irradiated to the diaphragm member 224. In the present embodiment, the height dimension h of the slit opening 224a is 0.7 mm, and the light flux from the light source 230 of the collimating lens 221 is 20 times the height dimension h. As a result, the allowable amount of the arrangement position accuracy of the slit opening 224a of the diaphragm member 224 is increased. Further, the diaphragm member 224 can be removed from the second optical axis O2 by the diaphragm drive motor 323. Details will be described later.

更に、チョッパ226はチョッパ駆動モータ227で回転駆動され、所定のタイミングで、第2光軸O2上のコリメートレンズ221の前側に出没するように駆動される。ここで、チョッパ226には、コリメートレンズ221を覆う板部226aが形成されている。また、台形プリズム225は、図3(b)に示すように2つの反射面225a、225bを備え、内部参照光を光センサー261に導く。 Further, the chopper 226 is rotationally driven by the chopper drive motor 227, and is driven so as to appear and disappear on the front side of the collimating lens 221 on the second optical axis O2 at a predetermined timing. Here, the chopper 226 is formed with a plate portion 226a that covers the collimating lens 221. Further, the trapezoidal prism 225 includes two reflecting surfaces 225a and 225b as shown in FIG. 3B, and guides the internal reference light to the optical sensor 261.

測定光の射出時には、図3(a)に示すように、チョッパ226は、コリメートレンズ221の射出口から外れ、光源230からの光は、サーキュラー222で断続的に遮られながら反射鏡241に向け、射出される。なお、図3(a)において、内部参照光の光軸を一点鎖線で示し、測定光の光路を矢印付の実線で示している。3(a)示した状態では、内部参照光は生成されてない。 When the measurement light is emitted, as shown in FIG. 3A, the chopper 226 deviates from the emission port of the collimating lens 221 and the light from the light source 230 is directed toward the reflector 241 while being intermittently blocked by the circular 222. , Is ejected. In FIG. 3A, the optical axis of the internal reference light is indicated by a chain double-dashed line, and the optical path of the measurement light is indicated by a solid line with an arrow. 3 (a) In the state shown, no internal reference light is generated.

内部参照光の射出時には、図3(b)に示すように、チョッパ226はコリメートレンズ221の射出口に台形プリズム225の反射面225aが配置される状態となる。この状態で、光源230からの光は、コリメートレンズ221を経て、台形プリズム225の反射面225a、225bで反射されて濃度フィルター310に向け射出される。濃度フィルター310で濃度調整された内部参照光は、光ファイバ263に入射する。このとき、コリメートレンズ221の開口は、板部226aで完全に覆われるので、対物レンズ系210側には光は入射しない。光ファイバ263は、光ファイバ260と合流し、光ファイバ263からの内部参照光と、光ファイバ260からの測定光は同一の光センサー261で検出される。なお、図3(b)において、内部参照光の光路を矢印付の実線で示し、測定光の光軸を一点鎖線で示している。3(b)示した状態では、測定光は生成されてない。 At the time of emitting the internal reference light, as shown in FIG. 3B, the chopper 226 is in a state where the reflecting surface 225a of the trapezoidal prism 225 is arranged at the ejection port of the collimating lens 221. In this state, the light from the light source 230 passes through the collimating lens 221 and is reflected by the reflecting surfaces 225a and 225b of the trapezoidal prism 225 and emitted toward the density filter 310. The internal reference light whose density is adjusted by the density filter 310 is incident on the optical fiber 263. At this time, since the aperture of the collimating lens 221 is completely covered by the plate portion 226a, no light is incident on the objective lens system 210 side. The optical fiber 263 merges with the optical fiber 260, and the internal reference light from the optical fiber 263 and the measurement light from the optical fiber 260 are detected by the same optical sensor 261. In FIG. 3B, the optical path of the internal reference light is indicated by a solid line with an arrow, and the optical axis of the measurement light is indicated by a dashed line. In the state shown in 3 (b), no measurement light is generated.

射出反射光学系240は、第2光軸O2上に斜めに反射面を形成した反射鏡241と、対物レンズ系210の入射側(外側)に配置される第2反射手段である送光反射プリズム242とを備える。送光反射プリズム242は第1光軸O1上に傾斜した反射面242aを備える。この例では対物レンズ系210の外側には、平行平面ガラスであるカバーガラス281が配置され、送光反射プリズム242は、このカバーガラス281の内側に接着されて配置されている。 The emission reflection optical system 240 includes a reflecting mirror 241 having a reflecting surface obliquely formed on the second optical axis O2, and a light transmitting reflecting prism which is a second reflecting means arranged on the incident side (outside) of the objective lens system 210. 242 and the like. The light transmitting / reflecting prism 242 includes a reflecting surface 242a inclined on the first optical axis O1. In this example, a cover glass 281 which is a parallel flat glass is arranged on the outside of the objective lens system 210, and the light transmitting / reflecting prism 242 is arranged so as to be adhered to the inside of the cover glass 281.

受光反射光学系250は、ダイクロイックミラー251と、このダイクロイックミラー251からの光を直角方向に反射する受光反射部材である受光反射プリズム252とから構成される。ダイクロイックミラー251は、鏡筒120に配置され、対物レンズ系210から第1光軸O1に沿って入射する光のうち、所定波長帯域の光である測定光を反射する。他の帯域の光は透過して、鏡筒120に配置された視準光学系270に入射する。光波距離計100のオペレーターは、視準光学系270を用いて、視準を行うことができる。受光反射プリズム252は、第1光軸O1に45度の角度で形成された反射面252aを有し、ダイクロイックミラー251からの光を光ファイバ260に向け反射する。 The light-receiving reflection optical system 250 is composed of a dichroic mirror 251 and a light-receiving reflection prism 252 which is a light-receiving / reflecting member that reflects light from the dichroic mirror 251 in a perpendicular direction. The dichroic mirror 251 is arranged in the lens barrel 120 and reflects the measurement light, which is the light in a predetermined wavelength band, among the light incident from the objective lens system 210 along the first optical axis O1. Light in other bands is transmitted and incident on the collimation optical system 270 arranged in the lens barrel 120. The operator of the laser rangefinder 100 can perform collimation using the collimation optical system 270. The light receiving / reflecting prism 252 has a reflecting surface 252a formed at an angle of 45 degrees on the first optical axis O1 and reflects the light from the dichroic mirror 251 toward the optical fiber 260.

このような光波距離計100では、光センサー261で検出した測定物であるプリズム280からの測定光と、光ファイバ263からの内部参照光とに基づいて被測定物であるプリズム280までの距離を演算する。 In such a light wave rangefinder 100, the distance to the prism 280, which is the object to be measured, is determined based on the measurement light from the prism 280, which is the object to be measured, detected by the optical sensor 261 and the internal reference light from the optical fiber 263. Calculate.

次に絞り部材224の構成について説明する。図5は同光波距離計の絞り部材の構成を示す光波距離計の斜視図である。絞り部材224は、遮光性の薄板で構成され、光軸の一には第2光軸O2と直交する水平方向に伸びるスリット開口224aが開設されている。このスリット開口224aの高さ寸法hは、0.7mmである。この寸法は、測定精度と、測定光の到達距離とのバランスで定められており、一般的に装置の種類によらず同程度である。スリット開口224aが水平方向に形成されているため、光源230からコリメートレンズ221を経て入射された光束は、回折により鉛直方向に所定の寸法だけ伸びる。このため、光波距離計100から射出される計測光は水平方向より鉛直方向が大きい範囲を照射する。 Next, the configuration of the diaphragm member 224 will be described. FIG. 5 is a perspective view of the light wave range finder showing the configuration of the diaphragm member of the light wave range finder. The diaphragm member 224 is made of a light-shielding thin plate, and a slit opening 224a extending in the horizontal direction orthogonal to the second optical axis O2 is provided on one of the optical axes. The height dimension h of the slit opening 224a is 0.7 mm. This dimension is determined by the balance between the measurement accuracy and the reach of the measurement light, and is generally about the same regardless of the type of device. Since the slit opening 224a is formed in the horizontal direction, the luminous flux incident from the light source 230 through the collimating lens 221 is extended by a predetermined dimension in the vertical direction due to diffraction. Therefore, the measurement light emitted from the light wave rangefinder 100 irradiates a range in which the vertical direction is larger than the horizontal direction.

図5は同光波距離計の絞り部材の配置状態を示す斜視図である。絞り部材224は、アーム部材321の先端に取付けられている。アーム部材321は、回動軸322を中心に揺動可能であり、回動軸322は絞り駆動モータ323で揺動駆動される(図5中矢印a)。絞り駆動モータ323を駆動して絞り部材224を第2光軸O2に配置すると、プリズム280を使用するプリズムモードで使用でき、絞り部材224を上方に移動させて第2光軸O2から外すとノンプリズムモードで使用される。プリズムモードでは、精密測定が行え、被測定物にプリズム280を配置して測定を行い、ノンプリズムモードでは被測定物に直接測定光を照射して測定を行う。 FIG. 5 is a perspective view showing an arrangement state of the diaphragm members of the laser rangefinder. The diaphragm member 224 is attached to the tip of the arm member 321. The arm member 321 can swing around the rotation shaft 322, and the rotation shaft 322 is swing-driven by the diaphragm drive motor 323 (arrow a in FIG. 5). When the aperture drive motor 323 is driven and the aperture member 224 is arranged on the second optical axis O2, it can be used in the prism mode using the prism 280, and when the aperture member 224 is moved upward and removed from the second optical axis O2, it is non-existent. Used in prism mode. In the prism mode, precise measurement can be performed, the prism 280 is arranged on the object to be measured, and the measurement is performed. In the non-prism mode, the object to be measured is directly irradiated with the measurement light to perform the measurement.

また、ベース部130には、アーム部材321に接触してアーム部材321の絞り部材224取付け側端部の上下方向の位置を調整可能に設定する調整部材である絞り位置調整ねじ324が配置されている。この絞り位置調整ねじ324を回転することで、プリズムモードにあるアーム部材321の先端が上下に微動して(図5中矢印b)、スリット開口224aの上下方向の位置を微調整できる。 Further, on the base portion 130, a diaphragm position adjusting screw 324, which is an adjusting member that comes into contact with the arm member 321 and sets the position of the diaphragm member 224 mounting side end of the arm member 321 in the vertical direction so as to be adjustable, is arranged. There is. By rotating the aperture position adjusting screw 324, the tip of the arm member 321 in the prism mode slightly moves up and down (arrow b in FIG. 5), and the position of the slit opening 224a in the vertical direction can be finely adjusted.

本実施形態に係る光波距離計100では、絞り部材224の位置調整は基本的に不要であるが、絞り部材224の位置微調整を行うことで、光波距離計100の状態をより良好なものとできる。本実施形態では、絞り位置調整ねじ324が未調整状態において、光束はスリット開口224aの中央に許容誤差内で配置される。なお、この位置調整ねじ324を使用せず、ベース部130に位置決め部材を形成して、アーム部材321がこの位置決め部材に接触するようにして絞り部材224の位置調整を省略することができる。この構造によっても、絞り部材224をベース部130に配置するだけで充分な精度で絞り部材224のスリット開口224aを配置することができる。このため、組み付け時に位置調整を省略でき、且つ位置調整部がない分経年変化に強い構造となる。 In the light wave distance meter 100 according to the present embodiment, it is basically unnecessary to adjust the position of the aperture member 224, but by finely adjusting the position of the aperture member 224, the state of the light wave distance meter 100 can be improved. can. In the present embodiment, when the aperture position adjusting screw 324 is not adjusted, the luminous flux is arranged in the center of the slit opening 224a within a permissible error. Instead of using the position adjusting screw 324, a positioning member can be formed on the base portion 130 so that the arm member 321 comes into contact with the positioning member, and the position adjustment of the diaphragm member 224 can be omitted. Even with this structure, the slit opening 224a of the diaphragm member 224 can be arranged with sufficient accuracy simply by arranging the diaphragm member 224 on the base portion 130. Therefore, the position adjustment can be omitted at the time of assembly, and the structure is resistant to aging due to the absence of the position adjustment portion.

また、本実施形態に係る光波距離計100では、図4に示すように、濃度フィルター310は、濃度勾配を形成した濃度勾配フィルム311と、濃度が一定、例えば透明な保護フィルム312とを重ねて、固定ねじ313を望遠鏡部103に配置されたベース部130の濃度フィルター取付部131に配置したものである。濃度勾配フィルム311及び保護フィルム312は合成樹脂フィルムで構成される。そして、保護フィルム312が回転しても、濃度勾配フィルム311は保護フィルム312につれて回転することがないよう、接合せずに取付けられる。 Further, in the light wave rangefinder 100 according to the present embodiment, as shown in FIG. 4, in the density filter 310, a density gradient film 311 having a density gradient formed and a protective film 312 having a constant density, for example, a transparent film 312 are superposed on each other. , The fixing screw 313 is arranged in the density filter mounting portion 131 of the base portion 130 arranged in the telescope portion 103. The density gradient film 311 and the protective film 312 are made of a synthetic resin film. Then, even if the protective film 312 rotates, the density gradient film 311 is attached without joining so that it does not rotate along with the protective film 312.

以下、絞り部材224のスリット開口224aの高さ寸法hと、コリメートレンズ221から絞り部材224に照射される光束の直径dとついて詳細に説明する。図6に従来例として示した光波距離計400は、絞り部材443のスリット開口の高さ寸法が0.7mmであった。この光波距離計400では、スリット開口の中心に対して、入射する光束の中心が±0.2mmに収まるように調整していた。しかしながら、この調整位置を決めるには、位置調整ねじ324の位置が回動軸322からスリット開口224aの中心までの半分位の位置にあるため、調整における許容範囲が±0.1mmとなる。 Hereinafter, the height dimension h of the slit opening 224a of the diaphragm member 224 and the diameter d of the light beam emitted from the collimating lens 221 to the diaphragm member 224 will be described in detail. In the light wave rangefinder 400 shown as a conventional example in FIG. 6, the height dimension of the slit opening of the diaphragm member 443 was 0.7 mm. In this light wave rangefinder 400, the center of the incident light flux was adjusted to be within ± 0.2 mm with respect to the center of the slit opening. However, in order to determine this adjustment position, the position of the position adjustment screw 324 is about half the position from the rotation shaft 322 to the center of the slit opening 224a, so that the allowable range for adjustment is ± 0.1 mm.

このような許容量とすると、位置調整ねじ324としてM2のねじを使用した場合、ねじのピッチが0.4mmであるため、1/4回転分の調整量となる。この精度は、ベース部130を金物型で作成する場合には難しい。もちろん、金型で作成したブランク材を後で切削加工等すれば、精度が出るもののコストが嵩むこととなる。 With such an allowable amount, when an M2 screw is used as the position adjusting screw 324, the pitch of the screw is 0.4 mm, so that the adjustment amount is equivalent to 1/4 rotation. This accuracy is difficult when the base portion 130 is made of a metal mold. Of course, if the blank material created by the mold is cut later, the accuracy will be improved, but the cost will increase.

本実施形態では、絞り部材224への光束の直径を14mm(従来の2倍)とすると、光束密度が1/4となるが、光束の直径方向の位置決め許容値2倍となる。このため、位置調整ねじ324の位置で、許容値も2倍、即ち±0.2mmとなる。このような値であれば、ベース部130を金物型からのブランク材で後加工を施すことなく使用しても許容差精度となる。なお、現在の金物加工では、幅で0.3mm程度の公差内の製造が充分可能である。従って、従来に比して光束の直径を1.5倍とすれば、絞り部材224をベース部130に取付けた状態で、位置調整を行う必要がなくなる。 In the present embodiment, when the diameter of the light flux to the diaphragm member 224 is 14 mm (twice the conventional value), the light flux density is halved, but the allowable positioning value in the diameter direction of the light flux is doubled. Therefore, at the position of the position adjusting screw 324, the permissible value is doubled, that is, ± 0.2 mm. With such a value, the tolerance accuracy can be obtained even if the base portion 130 is used with a blank material from a metal mold without post-processing. In the current hardware processing, it is possible to sufficiently manufacture within a tolerance of about 0.3 mm in width. Therefore, if the diameter of the light flux is increased to 1.5 times that of the conventional case, it is not necessary to adjust the position with the diaphragm member 224 attached to the base portion 130.

次に光源の強度について説明する。ここでは、従来に比して光束の直径dを2倍にした場合における測定到達距離に影響を考察する。 Next, the intensity of the light source will be described. Here, the influence on the measured reach when the diameter d of the luminous flux is doubled as compared with the conventional case will be considered.

<計算条件>
発光パワー(対物出力)P0:
5mW(LD出力が光学系を通過した後の出力)
発光広角θ:
14′(片側7′)≒ 0.233333°
受光対物径φ:
50mm(距離計本体の受光用対物有効径)
大気減衰係数β:
0.127(無次元)/視程20km相当/波長690nm時
規程到達距離L:
2000m(製品仕様/視程20km時)
受光感度(最低動作光量)η0:
1nW(機械本体の対物入力時光量)
<Calculation conditions>
Emission power (objective output) P0:
5mW (output after LD output passes through the optical system)
Emission wide-angle θ:
14'(7'on one side) ≒ 0.233333 °
Light receiving objective diameter φ:
50 mm (effective diameter of light receiving objective of rangefinder body)
Atmospheric attenuation coefficient β:
0.127 (dimensionless) / Visibility 20km equivalent / Wavelength 690nm Regulation reach L:
2000m (Product specifications / Visibility 20km)
Light reception sensitivity (minimum operating light intensity) η0:
1nW (light intensity at objective input of the machine body)

<到達距離計算式>
今以下の式で計算された光量が機械に戻ってくる光量なので、
その値(受光光量)を“η”とすると、
η= P0×(φ/2Ltanθ)2×EXP(-2βL/1000) …(1)
となる(上記式の到達距離Lの前に係数2は、実際の光束が通過する道のりが、測定距離の往復になるので、測定距離の2倍になるため)。
<Reach distance calculation formula>
Now, the amount of light calculated by the following formula is the amount of light returned to the machine, so
If that value (received light amount) is "η",
η = P0 × (φ / 2L tan θ) 2 × EXP (-2βL / 1000)… (1)
(Because the coefficient 2 before the reach distance L in the above equation is twice the measurement distance because the actual path through which the luminous flux passes is a round trip of the measurement distance).

ここで上記計算値ηが、η0≦η …(2)
の条件を満たせば規程の距離まで到達することとなり、機械到達仕様を満たす。なお、(1)式の前半部分は測定距離を往復した際の戻り光の受光像径と実機の有効受光径の面積比率を計算している部分であり、後半の指数部分は大気減衰分を計算した項である。大気減衰計算で使用する距離の単位は“km”となるため、内部でLを1/1000にしている。また“大気減衰係数β”は発光波長により異なるが、ここではβの計算式は割愛する。但し、波長が長くなるとβが小さくなる傾向にある。(大気の影響を受け難い)
Here, the calculated value η is η0 ≦ η… (2)
If the above conditions are met, the distance will reach the specified distance, and the machine arrival specifications will be met. The first half of Eq. (1) is the part that calculates the area ratio between the received image diameter of the return light and the effective light receiving diameter of the actual machine when going back and forth over the measurement distance, and the exponential part in the latter half is the atmospheric attenuation. This is the calculated term. Since the unit of distance used in atmospheric attenuation calculation is "km", L is internally set to 1/1000. The "atmospheric attenuation coefficient β" differs depending on the emission wavelength, but the formula for β is omitted here. However, β tends to become smaller as the wavelength becomes longer. (Not easily affected by the atmosphere)

条件及び計算式に基づいて計算してみる。
η= 5×10-3×(50×10-3/(2×2000×tan(0.233333))2×EXP(-2×0.127×2))
= 5×10-3×9.421×10-6×0.60167 = 28.3416×10-9 [W] …(3)
Try to calculate based on the conditions and formula.
η = 5 × 10-3 × (50 × 10-3 / (2 × 2000 × tan (0.233333)) 2 × EXP (-2 × 0.127 × 2))
= 5 × 10-3 × 9.421 × 10-6 × 0.60167 = 28.3416 × 10-9 [W]… (3)

計算値より、(3)の値が算出された。
この値は、約28 [nW]なので、上記“計算条件”での最低動光量である、“1
[nW]”よりも、約28倍大きな値であることがわかる。
The value of (3) was calculated from the calculated value.
Since this value is about 28 [nW], it is the minimum amount of moving light under the above "calculation conditions", "1".
It can be seen that the value is about 28 times larger than [nW] ”.

よってこの結果に鑑みて、本実施形態に係る光波距離計100において、絞り部材224への光束の直径を2倍にして、スリット開口を通過する光量が1/4になったとしても、
28 [nW]×1/4 = 7 [nW] …(4)
となり、最低動作光量の“1 [nW]”の約7倍の光量が見込め、距離測定可能な基準値を満たす。このため、機械の到達距離仕様を充分満たすことがわかる。
Therefore, in view of this result, even if the diameter of the light beam to the diaphragm member 224 is doubled and the amount of light passing through the slit opening is reduced to 1/4 in the light wave rangefinder 100 according to the present embodiment.
28 [nW] × 1/4 = 7 [nW]… (4)
Therefore, the amount of light is expected to be about 7 times the minimum operating amount of light "1 [nW]", which meets the standard value for distance measurement. Therefore, it can be seen that the reach specifications of the machine are sufficiently satisfied.

以上のように、実施形態に係る光波距離計100によれば、スリット開口の光軸に対する位置変化の許容度が大きくなので、製造時において絞り部材を、位置の調整をしないで取付けベースに取付けたとしてもスリット開口の取付け位置を基準内に収めることができる他、経年変化による絞り部材の位置変化は、基準内に収まり、製造時や経年使用時において絞り部材の位置調整を行わなくとも距離測定を正確に行うことができる。 As described above, according to the light wave rangefinder 100 according to the embodiment, since the tolerance of the position change of the slit opening with respect to the optical axis is large, the diaphragm member is attached to the mounting base without adjusting the position at the time of manufacturing. Even so, the mounting position of the slit opening can be kept within the standard, and the position change of the diaphragm member due to aging is within the standard, and the distance is measured without adjusting the position of the diaphragm member during manufacturing or aging. Can be done accurately.

100:光波距離計
110:筐体
120:鏡筒
130:ベース部
131:濃度フィルター取付部
200:光学系
210:対物レンズ系
220:射出光学系
224:絞り部材
224a:絞り開口
230:光源
240:射出反射光学系
241:反射鏡
310:濃度フィルター
100: Light wave rangefinder 110: Housing 120: Lens barrel 130: Base 131: Density filter mounting 200: Optical system 210: Objective lens system 220: Injection optical system 224: Aperture member 224a: Aperture opening 230: Light source 240: Emission Reflection Optical System 241: Reflector 310: Density Filter

Claims (4)

反射光と内部参照光とを比較してCompare reflected light with internal reference light
被測定物までの距離を測定する光波距離計であって、A light wave rangefinder that measures the distance to the object to be measured.
所定の広がりの光束を光軸に沿って射出する光源と、前記光軸上に配置可能であり、A light source that emits a luminous flux of a predetermined spread along the optical axis and a light source that can be arranged on the optical axis.
前記光軸と直交して水平方向に伸びるスリット開口を備え、前記光源からの前記光束の広がり幅を絞る絞り部材と、A diaphragm member having a slit opening extending in the horizontal direction orthogonal to the optical axis and narrowing the spread width of the luminous flux from the light source.
前記絞り部材を保持するアーム部材と、前記アーム部材を回動させて前記絞り部材を光軸に対し出し入れ可能に光軸上配置し、The arm member holding the diaphragm member and the diaphragm member are arranged on the optical axis so as to be able to move in and out of the optical axis by rotating the arm member.
前記光源と前記絞り部材との間に配置され、前記光束が前記スリット開口と、このスリット開口を上下に挟み、前記スリット開口の高さ寸法の15倍以上の高さ寸法の領域に射出する光束拡開手段と、A luminous flux arranged between the light source and the diaphragm member, the luminous flux is sandwiched between the slit opening and the slit opening up and down, and is emitted into a region having a height dimension of 15 times or more the height dimension of the slit opening. Expansion means and
を含み、Including
前記光波距離計で設定された測定距離における前記被測定物からの前記反射光が距離測定可能な基準値以上になるように前記光源の光量を設定した、ことを特徴とする光波距離計。A light wave range finder characterized in that the amount of light of the light source is set so that the reflected light from the object to be measured at the measurement distance set by the light wave range finder is equal to or more than a reference value capable of measuring the distance.
前記絞り部材は、前記スリット開口を上下方向に調整する調整部材を備えることを特徴とする請求項1に記載の光波距離計。 The light wave rangefinder according to claim 1, wherein the diaphragm member includes an adjusting member that adjusts the slit opening in the vertical direction. 前記絞り部材は、前記スリット開口を前記絞り部材の使用時には上下方向に調整できない状態に固定されていることを特徴とする請求項1に記載の光波距離計。 The light wave rangefinder according to claim 1, wherein the aperture member is fixed so that the slit opening cannot be adjusted in the vertical direction when the aperture member is used. 前記光束拡開手段は、コリメートレンズであることを特徴とする請求項1から請求項3までの何れか一項に記載の光波距離計。 The light wave rangefinder according to any one of claims 1 to 3, wherein the luminous flux expanding means is a collimating lens.
JP2016236179A 2016-12-05 2016-12-05 Laser rangefinder Active JP6937568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236179A JP6937568B2 (en) 2016-12-05 2016-12-05 Laser rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236179A JP6937568B2 (en) 2016-12-05 2016-12-05 Laser rangefinder

Publications (3)

Publication Number Publication Date
JP2018091764A JP2018091764A (en) 2018-06-14
JP2018091764A5 JP2018091764A5 (en) 2020-01-16
JP6937568B2 true JP6937568B2 (en) 2021-09-22

Family

ID=62565448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236179A Active JP6937568B2 (en) 2016-12-05 2016-12-05 Laser rangefinder

Country Status (1)

Country Link
JP (1) JP6937568B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526855Y2 (en) * 1978-09-21 1980-06-27
JPH10233030A (en) * 1997-02-20 1998-09-02 Sony Corp Device and method for manufacturing optical master disk
JP3767201B2 (en) * 1998-09-18 2006-04-19 オムロン株式会社 Optical sensor
JP6198399B2 (en) * 2013-01-31 2017-09-20 株式会社トプコン Light wave distance meter

Also Published As

Publication number Publication date
JP2018091764A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3457080B1 (en) Surveying instrument
JP4166083B2 (en) Ranging device
JP3169082B2 (en) Distance measuring device
US7130035B2 (en) Target for surveying instrument
JP6209021B2 (en) Surveying instrument
US20120133924A1 (en) Measurement of the Positions of Centres of Curvature of Optical Surfaces of a Multi-Lens Optical System
US10422861B2 (en) Electro-optical distance measuring instrument
US6747733B2 (en) Electronic distance meter
JPH10185697A (en) Method and device for measuring temperature by use of infrared technique
JP4236326B2 (en) Automatic surveying machine
JP2017110964A (en) Light wave distance-measuring device
JP6937568B2 (en) Laser rangefinder
JP6325619B2 (en) Light wave distance meter
JP2010019685A (en) Curvature radius measuring apparatus
JP7416647B2 (en) surveying equipment
JP6315722B2 (en) Light wave distance meter
JP2009222441A (en) Retroreflective intensity measuring device
JP7037855B2 (en) Laser scanner optical system and surveying equipment
JP6198400B2 (en) Light wave distance meter
JP2018091764A5 (en)
US20080062526A1 (en) Target Acquisition Device
KR101109511B1 (en) The large aperture mirror system having the automatic alignment mechanism that is less sensitive to the temperature change using standard laser
JP6198399B2 (en) Light wave distance meter
JP6788396B2 (en) Laser rangefinder
JP2017067672A (en) Light wave range finder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6937568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250