[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6325619B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP6325619B2
JP6325619B2 JP2016183135A JP2016183135A JP6325619B2 JP 6325619 B2 JP6325619 B2 JP 6325619B2 JP 2016183135 A JP2016183135 A JP 2016183135A JP 2016183135 A JP2016183135 A JP 2016183135A JP 6325619 B2 JP6325619 B2 JP 6325619B2
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
measurement
internal reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016183135A
Other languages
Japanese (ja)
Other versions
JP2017015729A (en
Inventor
雅明 矢部
雅明 矢部
隆一 竹居
隆一 竹居
良彦 徳田
良彦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2016183135A priority Critical patent/JP6325619B2/en
Publication of JP2017015729A publication Critical patent/JP2017015729A/en
Application granted granted Critical
Publication of JP6325619B2 publication Critical patent/JP6325619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、測定物で反射された測定光を受光する受光光学系と測定物に測定光を照射する射出光学系とを備え、目標までの距離を測定する光波距離計に関する。   The present invention relates to a light wave distance meter that includes a light receiving optical system that receives measurement light reflected by a measurement object and an emission optical system that irradiates the measurement object with measurement light, and measures a distance to a target.

上述の光波距離計は、変調した所定波長領域の測定光を被測定物に照射し、被測定物からの反射光を受光して、内部参照光と、受光された測定光の位相差から測定物までの距離を測定する。   The above-mentioned optical distance meter irradiates the object to be measured with modulated measurement light in a predetermined wavelength region, receives the reflected light from the object to be measured, and measures from the phase difference between the internal reference light and the received measurement light. Measure the distance to the object.

このような光波距離計として、対物レンズを透過した測距光を受光ファイバの入射端面に入射させ、別の光路を経由した内部参照光との位相差、時間差を検出し、測定対象物までの距離を演算するものがある。   As such a light wave distance meter, the distance measuring light transmitted through the objective lens is made incident on the incident end face of the light receiving fiber, the phase difference and time difference with the internal reference light passing through another optical path are detected, and the measurement object is measured. There is something that calculates the distance.

特許文献1および特許文献2には、測定光を被測定物に照射し、被測定物で反射された測定光を受光し、この受光した測定光と、濃度フィルターで光量を調整した内部参照光とを比較して被測定物までの距離を測定する光波距離計が記載されている。   In Patent Document 1 and Patent Document 2, measurement light is irradiated to a measurement object, measurement light reflected by the measurement object is received, and the received measurement light and an internal reference light whose light quantity is adjusted by a density filter are disclosed. And a lightwave distance meter that measures the distance to the object to be measured.

特開2004−144681公報参照See JP 2004-144681 A 特開2008−76212公報参照See JP 2008-76212 A

しかし、このような光距離計において距離を測定するためには、測定光と内部参照光とを略均等に受光して対比する必要があり、受光が均等になされないと、正確な位相差、時間差を測定できず、正確な距離を求めることができない。また測定光と内部参照光とを均等に受光するために特殊な構造を備えると、部品点数が増加して作業効率が低下するため製造コストが上昇する。   However, in order to measure the distance in such an optical distance meter, it is necessary to receive and compare the measurement light and the internal reference light substantially evenly. If the light reception is not made evenly, an accurate phase difference, The time difference cannot be measured, and an accurate distance cannot be obtained. If a special structure is provided to uniformly receive the measurement light and the internal reference light, the number of parts increases and the work efficiency decreases, resulting in an increase in manufacturing cost.

本発明は上述した課題に鑑みてなされたものであり、測定光と内部参照光とを簡単な構成で略均等に受光して部品点数を押え、光軸の調整を容易なものとして製造コストの低減を図ることができる光波距離計を提供することを目的とする。 The present invention has been made in view of the above-described problems. The measurement light and the internal reference light are received almost evenly with a simple configuration, the number of parts is suppressed, and the adjustment of the optical axis is facilitated . An object of the present invention is to provide an optical rangefinder that can be reduced.

前記課題を解決するため、請求項1に記載の発明は、光源と、チョッパ駆動モータで回転駆動されるとともに台形プリズムを備え、前記光源からの光を第1の光及び第2の光に時間的に分割するチョッパと、前記第2光を減衰して内部参照光とする濃度フィルターと、前記第1の光を反射して被測定物側に射出する射出反射部材と、前記射出反射部材からの射出光、及び被測定物からの反射光が通過する一組の対物レンズと、前記対物レンズを通過した反射光を反射する受光反射部材と、前記濃度フィルターからの内部参照光が入射する第1の光ファイバと、前記受光反射部材からの測定光が入射する第2の光ファイバと、前記第1の光ファイバからの前記内部参照光及び前記第2の光ファイバからの前記測定光を検出する光センサーと、を備え、前記第1の光ファイバと前記第2の光ファイバとは、合流して前記光センサーに到ることを特徴とする光波距離計である。 In order to solve the above-mentioned problem, the invention described in claim 1 is provided with a light source, a chopper drive motor, and a trapezoidal prism, and the light from the light source is timed into the first light and the second light. A chopper that divides the first light, a density filter that attenuates the second light to be an internal reference light, an exit reflection member that reflects the first light and emits it to the object to be measured, and the exit reflection member A set of objective lenses through which the reflected light from the object to be measured and the reflected light from the object to be measured pass, a light receiving and reflecting member that reflects the reflected light that has passed through the objective lens, and an internal reference light from the density filter A first optical fiber; a second optical fiber on which measurement light from the light receiving and reflecting member is incident; and the internal reference light from the first optical fiber and the measurement light from the second optical fiber are detected. A light sensor For example, wherein the first optical fiber and said second optical fiber, an optical distance meter, characterized in that leading to the light sensor merge to.

本発明に係る光波距離計によれば、測定光と内部参照光とを簡単な構成で略均等に受光して部品点数を押え、簡単な調整で光軸を揃えることができ製造コストの低減を図ることができる。 According to the lightwave distance meter according to the present invention, the measurement light and the internal reference light are received almost evenly with a simple configuration, the number of parts is suppressed, and the optical axes can be aligned by simple adjustment, thereby reducing the manufacturing cost. Can be planned.

本発明の実施形態に係る光波距離計を示す正面図である。It is a front view which shows the light wave distance meter which concerns on embodiment of this invention. 同じく光波距離計を示す断面図である。It is sectional drawing which similarly shows a light wave rangefinder. 同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。FIG. 2 also shows an optical system of the optical distance meter, where (a) is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission. 同じく光波距離計内部構造を示す斜視図である。It is a perspective view which similarly shows the optical wave distance meter internal structure. 同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。It is a disassembled perspective view which similarly shows the structure of the density filter of a light wave distance meter. 同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。It is a disassembled perspective view which similarly shows the structure of the density filter of a light wave distance meter.

本発明を実施するための形態に係る光波距離計について説明する。図1は本発明の実施の形態に係る光波距離計を示す正面図、図2は同じく光波距離計を示す断面図、図3は同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。   An optical distance meter according to an embodiment for carrying out the present invention will be described. FIG. 1 is a front view showing a light wave distance meter according to an embodiment of the present invention, FIG. 2 is a sectional view showing the light wave distance meter, and FIG. 3 is a view showing an optical system of the light wave distance meter. Is a schematic diagram showing a state of measurement light emission, and (b) is a schematic diagram showing a state of internal reference light emission.

実施形態に係る光波距離計100は、図1に示すように、三脚(図示せず)に取り付けられる基台部101に架台102が設けられ、この架台102には光学系を含む望遠鏡部103が支持されている。前記基台部101は整準ねじ104を有し、架台102が水平となる様に整準可能となっている。架台102は鉛直軸心を中心に回転可能であり、望遠鏡部103は水平軸心を中心に回転可能となっている。また、架台102には表示部106を有する操作入力部107が設けられ、前記表示部106には測定対象物までの距離の測定値等が表示される。   As shown in FIG. 1, the optical distance meter 100 according to the embodiment includes a base 102 provided on a base 101 attached to a tripod (not shown), and a telescope 103 including an optical system is provided on the base 102. It is supported. The base 101 has leveling screws 104 and can be leveled so that the pedestal 102 is horizontal. The gantry 102 can rotate around a vertical axis, and the telescope unit 103 can rotate around a horizontal axis. Further, the gantry 102 is provided with an operation input unit 107 having a display unit 106, and the display unit 106 displays a measured value of a distance to a measurement object and the like.

実施形態に係る光波距離計100の光学系について説明する。図2は同じく光波距離計を示す断面図、図3は同じく光波距離計の光学系を示すものであり、(a)は測定光射出の状態を示す模式図、(b)は内部参照光射出の状態を示す模式図である。光波距離計100は、筐体110内に、鏡筒120と、ベース部130が形成されている。また、図2に示すように、光波距離計100は、光学系200として、受光光学系である対物レンズ系210と、測定光を射出する射出光学系220と、対物レンズ系210からの測定光を第1の光ファイバである光ファイバ260に導く射出反射光学系240とを備える。また光学系200は、受光反射光学系250と、視準光学系270とを備える。光ファイバ260は、光センサー261(図3参照)に測定光を導く。視準光学系270は対物レンズ系210からの被測定物像を目視できるようにして、光波距離計100の方向を決定したり補正したりするために使用される。   An optical system of the lightwave distance meter 100 according to the embodiment will be described. FIG. 2 is a cross-sectional view showing the light wave distance meter, FIG. 3 is a view showing the optical system of the light wave distance meter, FIG. 2A is a schematic view showing the state of measurement light emission, and FIG. It is a schematic diagram which shows this state. In the optical distance meter 100, a lens barrel 120 and a base portion 130 are formed in a housing 110. As shown in FIG. 2, the optical distance meter 100 includes, as an optical system 200, an objective lens system 210 that is a light receiving optical system, an emission optical system 220 that emits measurement light, and measurement light from the objective lens system 210. And an exit reflection optical system 240 that guides the light to an optical fiber 260 that is a first optical fiber. The optical system 200 includes a light receiving / reflecting optical system 250 and a collimating optical system 270. The optical fiber 260 guides the measurement light to the optical sensor 261 (see FIG. 3). The collimating optical system 270 is used to determine and correct the direction of the lightwave distance meter 100 so that the object image from the objective lens system 210 can be viewed.

対物レンズ系210は、鏡筒120に配置され、被測定物であるプリズム280に向かう第1光軸O1を備え、被測定物からの光を集光する。対物レンズ系210は、3枚のレンズを備えており、各種収差が補正され全体で正のパワーを備える。射出光学系220は、ベース部130に配置され、第1光軸O1と平行な第2光軸O2を備え、光源230からの光を平行光である測定光として射出する。光源230は、例えば赤外線を発生するレーザーダイオードである。射出光学系220は、コリメータレンズ221と、射出光を断続的に遮断し射出光を内部参照光として取り出す台形プリズム225を備えたチョッパ226と、マイコンなどにより制御されて外光束光量を調整するサーキュラー222と手動で回転位置を設定することにより内部参照光の光量を調整する濃度フィルター310、と絞り224とを備える。濃度フィルター310は、円周上に濃度勾配を備えた円板状の部材である。また、サーキュラー222は、測定光出射光量の調整用に円周上に濃度勾配が付いている濃度フィルターを備え、サーキュラー駆動モータ223で回転駆動される円板状の部材である。   The objective lens system 210 is disposed in the lens barrel 120 and includes a first optical axis O1 directed to the prism 280 that is the object to be measured, and collects light from the object to be measured. The objective lens system 210 includes three lenses, and various aberrations are corrected to provide a positive power as a whole. The emission optical system 220 is disposed on the base unit 130, includes a second optical axis O2 parallel to the first optical axis O1, and emits light from the light source 230 as measurement light that is parallel light. The light source 230 is, for example, a laser diode that generates infrared rays. The emission optical system 220 includes a collimator lens 221, a chopper 226 provided with a trapezoidal prism 225 that intermittently blocks the emitted light and extracts the emitted light as internal reference light, and a circular that is controlled by a microcomputer or the like to adjust the amount of external luminous flux. 222, a density filter 310 that adjusts the amount of internal reference light by manually setting the rotational position, and a diaphragm 224. The density filter 310 is a disk-shaped member having a density gradient on the circumference. The circular 222 is a disk-like member that includes a density filter having a density gradient on the circumference for adjusting the measurement light emission light amount and is rotationally driven by a circular drive motor 223.

さらに、チョッパ226はチョッパ駆動モータ227で回転駆動され、所定のタイミングで、第2光軸O2上のコリメータレンズ221の前側に出没するように駆動される。ここで、チョッパ226には、コリメータレンズ221を覆う板部226aが形成されている。また、台形プリズム225は、図3(a)、(b)に示すように2つの反射面225a、225bを備え、第2の光として内部参照光を内部参照光センサー290に導く。 Further, the chopper 226 is rotationally driven by a chopper drive motor 227, and is driven so as to appear at the front side of the collimator lens 221 on the second optical axis O2 at a predetermined timing. Here, the chopper 226 is formed with a plate portion 226 a that covers the collimator lens 221. The trapezoidal prism 225 includes two reflecting surfaces 225a and 225b as shown in FIGS. 3A and 3B, and guides the internal reference light to the internal reference light sensor 290 as the second light .

第1の光である測定光の射出時には、図3(a)に示すように、チョッパ226は、コリメータレンズ221の射出口から外れ、光源230からの光は、サーキュラー222で断続的に遮られながらミラー部材241に向け、射出される。なお、図3(a)において、内部参照光の光軸を一点鎖線で示し、測定光の光路を矢印付の実線で示している。3(a)示した状態では、内部参照光は生成されてない。 When the measurement light that is the first light is emitted, the chopper 226 is detached from the emission port of the collimator lens 221 and the light from the light source 230 is intermittently blocked by the circular 222, as shown in FIG. However, it is emitted toward the mirror member 241. In FIG. 3A, the optical axis of the internal reference light is indicated by a one-dot chain line, and the optical path of the measurement light is indicated by a solid line with an arrow. In the state shown in FIG. 3A, the internal reference light is not generated.

内部参照光の射出時には、図3(b)に示すように、チョッパ226はコリメータレンズ221の射出口に台形プリズム225の反射面225aが配置される状態となる。この状態で、光源230からの光は、コリメータレンズ221を経て、台形プリズム225の反射面225a、225bで反射されて濃度フィルター310に向け射出される。濃度フィルター310で濃度調整された内部参照光は、第2の光ファイバである光ファイバ263に入射する。このとき、コリメータレンズ221の開口は、板部226aで完全に覆われるので、対物レンズ系210側には光は入射しない。光ファイバ263は、光ファイバ260と合流し、光ファイバ263からの内部参照光と、光ファイバ260からの測定光は同一の光センサー261で検出される。なお、図3(b)において、内部参照光の光路を矢印付の実線で示し、測定光の光軸を一点鎖線で示している。3(b)示した状態では、測定光は生成されてない。   When the internal reference light is emitted, as shown in FIG. 3B, the chopper 226 is in a state where the reflecting surface 225 a of the trapezoidal prism 225 is disposed at the exit of the collimator lens 221. In this state, the light from the light source 230 passes through the collimator lens 221, is reflected by the reflecting surfaces 225 a and 225 b of the trapezoidal prism 225, and is emitted toward the density filter 310. The internal reference light whose density has been adjusted by the density filter 310 is incident on the optical fiber 263 that is the second optical fiber. At this time, since the opening of the collimator lens 221 is completely covered with the plate portion 226a, no light is incident on the objective lens system 210 side. The optical fiber 263 merges with the optical fiber 260, and the internal reference light from the optical fiber 263 and the measurement light from the optical fiber 260 are detected by the same optical sensor 261. In FIG. 3B, the optical path of the internal reference light is indicated by a solid line with an arrow, and the optical axis of the measurement light is indicated by an alternate long and short dash line. In the state shown in FIG. 3B, no measurement light is generated.

射出反射光学系240は、第2光軸O2上に斜めに反射面を形成した第1反射手段であるミラー部材241と、対物レンズ系210の入射側(外側)に配置される第2反射手段である送光反射プリズム242とを備える。送光反射プリズム242は第1光軸O1上に傾斜した反射面242aを備える。この例では対物レンズ系210の外側には、平行平面ガラスであるカバーガラス281が配置され、送光反射プリズム242は、このカバーガラス281の内側に接着されて配置されている。   The exit reflection optical system 240 includes a mirror member 241 that is a first reflection unit having a reflection surface formed obliquely on the second optical axis O2, and a second reflection unit that is disposed on the incident side (outside) of the objective lens system 210. And a light transmitting / reflecting prism 242. The light transmitting / reflecting prism 242 includes a reflecting surface 242a inclined on the first optical axis O1. In this example, a cover glass 281, which is a plane parallel glass, is disposed outside the objective lens system 210, and the light transmitting / reflecting prism 242 is disposed on the inside of the cover glass 281.

受光反射光学系250は、ダイクロイックミラー251と、このダイクロイックミラー251からの光を直角方向に反射する受光反射部材である受光反射プリズム252とから構成される。ダイクロイックミラー251は、鏡筒120に配置され、対物レンズ系210から第1光軸O1に沿って入射する光のうち、所定波長帯域の光である測定光を反射する。他の帯域の光は透過して、鏡筒120に配置された視準光学系270に入射する。光波距離計100のオペレーターは、視準光学系270を用いて、視準を行うことができる。受光反射プリズム252は、第1光軸O1に45度の角度で形成された反射面252aを有し、ダイクロイックミラー251からの光を光ファイバ260に向け反射する。   The light receiving / reflecting optical system 250 includes a dichroic mirror 251 and a light receiving / reflecting prism 252 which is a light receiving / reflecting member that reflects light from the dichroic mirror 251 in a perpendicular direction. The dichroic mirror 251 is disposed in the lens barrel 120 and reflects measurement light, which is light in a predetermined wavelength band, among light incident from the objective lens system 210 along the first optical axis O1. Light in other bands is transmitted and enters the collimating optical system 270 disposed in the lens barrel 120. An operator of the optical distance meter 100 can collimate using the collimation optical system 270. The light receiving / reflecting prism 252 has a reflecting surface 252a formed at an angle of 45 degrees on the first optical axis O1, and reflects the light from the dichroic mirror 251 toward the optical fiber 260.

このような光波距離計100では、光センサー261で検出した測定物であるプリズム280からの測定光と、光ファイバ263からの内部参照光とに基づいて被測定物であるプリズム280までの距離を演算する。   In such an optical wave distance meter 100, the distance to the prism 280, which is a measurement object, is measured based on the measurement light from the prism 280, which is the measurement object detected by the optical sensor 261, and the internal reference light from the optical fiber 263. Calculate.

次に濃度フィルター310について説明する。図4は本発明の実施形態に係る光波距離計内部構造を示す斜視図、図5は同じく光波距離計の濃度フィルターの構造を示す分解斜視図、図6は同じく光波距離計の濃度フィルターの構造を示す分解斜視図である。図4および図5に示すように、濃度フィルター310は、濃度勾配を形成した濃度勾配フィルム311と、濃度が一定、例えば透明な保護フィルム312とを重ねて、固定ねじ313を望遠鏡部103に配置されたベース部130の濃度フィルター取付部131に配置したものである。濃度勾配フィルム311および保護フィルム312は合成樹脂フィルムで構成される。そして、保護フィルム312が回転しても、濃度勾配フィルム311は保護フィルム312につれて回転することがないよう、接合せずに取り付けられる。なお、図4にはチョッパ226は記載されておらず、図5、図6にはサーキュラー222およびチョッパ226は記載していない。   Next, the density filter 310 will be described. FIG. 4 is a perspective view showing the internal structure of the light wave distance meter according to the embodiment of the present invention, FIG. 5 is an exploded perspective view showing the structure of the density filter of the light wave distance meter, and FIG. 6 is the structure of the density filter of the light wave distance meter. FIG. As shown in FIGS. 4 and 5, the density filter 310 includes a density gradient film 311 having a density gradient and a protective film 312 having a constant density, for example, and a fixing screw 313 disposed on the telescope unit 103. The density filter mounting portion 131 of the base portion 130 is disposed. The density gradient film 311 and the protective film 312 are made of a synthetic resin film. And even if the protective film 312 rotates, the density gradient film 311 is attached without joining so that it does not rotate with the protective film 312. 4 does not show the chopper 226, and FIGS. 5 and 6 do not show the circular 222 and the chopper 226.

内部参照光の光量を調整するときには、濃度勾配フィルム311と保護フィルム312と重ねた状態で濃度フィルター310全体を回転させる。そして、適当な位置で止めて光量を決定する。そして、濃度フィルター310の位置を固定するとき、固定ねじ313を締める方向に回転して固定する。このとき、固定ねじ313の回転によって保護フィルム312が回転しても、濃度勾配フィルム311は回転しない。このため、濃度フィルター310の固定時に、内部参照光の信号強度が変化することがない。また、固定ねじ313を回すのに用いる工具、例えばドライバーの先端が、濃度勾配フィルム311に直接接触することを防止できる。このため、濃度フィルター310の表面を損傷することがない。この調整は、従来例と同様に製造工場での調整時に行う。調整作業は、筐体110の上側カバーを外しておこない、上側カバーを外すと、固定ねじ313は露出してドライバー等の工具で操作できるようになる。   When adjusting the amount of the internal reference light, the entire density filter 310 is rotated while the density gradient film 311 and the protective film 312 are overlapped. Then, the light quantity is determined by stopping at an appropriate position. Then, when fixing the position of the density filter 310, the fixing screw 313 is rotated and fixed in the tightening direction. At this time, even if the protective film 312 rotates due to the rotation of the fixing screw 313, the density gradient film 311 does not rotate. For this reason, when the density filter 310 is fixed, the signal intensity of the internal reference light does not change. Further, it is possible to prevent the tool used for turning the fixing screw 313, for example, the tip of a driver, from coming into direct contact with the density gradient film 311. For this reason, the surface of the density filter 310 is not damaged. This adjustment is performed at the time of adjustment at the manufacturing plant as in the conventional example. The adjustment work is performed by removing the upper cover of the housing 110. When the upper cover is removed, the fixing screw 313 is exposed and can be operated with a tool such as a screwdriver.

さらに、何らかの理由で、保護フィルム312を損傷しても、保護フィルム312を交換するだけでよく、コストがかからず、交換作業も容易である。   Furthermore, even if the protective film 312 is damaged for some reason, it is only necessary to replace the protective film 312, which is not costly and easy to replace.

このように、保護フィルム312は、印刷工程で製作した濃度勾配フィルム311の乳剤面を覆うことになるので、濃度勾配フィルム311の乳剤面の凹凸における不要散乱を避けることができる。このため、受光光学系内部に不要な迷光をつくることがなく、測定誤差の低減にも寄与する。   Thus, since the protective film 312 covers the emulsion surface of the density gradient film 311 manufactured in the printing process, unnecessary scattering in the unevenness of the emulsion surface of the density gradient film 311 can be avoided. For this reason, unnecessary stray light is not generated inside the light receiving optical system, which contributes to a reduction in measurement error.

また、保護フィルム312の表面に、乱反射防止加工が施しておくと、入射光が乱反射せず、内部参照光の散乱を防止することができ、測定精度の向上が図れる。乱反射防止加工としては、保護フィルム表面の鏡面処理、ARコート等を行う。   Further, when the surface of the protective film 312 is subjected to irregular reflection prevention processing, incident light is not irregularly reflected, scattering of internal reference light can be prevented, and measurement accuracy can be improved. As the irregular reflection prevention processing, mirror surface treatment of the surface of the protective film, AR coating, and the like are performed.

さらに、上記実施形態では、保護フィルム312を回転させても、濃度勾配フィルム311が回転しないように構成したが、濃度勾配フィルム311に保護フィルム312を接合しておいてもよい。この場合濃度勾配フィルム311の表面の保護を図ることができる。   Furthermore, in the said embodiment, even if the protective film 312 was rotated, it comprised so that the density | concentration gradient film 311 might not rotate, but you may join the protective film 312 to the density gradient film 311. In this case, the surface of the density gradient film 311 can be protected.

100:光波距離計
101:基台部
102:架台
103:望遠鏡部
104:整準ねじ
106:表示部
107:操作入力部
110:筐体
120:鏡筒
130:ベース部
131:濃度フィルター取付部
200:光学系
210:対物レンズ系
211:レーザー光源
220:射出光学系
221:コリメータレンズ
222:サーキュラー
223:サーキュラー駆動モータ
224:絞り
225:台形プリズム
225a、225b:反射面
226:チョッパ
227:チョッパ駆動モータ
230:光源
240:射出反射光学系
241:ミラー部材
242:送光反射プリズム
242a:反射面
250:受光反射光学系
251:ダイクロイックミラー
252:受光反射プリズム
252a:反射面
260:光ファイバ(射出(外)光路用:第2の光ファイバ)
261:光センサー
263:光ファイバ(内部参照光路用:第1の光ファイバ)
270:視準光学系
280:プリズム
281:カバーガラス
290:内部参照光センサー
310:濃度フィルター
311:濃度勾配フィルム
312:保護フィルム
313:固定ねじ
O1:第1光軸
O2:第2光軸
DESCRIPTION OF SYMBOLS 100: Light wave rangefinder 101: Base part 102: Mount 103: Telescope part 104: Leveling screw 106: Display part 107: Operation input part 110: Case 120: Lens barrel 130: Base part 131: Density filter attaching part 200 : Optical system 210: Objective lens system 211: Laser light source 220: Emission optical system 221: Collimator lens 222: Circular 223: Circular drive motor 224: Aperture 225: Trapezoid prism 225 a, 225 b: Reflecting surface 226: Chopper 227: Chopper drive motor 230: Light source 240: Emission reflection optical system 241: Mirror member 242: Light transmission reflection prism 242a: Reflection surface 250: Light reception reflection optical system 251: Dichroic mirror 252: Light reception reflection prism 252a: Reflection surface 260: Optical fiber (outgoing (outside ) For optical path: second optical fiber)
261: Optical sensor 263: Optical fiber (for internal reference optical path: first optical fiber)
270: collimating optical system 280: prism 281: cover glass 290: internal reference light sensor 310: density filter 311: density gradient film 312: protective film 313: fixing screw O1: first optical axis O2: second optical axis

Claims (1)

光源と、
チョッパ駆動モータで回転駆動されるとともに台形プリズムを備え、前記光源からの光を第1の光及び第2の光に時間的に分割するチョッパと、
前記第2の光を減衰して内部参照光とする濃度フィルターと、
前記第1の光を反射して被測定物側に測定光として射出する射出反射部材と、
前記射出反射部材からの測定光、及び被測定物が反射した前記測定光が通過する一組の対物レンズと、
前記対物レンズを通過した測定光を反射する受光反射部材と、
前記濃度フィルターからの内部参照光が入射する第1の光ファイバと、
前記受光反射部材からの測定光が入射する第2の光ファイバと、
前記第1の光ファイバからの前記内部参照光及び前記第2の光ファイバからの前記測定光を検出する光センサーと、
を備え、
前記第1の光ファイバと前記第2の光ファイバとは、合流して前記光センサーに到るこ
とを特徴とする光波距離計。
A light source;
A chopper that is rotationally driven by a chopper drive motor and includes a trapezoidal prism, and temporally divides light from the light source into first light and second light;
A density filter that attenuates the second light into an internal reference light;
An exit reflecting member that reflects the first light and emits the measurement light to the object to be measured;
A set of objective lenses through which the measurement light from the exit reflecting member and the measurement light reflected by the object to be measured pass;
A light receiving and reflecting member that reflects measurement light that has passed through the objective lens;
A first optical fiber into which the internal reference light from the density filter is incident;
A second optical fiber into which measurement light from the light receiving and reflecting member is incident;
An optical sensor for detecting the internal reference light from the first optical fiber and the measurement light from the second optical fiber;
With
The first optical fiber and the second optical fiber merge to reach the optical sensor.
JP2016183135A 2016-09-20 2016-09-20 Light wave distance meter Active JP6325619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016183135A JP6325619B2 (en) 2016-09-20 2016-09-20 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183135A JP6325619B2 (en) 2016-09-20 2016-09-20 Light wave distance meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013016786A Division JP6198399B2 (en) 2013-01-31 2013-01-31 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2017015729A JP2017015729A (en) 2017-01-19
JP6325619B2 true JP6325619B2 (en) 2018-05-16

Family

ID=57830408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183135A Active JP6325619B2 (en) 2016-09-20 2016-09-20 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP6325619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240947B2 (en) 2019-05-09 2023-03-16 株式会社アドバンテスト Optical test equipment
JP7209610B2 (en) 2019-10-15 2023-01-20 株式会社アドバンテスト Optical test apparatus and test method for optical measuring instruments

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848880A (en) * 1981-06-09 1983-03-22 エムテ−ツエ− メステヒニ−ク ウント オプトエレクトロニ−ク ア−ゲ− Controller for dynamic characteristic of distance measuring device
JP4328917B2 (en) * 1998-11-27 2009-09-09 株式会社トプコン Light wave distance meter
JP3771777B2 (en) * 2000-05-12 2006-04-26 三菱電機株式会社 Laser radar equipment

Also Published As

Publication number Publication date
JP2017015729A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US6324024B1 (en) Reflector for distance measurement
US10422861B2 (en) Electro-optical distance measuring instrument
US11668567B2 (en) Surveying instrument
JP2004212059A (en) Distance measuring apparatus
JP6325619B2 (en) Light wave distance meter
US20220026207A1 (en) Surveying Instrument
US7889326B2 (en) Distance measuring apparatus
US6194694B1 (en) Surveying instrument
JP6315722B2 (en) Light wave distance meter
TWI471581B (en) Distance measuring device
JP6198399B2 (en) Light wave distance meter
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
US9632023B2 (en) V-block refractometer
JP6198400B2 (en) Light wave distance meter
JP2017067673A (en) Light wave range finder
JP7416647B2 (en) surveying equipment
JP2017067672A (en) Light wave range finder
WO2021166403A1 (en) Moisture detection device
JP6937568B2 (en) Laser rangefinder
US10732267B2 (en) Electro-optical distance meter
JP7406971B2 (en) measuring device
JP2018091764A5 (en)
JP2015004600A (en) Eccentricity measurement device, eccentricity measurement method and lens manufacturing method
US20220026206A1 (en) Surveying Instrument
TWM567357U (en) Probe of raman spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180412

R150 Certificate of patent or registration of utility model

Ref document number: 6325619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250