[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6934324B2 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
JP6934324B2
JP6934324B2 JP2017106377A JP2017106377A JP6934324B2 JP 6934324 B2 JP6934324 B2 JP 6934324B2 JP 2017106377 A JP2017106377 A JP 2017106377A JP 2017106377 A JP2017106377 A JP 2017106377A JP 6934324 B2 JP6934324 B2 JP 6934324B2
Authority
JP
Japan
Prior art keywords
wiring layer
elastic wave
piezoelectric substrate
substrate
idt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017106377A
Other languages
Japanese (ja)
Other versions
JP2018207144A (en
Inventor
畑山 和重
和重 畑山
▲琢▼真 黒▲柳▼
▲琢▼真 黒▲柳▼
倫之 栗原
倫之 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2017106377A priority Critical patent/JP6934324B2/en
Publication of JP2018207144A publication Critical patent/JP2018207144A/en
Application granted granted Critical
Publication of JP6934324B2 publication Critical patent/JP6934324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性波デバイスに関し、例えばIDTに接続された配線が設けられた弾性波デバイスに関する。 The present invention relates to an elastic wave device, for example, an elastic wave device provided with wiring connected to an IDT.

弾性波デバイスは、移動体通信用のフィルタ等に用いられている。支持基板上に接合された圧電基板上にIDT(Interdigital Transducer)が設けることが知られている。IDTに接続された配線を圧電基板が除去された支持基板の上面に設けることが知られている(例えば特許文献1)。 Elastic wave devices are used in filters and the like for mobile communication. It is known that an IDT (Interdigital Transducer) is provided on a piezoelectric substrate bonded onto a support substrate. It is known that the wiring connected to the IDT is provided on the upper surface of the support substrate from which the piezoelectric substrate has been removed (for example, Patent Document 1).

特開2016−40882号公報Japanese Unexamined Patent Publication No. 2016-40882

しかしながら、特許文献1では、圧電基板上において配線とIDTが接続される。このような構造ではIDTにおいて発生した熱の放出が不十分である。 However, in Patent Document 1, the wiring and the IDT are connected on the piezoelectric substrate. With such a structure, the heat generated in the IDT is not sufficiently released.

本発明は、上記課題に鑑みなされたものであり、放熱性を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve heat dissipation.

本発明は、支持基板と、前記支持基板上に接合された圧電基板と、前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを有するIDTと、前記圧電基板に設けられた開口内に充填され、上面の少なくとも一部が前記IDTのバスバーの少なくとも一部と接触する第1配線層と、を具備し、前記開口は前記圧電基板を貫通し、前記支持基板を貫通せず、前記第1配線層の前記支持基板側の面は前記支持基板に接触し、前記支持基板および前記第1配線層の熱伝導率は前記圧電基板の熱伝導率より高い弾性波デバイスである。 The present invention includes an IDT having a support substrate, a piezoelectric substrate bonded onto the support substrate, a bus bar provided on the piezoelectric substrate and to which a plurality of electrode fingers and the plurality of electrode fingers are connected, and the above. The opening is filled in the opening provided in the piezoelectric substrate, and includes a first wiring layer in which at least a part of the upper surface is in contact with at least a part of the bus bar of the IDT, and the opening penetrates the piezoelectric substrate. The surface of the first wiring board on the support substrate side does not penetrate the support substrate and comes into contact with the support substrate, and the thermal conductivity of the support substrate and the first wiring layer is higher than the thermal conductivity of the piezoelectric substrate. It is an elastic wave device.

上記構成において、前記第1配線層の上面の少なくとも一部と前記圧電基板の上面とは平坦である構成とすることができる。 In the above configuration, at least a part of the upper surface of the first wiring layer and the upper surface of the piezoelectric substrate can be flat.

上記構成において、前記開口内に設けられた絶縁膜または空隙を挟み前記第1配線層と対向するように、前記第1配線層上に設けられた第2配線層を具備する構成とすることができる。 In the above configuration, a second wiring layer provided on the first wiring layer may be provided so as to face the first wiring layer with an insulating film or gap provided in the opening sandwiched therein. can.

上記構成において、前記圧電基板上に前記第1配線層と隣接して設けられた第3配線層を具備する構成とすることができる。 In the above configuration, a third wiring layer provided adjacent to the first wiring layer may be provided on the piezoelectric substrate.

上記構成において、前記第1配線層は、2つの前記IDTの間に設けられ、前記2つのIDTのうち一方のバスバーに接触し、前記第3配線層は、前記2つのIDTの間に設けられ、前記2つのIDTのうち他方のバスバーに接触し、前記第1配線層に隣接する構成とすることができる。 In the above configuration, the first wiring layer is provided between the two IDTs and contacts the bus bar of one of the two IDTs, and the third wiring layer is provided between the two IDTs. , The bus bar of the other of the two IDTs can be contacted and adjacent to the first wiring layer.

上記構成において、前記IDTを囲み圧電基板の周縁に埋め込まれた環状金属層と、前記圧電基板上に搭載された基板と、平面視において前記基板を囲みかつ前記IDTと前記基板の下面とが空隙を挟み対向するように、前記IDTを封止する封止部と、を具備する構成とすることができる。 In the above configuration, an annular metal layer that surrounds the IDT and is embedded in the peripheral edge of the piezoelectric substrate, a substrate mounted on the piezoelectric substrate, and a gap between the IDT and the lower surface of the substrate that surrounds the substrate in a plan view. It can be configured to include a sealing portion for sealing the IDT so as to sandwich and face the IDT.

上記構成において、前記第1配線層は、平面視において前記IDTを囲むように設けられている構成とすることができる。 In the above configuration, the first wiring layer may be provided so as to surround the IDT in a plan view.

上記構成において、前記支持基板の上面は凹部を有し、前記第1配線層は少なくとも前記凹部において前記支持基板と接触する構成とすることができる。 In the above configuration, the upper surface of the support substrate may have a recess, and the first wiring layer may be configured to come into contact with the support substrate at least in the recess.

上記構成において前記IDTを含むフィルタを具備する構成とすることができる。 In the above configuration, the configuration may include a filter including the IDT.

上記構成において、入力端子と出力端子との間に直列に接続され、各々が前記IDTを含む複数の直列共振器と、前記入力端子と前記出力端子との間に並列に接続され、各々が前記IDTを含む1または複数の並列共振器と、を含むフィルタを具備し、前記第1配線層は、前記複数の直列共振器の少なくとも2つの間に接続されている構成とすることができる。 In the above configuration, the input terminal and the output terminal are connected in series, each of which is connected in parallel between a plurality of series resonators including the IDT and the input terminal and the output terminal, and each of the above is described. A filter including one or a plurality of parallel resonators including an IDT may be provided, and the first wiring layer may be configured to be connected between at least two of the plurality of series resonators.

上記構成において、前記フィルタを含むマルチプレクサを具備する構成とすることができる。 In the above configuration, the configuration may include a multiplexer including the filter.

本発明によれば、放熱性を向上させることができる。 According to the present invention, heat dissipation can be improved.

図1(a)は、実施例1に係る弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。1 (a) is a plan view of the elastic wave resonator according to the first embodiment, and FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a). 図2(a)から図2(d)は、実施例1に係る弾性波共振器の製造方法を示す断面図(その1)である。2 (a) to 2 (d) are cross-sectional views (No. 1) showing a method of manufacturing an elastic wave resonator according to the first embodiment. 図3(a)から図3(c)は、実施例1に係る弾性波共振器の製造方法を示す断面図(その2)である。3 (a) to 3 (c) are cross-sectional views (No. 2) showing a method of manufacturing an elastic wave resonator according to the first embodiment. 図4(a)から図4(d)は、実施例1の変形例1に係る弾性波共振器の製造方法を示す断面図(その1)である。4 (a) to 4 (d) are cross-sectional views (No. 1) showing a method of manufacturing an elastic wave resonator according to a modification 1 of the first embodiment. 図5(a)および図5(b)は、実施例1の変形例1に係る弾性波共振器の製造方法を示す断面図(その2)である。5 (a) and 5 (b) are cross-sectional views (No. 2) showing a method of manufacturing an elastic wave resonator according to a modification 1 of the first embodiment. 図6(a)から図6(j)は、実施例1の変形例2および3における配線層を示す断面図である。6 (a) to 6 (j) are cross-sectional views showing the wiring layers in the modified examples 2 and 3 of the first embodiment. 図7(a)は、実施例2に係るフィルタの平面図、図7(b)は、図7(a)のA−A断面図である。7 (a) is a plan view of the filter according to the second embodiment, and FIG. 7 (b) is a cross-sectional view taken along the line AA of FIG. 7 (a). 図8は、実施例3に係る弾性波デバイスの断面図である。FIG. 8 is a cross-sectional view of the elastic wave device according to the third embodiment. 図9は、実施例3における圧電基板の平面図である。FIG. 9 is a plan view of the piezoelectric substrate according to the third embodiment. 図10は、実施例4に係るデュプレクサの回路図である。FIG. 10 is a circuit diagram of the duplexer according to the fourth embodiment. 図11(a)は、実施例4に係るデュプレクサの平面図、図11(b)は、図11(a)のA−A断面図である。11 (a) is a plan view of the duplexer according to the fourth embodiment, and FIG. 11 (b) is a cross-sectional view taken along the line AA of FIG. 11 (a). 図12(a)は、実施例5に係るフィルタの平面図、図12(b)は、図12(a)のA−A断面図である。12 (a) is a plan view of the filter according to the fifth embodiment, and FIG. 12 (b) is a cross-sectional view taken along the line AA of FIG. 12 (a).

以下、図面を参照し、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

実施例1は、弾性波デバイスとして弾性波共振器の例である。図1(a)は、実施例1に係る弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。図1(a)および図1(b)に示すように、支持基板11に圧電基板10が接合されている。支持基板11は例えばサファイア基板、アルミナ基板、スピネル基板またはシリコン基板である。圧電基板10は、例えばタンタルリチウム基板またはニオブ酸リチウム基板である。支持基板11と圧電基板10とは例えば常温において接合されている。 The first embodiment is an example of an elastic wave resonator as an elastic wave device. 1 (a) is a plan view of the elastic wave resonator according to the first embodiment, and FIG. 1 (b) is a cross-sectional view taken along the line AA of FIG. 1 (a). As shown in FIGS. 1A and 1B, the piezoelectric substrate 10 is bonded to the support substrate 11. The support substrate 11 is, for example, a sapphire substrate, an alumina substrate, a spinel substrate, or a silicon substrate. The piezoelectric substrate 10 is, for example, a lithium tantalate substrate or a lithium niobate substrate. The support substrate 11 and the piezoelectric substrate 10 are joined, for example, at room temperature.

圧電基板10に開口が設けられ、配線層14が開口に充填されている。配線層14は例えば銅層、金層、銀層、タングステン層またはモリブデン層等の金属層である。圧電基板10および配線層14上に金属膜12が形成されている。金属膜12は、例えばバリア膜12aと低抵抗膜12bを含む。バリア膜12aは、例えばチタン膜であり、低抵抗膜12bと圧電基板10との相互拡散を抑制する。低抵抗膜12bは、バリア膜12aより抵抗が低く例えばアルミニウム膜または銅膜である。 An opening is provided in the piezoelectric substrate 10, and the wiring layer 14 is filled in the opening. The wiring layer 14 is, for example, a metal layer such as a copper layer, a gold layer, a silver layer, a tungsten layer, or a molybdenum layer. A metal film 12 is formed on the piezoelectric substrate 10 and the wiring layer 14. The metal film 12 includes, for example, a barrier film 12a and a low resistance film 12b. The barrier film 12a is, for example, a titanium film, which suppresses mutual diffusion between the low resistance film 12b and the piezoelectric substrate 10. The low resistance film 12b has a lower resistance than the barrier film 12a, for example, an aluminum film or a copper film.

1ポート弾性波共振器25は、金属膜12により形成されたIDT20および反射器22を有する。反射器22はIDT20の両側に設けられている。IDT20は一対の櫛型電極27を有する。櫛型電極27は、複数の電極指24と複数の電極指24が接続されたバスバー26とを有する。一対の櫛型電極27の一方の電極指24と他方の電極指24はほぼ互い違いに設けられている。バスバー26の一部の下面は配線層14の上面と接触する。これにより、バスバー26と配線層14とが電気的に接続される。金属膜12および配線層14を覆うように保護膜16が設けられている。保護膜16は、例えば窒化シリコン膜または酸化シリコン膜である。保護膜16は、金属膜12および配線層14を保護するとともに、金属膜12および配線層14の金属原子が上層に拡散することを抑制する。 The 1-port elastic wave resonator 25 has an IDT 20 and a reflector 22 formed of a metal film 12. Reflectors 22 are provided on both sides of the IDT 20. The IDT 20 has a pair of comb-shaped electrodes 27. The comb-shaped electrode 27 has a plurality of electrode fingers 24 and a bus bar 26 to which the plurality of electrode fingers 24 are connected. One electrode finger 24 and the other electrode finger 24 of the pair of comb-shaped electrodes 27 are provided substantially alternately. A part of the lower surface of the bus bar 26 comes into contact with the upper surface of the wiring layer 14. As a result, the bus bar 26 and the wiring layer 14 are electrically connected. A protective film 16 is provided so as to cover the metal film 12 and the wiring layer 14. The protective film 16 is, for example, a silicon nitride film or a silicon oxide film. The protective film 16 protects the metal film 12 and the wiring layer 14, and also suppresses the diffusion of metal atoms in the metal film 12 and the wiring layer 14 to the upper layer.

IDT20の電極指24は圧電基板10に弾性表面波を励振する。励振された弾性波は、反射器22により反射される。弾性波の波長λは電極指24のピッチにほぼ対応する。弾性波の伝搬方向をX方向、電極指24の延伸方向をY方向とする。X方向およびY方向は圧電基板10のX軸方位およびY軸方位でなくてもよい。圧電基板10がYカットX伝搬タンタル酸リチウム基板またはYカットX伝搬ニオブ酸リチウム基板の場合、X方向はX軸方位となる。支持基板11の線熱膨張係数は、圧電基板10の線熱膨張係数より小さい。これにより、周波数温度係数を0に近づけることができる。圧電基板10上にIDT20を覆うように温度補償膜が設けられていてもよい。温度補償膜は例えば酸化シリコン膜またはフッ素を含む酸化シリコン膜である。 The electrode finger 24 of the IDT 20 excites a surface acoustic wave on the piezoelectric substrate 10. The excited elastic wave is reflected by the reflector 22. The wavelength λ of the elastic wave substantially corresponds to the pitch of the electrode finger 24. The propagation direction of the elastic wave is the X direction, and the extension direction of the electrode finger 24 is the Y direction. The X and Y directions do not have to be the X-axis orientation and the Y-axis orientation of the piezoelectric substrate 10. When the piezoelectric substrate 10 is a Y-cut X-propagated lithium tantalate substrate or a Y-cut X-propagated lithium niobate substrate, the X direction is the X-axis direction. The coefficient of linear thermal expansion of the support substrate 11 is smaller than the coefficient of linear thermal expansion of the piezoelectric substrate 10. As a result, the temperature coefficient of frequency can be brought close to zero. A temperature compensation film may be provided on the piezoelectric substrate 10 so as to cover the IDT 20. The temperature compensation film is, for example, a silicon oxide film or a silicon oxide film containing fluorine.

図2(a)から図3(c)は、実施例1に係る弾性波共振器の製造方法を示す断面図である。図2(a)に示すように、支持基板11の上面に圧電基板10の下面を接合する。例えば、支持基板11の上面および圧電基板10の下面に、不活性ガスのイオンビーム、中性ビームまたはプラズマを照射する。これにより、支持基板11の上面および圧電基板10の下面に数nm以下のアモルファス層が形成される。アモルファス層の表面には未結合の結合手が生成される。未結合の結合手の存在により、支持基板11の上面および圧電基板10の下面は活性化された状態となる。支持基板11の上面と圧電基板10の下面の未結合の結合手同士が結合する。これにより、支持基板11と圧電基板10は、常温において接合される。圧電基板10と支持基板11とは接着剤等により接合されていてもよい。圧電基板10の膜厚は例えば1μmから30μmである。 2 (a) to 3 (c) are cross-sectional views showing a method of manufacturing an elastic wave resonator according to the first embodiment. As shown in FIG. 2A, the lower surface of the piezoelectric substrate 10 is joined to the upper surface of the support substrate 11. For example, the upper surface of the support substrate 11 and the lower surface of the piezoelectric substrate 10 are irradiated with an ion beam, a neutral beam, or plasma of an inert gas. As a result, an amorphous layer of several nm or less is formed on the upper surface of the support substrate 11 and the lower surface of the piezoelectric substrate 10. Unbonded bonds are generated on the surface of the amorphous layer. Due to the presence of unbonded bonds, the upper surface of the support substrate 11 and the lower surface of the piezoelectric substrate 10 are in an activated state. The unbonded hands of the upper surface of the support substrate 11 and the lower surface of the piezoelectric substrate 10 are bonded to each other. As a result, the support substrate 11 and the piezoelectric substrate 10 are joined at room temperature. The piezoelectric substrate 10 and the support substrate 11 may be joined by an adhesive or the like. The film thickness of the piezoelectric substrate 10 is, for example, 1 μm to 30 μm.

図2(b)に示すように、圧電基板10に開口30を形成する。開口30は、ドライエッチング法またはウェットエッチング法を用いて形成する。開口30の幅は例えば5μm以上である。 As shown in FIG. 2B, an opening 30 is formed in the piezoelectric substrate 10. The opening 30 is formed by using a dry etching method or a wet etching method. The width of the opening 30 is, for example, 5 μm or more.

図2(c)に示すように、開口30の内面および圧電基板10の上面にシード層32を形成する。シード層32は、例えば支持基板11側からチタン膜および銅膜である。チタン膜は配線層と支持基板11および圧電基板10との密着性を向上させる密着層として機能する。銅膜は、電解メッキの電流を供給する層として機能する。 As shown in FIG. 2C, the seed layer 32 is formed on the inner surface of the opening 30 and the upper surface of the piezoelectric substrate 10. The seed layer 32 is, for example, a titanium film and a copper film from the support substrate 11 side. The titanium film functions as an adhesion layer for improving the adhesion between the wiring layer and the support substrate 11 and the piezoelectric substrate 10. The copper film functions as a layer that supplies the current for electroplating.

図2(d)に示すように、シード層32を介し電流を供給することで、シード層32上に配線層14として銅層を電解メッキ法を用い形成する。圧電基板10上のシード層32および配線層14を例えばCMP(Chemical Mechanical Polishing)法を用い除去する。これにより、圧電基板10上のシード層32および配線層14が除去され、かつ圧電基板10の上面と配線層14の上面とが平坦化される。配線層14は、無電解メッキ法、スパッタリング法、蒸着法またはCVD(Chemical Vapor Deposition)法を用いて形成してもよい。図1(b)では、シード層32の図示を省略している。 As shown in FIG. 2D, a copper layer is formed as a wiring layer 14 on the seed layer 32 by an electrolytic plating method by supplying an electric current through the seed layer 32. The seed layer 32 and the wiring layer 14 on the piezoelectric substrate 10 are removed by using, for example, a CMP (Chemical Mechanical Polishing) method. As a result, the seed layer 32 and the wiring layer 14 on the piezoelectric substrate 10 are removed, and the upper surface of the piezoelectric substrate 10 and the upper surface of the wiring layer 14 are flattened. The wiring layer 14 may be formed by using an electroless plating method, a sputtering method, a vapor deposition method, or a CVD (Chemical Vapor Deposition) method. In FIG. 1B, the illustration of the seed layer 32 is omitted.

図3(a)に示すように、圧電基板10上に所定パターンを有する金属膜12を形成する。金属膜12により電極指24およびバスバー26が形成される。バスバー26と配線層14とが接触する幅は例えば1μm以上である。金属膜12は、例えば蒸着法およびリフトオフ法、またはスパッタリング法およびエッチング法を用い形成する。 As shown in FIG. 3A, a metal film 12 having a predetermined pattern is formed on the piezoelectric substrate 10. The metal film 12 forms the electrode finger 24 and the bus bar 26. The width of contact between the bus bar 26 and the wiring layer 14 is, for example, 1 μm or more. The metal film 12 is formed by, for example, a vapor deposition method and a lift-off method, or a sputtering method and an etching method.

図3(b)に示すように、圧電基板10上に金属膜12を覆うように保護膜16を形成する。保護膜16は、例えばCVD法またはスパッタリング法を用い形成する。保護膜16をパターニングする。 As shown in FIG. 3B, the protective film 16 is formed on the piezoelectric substrate 10 so as to cover the metal film 12. The protective film 16 is formed by using, for example, a CVD method or a sputtering method. The protective film 16 is patterned.

図3(c)に示すように、配線層14上にバンプ用のパッド28を形成する。パッド28は、例えば金層等の金属層である。パッド28は、例えばメッキ法、スパッタリング法または蒸着法を用い形成する。 As shown in FIG. 3C, a pad 28 for bumps is formed on the wiring layer 14. The pad 28 is a metal layer such as a gold layer. The pad 28 is formed by using, for example, a plating method, a sputtering method or a vapor deposition method.

実施例1によれば、配線層14およびシード層32(第1配線層)は、圧電基板10に設けられた開口内に充填されている。配線層14の少なくとも一部はIDT20のバスバー26の少なくとも一部と接触する。これにより、図1(b)の矢印80のように、IDT20において発生した熱は、金属膜12から配線層14に直接伝導し支持基板11から放出される。よって、IDT20において発生した熱の放出を促進することができる。 According to the first embodiment, the wiring layer 14 and the seed layer 32 (first wiring layer) are filled in the openings provided in the piezoelectric substrate 10. At least a portion of the wiring layer 14 contacts at least a portion of the IDT 20 bus bar 26. As a result, as shown by the arrow 80 in FIG. 1B, the heat generated in the IDT 20 is directly conducted from the metal film 12 to the wiring layer 14 and released from the support substrate 11. Therefore, it is possible to promote the release of heat generated in the IDT 20.

また、配線層14およびシード層32は、支持基板11の上面に接触していなくてもよいが、開口は圧電基板10を貫通し、配線層14およびシード層32は支持基板11に接触することが好ましい。これにより、配線層14およびシード層32から支持基板11に直接熱が伝導する。よって、IDT20において発生した熱の放出をより促進することができる。 Further, the wiring layer 14 and the seed layer 32 do not have to be in contact with the upper surface of the support substrate 11, but the opening penetrates the piezoelectric substrate 10 and the wiring layer 14 and the seed layer 32 are in contact with the support substrate 11. Is preferable. As a result, heat is directly conducted from the wiring layer 14 and the seed layer 32 to the support substrate 11. Therefore, the release of heat generated in the IDT 20 can be further promoted.

さらに、配線層14の上面の少なくとも一部と圧電基板10の上面とは平坦である。これにより、圧電基板10と配線層14との境界における金属膜12の断線を抑制できる。 Further, at least a part of the upper surface of the wiring layer 14 and the upper surface of the piezoelectric substrate 10 are flat. As a result, disconnection of the metal film 12 at the boundary between the piezoelectric substrate 10 and the wiring layer 14 can be suppressed.

支持基板11(例えばサファイア)および配線層14(例えば銅)の熱伝導率は圧電基板10(例えばタンタル酸リチウム)の熱伝導率より高い。これにより、IDT20で発生した熱を配線層14およびシード層32を介し支持基板11に放出できる。よって、IDT20において発生した熱の放出をより促進することができる。 The thermal conductivity of the support substrate 11 (for example, sapphire) and the wiring layer 14 (for example, copper) is higher than the thermal conductivity of the piezoelectric substrate 10 (for example, lithium tantalate). As a result, the heat generated in the IDT 20 can be released to the support substrate 11 via the wiring layer 14 and the seed layer 32. Therefore, the release of heat generated in the IDT 20 can be further promoted.

[実施例1の変形例1]
図4(a)から図5(b)は、実施例1の変形例1に係る弾性波共振器の製造方法を示す断面図である。図4(a)に示すように、圧電基板10を準備する。図4(b)に示すように、圧電基板10に開口30を例えばエッチング法を用い形成する。図4(c)に示すように、図2(c)および図2(d)と同様に、開口30に埋め込まれたシード層32および配線層14を形成する。図4(d)に示すように、図2(a)と同様に、支持基板11の上面(図4(d)では下面)に圧電基板10の下面(図4(d)では上面)を接合する。
[Modification 1 of Example 1]
4 (a) to 5 (b) are cross-sectional views showing a method of manufacturing an elastic wave resonator according to a modification 1 of the first embodiment. As shown in FIG. 4A, the piezoelectric substrate 10 is prepared. As shown in FIG. 4B, an opening 30 is formed in the piezoelectric substrate 10 by, for example, an etching method. As shown in FIG. 4 (c), the seed layer 32 and the wiring layer 14 embedded in the opening 30 are formed in the same manner as in FIGS. 2 (c) and 2 (d). As shown in FIG. 4 (d), the lower surface of the piezoelectric substrate 10 (upper surface in FIG. 4 (d)) is joined to the upper surface of the support substrate 11 (lower surface in FIG. 4 (d)) as in FIG. 2 (a). do.

図5(a)に示すように、例えばCMP法を用い圧電基板10および配線層14の上面(図5(a)では下面)を平坦化する。図5(b)に示すように、圧電基板10および配線層14の上面(図5(b)では下面)に、金属膜12を形成する。その後、保護膜等を形成する。 As shown in FIG. 5A, for example, the CMP method is used to flatten the upper surface (lower surface in FIG. 5A) of the piezoelectric substrate 10 and the wiring layer 14. As shown in FIG. 5 (b), the metal film 12 is formed on the upper surface (lower surface in FIG. 5 (b)) of the piezoelectric substrate 10 and the wiring layer 14. After that, a protective film or the like is formed.

実施例1の変形例1では、配線層14の上面は下面より小さくなるように配線層14の側面は傾斜している。これにより、圧電基板10の上面を有効に用いることができる。よって、チップサイズを小型化できる。 In the first modification of the first embodiment, the side surface of the wiring layer 14 is inclined so that the upper surface of the wiring layer 14 is smaller than the lower surface. As a result, the upper surface of the piezoelectric substrate 10 can be effectively used. Therefore, the chip size can be reduced.

[実施例1の変形例2]
図6(a)から図6(h)は、実施例1の変形例2における配線層を示す断面図である。図6(a)に示すように、配線層14の上面は下面より大きくなるように、配線層14の側面が傾斜していてもよい。図6(b)に示すように、配線層14の上面に凹部が設けられ、凹部内に空隙34が設けられていてもよい。図6(c)に示すように、配線層14の上面の凹部内に絶縁膜33が埋め込まれていてもよい。絶縁膜33は、例えば酸化シリコン膜または窒化シリコン膜である。図6(d)に示すように、圧電基板10および配線層14の上面をCMP法を用い平坦化するときに、ディッシングにより配線層14の上面が凹面34aとなっていてもよい。
[Modification 2 of Example 1]
6 (a) to 6 (h) are cross-sectional views showing the wiring layer in the second modification of the first embodiment. As shown in FIG. 6A, the side surface of the wiring layer 14 may be inclined so that the upper surface of the wiring layer 14 is larger than the lower surface. As shown in FIG. 6B, a recess may be provided on the upper surface of the wiring layer 14, and a gap 34 may be provided in the recess. As shown in FIG. 6C, the insulating film 33 may be embedded in the recess on the upper surface of the wiring layer 14. The insulating film 33 is, for example, a silicon oxide film or a silicon nitride film. As shown in FIG. 6D, when the upper surfaces of the piezoelectric substrate 10 and the wiring layer 14 are flattened by the CMP method, the upper surface of the wiring layer 14 may be a concave surface 34a by dishing.

図6(e)に示すように、配線層14上に別の配線層36が設けられ、配線層14と36とは電気的に接触していてもよい。配線層36は、例えば銅層または金層等の金属層である。図6(f)に示すように、配線層14と圧電基板10との間に空隙35が設けられていてもよい。 As shown in FIG. 6E, another wiring layer 36 may be provided on the wiring layer 14, and the wiring layers 14 and 36 may be in electrical contact with each other. The wiring layer 36 is a metal layer such as a copper layer or a gold layer. As shown in FIG. 6 (f), a gap 35 may be provided between the wiring layer 14 and the piezoelectric substrate 10.

図6(g)に示すように、開口内に設けられた絶縁膜33を挟み配線層14と対向するように、配線層14上に配線層36(第2配線層)が設けられていてもよい。図6(h)に示すように、開口内に設けられた空隙34を挟み配線層14と対向するように、配線層14上に配線層36が設けられていてもよい。配線層14と36とは絶縁膜33または空隙34により電気的に分離されており、交差配線を構成する。絶縁膜33および空隙34の厚さは例えば1μmである。 As shown in FIG. 6 (g), even if the wiring layer 36 (second wiring layer) is provided on the wiring layer 14 so as to sandwich the insulating film 33 provided in the opening and face the wiring layer 14. good. As shown in FIG. 6H, the wiring layer 36 may be provided on the wiring layer 14 so as to face the wiring layer 14 with the gap 34 provided in the opening sandwiched therein. The wiring layers 14 and 36 are electrically separated by an insulating film 33 or a gap 34 to form an intersecting wiring. The thickness of the insulating film 33 and the void 34 is, for example, 1 μm.

[実施例1の変形例3]
図6(i)および図6(j)は、実施例1の変形例3における配線層を示す断面図である。図6(i)に示すように、支持基板11の上面には圧電基板10の開口により画定された凹部31を有する。シード層32は凹部31において支持基板11の上面と接触している。図6(i)では、配線層14およびシード層32を含第1配線層が凹部31に接触する。これにより、シード層32が支持基板11に接触する面積が大きくなる。よって、シード層32と支持基板11との密着強度が向上する。また、配線層14から支持基板11への放熱性が向上する。図2(b)において、圧電基板10に開口を形成した後に、イオンミリングもしくはドライエッチング等のドライプロセス、またはブラスト処理またはダイシングブレードを用いた加工等の機械的加工を行う。これにより、凹部31を形成できる。その他の構成は図6(a)と同じであり説明を省略する。
[Modification 3 of Example 1]
6 (i) and 6 (j) are cross-sectional views showing the wiring layer in the third modification of the first embodiment. As shown in FIG. 6 (i), the upper surface of the support substrate 11 has a recess 31 defined by an opening of the piezoelectric substrate 10. The seed layer 32 is in contact with the upper surface of the support substrate 11 in the recess 31. In FIG. 6 (i), the first wiring layer including the wiring layer 14 and the seed layer 32 comes into contact with the recess 31. As a result, the area where the seed layer 32 contacts the support substrate 11 becomes large. Therefore, the adhesion strength between the seed layer 32 and the support substrate 11 is improved. Further, the heat dissipation from the wiring layer 14 to the support substrate 11 is improved. In FIG. 2B, after forming an opening in the piezoelectric substrate 10, a dry process such as ion milling or dry etching, or mechanical processing such as blasting or processing using a dicing blade is performed. As a result, the recess 31 can be formed. Other configurations are the same as those in FIG. 6A, and the description thereof will be omitted.

図6(j)に示すように、凹部31の上面は上に突出する曲面である。これにより、図6(i)より、シード層32と支持基板11との接触面積が大きくなる。よって、密着強度および放熱性をより向上できる。凹部31の形成にイオンミリングもしくはドライエッチング等のドライプロセスを行うことで、凹部31は曲面となりやすい。その他の構成は図6(i)と同じであり、説明を省略する。 As shown in FIG. 6J, the upper surface of the recess 31 is a curved surface protruding upward. As a result, the contact area between the seed layer 32 and the support substrate 11 becomes larger than that in FIG. 6 (i). Therefore, the adhesion strength and heat dissipation can be further improved. By performing a dry process such as ion milling or dry etching on the formation of the concave portion 31, the concave portion 31 tends to have a curved surface. Other configurations are the same as those in FIG. 6 (i), and the description thereof will be omitted.

図6(i)および図6(j)のように、支持基板11の上面は凹部31を有し、配線層14およびシード層32(第1配線層)は少なくとも凹部31において支持基板11と接触する。これにより、第1配線層とシード層32との密着強度および配線層から支持基板31への放熱性を向上できる。 As shown in FIGS. 6 (i) and 6 (j), the upper surface of the support substrate 11 has a recess 31, and the wiring layer 14 and the seed layer 32 (first wiring layer) are in contact with the support substrate 11 at least in the recess 31. do. As a result, the adhesion strength between the first wiring layer and the seed layer 32 and the heat dissipation from the wiring layer to the support substrate 31 can be improved.

実施例2は、弾性波デバイスとしてフィルタの例である。図7(a)は、実施例2に係るフィルタの平面図、図7(b)は、図7(a)のA−A断面図である。図7(a)に示すように、圧電基板10および支持基板11上に、弾性波共振器25、配線層14、18およびパッド28が設けられている。弾性波共振器25は、IDT20および反射器22を有する。図7(b)に示すように、配線層14は、圧電基板10に形成された開口に埋め込まれている。配線層18は、圧電基板10上に設けられている。一方のバスバー26の少なくとも一部の下面は配線層14の上面に接触し、他方のバスバー26の少なくとも一部の上面は配線層18の下面に接触する。配線層18は、例えば銅層または金層等の金属層である。 The second embodiment is an example of a filter as an elastic wave device. 7 (a) is a plan view of the filter according to the second embodiment, and FIG. 7 (b) is a cross-sectional view taken along the line AA of FIG. 7 (a). As shown in FIG. 7A, elastic wave resonators 25, wiring layers 14, 18 and pads 28 are provided on the piezoelectric substrate 10 and the support substrate 11. The elastic wave resonator 25 has an IDT 20 and a reflector 22. As shown in FIG. 7B, the wiring layer 14 is embedded in the opening formed in the piezoelectric substrate 10. The wiring layer 18 is provided on the piezoelectric substrate 10. At least a part of the lower surface of one bus bar 26 contacts the upper surface of the wiring layer 14, and at least a part of the upper surface of the other bus bar 26 contacts the lower surface of the wiring layer 18. The wiring layer 18 is a metal layer such as a copper layer or a gold layer.

図7(a)のように、複数の弾性波共振器25は直列共振器S1からS4および並列共振器P1からP3に対応する。パッド28は入力端子Tin、出力端子Toutおよびグランド端子Tgndに対応する。パッド28上にはバンプ(不図示)が形成される。直列共振器S1からS4は、入力端子Tinと出力端子Toutとの間に配線層14および/または18を介し直列に接続されている。並列共振器P1からP3は、入力端子Tinと出力端子Toutとの間に配線層14および/または18を介し並列に接続されている。 As shown in FIG. 7A, the plurality of elastic wave resonators 25 correspond to the series resonators S1 to S4 and the parallel resonators P1 to P3. The pad 28 corresponds to the input terminal Tin, the output terminal Tout, and the ground terminal Tgnd. A bump (not shown) is formed on the pad 28. The series resonators S1 to S4 are connected in series between the input terminal Tin and the output terminal Tout via the wiring layers 14 and / or 18. The parallel resonators P1 to P3 are connected in parallel between the input terminal Tin and the output terminal Tout via the wiring layers 14 and / or 18.

配線層14および18は、電極指24との間の抵抗を小さくするため、バスバー26に沿って設けられる。このため、隣接する並列共振器間には異なる電位の配線層が対向して延伸することになる。これにより、配線層間の短絡が生じるおよび/または配線層間の寄生容量が大きくなる。また、配線層の微細化が難しくなる。 The wiring layers 14 and 18 are provided along the bus bar 26 in order to reduce the resistance between the wiring layers 14 and 18 and the electrode fingers 24. Therefore, wiring layers having different potentials are extended to face each other between adjacent parallel resonators. This causes a short circuit between the wiring layers and / or increases the parasitic capacitance between the wiring layers. In addition, it becomes difficult to miniaturize the wiring layer.

そこで、並列共振器P1とP2との間のうち並列共振器P1に接続する配線層を配線層14、並列共振器P2に接続する配線層を配線層18とする。並列共振器P2とP3との間のうち並列共振器P2に接続する配線層を配線層14、並列共振器P3に接続する配線層を配線層18とする。これにより、図7(b)のように、一方の配線層14が圧電基板10に埋め込まれ、他方の配線層1が圧電基板10上に設けられる。このため、配線層14と18との短絡を抑制できる。また、配線層14と18との間の寄生容量を抑制できる。さらに、配線層の微細化が可能となる。 Therefore, among the parallel resonators P1 and P2, the wiring layer connected to the parallel resonator P1 is referred to as a wiring layer 14, and the wiring layer connected to the parallel resonator P2 is referred to as a wiring layer 18. Of the parallel resonators P2 and P3, the wiring layer connected to the parallel resonator P2 is referred to as a wiring layer 14, and the wiring layer connected to the parallel resonator P3 is referred to as a wiring layer 18. As a result, as shown in FIG. 7B, one wiring layer 14 is embedded in the piezoelectric substrate 10, and the other wiring layer 1 is provided on the piezoelectric substrate 10. Therefore, a short circuit between the wiring layers 14 and 18 can be suppressed. In addition, the parasitic capacitance between the wiring layers 14 and 18 can be suppressed. Further, the wiring layer can be miniaturized.

実施例2によれば、配線層18(第3配線層)は、圧電基板10上に配線層14(第1配線層)と隣接して設けられている。これにより、配線層14と18との短絡を抑制できる、また、配線層14と18との間の寄生容量を抑制できる。さらに、配線層14および18の微細化が可能となる。 According to the second embodiment, the wiring layer 18 (third wiring layer) is provided on the piezoelectric substrate 10 adjacent to the wiring layer 14 (first wiring layer). As a result, a short circuit between the wiring layers 14 and 18 can be suppressed, and a parasitic capacitance between the wiring layers 14 and 18 can be suppressed. Further, the wiring layers 14 and 18 can be miniaturized.

また、図7(b)のように、配線層14は、2つのIDT20の間に設けられ、IDT20のうち一方のバスバー26に接触し、配線層18は、他方のバスバー26に接触する。これにより、隣接する2つのIDT20間にそれぞれ接続される配線層14および18間の短絡および寄生容量を抑制できる。 Further, as shown in FIG. 7B, the wiring layer 14 is provided between the two IDT 20s and contacts one of the IDT 20s, the bus bar 26, and the wiring layer 18 contacts the other bus bar 26. This makes it possible to suppress short circuits and parasitic capacitances between the wiring layers 14 and 18, which are connected between two adjacent IDTs 20, respectively.

ラダー型フィルタでは、直列共振器に主に高周波電力が加わるため、直列共振器が高温となる。そこで、図7(a)のように、複数の直列共振器S1からS4の少なくとも2つの間に接続されている配線層を配線層14とする。これにより、直列共振器において発生した熱を効率よく放出することができる。 In the ladder type filter, high frequency power is mainly applied to the series resonator, so that the series resonator becomes hot. Therefore, as shown in FIG. 7A, the wiring layer connected between at least two of the plurality of series resonators S1 to S4 is referred to as the wiring layer 14. As a result, the heat generated in the series resonator can be efficiently released.

直列共振器に挟まれた直列共振器(例えばS2およびS3)は、熱の放出経路が限られている。よって、直列共振器S2およびS3に接続される配線層は配線層14とすることが好ましい。 The series resonators (eg, S2 and S3) sandwiched between the series resonators have a limited heat release path. Therefore, the wiring layer connected to the series resonators S2 and S3 is preferably the wiring layer 14.

図8は、実施例3に係る弾性波デバイスの断面図である。図8に示すように、支持基板11の下面に端子40が設けられている。端子40は、弾性波共振器25を外部と接続するためのフットパッドである。圧電基板10の上面に弾性波共振器25が設けられている。圧電基板10を貫通する配線層14および環状金属層68が設けられている。配線層14には弾性波共振器25が電気的に接続されている。配線層14上にパッド28が設けられている。 FIG. 8 is a cross-sectional view of the elastic wave device according to the third embodiment. As shown in FIG. 8, the terminal 40 is provided on the lower surface of the support substrate 11. The terminal 40 is a foot pad for connecting the elastic wave resonator 25 to the outside. An elastic wave resonator 25 is provided on the upper surface of the piezoelectric substrate 10. A wiring layer 14 and an annular metal layer 68 that penetrate the piezoelectric substrate 10 are provided. An elastic wave resonator 25 is electrically connected to the wiring layer 14. A pad 28 is provided on the wiring layer 14.

環状金属層68は、弾性波共振器25を囲むように圧電基板10の周縁に設けられている。配線層14と環状金属層68とは同じ材料の金属層である。支持基板11を貫通する貫通電極42が設けられている。貫通電極42は、配線層14と端子40とを電気的に接続する。貫通電極42は例えば銅層または金層等の金属層である。環状金属層68上には環状電極62が設けられている。環状電極62は、ニッケル層、タングステン層、銅層、アルミニウム層または金層等の金属層である。環状金属層68の上面の半田濡れ性がよい場合、環状電極62を設けなくてもよい。 The annular metal layer 68 is provided on the peripheral edge of the piezoelectric substrate 10 so as to surround the elastic wave resonator 25. The wiring layer 14 and the annular metal layer 68 are metal layers of the same material. A through electrode 42 that penetrates the support substrate 11 is provided. The through silicon via 42 electrically connects the wiring layer 14 and the terminal 40. The through electrode 42 is a metal layer such as a copper layer or a gold layer. An annular electrode 62 is provided on the annular metal layer 68. The annular electrode 62 is a metal layer such as a nickel layer, a tungsten layer, a copper layer, an aluminum layer, or a gold layer. If the upper surface of the annular metal layer 68 has good solder wettability, the annular electrode 62 may not be provided.

基板50の下面に弾性波共振器52および配線層54が設けられている。弾性波共振器52は、例えば圧電薄膜共振器である。基板50は、例えばシリコン基板、サファイア基板、スピネル基板またはアルミナ基板である。配線層54は例えば銅層、アルミニウム層または金層等の金属層である。基板50はバンプ44を介し圧電基板10にフリップチップ実装(フェースダウン実装)されている。バンプ44は、例えば金バンプ、半田バンプまたは銅バンプである。バンプ44はパッド28と配線層54とを接合する。 An elastic wave resonator 52 and a wiring layer 54 are provided on the lower surface of the substrate 50. The elastic wave resonator 52 is, for example, a piezoelectric thin film resonator. The substrate 50 is, for example, a silicon substrate, a sapphire substrate, a spinel substrate, or an alumina substrate. The wiring layer 54 is a metal layer such as a copper layer, an aluminum layer, or a gold layer. The substrate 50 is flip-chip mounted (face-down mounted) on the piezoelectric substrate 10 via bumps 44. The bump 44 is, for example, a gold bump, a solder bump or a copper bump. The bump 44 joins the pad 28 and the wiring layer 54.

圧電基板10上に基板50を囲むように封止部60が設けられている。封止部60は、半田等の金属材料である。封止部60は、環状電極62に接合されている。基板50の上面および封止部60の上面に平板状のリッド64が設けられている。リッド64は例えば金属板または絶縁板である。リッド64および封止部60を覆うように保護膜66が設けられている。保護膜66は金属膜または絶縁膜である。 A sealing portion 60 is provided on the piezoelectric substrate 10 so as to surround the substrate 50. The sealing portion 60 is a metal material such as solder. The sealing portion 60 is joined to the annular electrode 62. A flat lid 64 is provided on the upper surface of the substrate 50 and the upper surface of the sealing portion 60. The lid 64 is, for example, a metal plate or an insulating plate. A protective film 66 is provided so as to cover the lid 64 and the sealing portion 60. The protective film 66 is a metal film or an insulating film.

弾性波共振器25および52は空隙65を介し対向している。空隙65は、封止部60、圧電基板10、基板50およびリッド64により封止される。弾性波共振器25および52は空隙65に囲まれることにより、振動が規制されない。 The elastic wave resonators 25 and 52 face each other through the gap 65. The gap 65 is sealed by the sealing portion 60, the piezoelectric substrate 10, the substrate 50, and the lid 64. The elastic wave resonators 25 and 52 are surrounded by the gap 65, so that vibration is not regulated.

図9は、実施例3における圧電基板の平面図である。図9に示すように、圧電基板10上に弾性波共振器25が設けられている。圧電基板10内に配線層14が設けられている。支持基板11の周縁の圧電基板10内に環状金属層68が設けられている。パッド28上にバンプ44が設けられている。複数の弾性波共振器25は、直列共振器S1からS3および並列共振器P1およびP2に対応する。複数のバンプ44は入力端子Tin、出力端子Toutおよびグランド端子Tgndに対応する。入力端子Tinと出力端子Toutとの間に直列共振器S1からS3が直列に、並列共振器P1およびP2が並列に接続されている。 FIG. 9 is a plan view of the piezoelectric substrate according to the third embodiment. As shown in FIG. 9, an elastic wave resonator 25 is provided on the piezoelectric substrate 10. A wiring layer 14 is provided in the piezoelectric substrate 10. An annular metal layer 68 is provided in the piezoelectric substrate 10 on the periphery of the support substrate 11. A bump 44 is provided on the pad 28. The plurality of elastic wave resonators 25 correspond to the series resonators S1 to S3 and the parallel resonators P1 and P2. The plurality of bumps 44 correspond to the input terminal Tin, the output terminal Tout, and the ground terminal Tgnd. The series resonators S1 to S3 are connected in series, and the parallel resonators P1 and P2 are connected in parallel between the input terminal Tin and the output terminal Tout.

実施例3によれば、環状金属層68は、IDT20を囲み圧電基板10の周縁に埋め込まれている。基板50は、圧電基板10上に搭載されている。封止部60は、平面視において基板50を囲みかつIDT20と基板50の下面とが空隙65を挟み対向するように、IDT20を封止する。これにより、図8の矢印82のように、弾性波共振器25において発生した熱は、配線層14および支持基板11を介し端子40から放熱される。さらに、矢印84のように、弾性波共振器25において発生した熱は、配線層14、支持基板11、環状金属層68、環状電極62および封止部60を介し放出される。よって、弾性波共振器25において発生した熱を効率よく放出することができる。 According to the third embodiment, the annular metal layer 68 surrounds the IDT 20 and is embedded in the peripheral edge of the piezoelectric substrate 10. The substrate 50 is mounted on the piezoelectric substrate 10. The sealing portion 60 seals the IDT 20 so as to surround the substrate 50 in a plan view and the IDT 20 and the lower surface of the substrate 50 face each other with the gap 65 interposed therebetween. As a result, as shown by the arrow 82 in FIG. 8, the heat generated in the elastic wave resonator 25 is dissipated from the terminal 40 via the wiring layer 14 and the support substrate 11. Further, as shown by the arrow 84, the heat generated in the elastic wave resonator 25 is released through the wiring layer 14, the support substrate 11, the annular metal layer 68, the annular electrode 62, and the sealing portion 60. Therefore, the heat generated in the elastic wave resonator 25 can be efficiently released.

環状金属層68、環状電極62および封止部60の熱伝導率は圧電基板10の熱伝導率より大きいことが好ましい。これにより、熱をより効率的に放出することができる。圧電基板10にラダー型フィルタが形成された例を説明したが、圧電基板10には多重モード型フィルタが設けられていてもよい。基板50の下面に弾性波共振器52として圧電薄膜共振器が設けられた例を説明したが、基板50の下面には、弾性表面波共振器、受動素子または能動素子が設けられていてもよい。基板50の下面には、電子素子が設けられていなくてもよい。 It is preferable that the thermal conductivity of the annular metal layer 68, the annular electrode 62 and the sealing portion 60 is larger than the thermal conductivity of the piezoelectric substrate 10. As a result, heat can be released more efficiently. Although the example in which the ladder type filter is formed on the piezoelectric substrate 10 has been described, the piezoelectric substrate 10 may be provided with the multiple mode type filter. Although an example in which a piezoelectric thin film resonator is provided as an elastic wave resonator 52 on the lower surface of the substrate 50 has been described, an elastic surface wave resonator, a passive element, or an active element may be provided on the lower surface of the substrate 50. .. An electronic element may not be provided on the lower surface of the substrate 50.

実施例4は、弾性波デバイスとしてデュプレクサの例である。図10は、実施例4に係るデュプレクサの回路図である。図10に示すように、共通端子Antと送信端子Txとの間に送信フィルタ90が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ92が接続されている。送信フィルタ90は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ92は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。 Example 4 is an example of a duplexer as an elastic wave device. FIG. 10 is a circuit diagram of the duplexer according to the fourth embodiment. As shown in FIG. 10, a transmission filter 90 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 92 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 90 passes a signal in the transmission band among the high-frequency signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 92 passes a signal in the reception band among the high frequency signals input from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies.

図11(a)は、実施例4に係るデュプレクサの平面図、図11(b)は、図11(a)のA−A断面図である。図11(a)および図11(b)に示すように、圧電基板10上に送信フィルタ90および受信フィルタ92が設けられている。送信フィルタ90および受信フィルタ92は、各々弾性波共振器25、配線層14およびパッド28を有している。送信フィルタ90および受信フィルタ92は、各々直列共振器S1からS3並びに並列共振器P1およびP2を有するラダー型フィルタである。送信フィルタ90と受信フィルタ92との間に圧電基板10に埋め込まれた配線層14aが設けられている。配線層14aには例えばグランド電位が供給される。 11 (a) is a plan view of the duplexer according to the fourth embodiment, and FIG. 11 (b) is a cross-sectional view taken along the line AA of FIG. 11 (a). As shown in FIGS. 11A and 11B, a transmission filter 90 and a reception filter 92 are provided on the piezoelectric substrate 10. The transmitting filter 90 and the receiving filter 92 each have an elastic wave resonator 25, a wiring layer 14, and a pad 28. The transmit filter 90 and the receive filter 92 are ladder type filters having series resonators S1 to S3 and parallel resonators P1 and P2, respectively. A wiring layer 14a embedded in the piezoelectric substrate 10 is provided between the transmission filter 90 and the reception filter 92. For example, a ground potential is supplied to the wiring layer 14a.

実施例4によれば、配線層14aにより、送信フィルタ90と受信フィルタ92とのアイソレーションを向上できる。アイソレーションを向上させるフィルタとしてデュプレクサの送信フィルタおよび受信フィルタを例に説明したが、他のフィルタでもよい。アイソレーションを向上させるフィルタは通過帯域が重なっていないことが好ましい。送信フィルタ90および受信フィルタ92としてラダー型フィルタを例に説明したが、多重モード型フィルタでもよい。デュレプレクサを例に説明したがトライプレクサまたはクワッドプレクサのようなマルチプレクサでもよい。 According to the fourth embodiment, the wiring layer 14a can improve the isolation between the transmission filter 90 and the reception filter 92. Although the duplexer transmission filter and reception filter have been described as examples of filters for improving isolation, other filters may be used. It is preferable that the pass bands of the filter for improving isolation do not overlap. Although the ladder type filter has been described as an example of the transmission filter 90 and the reception filter 92, a multiple mode type filter may also be used. Although the Dureplexer has been described as an example, a multiplexer such as a triplexer or a quadplexer may be used.

図12(a)は、実施例5に係るフィルタの平面図、図12(b)は、図12(a)のA−A断面図である。図12(a)および図12(b)に示すように、圧電基板10上に弾性波共振器25、配線層14およびパッド28が設けられている。弾性波共振器25を囲むように圧電基板10に配線層14bが埋め込まれている。配線層14bには例えばグランド電位が供給される。 12 (a) is a plan view of the filter according to the fifth embodiment, and FIG. 12 (b) is a cross-sectional view taken along the line AA of FIG. 12 (a). As shown in FIGS. 12 (a) and 12 (b), an elastic wave resonator 25, a wiring layer 14, and a pad 28 are provided on the piezoelectric substrate 10. A wiring layer 14b is embedded in the piezoelectric substrate 10 so as to surround the elastic wave resonator 25. For example, a ground potential is supplied to the wiring layer 14b.

実施例5によれば、配線層14bは、平面視においてIDT20を囲むように設けられている。これにより、IDT20間のアイソレーションを向上できる。 According to the fifth embodiment, the wiring layer 14b is provided so as to surround the IDT 20 in a plan view. Thereby, the isolation between the IDT 20 can be improved.

実施例2から5のように、フィルタが実施例1およびその変形例におけるIDTおよび配線層14を含むことにより、フィルタの放熱性を向上できる。ラダー型フィルタにおける直列共振器および並列共振器の数は任意に設定できる。実施例2では、配線層14を用いるフィルタとしてラダー型フィルタを例に説明したが、多重モードフィルタでもよい。 As in Examples 2 to 5, the heat dissipation of the filter can be improved by including the IDT and the wiring layer 14 in the first embodiment and its modifications. The number of series resonators and parallel resonators in the ladder type filter can be set arbitrarily. In the second embodiment, a ladder type filter has been described as an example of the filter using the wiring layer 14, but a multiple mode filter may also be used.

実施例4のように、マルチプレクサが実施例2、4および5のフィルタを含むことにより、マルチプレクサの放熱性を向上できる。 By including the filters of Examples 2, 4 and 5 in the multiplexer as in the fourth embodiment, the heat dissipation property of the multiplexer can be improved.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 圧電基板
11 支持基板
12 金属膜
14、14a、14b、18、36 配線層
16 保護膜
20 IDT
22 反射器
24 電極指
25 弾性波共振器
26 バスバー
27 櫛型電極
30 開口
34、35 空隙
33 絶縁膜
44 バンプ
50 基板
52 弾性波共振器
60 封止部
65 空隙
68 環状金属層
10 Piezoelectric substrate 11 Support substrate 12 Metal film 14, 14a, 14b, 18, 36 Wiring layer 16 Protective film 20 IDT
22 Reflector 24 Electrode finger 25 Elastic wave resonator 26 Bus bar 27 Comb-shaped electrode 30 Opening 34, 35 Void 33 Insulation film 44 Bump 50 Substrate 52 Elastic wave resonator 60 Sealing part 65 Void 68 Cyclic metal layer

Claims (11)

支持基板と、
前記支持基板上に接合された圧電基板と、
前記圧電基板上に設けられ、複数の電極指と前記複数の電極指が接続されたバスバーとを有するIDTと、
前記圧電基板に設けられた開口内に充填され、上面の少なくとも一部が前記IDTのバスバーの少なくとも一部と接触する第1配線層と、
を具備し、
前記開口は前記圧電基板を貫通し、前記支持基板を貫通せず、
前記第1配線層の前記支持基板側の面は前記支持基板に接触し、
前記支持基板および前記第1配線層の熱伝導率は前記圧電基板の熱伝導率より高い弾性波デバイス。
Support board and
With the piezoelectric substrate bonded on the support substrate,
An IDT provided on the piezoelectric substrate and having a plurality of electrode fingers and a bus bar to which the plurality of electrode fingers are connected.
A first wiring layer that is filled in the opening provided in the piezoelectric substrate and in which at least a part of the upper surface is in contact with at least a part of the IDT bus bar.
Equipped with
The opening penetrates the piezoelectric substrate and does not penetrate the support substrate.
The surface of the first wiring layer on the support substrate side comes into contact with the support substrate.
An elastic wave device in which the thermal conductivity of the support substrate and the first wiring layer is higher than the thermal conductivity of the piezoelectric substrate.
前記第1配線層の上面の少なくとも一部と前記圧電基板の上面とは平坦である請求項1または2記載の弾性波デバイス。 The elastic wave device according to claim 1 or 2, wherein at least a part of the upper surface of the first wiring layer and the upper surface of the piezoelectric substrate are flat. 前記開口内に設けられた絶縁膜または空隙を挟み前記第1配線層と対向するように、前記第1配線層上に設けられた第2配線層を具備する請求項1または2記載の弾性波デバイス。 The elastic wave according to claim 1 or 2 , further comprising a second wiring layer provided on the first wiring layer so as to face the first wiring layer with an insulating film or gap provided in the opening interposed therebetween. device. 前記圧電基板上に前記第1配線層と隣接して設けられた第3配線層を具備する請求項1からのいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 3 , further comprising a third wiring layer provided adjacent to the first wiring layer on the piezoelectric substrate. 前記第1配線層は、2つの前記IDTの間に設けられ、前記2つのIDTのうち一方のバスバーに接触し、
前記第3配線層は、前記2つのIDTの間に設けられ、前記2つのIDTのうち他方のバスバーに接触し、前記第1配線層に隣接する請求項記載の弾性波デバイス。
The first wiring layer is provided between the two IDTs and comes into contact with the bus bar of one of the two IDTs.
The elastic wave device according to claim 4, wherein the third wiring layer is provided between the two IDTs, contacts the bus bar of the other of the two IDTs, and is adjacent to the first wiring layer.
前記IDTを囲み圧電基板の周縁に埋め込まれた環状金属層と、
前記圧電基板上に搭載された基板と、
平面視において前記基板を囲みかつ前記IDTと前記基板の下面とが空隙を挟み対向するように、前記IDTを封止する封止部と、
を具備する請求項1からのいずれか一項記載の弾性波デバイス。
An annular metal layer that surrounds the IDT and is embedded in the periphery of the piezoelectric substrate.
The substrate mounted on the piezoelectric substrate and
A sealing portion that encloses the IDT and seals the IDT so that the IDT and the lower surface of the substrate face each other with a gap in between in a plan view.
The elastic wave device according to any one of claims 1 to 5.
前記第1配線層は、平面視において前記IDTを囲むように設けられている請求項1からのいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 6 , wherein the first wiring layer is provided so as to surround the IDT in a plan view. 前記支持基板の上面は凹部を有し、前記第1配線層は少なくとも前記凹部において前記支持基板と接触する請求項1から7のいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 7, wherein the upper surface of the support substrate has a recess, and the first wiring layer contacts the support substrate at least in the recess. 前記IDTを含むフィルタを具備する請求項1からのいずれか一項記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 8 , further comprising a filter including the IDT. 入力端子と出力端子との間に直列に接続され、各々が前記IDTを含む複数の直列共振器と、前記入力端子と前記出力端子との間に並列に接続され、各々が前記IDTを含む1または複数の並列共振器と、を含むフィルタを具備し、
前記第1配線層は、前記複数の直列共振器の少なくとも2つの間に接続されている請求項記載の弾性波デバイス。
A plurality of series resonators connected in series between an input terminal and an output terminal, each containing the IDT, and connected in parallel between the input terminal and the output terminal, each containing the IDT. Or equipped with multiple parallel resonators and a filter including
The elastic wave device according to claim 4, wherein the first wiring layer is connected between at least two of the plurality of series resonators.
前記フィルタを含むマルチプレクサを具備する請求項または10記載の弾性波デバイス。 The elastic wave device according to claim 9 or 10 , further comprising a multiplexer including the filter.
JP2017106377A 2017-05-30 2017-05-30 Elastic wave device Active JP6934324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106377A JP6934324B2 (en) 2017-05-30 2017-05-30 Elastic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106377A JP6934324B2 (en) 2017-05-30 2017-05-30 Elastic wave device

Publications (2)

Publication Number Publication Date
JP2018207144A JP2018207144A (en) 2018-12-27
JP6934324B2 true JP6934324B2 (en) 2021-09-15

Family

ID=64958231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106377A Active JP6934324B2 (en) 2017-05-30 2017-05-30 Elastic wave device

Country Status (1)

Country Link
JP (1) JP6934324B2 (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11936358B2 (en) * 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US12224732B2 (en) 2018-06-15 2025-02-11 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonators and filters for 27 GHz communications bands
US10819309B1 (en) 2019-04-05 2020-10-27 Resonant Inc. Transversely-excited film bulk acoustic resonator package and method
US12119805B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Substrate processing and membrane release of transversely-excited film bulk acoustic resonator using a sacrificial tub
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12149227B2 (en) 2018-06-15 2024-11-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US12132464B2 (en) 2018-06-15 2024-10-29 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US12021496B2 (en) 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US12218650B2 (en) 2018-06-15 2025-02-04 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12212306B2 (en) 2018-06-15 2025-01-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US12191838B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device and method
US12184261B2 (en) 2018-06-15 2024-12-31 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a cavity having round end zones
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12021502B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark electrodes and optimized electrode thickness
US12170516B2 (en) 2018-06-15 2024-12-17 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US12119808B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US12191837B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US10992284B2 (en) 2018-06-15 2021-04-27 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US12155371B2 (en) 2021-03-29 2024-11-26 Murata Manufacturing Co., Ltd. Layout of xbars with multiple sub-resonators in series
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
US12095441B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers
WO2020186261A1 (en) 2019-03-14 2020-09-17 Resonant Inc. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
JP7426196B2 (en) * 2019-03-15 2024-02-01 太陽誘電株式会社 Acoustic wave devices and their manufacturing methods, filters and multiplexers
US20220116020A1 (en) 2020-04-20 2022-04-14 Resonant Inc. Low loss transversely-excited film bulk acoustic resonators and filters
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
JP7527873B2 (en) 2020-07-15 2024-08-05 太陽誘電株式会社 Acoustic Wave Devices
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12166468B2 (en) 2021-01-15 2024-12-10 Murata Manufacturing Co., Ltd. Decoupled transversely-excited film bulk acoustic resonators for high power filters

Also Published As

Publication number Publication date
JP2018207144A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6934324B2 (en) Elastic wave device
JP6509147B2 (en) Electronic device
US10090825B2 (en) Acoustic wave device
JP6556663B2 (en) Elastic wave device
JP6315716B2 (en) Elastic wave device
US10886891B2 (en) Acoustic wave device, module, and multiplexer
JP2019021998A (en) Electronic component
US12176879B2 (en) Acoustic wave device, filter and multiplexer
JP7551407B2 (en) Acoustic Wave Devices
JP7426196B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP7340344B2 (en) Acoustic wave devices, filters and multiplexers
JP7231368B2 (en) elastic wave device
JP2020174332A (en) Acoustic wave device, filter, and multiplexer
JP7361343B2 (en) module
JP7055499B1 (en) A module with an elastic wave device and its elastic wave device
JP7611007B2 (en) Acoustic wave device and its manufacturing method, filter and multiplexer
JP6793009B2 (en) Elastic wave device and multi-chamfered substrate
JP2024179587A (en) Acoustic Wave Devices, Filters, Multiplexers, and Electronic Components
JP2023041080A (en) Elastic wave device chip, elastic wave device, module including elastic wave device chip or elastic wave device, and manufacturing method for elastic wave device chip
JP2021034746A (en) Electronic device and method of manufacturing the same, filter, and multiplexer
JP2023041081A (en) Elastic wave device chip, elastic wave device, module including elastic wave device chip or elastic wave device, and manufacturing method for elastic wave device chip
JP2024069048A (en) Elastic wave device
JP2023053471A (en) Elastic wave device chip, elastic wave device, and module with elastic wave device chip or elastic wave device
JP2023041079A (en) Elastic wave device chip, elastic wave device, and module including elastic wave device chip or elastic wave device
JP2021068975A (en) Electronic component, filter, and multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6934324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250