[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6932291B1 - Microstructure manufacturing equipment and microstructure manufacturing method - Google Patents

Microstructure manufacturing equipment and microstructure manufacturing method Download PDF

Info

Publication number
JP6932291B1
JP6932291B1 JP2021521445A JP2021521445A JP6932291B1 JP 6932291 B1 JP6932291 B1 JP 6932291B1 JP 2021521445 A JP2021521445 A JP 2021521445A JP 2021521445 A JP2021521445 A JP 2021521445A JP 6932291 B1 JP6932291 B1 JP 6932291B1
Authority
JP
Japan
Prior art keywords
plate
chamber
shaped member
internal pressure
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021521445A
Other languages
Japanese (ja)
Other versions
JPWO2022070465A1 (en
Inventor
道也 横田
道也 横田
亮一 稲葉
亮一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/037457 external-priority patent/WO2022070390A1/en
Application filed by Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Engineering Co Ltd
Application granted granted Critical
Publication of JP6932291B1 publication Critical patent/JP6932291B1/en
Publication of JPWO2022070465A1 publication Critical patent/JPWO2022070465A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7555Mechanical means, e.g. for planarising, pressing, stamping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)
  • Mechanical Engineering (AREA)

Abstract

内圧差の制御変更で分離された凹凸部の接合や追加押圧と、接合された凹凸部の分離との逆動作を行う。チャンバーの内部に形成されて第一板状部材及び第二板状部材が出し入れ自在に収容される変圧室と、変圧室に収容された第一板状部材の第一非対向面とチャンバーの第一室内面との間に設けられる変動部と、変圧室に収容された第二板状部材の第二非対向面とチャンバーの第二室内面との間に設けられる保持部と、チャンバーの第一室内面及び変動部の間に変圧室と分離して気密状に設けられる第一空間部と、変圧室又は第一空間部のどちらか一方の内圧を他方の内圧よりも上昇させる室圧調整部と、室圧調整部を作動制御する制御部と、を備え、変動部は、チャンバーの第一室内に対して第一板状部材の第一非対向面とその厚み方向へ変形又は移動自在に当接する変位部位を有し、保持部は、チャンバーの第二室内面に対して第二板状部材の第二非対向面を支える保持部位を有し、制御部は、室圧調整部の作動による変圧室と第一空間部との圧力差で、変動部の変位部位とともに第一板状部材が、第二板状部材又は第一空間部に向け移動するように制御することを特徴とする微小構造物製造装置。The reverse operation of joining or additional pressing of the uneven portion separated by changing the control of the internal pressure difference and separating the joined uneven portion is performed. A transformer chamber formed inside the chamber and accommodating the first plate-shaped member and the second plate-shaped member in and out freely, and the first non-opposing surface of the first plate-shaped member housed in the transformer chamber and the chamber first. A variable portion provided between one indoor surface, a holding portion provided between a second non-opposing surface of a second plate-shaped member housed in a transformer chamber and a second indoor surface of a chamber, and a first chamber. Room pressure adjustment that raises the internal pressure of either the first space part, which is separated from the transformer chamber and airtightly between the indoor surface and the fluctuating part, and the transformer chamber or the first space part than the other. A unit and a control unit that controls the operation of the chamber pressure adjusting unit are provided, and the variable unit can be deformed or moved in the thickness direction of the first non-opposing surface of the first plate-shaped member with respect to the first chamber of the chamber. The holding portion has a holding portion that supports the second non-opposing surface of the second plate-like member with respect to the second chamber surface of the chamber, and the control portion is the chamber pressure adjusting portion. The feature is that the pressure difference between the transformer chamber and the first space due to the operation controls the first plate-shaped member to move toward the second plate-shaped member or the first space together with the displaced part of the fluctuating part. Microstructure manufacturing equipment.

Description

本発明は、マイクロLEDやマイクロチップなどの微小素子を含む微小構造体,ナノインプリントなどの微細加工技術で成形加工される微小成形物,ガラス小片を含む微小絶縁片などからなる微小構造物を生産するために用いられる微小構造物製造装置、及び、微小構造物製造装置を用いた微小構造物製造方法に関する。
詳しくは、分離された微小構造物の接合や追加押圧、又は接合された微小構造物の分離(剥離)、若しくは微小構造物の転写などに用いられる微小構造物製造装置、及び、微小構造物製造方法に関する。
The present invention produces a microstructure including a microelement such as a microLED or a microchip, a microstructure formed by a microfabrication technique such as nanoimprint, a microstructure including a glass fragment, and the like. The present invention relates to a microstructure manufacturing apparatus used for the purpose, and a microstructure manufacturing method using the microstructure manufacturing apparatus.
Specifically, a microstructure manufacturing apparatus used for joining or additional pressing of separated microstructures, separation (peeling) of joined microstructures, or transfer of microstructures, and microstructure manufacturing. Regarding the method.

従来、この種の微小構造物製造装置として、少なくともいずれか一方がフィルム状である型と被成形物とが所定の剥離位置まで剥離しないように加圧する剥離防止手段と、型又は被成形物のいずれか一方を保持する保持部と、型又は被成形物に張力を付与する張力付与手段と、剥離防止手段と型及び被成形物とを相対的に移動させる移動手段と、を具備した離型装置がある(例えば、特許文献1参照)。
ナノインプリント技術により、型の成形パターンを樹脂等の被成形物に加圧し、熱や光の利用により成形パターンを被成形物に転写した後、被成形物から型を離型している。
特許文献1の図示例では、保持部に保持された被成形物に対して、可撓性のあるフィルム状に形成された型を剥離位置から剥離しており、剥離後の型と被成形物との間の角度を一定に調節する角度調節手段が具備されている。つまり、角度調節手段により、被成形物から型の成形パターンを一定の離型角度で斜めに引き抜くようになっている。
Conventionally, as a microstructure manufacturing apparatus of this type, a peeling prevention means for pressurizing a mold having at least one of them in the form of a film and a molded product so as not to peel them to a predetermined peeling position, and a mold or a molded product. Mold release provided with a holding portion for holding either one, a tension applying means for applying tension to the mold or the object to be molded, and a peeling preventing means and a moving means for relatively moving the mold and the object to be molded. There is an apparatus (see, for example, Patent Document 1).
The molding pattern of the mold is pressed against the object to be molded such as resin by the nanoimprint technology, the molding pattern is transferred to the object to be molded by using heat or light, and then the mold is released from the object to be molded.
In the illustrated example of Patent Document 1, a mold formed in a flexible film shape is peeled from the peeling position with respect to the object to be molded held in the holding portion, and the mold after peeling and the object to be molded are peeled. An angle adjusting means for adjusting the angle between the and the object is provided. That is, the angle adjusting means is used to diagonally pull out the molding pattern of the mold from the object to be molded at a constant mold release angle.

国際公開第2015/072572号International Publication No. 2015/072572

しかし乍ら、特許文献1では、被成形物に転写された凹凸パターンに対して、型の成形パターンを所定の角度で斜め方向に引き抜くため、剥離過程で被成形物の凹凸パターンが形状変形してダメージを生じてしまう。
詳しくは、図15(a)〜(c)に示されるナノインプリントの場合について説明する。
図15(a)に示される剥離前の状態では、型100の成形パターン110との凹凸接合により、被成形物200に転写された凹凸パターン210が、被成形物200の底面220に対して垂直状に立っている。
しかし、図15(b)に示される剥離時の状態では、型100の成形パターン110を斜め方向に引き抜くことに伴って、被成形物200の凹凸パターン210のうち凸状部211が倒れてしまう。
このため、図15(c)に示される剥離後の状態でも、一度倒れた凹凸パターン210の凸状部211は倒れたままで、剥離前の状態に戻ることはない。
このように被成形物200の凹凸パターン210から型100の成形パターン110を引き抜く方向(剥離方向)が斜めである場合には、特に凹凸パターン210の凹凸差が長くなる程、形状変形(倒れ)し易くなって、高精度なインプリント成形を達成できないという問題があった。
特にナノインプリントの場合には、凹凸パターンが極めて微細であるため、剥離時の僅かな形状変形(倒れ)でも、凹凸パターンの破損要因となって高精度な凹凸パターンを作製できないという問題があった。
ところで、ナノインプリント技術で成形加工される微小成形物に限らず、マイクロLEDやマイクロチップなどの微小素子を含む微小構造体や、ガラス小片を含む微小絶縁片などからなる微小構造物は、サイズが小さいだけでなくダメージを受け易いことから、取り扱いが困難である。このため、特許文献1のような離型装置を含む分離装置の他に、分離された微小構造物の接合装置や追加押圧装置,微小構造物の転写装置などの需要がある。
このような状況下で、微小構造物の接合や追加押圧,分離,転写などを同じ構造で行えるようにした製造装置が要望されている。
However, in Patent Document 1, since the molding pattern of the mold is pulled out diagonally at a predetermined angle with respect to the uneven pattern transferred to the object to be molded, the uneven pattern of the object to be molded is deformed in the peeling process. Will cause damage.
More specifically, the case of nanoimprint shown in FIGS. 15 (a) to 15 (c) will be described.
In the state before peeling shown in FIG. 15A, the concave-convex pattern 210 transferred to the object to be molded 200 by the concave-convex joint with the molding pattern 110 of the mold 100 is perpendicular to the bottom surface 220 of the object to be molded 200. Standing in the shape.
However, in the state at the time of peeling shown in FIG. 15B, the convex portion 211 of the uneven pattern 210 of the object to be molded 200 collapses as the molding pattern 110 of the mold 100 is pulled out in the oblique direction. ..
Therefore, even in the state after peeling shown in FIG. 15C, the convex portion 211 of the concave-convex pattern 210 that has once collapsed remains collapsed and does not return to the state before peeling.
When the direction (peeling direction) of pulling out the molding pattern 110 of the mold 100 from the uneven pattern 210 of the object to be molded 200 is oblique in this way, the shape is deformed (tilted) as the unevenness difference of the concave-convex pattern 210 becomes longer. There is a problem that it becomes easy to perform and it is not possible to achieve high-precision imprint molding.
In particular, in the case of nanoimprint, since the uneven pattern is extremely fine, there is a problem that even a slight shape deformation (tilt) at the time of peeling causes damage to the uneven pattern and makes it impossible to produce a highly accurate uneven pattern.
By the way, not only microstructures formed by nanoimprint technology, but also microstructures including microelements such as micro LEDs and microchips, and microstructures including microinsulation pieces including glass fragments are small in size. Not only is it vulnerable to damage, it is difficult to handle. Therefore, in addition to the separation device including the release device as in Patent Document 1, there is a demand for a joining device for separated microstructures, an additional pressing device, a transfer device for microstructures, and the like.
Under such circumstances, there is a demand for a manufacturing apparatus capable of performing joining, additional pressing, separation, transfer, etc. of microstructures with the same structure.

このような課題を解決するために本発明に係る微小構造物製造装置は、互いに対向する第一板状部材の第一対向面又は第二板状部材の第二対向面のいずれか一方若しくは両方が有する凹凸部を接合又は分離させる微小構造物製造装置であって、チャンバーの内部に形成されて前記第一板状部材及び前記第二板状部材が出し入れ自在に収容される変圧室と、前記変圧室に収容された前記第一板状部材の第一非対向面と前記チャンバーの第一室内面との間に設けられる変動部と、前記変圧室に収容された前記第二板状部材の第二非対向面と前記チャンバーの第二室内面との間に設けられる保持部と、前記チャンバーの前記第一室内面及び前記変動部の間に前記変圧室と分離して気密状に設けられる第一空間部と、前記変圧室又は前記第一空間部のどちらか一方の内圧を他方の内圧よりも上昇させる室圧調整部と、前記室圧調整部を作動制御する制御部と、を備え、前記変動部は、前記チャンバーの前記第一室内面に対して前記第一板状部材の前記第一非対向面とその厚み方向へ変形又は移動自在に当接する変位部位を有し、前記保持部は、前記チャンバーの前記第二室内面に対して前記第二板状部材の前記第二非対向面を支える保持部位を有し、前記制御部は、前記室圧調整部の作動による前記変圧室と前記第一空間部との圧力差で、前記変動部の前記変位部位とともに前記第一板状部材が、前記第二板状部材又は前記第一空間部に向け移動するように制御することを特徴とする。
また、このような課題を解決するために本発明に係る微小構造物製造方法は、互いに対向する第一板状部材の第一対向面又は第二板状部材の第二対向面のいずれか一方若しくは両方が有する凹凸部を接合又は分離させる微小構造物製造方法であって、チャンバーの内部に形成された変圧室に前記第一板状部材及び前記第二板状部材を入れる搬入工程と、前記第一板状部材を前記チャンバーの第一室内面に沿って位置決めし、前記第二板状部材を前記チャンバーの第二室内面に沿って位置決めする保持工程と、前記変圧室の内圧を調整する室圧調整工程と、前記第一板状部材及び前記第二板状部材を前記変圧室から取り出す搬出工程と、を含み、前記保持工程では、前記第一板状部材の第一非対向面と前記第一室内面との間に設けられた変動部の変位部位に対して、前記第一板状部材の前記第一非対向面を、その厚み方向へ当接させ、前記変位部位の厚み方向への変形又は移動に伴って、前記第一非対向面が前記第一室内面に対し移動可能となるとともに、前記第一室内面及び前記変動部の間に第一空間部が前記変圧室と分離して気密状に設けられ、前記第二板状部材の第二非対向面と前記第二室内面との間に設けられた保持部の保持部位に対して、前記第二板状部材の前記第二非対向面を前記厚み方向へ当接させて支え、前記室圧調整工程では、室圧調整部により前記変圧室又は前記第一空間部のどちらか一方の内圧を他方の内圧よりも上昇して、前記変動部の前記変位部位とともに前記第一板状部材が、前記第二板状部材又は前記第一空間部に向け移動させることを特徴とする。
In order to solve such a problem, the microstructure manufacturing apparatus according to the present invention has either or both of the first facing surface of the first plate-shaped member facing each other and the second facing surface of the second plate-shaped member. A transformer chamber formed inside a chamber in which the first plate-shaped member and the second plate-shaped member are freely moved in and out, and the above-mentioned A variable portion provided between the first non-opposing surface of the first plate-shaped member housed in the transformer chamber and the first chamber surface of the chamber, and the second plate-shaped member housed in the transformer chamber. A holding portion provided between the second non-opposing surface and the second chamber surface of the chamber is provided in an airtight manner separated from the transformer chamber between the first chamber surface and the fluctuating portion of the chamber. A first space unit, a chamber pressure adjusting unit that raises the internal pressure of either the transformer chamber or the first space unit more than the other internal pressure, and a control unit that operates and controls the chamber pressure adjusting unit are provided. The variable portion has a displacement portion that abuts with respect to the first chamber surface of the chamber with the first non-opposing surface of the first plate-shaped member in the thickness direction thereof so as to be deformably or movable, and holds the first plate-shaped member. The unit has a holding portion that supports the second non-opposing surface of the second plate-shaped member with respect to the second chamber surface of the chamber, and the control unit is the transformer by the operation of the chamber pressure adjusting unit. The pressure difference between the chamber and the first space portion controls the first plate-shaped member to move toward the second plate-shaped member or the first space portion together with the displacement portion of the fluctuation portion. It is characterized by.
Further, in order to solve such a problem, the microstructure manufacturing method according to the present invention is either the first facing surface of the first plate-shaped member or the second facing surface of the second plate-shaped member facing each other. Alternatively, it is a method for manufacturing a microstructure that joins or separates uneven portions having both of them, and is a carry-in step of inserting the first plate-shaped member and the second plate-shaped member into a transformation chamber formed inside the chamber, and the above-mentioned A holding step of positioning the first plate-shaped member along the first chamber surface of the chamber and positioning the second plate-shaped member along the second chamber surface of the chamber, and adjusting the internal pressure of the transformation chamber. The chamber pressure adjusting step and the carrying-out step of taking out the first plate-shaped member and the second plate-shaped member from the transformation chamber are included, and in the holding step, the first non-opposing surface of the first plate-shaped member is used. relative displacement site of variation unit provided between the first chamber surface, the said first non-facing surfaces of the first plate-shaped member, abutted to the thickness direction, the thickness direction of the displacement portion with the deformation or movement of the, movable the first non-facing surface with respect to the first chamber surface and Do Rutotomoni first space part said variable pressure chamber between the first chamber surface and the variation unit The second plate-shaped member is provided in an airtight manner with respect to the holding portion of the holding portion provided between the second non-opposing surface of the second plate-shaped member and the second chamber surface. In the chamber pressure adjusting step, the internal pressure of either the transformation chamber or the first space is adjusted from the other internal pressure by the chamber pressure adjusting portion. Is also raised, and the first plate-shaped member is moved toward the second plate-shaped member or the first space portion together with the displacement portion of the variable portion.

本発明の実施形態(第一実施形態)に係る微小構造物製造装置及び微小構造物製造方法(接合装置及び接合方法)の全体構成を示す説明図であり、(a)が搬入後の縦断正面図、(b)が図1(a)の横断平面図である。It is explanatory drawing which shows the whole structure of the microstructure manufacturing apparatus and the microstructure manufacturing method (joining apparatus and joining method) which concerns on embodiment (first embodiment) of this invention, and (a) is a longitudinal front surface after carrying-in. FIG. 1B is a cross-sectional plan view of FIG. 1A. 同接合方法の搬入工程〜保持工程を示す説明図であり、(a)が一次搬入過程の縦断正面図、(b)が二次搬入過程の縦断正面図、(c)が保持工程の縦断正面図である。It is explanatory drawing which shows the carry-in process-holding process of the same joining method, (a) is a vertical sectional front view of a primary carry-in process, (b) is a vertical sectional front view of a secondary carry-in process, (c) is a vertical sectional front view of a holding process. It is a figure. 同接合方法の保持工程〜搬出工程を示す説明図であり、(a)がチャンバー閉動後の縦断正面図、(b)が差圧過程及び加圧接合過程の縦断正面図、(c)が大気開放過程及び搬出工程の縦断正面図である。It is explanatory drawing which shows the holding process-carrying-out process of the same joining method, (a) is a vertical sectional front view after the chamber is closed, (b) is a vertical sectional front view of a differential pressure process and a pressure joining process, and (c) is. It is a longitudinal front view of the air opening process and the carrying-out process. 本発明の実施形態(第二実施形態)に係る微小構造物製造装置及び微小構造物製造方法(分離装置及び分離方法)の全体構成を示す説明図であり、(a)が搬入後の縦断正面図、(b)が図4(a)の横断平面図、(c)が一部を部分拡大した縦断正面図である。It is explanatory drawing which shows the whole structure of the microstructure manufacturing apparatus and the microstructure manufacturing method (separation apparatus and separation method) which concerns on embodiment (second embodiment) of this invention, and (a) is a longitudinal front surface after carrying-in. FIG. 4B is a cross-sectional plan view of FIG. 4A, and FIG. 4C is a partially enlarged vertical sectional front view. 同分離方法の保持工程〜室圧調整工程を示す説明図であり、(a)がチャンバー閉動後の縦断正面図、(b)が差圧過程の縦断正面図、(c)が剥離過程の縦断正面図である。It is explanatory drawing which shows the holding process-chamber pressure adjustment process of the same separation method, (a) is a longitudinal front view after closing a chamber, (b) is a longitudinal front view of a differential pressure process, and (c) is a peeling process. It is a vertical sectional front view. 同分離方法の室圧調整工程〜搬出工程を示す説明図であり、(a)が大気開放過程の縦断正面図、(b)が一次搬出過程の縦断正面図、(c)が二次搬出過程の縦断正面図である。It is explanatory drawing which shows the room pressure adjustment process to carry-out process of the same separation method, (a) is a vertical sectional front view of an atmosphere opening process, (b) is a vertical sectional front view of a primary carry-out process, (c) is a secondary carry-out process. It is a vertical sectional front view of. 本発明の実施形態(第三実施形態)に係る微小構造物製造装置及び微小構造物製造方法(転写装置及び転写方法)の全体構成を示す説明図であり、(a)が搬入後の縦断正面図、(b)が図7(a)の横断平面図である。It is explanatory drawing which shows the whole structure of the microstructure manufacturing apparatus and the microstructure manufacturing method (transfer apparatus and transfer method) which concerns on embodiment (third embodiment) of this invention, (a) is a longitudinal front surface after carrying in. FIG. 7B is a cross-sectional plan view of FIG. 7A. 同転写方法の搬入工程〜保持工程を示す説明図であり、(a)が一次搬入過程の縦断正面図、(b)が二次搬入過程の縦断正面図、(c)が保持工程の縦断正面図である。It is explanatory drawing which shows the carry-in process-holding process of the same transfer method, (a) is a longitudinal front view of a primary carry-in process, (b) is a longitudinal front view of a secondary carry-in process, (c) is a longitudinal front view of a holding process. It is a figure. 同転写方法の保持工程〜室圧調整工程を示す説明図であり、(a)がチャンバー閉動後の縦断正面図、(b)が差圧過程及び加圧接合過程の縦断正面図、(c)が差圧過程及び剥離過程の縦断正面図である。It is explanatory drawing which shows the holding process-chamber pressure adjustment process of the same transfer method, (a) is a longitudinal front view after closing a chamber, (b) is a longitudinal front view of a differential pressure process and a pressure joining process, (c). ) Is a longitudinal front view of the differential pressure process and the peeling process. 同転写方法の室圧調整工程〜搬出工程を示す説明図であり、(a)が大気開放過程の縦断正面図、(b)が一次搬出過程の縦断正面図、(c)が二次搬出過程の縦断正面図である。It is explanatory drawing which shows the room pressure adjustment process to carry-out process of the same transfer method, (a) is the longitudinal front view of the atmosphere opening process, (b) is the longitudinal front view of the primary carry-out process, (c) is the secondary carry-out process. It is a vertical sectional front view of. 本発明の実施形態に係る微小構造物製造装置及び微小構造物製造方法の変形例(第四実施形態)を示す説明図であり、(a)が搬入後の縦断正面図、(b)が差圧過程の縦断正面図、(c)が剥離過程の縦断正面図である。It is explanatory drawing which shows the modification (fourth embodiment) of the microstructure manufacturing apparatus and the microstructure manufacturing method which concerns on embodiment of this invention, (a) is the vertical sectional front view after carry-in, (b) is the difference. The longitudinal front view of the pressure process and (c) are the longitudinal front views of the peeling process. 本発明の実施形態に係る微小構造物製造装置及び微小構造物製造方法の変形例(第五実施形態)を示す説明図であり、(a)が搬入後の縦断正面図、(b)が差圧過程の縦断正面図、(c)が剥離過程の縦断正面図である。It is explanatory drawing which shows the modification (fifth embodiment) of the microstructure manufacturing apparatus and the microstructure manufacturing method which concerns on embodiment of this invention, (a) is the vertical sectional front view after carry-in, (b) is the difference. The longitudinal front view of the pressure process and (c) are the longitudinal front views of the peeling process. 本発明の実施形態に係る微小構造物製造装置及び微小構造物製造方法の変形例(第六実施形態)を示す説明図であり、(a)が搬入後の縦断正面図、(b)が差圧過程の縦断正面図、(c)が剥離過程の縦断正面図である。It is explanatory drawing which shows the modification (sixth embodiment) of the microstructure manufacturing apparatus and the microstructure manufacturing method which concerns on embodiment of this invention, (a) is the vertical sectional front view after carry-in, (b) is the difference. The longitudinal front view of the pressure process and (c) are the longitudinal front views of the peeling process. 本発明の実施形態に係る微小構造物製造装置及び微小構造物製造方法の変形例(第七実施形態)を示す説明図であり、(a)が搬入後の縦断正面図、(b)が差圧過程の縦断正面図、(c)が剥離過程の縦断正面図である。It is explanatory drawing which shows the modification (7th Embodiment) of the microstructure manufacturing apparatus and the microstructure manufacturing method which concerns on embodiment of this invention, (a) is the vertical sectional front view after carry-in, (b) is the difference. The longitudinal front view of the pressure process and (c) are the longitudinal front views of the peeling process. 従来の分離方法の一例を示す説明図であり、(a)が剥離前の部分拡大縦断正面図、(b)が剥離中の部分拡大縦断正面図、(c)が剥離後の部分拡大縦断正面図である。It is explanatory drawing which shows an example of the conventional separation method. FIG. It is a figure.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係る微小構造物製造装置A及び微小構造物製造方法は、図1〜図14に示すように、互いに対向する第一板状部材B又は第二板状部材Cのいずれか一方、若しくは第一板状部材B及び第二板状部材Cの両方が有する凹凸部を接合又は分離させて微小構造物Mを生産するための製造装置と製造方法である。凹凸部の接合や分離は、第一板状部材B及び第二板状部材Cの対向方向への相対的な接近又は離隔移動によって行われる。
第一板状部材Bと第二板状部材Cは、ガラスや合成樹脂などの硬質材料で、矩形(長方形及び正方形を含む角が直角の四辺形)や円形の薄板状に形成される。
第一板状部材Bにおいて第二板状部材Cと対向する表側の第一対向面Bfと、第二板状部材Cにおいて第一板状部材Bと対向する表側の第二対向面Cfは、第一対向面Bf又は第二対向面Cfのいずれか一方、若しくは第一対向面Bf及び第二対向面Cfの両方が、
後述する微小構造物Mの一部となる凹凸部を有している。
つまり、第一板状部材Bの第一対向面Bfや第二板状部材Cの第二対向面Cfに対して後述する微小構造物Mは、接着などによる本固定、又は着脱可能な保持による仮固定、若しくは一体的な形成による一体化で凹凸状に配置される。このため、後述する微小構造物Mの保持手段Dとして、本固定の場合には接着剤などの固定層D1を、第一板状部材Bの第一対向面Bfや第二板状部材Cの第二対向面Cfに設け、仮固定の場合には保持チャックD2を、第一板状部材Bの第一対向面Bfや第二板状部材Cの第二対向面Cfに設ける。保持チャックD2の具体例としては、真空チャック,粘着部材による粘着チャック,静電吸着による静電チャックなどが挙げられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 14, the microstructure manufacturing apparatus A and the microstructure manufacturing method according to the embodiment of the present invention are either the first plate-shaped member B or the second plate-shaped member C facing each other. On the other hand, it is a manufacturing apparatus and manufacturing method for producing a microstructure M by joining or separating the uneven portions of both the first plate-shaped member B and the second plate-shaped member C. The concavo-convex portion is joined or separated by relative approaching or separating movement of the first plate-shaped member B and the second plate-shaped member C in the opposite direction.
The first plate-shaped member B and the second plate-shaped member C are hard materials such as glass and synthetic resin, and are formed in a rectangular shape (a quadrilateral having right-angled corners including a rectangle and a square) or a circular thin plate shape.
In the first plate-shaped member B, the first facing surface Bf on the front side facing the second plate-shaped member C and the second facing surface Cf on the front side facing the first plate-shaped member B in the second plate-shaped member C are Either one of the first facing surface Bf or the second facing surface Cf, or both the first facing surface Bf and the second facing surface Cf
It has an uneven portion that becomes a part of the microstructure M described later.
That is, the microstructure M described later with respect to the first facing surface Bf of the first plate-shaped member B and the second facing surface Cf of the second plate-shaped member C is finally fixed by adhesion or the like, or is held detachably. It is arranged in an uneven shape by temporary fixing or integration by integral formation. Therefore, as the holding means D of the microstructure M described later, in the case of main fixing, a fixing layer D1 such as an adhesive is used on the first facing surface Bf of the first plate-shaped member B and the second plate-shaped member C. It is provided on the second facing surface Cf, and in the case of temporary fixing, the holding chuck D2 is provided on the first facing surface Bf of the first plate-shaped member B and the second facing surface Cf of the second plate-shaped member C. Specific examples of the holding chuck D2 include a vacuum chuck, an adhesive chuck made of an adhesive member, and an electrostatic chuck made of electrostatic adsorption.

微小構造物Mは、マイクロLEDやマイクロチップなどの微小素子,ガラス小片などの微小絶縁片,これらに類似する微小部品などの凹凸状に突出した微小部品Maを有する微小構造体M1と、ナノインプリントなどの微細加工技術で成形加工される互いに凹凸状に接合した成形型Mb及び成形基板Mcなどを有する微小成形物M2とがある。
微小構造体M1には、図1〜図3に示されるように、第一板状部材Bと第二板状部材Cの間に配置(搭載)された微小部品Maを挟み込むように接合した積層タイプと、図7〜図10に示されるように、第一板状部材B又は第二板状部材Cのいずれか一方に配置(搭載)された微小部品Maを他方へ移し替える転写タイプがある。一般的に微小部品Maは、第一板状部材Bや第二板状部材Cに対して複数個それぞれ所定間隔毎に並列状に搭載された整列配置とすることが多い。
このため、積層タイプや転写タイプのどちらであっても、その接合前の初期状態では、第一板状部材Bの第一対向面Bf又は第二板状部材Cの第二対向面Cfのいずれか一方(図示例では第二対向面Cf)に配置した微小部品Maが、他方に向けて部分的に突出する。このため、第一板状部材Bの第一対向面Bf又は第二板状部材Cの第二対向面Cfのいずれか一方は、微小部品Maが部分的に突出した非接触な凹凸部(非接合凹凸部Cu)を有する。
非接触な凹凸部として非接合凹凸部Cuが接合される積層タイプの微小構造体M1を製造するための微小構造物製造装置A及び微小構造物製造方法の一例としては、接合装置や接合方法が用いられる。
非接触な凹凸部として非接合凹凸部Cuが移し替えられる転写タイプの微小構造体M1を製造するための微小構造物製造装置A及び微小構造物製造方法の他の例としては、転写装置や転写方法が用いられる。
The microstructure M includes a microstructure M1 having microelements such as microLEDs and microchips, microinsulation pieces such as glass pieces, and microparts Ma such as microparts similar to these, and nanoimprints and the like. There are a molding die Mb and a molding substrate Mc which are joined to each other in a concavo-convex manner, which are molded by the microfabrication technique of the above.
As shown in FIGS. 1 to 3, the microstructure M1 is laminated so as to sandwich and join the micropart Ma arranged (mounted) between the first plate-shaped member B and the second plate-shaped member C. As shown in FIGS. 7 to 10, there is a type and a transfer type in which the minute component Ma arranged (mounted) on either the first plate-shaped member B or the second plate-shaped member C is transferred to the other. .. In general, a plurality of micro parts Ma are often arranged in parallel on the first plate-shaped member B and the second plate-shaped member C at predetermined intervals.
Therefore, regardless of whether it is a laminated type or a transfer type, in the initial state before joining, either the first facing surface Bf of the first plate-shaped member B or the second facing surface Cf of the second plate-shaped member C. The minute component Ma arranged on one side (second facing surface Cf in the illustrated example) partially protrudes toward the other side. Therefore, either the first facing surface Bf of the first plate-shaped member B or the second facing surface Cf of the second plate-shaped member C is a non-contact uneven portion (non-contact) in which the minute component Ma partially protrudes. It has a joint uneven portion Cu).
As an example of the microstructure manufacturing apparatus A and the microstructure manufacturing method for manufacturing the laminated type microstructure M1 in which the non-bonding concavo-convex portion Cu is bonded as the non-contact uneven portion, the joining device and the joining method are used. Used.
Other examples of the microstructure manufacturing apparatus A and the microstructure manufacturing method for manufacturing the transfer type microstructure M1 in which the non-bonded concavo-convex portion Cu is transferred as the non-contact uneven portion include a transfer device and transfer. The method is used.

微小成形物M2には、図4〜図6などに示されるように、第一板状部材B又は第二板状部材Cのいずれか一方に成形型Mbなどが配置され、他方に成形基板Mcなどを配置して互いに凹凸接合させた別タイプと、第一板状部材B又は第二板状部材Cのいずれか一方の全体が成形型Mbとなり、他方の全体が成形基板Mcとなって互いに凹凸接合させた一体タイプ(図示しない)がある。また微小成形物M2には図示しないが、第一板状部材B又は第二板状部材Cのいずれか一方に微小部品Maを配置し、微小部品Maが着脱自在に保持される粘着チャックなどの保持手段を他方に配置した別タイプや一体タイプも含まれる。
このため、別タイプや一体タイプのどちらであっても、その分離前の初期状態では、第一板状部材B又は第二板状部材Cのいずれか一方の成形型Mbや微小部品Maと、他方の成形基板Mcや保持手段とが凹凸接合した一対の凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を有する。
成形型Mbや微小部品Maなどと成形基板Mcや保持手段などとが凹凸接合した凹凸部となる第一接合凹凸部B1,第二接合凹凸部C1を有する別タイプや一体タイプの微小成形物M2を製造するための微小構造物製造装置A及び微小構造物製造方法の他の例としては、分離装置や分離方法が用いられる。
特に、微小成形物M2の場合は、第一板状部材Bと第二板状部材Cの間に隙間Eを有することが好ましい。隙間Eの具体例としては、図4や図5などに示される複数の第一接合凹凸部B1と第二接合凹凸部C1の外側に形成される四角枠状や円環状などの外側隙間E1,複数の第一接合凹凸部B1と第二接合凹凸部C1同士の間を通る貫通隙間E2,図13に示される第一板状部材Bや第二板状部材Cに開穿される通孔hと連通する内側隙間E3などがある。
In the micromolded product M2, as shown in FIGS. 4 to 6, a molding die Mb or the like is arranged on either one of the first plate-shaped member B and the second plate-shaped member C, and the molding substrate Mc is placed on the other. One of the other type, in which the first plate-shaped member B or the second plate-shaped member C is arranged and joined to each other in an uneven manner, becomes a molding mold Mb, and the whole of the other becomes a molding substrate Mc. There is an integrated type (not shown) with uneven joints. Further, although not shown in the micromolded product M2, an adhesive chuck or the like in which the micropart Ma is arranged on either the first plate-shaped member B or the second plate-shaped member C and the micropart Ma is detachably held. Another type or an integrated type in which the holding means is arranged on the other side is also included.
Therefore, regardless of whether it is a different type or an integrated type, in the initial state before the separation, the molding mold Mb or the minute part Ma of either the first plate-shaped member B or the second plate-shaped member C is formed. It has a pair of concavo-convex portions (first joint concavo-convex portion B1, second concavo-convex portion C1) in which the other molded substrate Mc and the holding means are concavo-convex-bonded.
Another type or integral type micromolded product M2 having a first joint uneven portion B1 and a second joint concave-convex portion C1 which are concave-convex portions in which the molding mold Mb, the micropart Ma, etc., and the molding substrate Mc, the holding means, etc. are unevenly joined. As another example of the microstructure manufacturing apparatus A and the microstructure manufacturing method for manufacturing the above, a separating apparatus and a separating method are used.
In particular, in the case of the micromolded product M2, it is preferable to have a gap E between the first plate-shaped member B and the second plate-shaped member C. As a specific example of the gap E, an outer gap E1, such as a square frame or an annular shape, formed outside the plurality of first joint uneven portions B1 and the second joint uneven portion C1 shown in FIGS. 4 and 5 and the like. Through gap E2 passing between the plurality of first joint uneven portions B1 and the second joint uneven portion C1, through holes h formed in the first plate-shaped member B and the second plate-shaped member C shown in FIG. There is an inner gap E3 that communicates with.

詳しく説明すると、本発明の実施形態に係る微小構造物製造装置Aは、第一板状部材B及び第二板状部材Cが収容される変圧室1と、変圧室1に収容された第一板状部材Bの裏側に設けられる変動部2と、変圧室1に収容された第二板状部材Cの他方の裏側に設けられる保持部3と、変圧室1と分離して設けられる第一空間部4と、変圧室1及び第一空間部4の内圧に圧力差を生じさせるように設けられる室圧調整部5と、を主要な構成要素として備えている。
さらに、第一空間部4の内圧を変更する第一内圧調整部6と、変圧室1と分離して設けられる第二空間部7と、第二空間部7の内圧を変更する第二内圧調整部8と、室圧調整部5,第一内圧調整部6及び第二内圧調整部8などを作動制御する制御部9を備えることが好ましい。
また、第一板状部材Bと第二板状部材Cは、通常、上下方向へ対向するように配置され、第一板状部材B及び第二板状部材Cの厚み方向を以下「Z方向」という。Z方向と交差する第一板状部材B及び第二板状部材Cに沿った方向を以下「XY方向」という。
図示例では、上方に矩形の第一板状部材Bが配置され、下方に矩形の第二板状部材Cを配置している。なお、その他の例として図示しないが、逆に矩形の第一板状部材Bが下方に配置され、矩形の第二板状部材Cを上方に配置することや、円形の第一板状部材Bと円形の第二板状部材Cを上下に配置することなどの変更も可能である。
More specifically, the microstructure manufacturing apparatus A according to the embodiment of the present invention includes a transformer chamber 1 in which the first plate-shaped member B and the second plate-shaped member C are housed, and a first transformer chamber 1 housed in the transformer chamber 1. The variable portion 2 provided on the back side of the plate-shaped member B, the holding portion 3 provided on the other back side of the second plate-shaped member C housed in the transformer chamber 1, and the first one provided separately from the transformer chamber 1. A space portion 4 and a chamber pressure adjusting portion 5 provided so as to cause a pressure difference between the internal pressures of the transformer chamber 1 and the first space portion 4 are provided as main components.
Further, the first internal pressure adjusting unit 6 for changing the internal pressure of the first space portion 4, the second space portion 7 provided separately from the transformer chamber 1, and the second internal pressure adjusting for changing the internal pressure of the second space portion 7. It is preferable to include a unit 8 and a control unit 9 for operating and controlling the chamber pressure adjusting unit 5, the first internal pressure adjusting unit 6, the second internal pressure adjusting unit 8, and the like.
Further, the first plate-shaped member B and the second plate-shaped member C are usually arranged so as to face each other in the vertical direction, and the thickness direction of the first plate-shaped member B and the second plate-shaped member C is hereinafter referred to as "Z direction". ". The direction along the first plate-shaped member B and the second plate-shaped member C that intersect the Z direction is hereinafter referred to as the "XY direction".
In the illustrated example, the rectangular first plate-shaped member B is arranged above, and the rectangular second plate-shaped member C is arranged below. Although not shown as another example, on the contrary, the rectangular first plate-shaped member B is arranged below, the rectangular second plate-shaped member C is arranged above, and the circular first plate-shaped member B is arranged. It is also possible to make changes such as arranging the circular second plate-shaped member C vertically.

変圧室1は、チャンバー10の内部に密閉可能に形成され、チャンバー10内の変圧室1とチャンバー10の外部空間とに亘って、第一板状部材B及び第二板状部材Cが出し入れ自在に収容される。
チャンバー10の内部は、搬入された第一板状部材B及び第二板状部材Cと厚み方向(Z方向)へ対向状に配置される第一室内面10aと第二室内面10bを有する。
第一室内面10aは、第一板状部材Bにおいて裏側の第一非対向面Brと、直接的又は間接的にZ方向へ対向してXY方向の平面上に形成される。第一室内面10aには、第一板状部材Bの第一非対向面Brなどを位置検出するために、間隙検出センサー(図示しない)を配置することが好ましい。
第二室内面10bは、第二板状部材Cにおいて裏側の第二非対向面Crと、直接的又は間接的にZ方向へ対向してXY方向の平面上に形成される。
チャンバー10は、密閉可能な変圧室1に対して第一板状部材B及び第二板状部材Cを出し入れするための出入口10cを有する。チャンバー10の出入口10cは、開閉自在に構成され、アクチュエータなどからなる駆動機構10dにより開閉される。なお、チャンバー10の変圧室1は、分割タイプと部分開閉タイプなどがあり、それぞれ出入口10cの構造が異なる。
変圧室1に対する第一板状部材B及び第二板状部材Cの搬入は、例えば搬送ロボットなどの搬送手段(図示しない)を用いて順次又は同時に行われる。変圧室1からの第一板状部材B及び第二板状部材Cの搬出は、搬送手段により同時又は順次行われる。
The transformer chamber 1 is formed so as to be hermetically sealed inside the chamber 10, and the first plate-shaped member B and the second plate-shaped member C can be freely moved in and out of the transformer chamber 1 in the chamber 10 and the external space of the chamber 10. Is housed in.
The inside of the chamber 10 has a first chamber surface 10a and a second chamber surface 10b arranged so as to face the carried-in first plate-shaped member B and the second plate-shaped member C in the thickness direction (Z direction).
The first chamber surface 10a is formed on a plane in the XY direction directly or indirectly facing the first non-opposing surface Br on the back side of the first plate-shaped member B in the Z direction. It is preferable to dispose a gap detection sensor (not shown) on the first chamber surface 10a in order to detect the position of the first non-opposing surface Br of the first plate-shaped member B.
The second indoor surface 10b is formed in the second plate-shaped member C on a plane in the XY direction directly or indirectly facing the second non-opposing surface Cr on the back side in the Z direction.
The chamber 10 has an entrance / exit 10c for moving the first plate-shaped member B and the second plate-shaped member C in and out of the sealable transformer chamber 1. The entrance / exit 10c of the chamber 10 is configured to be openable / closable, and is opened / closed by a drive mechanism 10d including an actuator or the like. The transformer chamber 1 of the chamber 10 has a split type and a partial opening / closing type, and each has a different structure of the entrance / exit 10c.
The first plate-shaped member B and the second plate-shaped member C are carried into the transformer chamber 1 sequentially or simultaneously by using a transport means (not shown) such as a transport robot. The first plate-shaped member B and the second plate-shaped member C are carried out from the transformer chamber 1 simultaneously or sequentially by the transport means.

変動部2は、搬入された第一板状部材Bの第一非対向面Brに対して厚み方向(Z方向)へ接触し、且つチャンバー10の第一室内面10aと離隔するように配置される。
変動部2は、チャンバー10の第一室内面10aに対して、搬入された第一板状部材Bの第一非対向面Brと厚み方向(Z方向)へ当接する変位部位2aを有する。
変位部位2aは、厚み方向(Z方向)へ変形可能又は移動可能に構成され、搬入された第一板状部材Bの第一非対向面Brを当接させることにより、厚み方向(Z方向)と交差する方向(XY方向)へ位置ズレ不能に位置決めして一体化される。
つまり、変動部2は、チャンバー10の第一室内面10aに対して変位部位2aがZ方向へ変形自在又は移動自在に配置され、変位部位2aの変形又は移動に伴って、第一板状部材BをZ方向へ移動させるように構成される。
変動部2とチャンバー10の第一室内面10aとの間には、第一空間部4が変圧室1と隔離して形成される。第一空間部4は、変動部2の変位部位2aに対して、第一板状部材Bの第一非対向面Brを当接することにより、気密状に形成される。
さらに、変動部2は、第一板状部材Bの第一非対向面Brと、第一空間部4とを連通させる第一通気口2bを有することが好ましい。
The fluctuating portion 2 is arranged so as to be in contact with the first non-opposing surface Br of the carried-in first plate-shaped member B in the thickness direction (Z direction) and to be separated from the first chamber surface 10a of the chamber 10. NS.
The fluctuating portion 2 has a displacement portion 2a that abuts on the first chamber surface 10a of the chamber 10 in the thickness direction (Z direction) with the first non-opposing surface Br of the first plate-shaped member B carried in.
The displacement portion 2a is configured to be deformable or movable in the thickness direction (Z direction), and is brought into contact with the first non-opposing surface Br of the first plate-shaped member B, so that the displacement portion 2a is in the thickness direction (Z direction). It is positioned and integrated so that it cannot be displaced in the direction intersecting with (XY direction).
That is, in the variable portion 2, the displacement portion 2a is arranged so as to be deformable or movable in the Z direction with respect to the first chamber surface 10a of the chamber 10, and the first plate-shaped member is arranged as the displacement portion 2a is deformed or moved. It is configured to move B in the Z direction.
A first space portion 4 is formed between the fluctuating portion 2 and the first chamber surface 10a of the chamber 10 so as to be isolated from the transformer chamber 1. The first space portion 4 is formed in an airtight manner by abutting the first non-opposing surface Br of the first plate-shaped member B against the displacement portion 2a of the fluctuating portion 2.
Further, the variable portion 2 preferably has a first vent 2b that communicates the first non-opposing surface Br of the first plate-shaped member B with the first space portion 4.

変動部2の具体例として図1〜図6などに示される場合には、チャンバー10の第一室内面10aに対してZ方向へ弾性変形可能に取り付けられた弾性通気体21で構成される。
図示例の弾性通気体21は、例えば軟質合成樹脂やゴムなどの弾性変形可能な材料で、その中央に一つの第一通気口2bを有する四角枠状や円環状などに形成されたパッキン又はOリングなどの環状部材からなる。弾性通気体21の厚み方向(Z方向)の一端部には、チャンバー10の第一室内面10aに対する取付部位21aを有している。弾性通気体21は、厚み方向(Z方向)の他端部を変位部位2aとして、搬入された第一板状部材Bの第一非対向面Brに当接させることにより、弾性通気体21の内側に第一空間部4が形成される。このため、変圧室1の内圧と第一空間部4の内圧との圧力差で、弾性通気体21がZ方向へ弾性的に圧縮変形及び膨張変形可能になっている。
なお、弾性通気体21の他の例として図示しないが、環状部材に代えて複数の第一通気口2bを有する板状部材や、多数の第一通気口2bを有する多孔質部材などを用いることも可能である。
これらの場合には、チャンバー10の第一室内面10aに配置された間隙検出センサーで、第一板状部材Bを位置検出することにより、第一板状部材Bの異常な変形や過剰な変形も検知することが可能になる。第一板状部材Bの過剰変形を機械的に防止するためのストッパーなどの変形抑止部材(図示しない)を設けることも可能である
さらに、変動部2に開設された第一通気口2bを通って、第一空間部4と第一板状部材Bの第一非対向面Brとが常時連通される。このため、後述する第一内圧調整部6により下降した第一空間部4の内圧と変圧室1の内圧との圧力差を利用して、変動部2の変位部位2aに対し、第一板状部材Bが真空吸着可能になる。
これにより、変圧室1の内圧上昇で変位部位2aに対し、第一板状部材Bの第一非対向面Brを着脱自在に吸着保持して仮止めされる。
また、変動部2の他の例として図示しないが、真空吸着に代えて粘着部材や静電吸着などを用いた仮止めに変更することも可能である。
When shown in FIGS. 1 to 6 as a specific example of the fluctuating portion 2, it is composed of an elastic ventilator 21 attached so as to be elastically deformable in the Z direction with respect to the first chamber surface 10a of the chamber 10.
The elastic ventilator 21 in the illustrated example is an elastically deformable material such as a soft synthetic resin or rubber, and is a packing or O-ring formed in a square frame shape or an annular shape having one first vent 2b in the center thereof. It consists of an annular member such as a ring. At one end of the elastic ventilator 21 in the thickness direction (Z direction), a mounting portion 21a with respect to the first chamber surface 10a of the chamber 10 is provided. The elastic ventilator 21 has the elastic ventilator 21 with the other end in the thickness direction (Z direction) as the displacement portion 2a and brought into contact with the first non-opposing surface Br of the first plate-shaped member B carried in. The first space portion 4 is formed inside. Therefore, the elastic ventilator 21 can be elastically compressively deformed and expanded and deformed in the Z direction due to the pressure difference between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4.
Although not shown as another example of the elastic vent body 21, a plate-shaped member having a plurality of first vents 2b, a porous member having a large number of first vents 2b, and the like are used instead of the annular member. Is also possible.
In these cases, the gap detection sensor arranged on the first chamber surface 10a of the chamber 10 detects the position of the first plate-shaped member B, whereby the first plate-shaped member B is abnormally deformed or excessively deformed. Can also be detected. It is also possible to provide a deformation suppressing member (not shown) such as a stopper for mechanically preventing excessive deformation of the first plate-shaped member B. Further, the first plate-shaped member B is passed through the first vent 2b provided in the variable portion 2. Therefore, the first space portion 4 and the first non-opposing surface Br of the first plate-shaped member B are always communicated with each other. Therefore, by utilizing the pressure difference between the internal pressure of the first space portion 4 lowered by the first internal pressure adjusting portion 6 described later and the internal pressure of the transformer chamber 1, the displacement portion 2a of the fluctuating portion 2 has a first plate shape. The member B can be vacuum-sucked.
As a result, the first non-opposing surface Br of the first plate-shaped member B is detachably attracted and held to the displacement portion 2a due to the increase in the internal pressure of the transformer chamber 1 and temporarily fixed.
Further, although not shown as another example of the variable portion 2, it is possible to change to temporary fixing using an adhesive member, electrostatic suction, or the like instead of vacuum suction.

保持部3は、搬入された第二板状部材Cの第二非対向面Crに対して厚み方向(Z方向)へ接触するように配置される。
さらに、保持部3は、チャンバー10の第二室内面10bに対して、搬入された第二板状部材Cの第二非対向面Crと厚み方向(Z方向)へ移動不能に当接する保持部位3aを有する。
つまり、保持部3は、保持部位3aに対し、第二板状部材Cの第二非対向面Crを当接させることで、第二板状部材CがZ方向へ移動不能に保持するように構成される。
保持部3とチャンバー10の第二室内面10bとの間には、第二空間部7を変圧室1と隔離して形成することが好ましい。第二空間部7は、保持部3の保持部位3aに対して、第二板状部材Cの第二非対向面Crを当接することにより、気密状に形成される。
また、保持部3は、第二板状部材Cの第二非対向面Crと、第二空間部7とを連通させる第二通気口3bを有することが好ましい。
The holding portion 3 is arranged so as to come into contact with the second non-opposing surface Cr of the carried-in second plate-shaped member C in the thickness direction (Z direction).
Further, the holding portion 3 is a holding portion that immovably contacts the second chamber surface 10b of the chamber 10 with the second non-opposing surface Cr of the second plate-shaped member C carried in in the thickness direction (Z direction). Has 3a.
That is, the holding portion 3 abuts the second non-opposing surface Cr of the second plate-shaped member C against the holding portion 3a so that the second plate-shaped member C is held immovably in the Z direction. It is composed.
It is preferable that the second space portion 7 is isolated from the transformer chamber 1 between the holding portion 3 and the second chamber surface 10b of the chamber 10. The second space portion 7 is formed in an airtight manner by abutting the second non-opposing surface Cr of the second plate-shaped member C against the holding portion 3a of the holding portion 3.
Further, the holding portion 3 preferably has a second vent 3b that allows the second non-opposing surface Cr of the second plate-shaped member C and the second space portion 7 to communicate with each other.

保持部3の具体例として図1〜図6などに示される場合には、チャンバー10の第二室内面10bに対して固定された保持用環状体31であり、保持用環状体31の内側空間が第二通気口3bとなって第二空間部7を形成している。
図示例の保持用環状体31は、例えば軟質合成樹脂やゴムなどの弾性変形可能な材料又は硬質合成樹脂や金属などの変形不能な材料で四角枠状や円環状などに形成される。保持用環状体31は、変動部2の弾性通気体21と同様にパッキン又はOリングなどの環状部材で構成することも可能であり、この場合には保持用環状体31がZ方向へ弾性的に圧縮変形及び膨張変形可能になる。保持用環状体31の厚み方向(Z方向)の一端部には、チャンバー10の第二室内面10bに対する保持用固定部位31aを有している。保持用環状体31において保持部位3aとなる厚み方向(Z方向)の他端部は、搬入された第二板状部材Cの第二非対向面Crに当接している。
さらに、保持部3の第二通気口3bとなる第二空間部7と、第二板状部材Cの第二非対向面Crとが常時連通されるため、後述する第二内圧調整部8により下降した第二空間部7の内圧と変圧室1の内圧との圧力差を利用して、保持部3の保持部位3aに対し、第二板状部材Cが真空吸着可能になる。
これにより、変圧室1の内圧上昇で保持部位3aに対し、第二板状部材Cの第二非対向面Crを着脱自在に吸着保持して仮止めされる。
また、保持部3の他の例として図示しないが、真空吸着に代えて粘着部材や静電吸着などを用いた仮止めに変更することも可能である。
なお、図1〜図3,図14に示される場合には、変動部2の弾性通気体21の厚み方向(Z方向)サイズを、保持部3の保持用環状体31のZ方向サイズと略同じにしている。これに対して図4〜図6,図11,図13に示される場合には、変動部2の弾性通気体21のZ方向サイズを、保持部3の保持用環状体31のZ方向サイズよりも大きくすることで、変動部2の圧縮変形量及び膨張変形量が強調されるように設定している。
また、その他の例として図示しないが、図1〜図3,図14に示される変動部2の弾性通気体21のZ方向サイズを、保持部3の保持用環状体31のZ方向サイズよりも大きくすることや、図4〜図6,図11,図13に示される変動部2の弾性通気体21のZ方向サイズを、保持部3の保持用環状体31のZ方向サイズと略同じにすることなどの変更も可能である。
When shown in FIGS. 1 to 6 as a specific example of the holding portion 3, it is a holding annular body 31 fixed to the second chamber surface 10b of the chamber 10, and is an inner space of the holding annular body 31. Is the second vent 3b to form the second space 7.
The holding annular body 31 of the illustrated example is formed of an elastically deformable material such as a soft synthetic resin or rubber, or a non-deformable material such as a hard synthetic resin or a metal in a square frame shape or an annular shape. The holding annular body 31 can also be composed of an annular member such as a packing or an O-ring like the elastic venting body 21 of the variable portion 2, and in this case, the holding annular body 31 is elastic in the Z direction. It becomes possible to perform compression deformation and expansion deformation. At one end of the holding annular body 31 in the thickness direction (Z direction), a holding fixing portion 31a with respect to the second chamber surface 10b of the chamber 10 is provided. The other end of the holding annular body 31 in the thickness direction (Z direction), which is the holding portion 3a, is in contact with the second non-opposing surface Cr of the second plate-shaped member C carried in.
Further, since the second space portion 7 serving as the second vent 3b of the holding portion 3 and the second non-opposing surface Cr of the second plate-shaped member C are always communicated with each other, the second internal pressure adjusting portion 8 described later is used. The second plate-shaped member C can be vacuum-sucked to the holding portion 3a of the holding portion 3 by utilizing the pressure difference between the lowered internal pressure of the second space portion 7 and the internal pressure of the transformer chamber 1.
As a result, as the internal pressure of the transformer chamber 1 rises, the second non-opposing surface Cr of the second plate-shaped member C is detachably attracted and held to the holding portion 3a and temporarily fixed.
Further, although not shown as another example of the holding portion 3, it is possible to change to temporary fixing using an adhesive member, electrostatic suction, or the like instead of vacuum suction.
In addition, in the case shown in FIGS. It's the same. On the other hand, in the cases shown in FIGS. 4 to 6, 11, and 13, the size of the elastic ventilator 21 of the variable portion 2 in the Z direction is larger than the size of the holding annular body 31 of the holding portion 3 in the Z direction. By increasing the value, the amount of compression deformation and the amount of expansion deformation of the fluctuating portion 2 are set to be emphasized.
Further, although not shown as another example, the Z-direction size of the elastic vent body 21 of the variable portion 2 shown in FIGS. 1 to 3 and 14 is larger than the Z-direction size of the holding annular body 31 of the holding portion 3. Increasing the size and making the Z-direction size of the elastic vent body 21 of the variable portion 2 shown in FIGS. 4 to 6, FIG. 11 and FIG. 13 substantially the same as the Z-direction size of the holding annular body 31 of the holding portion 3. It is also possible to change things such as what to do.

室圧調整部5は、供給源(図示しない)から圧縮空気,ガス,水などの流体5Fが変圧室1に向け供給(給気)されることで変圧室1の内圧を上昇させ、且つ変圧室1から空気などの流体5Fが排出(排気)されることで変圧室1の内圧を下降させるように構成される。
室圧調整部5の具体例として図1(a)などに示される場合には、例えば真空ポンプやコンプレッサなどの室圧用駆動源(図示しない)からチャンバー10を貫通して変圧室1に通じる室流路5aと、室流路5aの途中に設けられる室圧用制御弁5bと、を有している。
室圧調整部5(室圧用駆動源や室圧用制御弁5b)の作動によって変圧室1の内圧は、大気雰囲気から真空又は真空に近い低圧雰囲気や所定の高圧雰囲気まで設定可能になる。
詳しく説明すると、室圧用駆動源や室圧用制御弁5bの作動制御により、室流路5aから排気される陰圧の流体5F、又は室流路5aに供給される陽圧の流体5Fの全体量をコントロールして、変圧室1の内圧を段階的に調整することが好ましい。
The chamber pressure adjusting unit 5 raises the internal pressure of the transformer chamber 1 and transforms the fluid 5F such as compressed air, gas, and water from a supply source (not shown) toward the transformer chamber 1 (supplying air). The internal pressure of the transformer chamber 1 is lowered by discharging (exhausting) the fluid 5F such as air from the chamber 1.
When shown in FIG. 1A as a specific example of the chamber pressure adjusting unit 5, a chamber that penetrates the chamber 10 from a chamber pressure drive source (not shown) such as a vacuum pump or a compressor and leads to the transformer chamber 1. It has a flow path 5a and a chamber pressure control valve 5b provided in the middle of the chamber flow path 5a.
By operating the chamber pressure adjusting unit 5 (chamber pressure drive source and chamber pressure control valve 5b), the internal pressure of the transformer chamber 1 can be set from an atmospheric atmosphere to a vacuum or a low pressure atmosphere close to a vacuum or a predetermined high pressure atmosphere.
More specifically, the total amount of the negative pressure fluid 5F exhausted from the chamber flow path 5a or the positive pressure fluid 5F supplied to the chamber flow path 5a by operating the chamber pressure drive source and the chamber pressure control valve 5b. It is preferable to adjust the internal pressure of the transformer chamber 1 step by step by controlling the above.

第一内圧調整部6は、第一空間部4から空気などの第一流体6Fが排出(排気)されることで、第一空間部4の内圧を変圧室1の内圧よりも下降させ、且つ第一空間部4に第一流体6Fが供給(給気)されることで、第一空間部4の内圧を変圧室1の内圧よりも上昇させるように構成される。
第一内圧調整部6の具体例として図1(a)などに示される場合には、例えば真空ポンプやコンプレッサなどの第一駆動源(図示しない)からチャンバー10を貫通して第一空間部4に通じる第一流路6aと、第一流路6aの途中に設けられる第一制御弁6bと、を有している。
第一内圧調整部6(第一駆動源や第一制御弁6b)の作動によって第一空間部4の内圧は、大気雰囲気から真空又は真空に近い低圧雰囲気や所定の高圧雰囲気まで設定可能になる。
詳しく説明すると、第一駆動源や第一制御弁6bの作動制御により、第一流路6aから排気される陰圧の第一流体6F、又は第一流路6aに供給される陽圧の第一流体6Fの全体量をコントロールして、第一空間部4の内圧を段階的に調整することが好ましい。
The first internal pressure adjusting unit 6 lowers the internal pressure of the first space 4 than the internal pressure of the transformer chamber 1 by discharging (exhausting) the first fluid 6F such as air from the first space 4. By supplying (supplying) the first fluid 6F to the first space portion 4, the internal pressure of the first space portion 4 is configured to be higher than the internal pressure of the transformer chamber 1.
In the case shown in FIG. 1A as a specific example of the first internal pressure adjusting unit 6, the first space unit 4 penetrates the chamber 10 from a first drive source (not shown) such as a vacuum pump or a compressor. It has a first flow path 6a leading to the first flow path 6a and a first control valve 6b provided in the middle of the first flow path 6a.
By operating the first internal pressure adjusting unit 6 (first drive source and first control valve 6b), the internal pressure of the first space unit 4 can be set from an atmospheric atmosphere to a vacuum or a low pressure atmosphere close to a vacuum or a predetermined high pressure atmosphere. ..
More specifically, the negative pressure first fluid 6F exhausted from the first flow path 6a or the positive pressure first fluid supplied to the first flow path 6a by the operation control of the first drive source and the first control valve 6b. It is preferable to control the total amount of 6F and adjust the internal pressure of the first space portion 4 step by step.

第二内圧調整部8は、第二空間部7から空気などの第二流体8Fが排出(排気)されることで、第二空間部7の内圧を変圧室1の内圧よりも下降させ、且つ第二空間部7に第二流体8Fが供給(給気)されることで、第二空間部7の内圧を変圧室1の内圧よりも上昇させるように構成される。
第二内圧調整部8の具体例として図1(a)などに示される場合には、例えば真空ポンプやコンプレッサなどの第二駆動源(図示しない)からチャンバー10を貫通して第二空間部7に通じる第二流路8aと、第二流路8aの途中に設けられる第二制御弁8bと、を有している。
第二内圧調整部8(第二駆動源や第二制御弁8b)の作動によって第二空間部7の内圧は、大気雰囲気から真空又は真空に近い低圧雰囲気や所定の高圧雰囲気まで設定可能になる。
詳しく説明すると、第二駆動源や第二制御弁8bの作動制御により、第二流路8aから排気される陰圧の第二流体8F、又は第二流路8aに供給される陽圧の第二流体8Fの全体量をコントロールして、第二空間部7の内圧を段階的に調整することが好ましい。
The second internal pressure adjusting unit 8 lowers the internal pressure of the second space 7 from the internal pressure of the transformer chamber 1 by discharging (exhausting) the second fluid 8F such as air from the second space 7. By supplying (supplying) the second fluid 8F to the second space portion 7, the internal pressure of the second space portion 7 is configured to be higher than the internal pressure of the transformer chamber 1.
In the case shown in FIG. 1A as a specific example of the second internal pressure adjusting unit 8, the second space unit 7 penetrates the chamber 10 from a second drive source (not shown) such as a vacuum pump or a compressor, for example. It has a second flow path 8a leading to the second flow path 8a and a second control valve 8b provided in the middle of the second flow path 8a.
By operating the second internal pressure adjusting unit 8 (second drive source and second control valve 8b), the internal pressure of the second space unit 7 can be set from an atmospheric atmosphere to a vacuum or a low pressure atmosphere close to a vacuum or a predetermined high pressure atmosphere. ..
More specifically, the negative pressure second fluid 8F exhausted from the second flow path 8a or the positive pressure second fluid supplied to the second flow path 8a by the operation control of the second drive source and the second control valve 8b. It is preferable to control the total amount of the two fluids 8F to adjust the internal pressure of the second space portion 7 step by step.

制御部9は、室圧調整部5,第一内圧調整部6及び第二内圧調整部8などとそれぞれ電気的に接続した制御回路(図示しない)を有するコントローラーである。
さらに、チャンバー10の出入口10cを開閉する駆動機構10dと電気的に接続する。それ以外にも変圧室1に対して第一板状部材B及び第二板状部材Cが出し入れするための搬送手段などにも電気的に接続している。
制御部9となるコントローラーは、その制御回路(図示しない)に予め設定されたプログラムに従って、予め設定されたタイミングで順次それぞれ作動制御している。
The control unit 9 is a controller having a control circuit (not shown) electrically connected to the chamber pressure adjusting unit 5, the first internal pressure adjusting unit 6, the second internal pressure adjusting unit 8, and the like, respectively.
Further, it is electrically connected to a drive mechanism 10d that opens and closes the entrance / exit 10c of the chamber 10. In addition to that, the first plate-shaped member B and the second plate-shaped member C are electrically connected to the transformer chamber 1 as a means for moving in and out.
The controller serving as the control unit 9 sequentially controls the operation at preset timings according to a program preset in the control circuit (not shown).

そして、制御部9の制御回路に設定されたプログラムを、微小構造物製造装置Aによる微小構造物製造方法として説明する。
本発明の実施形態に係る微小構造物製造装置Aを用いた微小構造物製造方法は、搬入工程,保持工程,室圧調整工程,搬出工程に分けられる。
詳しく説明すると、本発明の実施形態に係る微小構造物製造方法は、変圧室1に第一板状部材B及び第二板状部材Cを入れる搬入工程と、変圧室1内に第一板状部材B及び第二板状部材Cを保持する保持工程と、変圧室の内圧を調整する室圧調整工程と、第一板状部材B及び第二板状部材Cを変圧室1から取り出す搬出工程と、を主要な工程として含んでいる。
Then, the program set in the control circuit of the control unit 9 will be described as a method of manufacturing the microstructure by the microstructure manufacturing apparatus A.
The microstructure manufacturing method using the microstructure manufacturing apparatus A according to the embodiment of the present invention is divided into a carry-in step, a holding step, a chamber pressure adjusting step, and a carry-out step.
More specifically, the microstructure manufacturing method according to the embodiment of the present invention includes a carry-in step of inserting the first plate-shaped member B and the second plate-shaped member C into the transformer chamber 1, and a first plate-shaped member in the transformer chamber 1. A holding step for holding the member B and the second plate-shaped member C, a chamber pressure adjusting step for adjusting the internal pressure of the transformer chamber, and a carry-out step for taking out the first plate-shaped member B and the second plate-shaped member C from the transformer chamber 1. And are included as the main steps.

搬入工程では、図2(a)(b)や図4(a)や図8(a)(b)などに示されるように、チャンバー10の外部空間から搬送手段の作動により、第一板状部材Bと第二板状部材Cを変圧室1に入れて収容する。
搬入時において第一板状部材Bと第二板状部材Cが、図2(a)(b)や図8(a)(b)などのように分離状態である場合には、第一板状部材B又は第二板状部材Cのいずれか一方を変圧室1の中に入れるための一次搬入過程と、他方を変圧室1の中に入れるための二次搬入過程と、が必要になる。
また、搬入時において第一板状部材Bと第二板状部材Cが、図4(a)などのように接合状態である場合には、凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)が互いに凹凸接合して一体化された第一板状部材B及び第二板状部材Cを、凹凸接合したまま変圧室1の中に入れる。
In the carry-in process, as shown in FIGS. 2 (a) (b), 4 (a), 8 (a), (b), etc., the first plate shape is formed by the operation of the transport means from the external space of the chamber 10. The member B and the second plate-shaped member C are housed in the transformer chamber 1.
When the first plate-shaped member B and the second plate-shaped member C are in a separated state as shown in FIGS. 2 (a) (b) and 8 (a) (b) at the time of carrying in, the first plate A primary carry-in process for putting either one of the shape member B or the second plate-like member C into the transformer chamber 1 and a secondary carry-in process for putting the other into the transformer chamber 1 are required. ..
Further, when the first plate-shaped member B and the second plate-shaped member C are in a joined state as shown in FIG. 4A at the time of carrying in, the concavo-convex portion (first joint concavo-convex portion B1, second joint). The first plate-shaped member B and the second plate-shaped member C, in which the concavo-convex portions C1) are concavo-convex-bonded to each other and integrated, are put into the transformer chamber 1 with the concavo-convex joint.

保持工程では、図2(c)や図4(a)や図8(c)などに示されるように、変動部2の変位部位2aに対して、第一板状部材Bの第一非対向面Brを、厚み方向(Z方向)へ当接させる。この当接時には、第一内圧調整部6の作動による第一流体6Fの排出で、第一空間部4の内圧が下降され、変動部2の第一通気口2bを通じて変動部2の変位部位2aに対し、第一板状部材Bの第一非対向面Brを真空吸着させることが好ましい。
このため、変動部2の変位部位2aに第一板状部材Bの第一非対向面Brが、厚み方向(Z方向)と交差する方向(XY方向)へ位置ズレ不能に位置決めされて一体化される。これにより、変位部位2aの厚み方向(Z方向)へ変形又は移動に伴って、第一板状部材Bがチャンバー10の第一室内面10aに対し移動可能となる。
保持部3の保持部位3aに対しては、第二板状部材Cの第二非対向面Crを厚み方向(Z方向)へ当接させる。この当接時には、第二内圧調整部8の作動による第二流体8Fの排出で、第二空間部7の内圧が下降され、保持部3の第二通気口3bを通じて保持部3の保持部位3aに対し、第二板状部材Cの第二非対向面Crを真空吸着させることが好ましい。
このため、保持部3の保持部位3aに第二板状部材Cの第二非対向面Crが、厚み方向(Z方向)と交差する方向(XY方向)へ位置ズレ不能に位置決めされて一体化される。これにより、第二板状部材Cがチャンバー10の第二室内面10bに対して厚み方向(Z方向)へ移動不能に保持される。また、保持部3が弾性変形可能な場合には、保持部位3aの厚み方向(Z方向)へ変形などに伴って、第二板状部材Cをチャンバー10の第二室内面10bに対し厚み方向(Z方向)へ対し移動可能に変更することも可能である。
このような第一板状部材B及び第二板状部材Cの保持後は、図3(a)や図5(a)や図9(a)などに示されるように、チャンバー10の出入口10cを閉じて、チャンバー10内の変圧室1がチャンバー10の外部空間と遮断され密閉状態となる。
In the holding step, as shown in FIGS. 2 (c), 4 (a), 8 (c), etc., the first plate-shaped member B is first non-opposed to the displacement portion 2a of the variable portion 2. The surface Br is brought into contact with the thickness direction (Z direction). At the time of this contact, the internal pressure of the first space portion 4 is lowered by the discharge of the first fluid 6F by the operation of the first internal pressure adjusting portion 6, and the displacement portion 2a of the fluctuation portion 2 is passed through the first vent 2b of the fluctuation portion 2. On the other hand, it is preferable to vacuum-adsorb the first non-opposing surface Br of the first plate-shaped member B.
Therefore, the first non-opposing surface Br of the first plate-shaped member B is positioned and integrated with the displacement portion 2a of the variable portion 2 in the direction intersecting the thickness direction (Z direction) (XY direction) so as not to be displaced. Will be done. As a result, the first plate-shaped member B can move with respect to the first chamber surface 10a of the chamber 10 as the displacement portion 2a is deformed or moved in the thickness direction (Z direction).
The second non-opposing surface Cr of the second plate-shaped member C is brought into contact with the holding portion 3a of the holding portion 3 in the thickness direction (Z direction). At the time of this contact, the internal pressure of the second space portion 7 is lowered by the discharge of the second fluid 8F by the operation of the second internal pressure adjusting portion 8, and the holding portion 3a of the holding portion 3 is passed through the second vent 3b of the holding portion 3. On the other hand, it is preferable to vacuum-adsorb the second non-opposing surface Cr of the second plate-shaped member C.
Therefore, the second non-opposing surface Cr of the second plate-shaped member C is positioned and integrated with the holding portion 3a of the holding portion 3 in the direction (XY direction) intersecting with the thickness direction (Z direction) so as not to be displaced. Will be done. As a result, the second plate-shaped member C is held immovably in the thickness direction (Z direction) with respect to the second chamber surface 10b of the chamber 10. When the holding portion 3 is elastically deformable, the second plate-shaped member C is deformed in the thickness direction (Z direction) of the holding portion 3a in the thickness direction with respect to the second chamber surface 10b of the chamber 10. It is also possible to change it so that it can be moved in the (Z direction).
After holding the first plate-shaped member B and the second plate-shaped member C, the entrance / exit 10c of the chamber 10 is shown in FIGS. 3 (a), 5 (a), 9 (a), and the like. Is closed, the transformer chamber 1 in the chamber 10 is cut off from the external space of the chamber 10 and becomes a closed state.

室圧調整工程では、少なくとも室圧調整部5の作動により変圧室1の内圧と第一空間部4の内圧と間に圧力差が生じるように制御する差圧過程と、この圧力差により第一板状部材B及び第二板状部材Cの対向方向への相対的に接近移動させる加圧接合過程や、圧力差により第一板状部材B及び第二板状部材Cの対向方向への相対的に離隔移動させる剥離過程と、変圧室1の内圧が大気圧に戻される大気開放過程と、を含んでいる。
差圧過程は、図3(b)や図5(b)や図9(b)などに示されるように、室圧調整部5の作動による流体5Fの排出又は供給で、変圧室1又は第一空間部4のどちらか一方の内圧を他方の内圧よりも上昇させる。これにより、変圧室1の内圧と第一空間部4の内圧とでは圧力差が生じる。
この際、室圧調整部5の作動による変圧室1の内圧変化に加えて、第一内圧調整部6の作動による第一流体6Fの供給又は排出で、第一空間部4の内圧変化を同時に行い、変圧室1の内圧と第一空間部4の内圧との圧力差が更に大きくなるように制御することが好ましい。
また、保持部3が弾性変形可能な場合には、第一内圧調整部6の作動による第一空間部4の内圧変化に加えて、第二内圧調整部8の作動による第二流体8Fの供給又は排出で、第二空間部7の内圧変化を同時に行い、変圧室1の内圧と第二空間部7の内圧との圧力差が更に大きくなるように制御することも可能である。
In the chamber pressure adjusting step, at least a differential pressure process that controls so that a pressure difference is generated between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4 by the operation of the chamber pressure adjusting unit 5, and the pressure difference is the first. The pressure joining process in which the plate-shaped member B and the second plate-shaped member C are moved relatively close to each other in the opposite direction, and the relative to the opposite direction of the first plate-shaped member B and the second plate-shaped member C due to the pressure difference. It includes a peeling process in which the internal pressure of the transformer chamber 1 is returned to the atmospheric pressure and a peeling process in which the internal pressure of the transformer chamber 1 is returned to the atmospheric pressure.
As shown in FIGS. 3 (b), 5 (b), 9 (b), etc., the differential pressure process is the discharge or supply of the fluid 5F by the operation of the chamber pressure adjusting unit 5, and the transformer chamber 1 or the first. The internal pressure of either one of the one space portion 4 is increased more than the internal pressure of the other. As a result, a pressure difference is generated between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4.
At this time, in addition to the change in the internal pressure of the transformer chamber 1 due to the operation of the chamber pressure adjusting unit 5, the change in the internal pressure of the first space portion 4 is simultaneously performed by the supply or discharge of the first fluid 6F by the operation of the first internal pressure adjusting unit 6. It is preferable to control so that the pressure difference between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4 is further increased.
When the holding portion 3 is elastically deformable, the second fluid 8F is supplied by the operation of the second internal pressure adjusting portion 8 in addition to the change in the internal pressure of the first space portion 4 by the operation of the first internal pressure adjusting portion 6. Alternatively, it is also possible to change the internal pressure of the second space portion 7 at the same time by discharging, and control so that the pressure difference between the internal pressure of the transformer chamber 1 and the internal pressure of the second space portion 7 becomes even larger.

加圧接合過程では、室圧調整部5の作動による流体5Fの排出のみ、又はこれに加えて第一内圧調整部6の作動による第一流体6Fの供給や第二内圧調整部8の作動による第二流体8Fの供給で、変圧室1の内圧を第一空間部4の内圧や第二空間部7の内圧よりも下降させる。
これにより生じた圧力差で、変動部2の変位部位2aとともに第一板状部材Bを第二板状部材Cに向け厚み方向(Z方向)へ移動して加圧する押圧力が発生する。
この押圧力により、図3(b)などのように第二板状部材Cの第二対向面Cfが非接触な凹凸部(非接合凹凸部Cu)を有する場合には、第一板状部材Bの第一対向面Bfが、第二板状部材Cの非接合凹凸部Cuに接合して厚み方向(Z方向)へ押し付けられ、非接合凹凸部Cuにおいて微小部品Maの表面となる非接合部Mfの形状に倣うように第一対向面Bfを重なり合わせて、圧力差(流体)により第一板状部材Bが第二板状部材Cの非接合凹凸部Cuに向けて均等に加圧される。
In the pressure joining process, only the discharge of the fluid 5F by the operation of the chamber pressure adjusting unit 5, or in addition to this, the supply of the first fluid 6F by the operation of the first internal pressure adjusting unit 6 and the operation of the second internal pressure adjusting unit 8 are performed. By supplying the second fluid 8F, the internal pressure of the transformer chamber 1 is lowered below the internal pressure of the first space portion 4 and the internal pressure of the second space portion 7.
Due to the pressure difference generated by this, a pressing force is generated in which the first plate-shaped member B is moved toward the second plate-shaped member C in the thickness direction (Z direction) together with the displacement portion 2a of the fluctuating portion 2 to pressurize.
Due to this pressing force, when the second facing surface Cf of the second plate-shaped member C has a non-contact uneven portion (non-joined uneven portion Cu) as shown in FIG. 3B, the first plate-shaped member The first facing surface Bf of B is joined to the non-bonded concavo-convex portion Cu of the second plate-shaped member C and pressed in the thickness direction (Z direction), and the non-bonded concavo-convex portion Cu becomes the surface of the minute component Ma. The first facing surfaces Bf are overlapped so as to follow the shape of the portion Mf, and the first plate-shaped member B is uniformly pressurized toward the non-joined uneven portion Cu of the second plate-shaped member C due to the pressure difference (fluid). Will be done.

剥離過程では、室圧調整部5の作動による流体5Fの供給のみ、又はこれに加えて第一内圧調整部6の作動による第一流体6Fの排出や第二内圧調整部8の作動による第二流体8Fの排出で、変圧室1の内圧を第一空間部4の内圧や第二空間部7の内圧よりも上昇させる。
これにより生じた圧力差で、変動部2の変位部位2aとともに第一板状部材Bを第一空間部4に向けて厚み方向(Z方向)へ引き寄せる引力が発生する。
この引力により、図5(c)などのように第一板状部材Bの第一対向面Bfが凹凸接合した凹凸部の一方として第一接合凹凸部B1を有し、第二板状部材Cの第二対向面Cfが凹凸部の他方として第二接合凹凸部C1を有する場合には、第一板状部材Bの第一接合凹凸部B1が、第二板状部材Cの第二接合凹凸部C1に対して厚み方向(Z方向)へ引き剥がされ、第二接合凹凸部C1から第一接合凹凸部B1を剥離する。
さらに、図示例のように、第一板状部材Bと第二板状部材Cの間に隙間Eを有する場合には、隙間Eに陽圧の流体5Fが侵入することにより、第一板状部材Bの第一接合凹凸部B1と第二板状部材Cの第二接合凹凸部C1を相対的に押し離す斥力が発生する。
また、チャンバー10の第一室内面10aに配置された間隙検出センサーで、第一板状部材Bの第一非対向面Brなどを位置検出して、その検出値を監視することにより、凹凸部(非接合凹凸部Cu,第一接合凹凸部B1,第二接合凹凸部C1)の接合又は剥離の進行や接合又は剥離の完了が検知可能になる。
In the peeling process, only the supply of the fluid 5F by the operation of the chamber pressure adjusting unit 5, or in addition to this, the discharge of the first fluid 6F by the operation of the first internal pressure adjusting unit 6 and the second operation by the operation of the second internal pressure adjusting unit 8 By discharging the fluid 8F, the internal pressure of the transformer chamber 1 is raised above the internal pressure of the first space portion 4 and the internal pressure of the second space portion 7.
Due to the pressure difference generated by this, an attractive force is generated that pulls the first plate-shaped member B toward the first space portion 4 in the thickness direction (Z direction) together with the displacement portion 2a of the fluctuating portion 2.
Due to this attractive force, as shown in FIG. 5 (c), the first facing surface Bf of the first plate-shaped member B has the first jointed uneven portion B1 as one of the concave-convex bonded portions, and the second plate-shaped member C. When the second facing surface Cf of the above has the second joint uneven portion C1 as the other side of the uneven portion, the first joint uneven portion B1 of the first plate-shaped member B is the second joint uneven portion of the second plate-shaped member C. It is peeled off from the portion C1 in the thickness direction (Z direction), and the first joint uneven portion B1 is peeled from the second joint uneven portion C1.
Further, as shown in the illustrated example, when a gap E is provided between the first plate-shaped member B and the second plate-shaped member C, the positive pressure fluid 5F invades the gap E, so that the first plate-shaped member B is formed. A repulsive force is generated that relatively pushes the first joint uneven portion B1 of the member B and the second joint uneven portion C1 of the second plate-shaped member C apart.
Further, the gap detection sensor arranged on the first chamber surface 10a of the chamber 10 detects the position of the first non-opposing surface Br of the first plate-shaped member B and monitors the detected value to monitor the uneven portion. The progress of joining or peeling of (non-joining uneven portion Cu, first joining uneven portion B1, second joining uneven portion C1) and the completion of joining or peeling can be detected.

大気開放過程は、図3(c)や図6(a)や図10(a)などに示されるように、室圧調整部5の作動による流体5Fの排出又は供給を停止させるとともに、チャンバー10の出入口10cを駆動機構10dで開口して、変圧室1に充満した流体5Fを変圧室1の外部空間に放出するなどにより、変圧室1の内圧を大気圧に戻す。 In the process of opening to the atmosphere, as shown in FIGS. 3 (c), 6 (a), 10 (a), etc., the discharge or supply of the fluid 5F by the operation of the chamber pressure adjusting unit 5 is stopped, and the chamber 10 is stopped. The internal pressure of the transformer chamber 1 is returned to the atmospheric pressure by opening the entrance / exit 10c of the above with the drive mechanism 10d and discharging the fluid 5F filled in the transformer chamber 1 to the external space of the transformer chamber 1.

搬出工程は、図3(c)や図6(b)(c)や図10(b)(c)などに示されるように、第一内圧調整部6の作動と第二内圧調整部8の作動を順次停止させるとともに、搬送手段の作動により第一板状部材Bと第二板状部材Cを変圧室1からチャンバー10の外部空間に取り出す。
搬出時において第一板状部材Bと第二板状部材Cが、図3(c)などのように接合状態である場合には、凹凸部(非接合凹凸部Cu)が凹凸接合して一体化された第一板状部材B及び第二板状部材Cを、凹凸接合したまま変圧室1の外に取り出す。
また、搬入時において第一板状部材Bと第二板状部材Cが、図6(b)(c)や図10(b)(c)などのように分離状態である場合には、第一板状部材B又は第二板状部材Cのいずれか一方を変圧室1の外に取り出すための一次搬出過程と、他方を変圧室1の外に取り出すための二次搬出過程と、が必要になる。
As shown in FIGS. 3 (c), 6 (b) (c), 10 (b) and (c), the unloading process involves the operation of the first internal pressure adjusting unit 6 and the operation of the second internal pressure adjusting unit 8. The operation is sequentially stopped, and the first plate-shaped member B and the second plate-shaped member C are taken out from the transformer chamber 1 into the external space of the chamber 10 by the operation of the transport means.
When the first plate-shaped member B and the second plate-shaped member C are in a bonded state as shown in FIG. The first plate-shaped member B and the second plate-shaped member C are taken out of the transformer chamber 1 while being joined in a concavo-convex manner.
When the first plate-shaped member B and the second plate-shaped member C are in a separated state as shown in FIGS. 6 (b) (c) and 10 (b) (c) at the time of carrying in, the first plate-shaped member B and the second plate-shaped member C are separated. A primary carry-out process for taking out either one of the one-plate member B or the second plate-shaped member C to the outside of the transformer chamber 1 and a secondary carry-out process for taking the other out of the transformer chamber 1 are required. become.

次に、本発明の実施形態に係る微小構造物製造装置Aの具体例(第一実施形態〜第三実施形態)と変形例(第四実施形態〜第七実施形態)について説明する。
図1〜図3に示される第一実施形態の微小構造物製造装置A1は、微小構造物Mとして第一板状部材Bと第二板状部材Cの間に配置(搭載)した微小部品Maが挟み込むように接合した積層タイプの微小構造体M1を製造する接合装置である。
第一板状部材B及び第二板状部材Cの相対的な接近移動により、第一板状部材Bの第一対向面Bf又は第二板状部材Cの第二対向面Cfのいずれか一方に配置された微小部品Maの非接触な凹凸部(非接合凹凸部Cu)を、他方との間に挟み込むように接合して一体化させる。
図示例の場合には、第一板状部材Bの第一対向面Bfと第二板状部材Cの第二対向面Cfに、微小部品Maの保持手段Dとして接着剤などの固定層D1や粘着チャックなどの保持チャックD2が設けられている。微小部品Maは、複数個それぞれ並列状に整列配置されている。
図2(a)(b)に示される接合前の初期状態(搬入工程)では、第二板状部材Cの第二対向面Cfに対し保持手段D(固定層D1,保持チャックD2)で微小部品Maが移動不能に配置されて、非接触な凹凸部(非接合凹凸部Cu)を有する。
これに続く、図3(a)に示される保持工程から図3(b)に示される室圧調整工程(差圧過程,加圧接合過程)では、流体差圧による第一板状部材Bの相対的な接近移動で、第一板状部材Bの第一対向面Bfが、第二板状部材Cの非接合凹凸部Cuに接合して厚み方向(Z方向)へ押し付けられる。これに伴って第一対向面Bfは、非接合凹凸部Cuにおいて微小部品Maの表面となる非接合部Mfの形状に倣うように重なり合って、圧力差(流体)で非接合凹凸部Cuに向けて均等に加圧される。このため、第一板状部材Bと第二板状部材Cの間に微小部品Maを挟み込み一体化されて積層体となる。
Next, specific examples (first embodiment to third embodiment) and modified examples (fourth embodiment to seventh embodiment) of the microstructure manufacturing apparatus A according to the embodiment of the present invention will be described.
The microstructure manufacturing apparatus A1 of the first embodiment shown in FIGS. 1 to 3 is a micropart Ma arranged (mounted) between the first plate-shaped member B and the second plate-shaped member C as the microstructure M. This is a joining device for manufacturing a laminated type microstructure M1 that is joined so as to sandwich the two.
Due to the relative approaching movement of the first plate-shaped member B and the second plate-shaped member C, either the first facing surface Bf of the first plate-shaped member B or the second facing surface Cf of the second plate-shaped member C The non-contact uneven portion (non-joined uneven portion Cu) of the minute component Ma arranged in the above is joined and integrated so as to be sandwiched between the other and the other.
In the case of the illustrated example, a fixing layer D1 such as an adhesive or the like is used as a holding means D for the minute component Ma on the first facing surface Bf of the first plate-shaped member B and the second facing surface Cf of the second plate-shaped member C. A holding chuck D2 such as an adhesive chuck is provided. A plurality of micro parts Ma are arranged and arranged in parallel.
In the initial state (carry-in step) before joining shown in FIGS. 2A and 2B, the holding means D (fixing layer D1, holding chuck D2) is minute with respect to the second facing surface Cf of the second plate-shaped member C. The component Ma is immovably arranged and has a non-contact uneven portion (non-joint uneven portion Cu).
Subsequent to this, in the chamber pressure adjusting step (differential pressure process, pressure joining process) shown in FIG. 3 (b) from the holding step shown in FIG. 3 (a), the first plate-shaped member B due to the fluid differential pressure Due to the relative approaching movement, the first facing surface Bf of the first plate-shaped member B is joined to the non-joined uneven portion Cu of the second plate-shaped member C and pressed in the thickness direction (Z direction). Along with this, the first facing surface Bf overlaps the non-joined uneven portion Cu so as to follow the shape of the non-joined portion Mf which is the surface of the minute component Ma, and is directed toward the non-joined concave-convex portion Cu by a pressure difference (fluid). Is evenly pressurized. Therefore, the minute component Ma is sandwiched between the first plate-shaped member B and the second plate-shaped member C and integrated to form a laminated body.

さらに図示例では、チャンバー10の変圧室1が分割タイプである。分割タイプの変圧室1とは、チャンバー10を第一チャンバー11と第二チャンバー12に分割して、離隔した第一チャンバー11及び第二チャンバー12の間に出入口10cが形成される。出入口10cには、四角枠状や円環状のパッキン又はOリングなどからなるシール材13が介装される。第一チャンバー11や第二チャンバー12を駆動機構10dで相対的に接近させることにより、シール材13で出入口10cが気密状に閉じて、変圧室1が開閉自在で且つ密封構造となる。
図示例では、上側の第一チャンバー11のみを下側の第二チャンバー12に対して往復動させているが、下側の第二チャンバー12のみ、又は第一チャンバー11及び第二チャンバー12の両方を往復動させるなど、図示例以外の構造に変更することが可能である。
Further, in the illustrated example, the transformer chamber 1 of the chamber 10 is a split type. In the split type transformer chamber 1, the chamber 10 is divided into a first chamber 11 and a second chamber 12, and an entrance / exit 10c is formed between the separated first chamber 11 and the second chamber 12. A sealing material 13 made of a square frame-shaped or annular packing, an O-ring, or the like is interposed at the doorway 10c. By bringing the first chamber 11 and the second chamber 12 relatively close to each other by the drive mechanism 10d, the entrance / exit 10c is closed by the sealing material 13 in an airtight manner, and the transformer chamber 1 is openable and closable and has a sealed structure.
In the illustrated example, only the upper first chamber 11 is reciprocated with respect to the lower second chamber 12, but only the lower second chamber 12 or both the first chamber 11 and the second chamber 12 are reciprocated. It is possible to change to a structure other than the illustrated example, such as reciprocating.

図4〜図6に示される第二実施形態の微小構造物製造装置A2は、微小構造物Mとして第一板状部材Bと第二板状部材Cに配置される互いに接合した凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を剥がす分離装置である構成が、前述した第一実施形態とは異なり、それ以外の構成は第一実施形態と同じものである。
第一板状部材B及び第二板状部材Cの相対的な離隔移動により、微小成形物M2となる成形型Mbと成形基板Mcとの剥離や、微小構造体M1となる微小部品Maと粘着チャックなどの保持手段との剥離などのような、互いに凹凸状に接合した第一板状部材Bの第一対向面Bfに配置された第一接合凹凸部B1と、第二板状部材Cの第二対向面Cfに配置された第二接合凹凸部C1と、を剥離している。
図示例の場合には、第一板状部材Bに成形型Mbが配置され、第二板状部材Cに成形基板Mcを配置した別タイプの場合を示している。ナノインプリント成形などにより成形型Mbの凹凸パターンを成形基板Mcに転写した状態では、成形型Mbと成形基板Mcが互いに凹凸接合して、搬送可能に一体化された積層体となっている。成形基板Mcは、硬質材料からなる基板Mdの表面に、第二接合凹凸部C1となる光や熱などでパターン転写される樹脂層Meを積層している。
さらに、第一板状部材Bの第一対向面Bfと第二板状部材Cの第二対向面Cfには、微小成形物M2の保持手段Dとして粘着チャックなどの保持チャックD2や接着剤などの固定層D1が設けられている。
The microstructure manufacturing apparatus A2 of the second embodiment shown in FIGS. 4 to 6 is a concavo-convex portion (the first) joined to each other arranged on the first plate-shaped member B and the second plate-shaped member C as the microstructure M. The configuration of the separation device for peeling off the one-joint uneven portion B1 and the second joint uneven portion C1) is different from the first embodiment described above, and the other configurations are the same as those of the first embodiment.
Due to the relative separation movement of the first plate-shaped member B and the second plate-shaped member C, the molding mold Mb which becomes the micromolded product M2 and the molding substrate Mc are peeled off, and the micropart Ma which becomes the microstructure M1 is adhered. The first joint uneven portion B1 arranged on the first facing surface Bf of the first plate-shaped member B joined to each other in a concave-convex shape, such as peeling from a holding means such as a chuck, and the second plate-shaped member C. The second joint uneven portion C1 arranged on the second facing surface Cf is peeled off.
In the case of the illustrated example, the case of another type in which the molding mold Mb is arranged on the first plate-shaped member B and the molding substrate Mc is arranged on the second plate-shaped member C is shown. In a state where the uneven pattern of the molding mold Mb is transferred to the molding substrate Mc by nanoimprint molding or the like, the molding mold Mb and the molding substrate Mc are concave-convex-bonded to each other to form a laminate that is integrally transportable. In the molded substrate Mc, a resin layer Me that is pattern-transferred by light or heat, which is the second joint uneven portion C1, is laminated on the surface of the substrate Md made of a hard material.
Further, on the first facing surface Bf of the first plate-shaped member B and the second facing surface Cf of the second plate-shaped member C, a holding chuck D2 such as an adhesive chuck or an adhesive or the like is used as a holding means D for the micromolded product M2. Fixed layer D1 is provided.

図4(a)に示される接合時の初期状態(搬入工程)では、第一接合凹凸部B1となる成形型Mbの第一裏面B2が、第一板状部材Bの第一対向面Bfに保持手段D(保持チャックD2,固定層D1)で移動不能に配置されている。第二接合凹凸部C1となる成形基板Mcの第一裏面C2は、第二板状部材Cの第二対向面Cfに保持手段D(保持チャックD2,固定層D1)で移動不能に配置されている。
これに続く、図5(b)(c)に示される室圧調整工程(差圧過程,剥離過程)では、流体差圧による第一板状部材Bの相対的な離隔移動で、第一接合凹凸部B1となる成形型Mbが第二接合凹凸部C1となる成形基板Mcから厚み方向(Z方向)へ引き剥がされる。
In the initial state (carry-in step) at the time of joining shown in FIG. It is immovably arranged by the holding means D (holding chuck D2, fixed layer D1). The first back surface C2 of the molded substrate Mc, which is the second joint uneven portion C1, is immovably arranged on the second facing surface Cf of the second plate-shaped member C by the holding means D (holding chuck D2, fixed layer D1). There is.
Subsequent to this, in the chamber pressure adjusting step (differential pressure process, peeling process) shown in FIGS. The molding die Mb to be the uneven portion B1 is peeled off from the molding substrate Mc to be the second joint uneven portion C1 in the thickness direction (Z direction).

さらに図示例では、第一板状部材B及び第二板状部材Cの間に、複数の第一接合凹凸部B1(成形型Mb)と第二接合凹凸部C1(成形基板Mc)が、XY方向へそれぞれ所定間隔毎に並列配置され、四角枠状の外側隙間E1と、XY方向の両方へ直線状に通る複数本の貫通隙間E2と、を有している。
これにより、陽圧の流体5Fは、外側隙間E1だけでなく、複数本の貫通隙間E2にもそれぞれ侵入するため、第一板状部材Bと第二板状部材Cを全面的に押し離す斥力が発生する。
Further, in the illustrated example, a plurality of first joint concavo-convex portions B1 (molding mold Mb) and second joint concavo-convex portion C1 (molded substrate Mc) are XY between the first plate-shaped member B and the second plate-shaped member C. It is arranged in parallel at predetermined intervals in each direction, and has a square frame-shaped outer gap E1 and a plurality of through gaps E2 that pass linearly in both the XY directions.
As a result, the positive pressure fluid 5F invades not only the outer gap E1 but also a plurality of through gaps E2, so that a repulsive force that completely pushes the first plate-shaped member B and the second plate-shaped member C apart. Occurs.

図7〜図10に示される第三実施形態の微小構造物製造装置A3は、微小構造物Mとして第一板状部材Bや第二板状部材Cのいずれか一方に配置(搭載)された微小部品Maを他方へ移し替える転写タイプの微小構造体M1を製造する転写装置である構成が、前述した第一実施形態とは異なり、それ以外の構成は第一実施形態と同じものである。
第一板状部材B及び第二板状部材Cの相対的な接近移動と離隔移動により、第一板状部材Bの第一対向面Bf又は第二板状部材Cの第二対向面Cfのいずれか一方に配置された微小部品Maの非接触な凹凸部(非接合凹凸部Cu)を、表裏反転して他方に移し替えている。
図示例の場合には、第一板状部材Bの第一対向面Bfが微小部品Maの転写先に設定されて、微小部品Maの保持手段Dとなる強接着面D3を有する。第二板状部材Cの第二対向面Cfは、微小部品Maの転写元に設定されて、微小部品Maの保持手段Dとなる弱接着面D4を有する。微小部品Maは、複数個それぞれ並列状に整列配置されている。
強接着面D3及び弱接着面D4は、微小部品Maを着脱可能に保持して仮固定する保持チャックD2である。保持チャックD2の中でも、微小部品Maの保持力が簡単にコントロール可能な粘着部材による粘着チャックを用いることが好ましい。この場合には、強接着面D3として粘着力が強い粘着部材を用い、弱接着面D4として粘着力が弱い粘着部材を用いる。また、その他の例として粘着チャックに代え、吸着力を強弱コントロールされた真空チャックや、静電吸着力を強弱コントロールされた静電チャックに変更することも可能である。
The microstructure manufacturing apparatus A3 of the third embodiment shown in FIGS. 7 to 10 is arranged (mounted) on either the first plate-shaped member B or the second plate-shaped member C as the microstructure M. The configuration of the transfer device for manufacturing the transfer type microstructure M1 that transfers the micropart Ma to the other is different from the above-described first embodiment, and the other configurations are the same as those of the first embodiment.
Due to the relative approaching movement and separating movement of the first plate-shaped member B and the second plate-shaped member C, the first facing surface Bf of the first plate-shaped member B or the second facing surface Cf of the second plate-shaped member C The non-contact uneven portion (non-joined concave-convex portion Cu) of the minute component Ma arranged on one of them is turned upside down and transferred to the other.
In the case of the illustrated example, the first facing surface Bf of the first plate-shaped member B is set as the transfer destination of the micro component Ma, and has a strong adhesive surface D3 that serves as a holding means D for the micro component Ma. The second facing surface Cf of the second plate-shaped member C has a weak adhesive surface D4 that is set as a transfer source of the minute component Ma and serves as a holding means D for the minute component Ma. A plurality of micro parts Ma are arranged and arranged in parallel.
The strong adhesive surface D3 and the weak adhesive surface D4 are holding chucks D2 that detachably hold and temporarily fix the minute component Ma. Among the holding chucks D2, it is preferable to use an adhesive chuck made of an adhesive member whose holding force of the minute component Ma can be easily controlled. In this case, an adhesive member having a strong adhesive force is used as the strong adhesive surface D3, and an adhesive member having a weak adhesive force is used as the weak adhesive surface D4. Further, as another example, instead of the adhesive chuck, it is possible to change to a vacuum chuck whose attractive force is controlled by strength or weakness, or an electrostatic chuck whose electrostatic attraction force is controlled by strength or weakness.

図8(a)(b)に示される転写前の初期状態(搬入工程)では、第二板状部材Cの第二対向面Cfに保持手段D(保持チャックD2,弱接着面D4)で複数の微小部品Maの裏面となる接合部Mrが移動不能に整列配置されている。
これに続く、図9(a)に示される保持工程から図9(b)に示される室圧調整工程(差圧過程,加圧接合過程)では、流体差圧による第一板状部材Bの相対的な接近移動で、複数の微小部品Maの表面となる非接合部Mfに第一対向面Bfの保持手段D(強接着面D3)を厚み方向(Z方向)へ接合させて一体化される。
その後、図9(c)に示される室圧調整工程(剥離過程)では、流体差圧による第一板状部材Bの相対的な離隔移動で、第二対向面Cfの保持手段D(弱接着面D4)から複数の微小部品Maの裏面(接合部Mr)が厚み方向(Z方向)へ引き剥がされる。
これにより、複数の微小構造体M1が第二板状部材Cから第一板状部材Bへ整列状態が変更されずに表裏反転して移し替えられる。
In the initial state (carry-in step) before transfer shown in FIGS. 8A and 8B, a plurality of holding means D (holding chuck D2, weakly adhesive surface D4) are provided on the second facing surface Cf of the second plate-shaped member C. The joint portion Mr, which is the back surface of the minute component Ma of the above, is arranged so as not to be movable.
Subsequent to this, in the chamber pressure adjusting step (differential pressure process, pressure joining process) shown in FIG. 9 (b) from the holding step shown in FIG. 9 (a), the first plate-shaped member B due to the fluid differential pressure By relative approaching movement, the holding means D (strong adhesive surface D3) of the first facing surface Bf is joined to the non-joined portion Mf which is the surface of a plurality of minute parts Ma in the thickness direction (Z direction) and integrated. NS.
After that, in the chamber pressure adjusting step (peeling process) shown in FIG. 9C, the holding means D (weak adhesion) of the second facing surface Cf is caused by the relative separation movement of the first plate-shaped member B due to the fluid differential pressure. The back surfaces (joint portion Mr) of the plurality of minute parts Ma are peeled off from the surface D4) in the thickness direction (Z direction).
As a result, the plurality of microstructures M1 are transferred from the second plate-shaped member C to the first plate-shaped member B by inverting the front and back without changing the alignment state.

図11(a)〜(c)に示される第四実施形態の微小構造物製造装置A4は、部分開閉タイプの変圧室1である構成が、前述した第一実施形態〜第三実施形態とは異なり、それ以外の構成は第一実施形態〜第三実施形態と同じものである。
図示例では、第二実施形態の分離装置である場合を示している。
箱形チャンバー14の一部には、出入口10cが開設され、出入口10cに対して扉14aを駆動機構10dで開閉動させている。
これにより、変圧室1の一部が開閉自在で且つ密封構造となるように構成されている。
The microstructure manufacturing apparatus A4 of the fourth embodiment shown in FIGS. 11 (a) to 11 (c) has a configuration in which the transformer chamber 1 is a partial opening / closing type. The other configurations are the same as those of the first to third embodiments.
In the illustrated example, the case where it is the separation device of the second embodiment is shown.
A doorway 10c is opened in a part of the box-shaped chamber 14, and a door 14a is opened and closed by a drive mechanism 10d with respect to the doorway 10c.
As a result, a part of the transformer chamber 1 is configured to be openable and closable and has a sealed structure.

図12(a)〜(c)に示される第五実施形態の微小構造物製造装置A5は、第一板状部材Bと第二板状部材Cに配置される互いに接合した凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を変動部2の移動で剥がした構成が、前述した第二実施形態や第三実施形態とは異なり、それ以外の構成は第二実施形態や第三実施形態と同じものである。
図示例では、第二実施形態の分離装置である場合を示している。
移動可能な変動部2は、チャンバー10の第一室内面10aに対してZ方向へ往復動可能に支持された昇降通気体22で構成される。昇降通気体22は、第一板状部材Bの第一非対向面Brと、第一空間部4とを連通させる第一通気口2bに相当する通気孔2cを有する。
昇降通気体22は、例えば硬質合成樹脂や金属などの変形不能な材料で、四角板状や円板状などに形成された板状部材からなり、その中央に一つの通気孔2cが開穿される。昇降通気体22の側面は、チャンバー10の第一室内面10aと第二室内面10bの間でZ方向に形成される第三室内面10eに沿ってZ方向へ往復動自在で且つ気密状に支持される摺動部位22aを有している。チャンバー10の第三室内面10eは、昇降通気体22に向け突出する一方側のストッパー10fと他方側のストッパー10gを有する。Z方向へ移動した昇降通気体22が一方側のストッパー10fや他方側のストッパー10gに当接することで、昇降通気体22の移動範囲を規制している。昇降通気体22は、厚み方向(Z方向)の先端部を変位部位2aとして、搬入された第一板状部材Bの第一非対向面Brに当接させることにより、昇降通気体22とチャンバー10の第一室内面10aとの間に第一空間部4が形成される。
このため、陽圧の流体5Fの流入による変圧室1の内圧上昇と第一空間部4の内圧の差で、昇降通気体22がZ方向へ移動して、その変位部位2aとともに第一板状部材Bを、第一空間部4に向け移動させる。これにより、第一板状部材Bが第二板状部材Cから引き剥がされる。
なお、昇降通気体22の他の例として図示しないが、一つの通気孔2cを有する板状部材に代えて、複数の通気孔2cを有する板状部材や、多数の通気孔2cを有する多孔質板状部材などを用いることも可能である。
さらに、昇降通気体22の摺動部位22aが第三室内面10eに沿って移動可能に支持される支持構造に代えて、ステンレスなどの弾性変形可能な薄板状の可撓性部材の中央に昇降通気体22を浮島状に支持することにより、可撓性部材の弾性変形で昇降通気体22がZ方向へ往復動可能に支持される支持構造に変更することも可能である。この浮島状の場合には、可撓性部材の外周をチャンバー10の第三室内面10eに対して取り付けることにより、可撓性部材の裏側に第一空間部4が変圧室1と分離して気密状に設けられる。
The microstructure manufacturing apparatus A5 of the fifth embodiment shown in FIGS. 12A to 12C is a concavo-convex portion (first) joined to each other arranged on the first plate-shaped member B and the second plate-shaped member C. The configuration in which the joint uneven portion B1 and the second joint uneven portion C1) are peeled off by moving the variable portion 2 is different from the second embodiment and the third embodiment described above, and the other configurations are the second embodiment and the first embodiment. It is the same as the three embodiments.
In the illustrated example, the case where it is the separation device of the second embodiment is shown.
The movable variable portion 2 is composed of an elevating and lowering ventilator 22 that is supported so as to be able to reciprocate in the Z direction with respect to the first chamber surface 10a of the chamber 10. The elevating and lowering ventilator 22 has a vent hole 2c corresponding to a first vent 2b that communicates the first non-opposing surface Br of the first plate-shaped member B with the first space portion 4.
The elevating and lowering ventilator 22 is made of a non-deformable material such as hard synthetic resin or metal, and is made of a plate-shaped member formed in a square plate shape or a disk shape, and one vent hole 2c is opened in the center thereof. NS. The side surface of the elevating ventilator 22 is reciprocating and airtight in the Z direction along the third chamber surface 10e formed in the Z direction between the first chamber surface 10a and the second chamber surface 10b of the chamber 10. It has a supported sliding portion 22a. The third chamber surface 10e of the chamber 10 has a stopper 10f on one side and a stopper 10g on the other side that protrude toward the elevating ventilator 22. The elevating and lowering ventilator 22 that has moved in the Z direction abuts on the stopper 10f on one side and the stopper 10g on the other side to regulate the moving range of the elevating and lowering ventilator 22. The elevating ventilator 22 and the chamber are brought into contact with the first non-opposing surface Br of the first plate-shaped member B carried in, with the tip portion in the thickness direction (Z direction) as the displacement portion 2a. The first space portion 4 is formed between the first chamber surface 10a and the first chamber surface 10a.
Therefore, due to the difference between the internal pressure rise of the transformer chamber 1 and the internal pressure of the first space portion 4 due to the inflow of the positive pressure fluid 5F, the elevating ventilator 22 moves in the Z direction and has a first plate shape together with the displacement portion 2a. The member B is moved toward the first space portion 4. As a result, the first plate-shaped member B is peeled off from the second plate-shaped member C.
Although not shown as another example of the elevating vent. It is also possible to use a plate-shaped member or the like.
Further, instead of the support structure in which the sliding portion 22a of the elevating ventilator 22 is movably supported along the third chamber surface 10e, the elevating / lowering / elevating body 22 moves up and down to the center of an elastically deformable thin plate-shaped flexible member such as stainless steel. By supporting the vent body 22 in a floating island shape, it is possible to change to a support structure in which the elevating ventilator 22 is supported so as to be able to reciprocate in the Z direction by elastic deformation of the flexible member. In the case of this floating island shape, the outer circumference of the flexible member is attached to the third chamber surface 10e of the chamber 10, so that the first space portion 4 is separated from the transformer chamber 1 on the back side of the flexible member. It is provided in an airtight manner.

図13(a)〜(c)に示される第六実施形態の微小構造物製造装置A6は、第一板状部材Bや第二板状部材Cに内側隙間E3と連通する通孔hが形成された構成が、前述した第二実施形態や第三実施形態とは異なり、それ以外の構成は第二実施形態や第三実施形態と同じものである。
図示例では、第二実施形態の分離装置である場合を示している。
通孔hは、第一板状部材B又は第二板状部材Cのいずれか一方又は両方に、第一空間部4や第二空間部7と隔離するように開穿され、変圧室1から陽圧の流体5Fが通孔hを通って内側隙間E3に侵入する。
さらに図示例では、第一板状部材B及び第二板状部材Cの間に、内側隙間E3を中心とした円周方向などへ複数の第一接合凹凸部B1及び第二接合凹凸部C1がそれぞれ所定間隔毎に並列配置され、外側隙間E1と、内側隙間E3を中心とした放射方向などへ直線状に通る複数本の貫通隙間(図示しない)と、を有している。
第一空間部4と対向する第一板状部材Bの中央には通孔hが開穿される。
通孔hと対向するチャンバー10の第一室内面10aには、通孔hと連通するように陽圧の流体5Fが通る導入路5cを形成して、導入路5cの流出口から通孔hに陽圧の流体5Fが導入される。
また、前述した第二実施形態と同様に、変動部2の変形で互いに接合した凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を剥がす。しかし、チャンバー10の第一室内面10aに導入路5cの流出口が開口するため、導入路5cの流出口から通孔hに至る通路と、第一空間部4とを気密状に分離する必要がある。
そこで、図示例の変動部2は、第一実施形態の弾性通気体21に相当する外側環状部材23とは別個に、導入路5cの流出口から通孔hに至る通路を囲むように内側環状部材24が設けられる。外側環状部材23と内側環状部材24の間に第一空間部4を形成している。
なお、弾性通気体21の他の例として図示しないが、外側環状部材23や内側環状部材24に代えて、複数の第一通気口2bを有する板状部材や、多数の第一通気口2bを有する多孔質部材などを用いることも可能である。
これにより、陽圧の流体5Fは、外側隙間E1だけでなく、導入路5c,内側環状部材24の内側通路,通孔hを通って内側隙間E3にも侵入し、内側隙間E3から複数本の貫通隙間(図示しない)にそれぞれ流れるため、第一板状部材Bと第二板状部材Cを全面的に押し離す斥力が発生する。
In the microstructure manufacturing apparatus A6 of the sixth embodiment shown in FIGS. 13 (a) to 13 (c), a through hole h communicating with the inner gap E3 is formed in the first plate-shaped member B and the second plate-shaped member C. The configuration is different from the second embodiment and the third embodiment described above, and the other configurations are the same as those of the second embodiment and the third embodiment.
In the illustrated example, the case where it is the separation device of the second embodiment is shown.
The through hole h is opened in either or both of the first plate-shaped member B and the second plate-shaped member C so as to be isolated from the first space portion 4 and the second space portion 7, and is formed from the transformer chamber 1. The positive pressure fluid 5F enters the inner gap E3 through the through hole h.
Further, in the illustrated example, a plurality of first joint uneven portions B1 and second joint uneven portions C1 are formed between the first plate-shaped member B and the second plate-shaped member C in the circumferential direction centered on the inner gap E3. They are arranged in parallel at predetermined intervals, and have an outer gap E1 and a plurality of through gaps (not shown) that pass linearly in the radial direction centered on the inner gap E3.
A through hole h is formed in the center of the first plate-shaped member B facing the first space portion 4.
An introduction path 5c through which a positive pressure fluid 5F passes so as to communicate with the through hole h is formed on the first chamber surface 10a of the chamber 10 facing the through hole h, and the through hole h is formed from the outlet of the introduction path 5c. A positive pressure fluid 5F is introduced into the chamber.
Further, similarly to the second embodiment described above, the concavo-convex portions (first joint concavo-convex portion B1, second joint concavo-convex portion C1) joined to each other by deformation of the fluctuating portion 2 are peeled off. However, since the outlet of the introduction path 5c opens on the first chamber surface 10a of the chamber 10, it is necessary to airtightly separate the passage from the outlet of the introduction path 5c to the through hole h and the first space portion 4. There is.
Therefore, the variable portion 2 of the illustrated example is an inner annular member so as to surround the passage from the outlet of the introduction path 5c to the through hole h, separately from the outer annular member 23 corresponding to the elastic ventilator 21 of the first embodiment. The member 24 is provided. The first space portion 4 is formed between the outer annular member 23 and the inner annular member 24.
Although not shown as another example of the elastic vent body 21, instead of the outer annular member 23 and the inner annular member 24, a plate-shaped member having a plurality of first vents 2b and a large number of first vents 2b are used. It is also possible to use a porous member or the like.
As a result, the positive pressure fluid 5F penetrates not only the outer gap E1 but also the inner gap E3 through the introduction path 5c, the inner passage of the inner annular member 24, and the through hole h, and a plurality of positive pressure fluids 5F enter from the inner gap E3. Since the fluid flows through the through gaps (not shown), a repulsive force is generated that pushes the first plate-shaped member B and the second plate-shaped member C apart from each other.

図14(a)〜(c)に示される第七実施形態の微小構造物製造装置A7は、保持手段Dとなる強接着面D3や弱接着面D4の接着力を温度変化でコントロールした構成が、前述した第三実施形態とは異なり、それ以外の構成は第三実施形態と同じものである。
強接着面D3や弱接着面D4が粘着部材からなる場合には、加熱することで粘着力を増大させ、冷却することで粘着力を低減させることが可能である。
図示例では、微小部品Maの転写先となる第一板状部材Bの第一対向面Bfが有する強接着面D3と、微小部品Maの転写元となる第二板状部材Cの第二対向面Cfが有する弱接着面D4の両方を、制御部9により作動制御された加熱用や冷却用の変温部材でそれぞれ温度コントロールしている。
第一板状部材Bの第一非対向面BrとZ方向へ対向するチャンバー10の第一室内面10aには、第一変温部材G1が断熱材B4を挟んで強接着面D3の近傍に設けられる。
第二板状部材Cの第二非対向面CrとZ方向へ対向するチャンバー10の第二室内面10bには、第二変温部材G2が断熱材B5を挟んで弱接着面D4の近傍に設けられる。
第一変温部材G1や第二変温部材G2は、ヒーターなどの加温機能又は冷媒配管などの冷却機能のいずれか一方若しくは両方を有している。
このため、図14(b)に示される室圧調整工程(差圧過程,加圧接合過程)では、流体差圧による第一板状部材Bの相対的な接近移動で、複数の微小部品Maの表面(非接合部Mf)に第一対向面Bfの強接着面D3が厚み方向(Z方向)へ接合する頃に、第一変温部材G1を加温する。これにより、強接着面D3の接着力が増大して、複数の微小部品Maの表面(非接合部Mf)を強力に接合できる。
これと同時に、弱接着面D4を第二変温部材G2で冷却することにより、弱接着面D4の接着力が低減して、複数の微小部品Maの裏面(接合部Mr)が弱接着面D4から剥がれ易くなる。このため、図14(c)に示される室圧調整工程(剥離過程)では、流体差圧による第一板状部材Bの相対的な離隔移動で、弱接着面D4から複数の微小部品Maの裏面(接合部Mr)がスムーズに引き剥がされる。その結果として、常温時よりも接合及び剥離し易い接着力に制御でき、チャンバー10内における接合や剥離に要する処理時間の短縮化が図れる。
また、その他の例として図示しないが、強接着面D3や弱接着面D4のいずれか一方のの接着力を温度変化でコントロールすることも可能である。
The microstructure manufacturing apparatus A7 of the seventh embodiment shown in FIGS. 14A to 14C has a configuration in which the adhesive force of the strong adhesive surface D3 and the weak adhesive surface D4 serving as the holding means D is controlled by a temperature change. , Unlike the third embodiment described above, the other configurations are the same as those of the third embodiment.
When the strong adhesive surface D3 and the weak adhesive surface D4 are made of an adhesive member, it is possible to increase the adhesive force by heating and decrease the adhesive force by cooling.
In the illustrated example, the strong adhesive surface D3 of the first facing surface Bf of the first plate-shaped member B that is the transfer destination of the micro component Ma and the second facing surface D3 of the second plate-shaped member C that is the transfer source of the micro component Ma. Both of the weakly bonded surfaces D4 of the surface Cf are temperature-controlled by temperature-changing members for heating and cooling whose operation is controlled by the control unit 9.
On the first chamber surface 10a of the chamber 10 facing the first non-opposing surface Br of the first plate-shaped member B in the Z direction, the first temperature changing member G1 sandwiches the heat insulating material B4 in the vicinity of the strong adhesive surface D3. Provided.
On the second chamber surface 10b of the chamber 10 facing the second non-opposing surface Cr of the second plate-shaped member C in the Z direction, the second temperature changing member G2 sandwiches the heat insulating material B5 in the vicinity of the weakly bonded surface D4. Provided.
The first temperature changing member G1 and the second temperature changing member G2 have either one or both of a heating function such as a heater and a cooling function such as a refrigerant pipe.
Therefore, in the chamber pressure adjusting step (differential pressure process, pressure joining process) shown in FIG. 14B, the relative close movement of the first plate-shaped member B due to the fluid differential pressure causes a plurality of minute parts Ma. The first temperature changing member G1 is heated when the strong adhesive surface D3 of the first facing surface Bf is bonded to the surface (non-bonded portion Mf) in the thickness direction (Z direction). As a result, the adhesive force of the strong adhesive surface D3 is increased, and the surfaces (non-bonded portion Mf) of the plurality of minute parts Ma can be strongly bonded.
At the same time, by cooling the weakly bonded surface D4 with the second temperature changing member G2, the adhesive force of the weakly bonded surface D4 is reduced, and the back surfaces (joint portion Mr) of the plurality of minute parts Ma are weakly bonded to the weakly bonded surface D4. It becomes easy to peel off from. Therefore, in the chamber pressure adjusting step (peeling process) shown in FIG. 14C, the relative separation movement of the first plate-shaped member B due to the fluid differential pressure causes the weakly bonded surface D4 to form a plurality of minute parts Ma. The back surface (joint Mr) is smoothly peeled off. As a result, the adhesive force can be controlled to be easier to join and peel than at room temperature, and the processing time required for joining and peeling in the chamber 10 can be shortened.
Further, although not shown as another example, it is also possible to control the adhesive force of either the strong adhesive surface D3 or the weak adhesive surface D4 by changing the temperature.

このような本発明の実施形態に係る微小構造物製造装置A及び微小構造物製造方法によると、変圧室1に第一板状部材B及び第二板状部材Cを収容することにより、第一板状部材Bの第一非対向面Brが変動部2の変位部位2aに対し変形又は移動自在に当接する。このため、第一板状部材Bがチャンバー10の第一室内面10aに対して厚み方向(Z方向)へ移動可能となる。第二板状部材Cの第二非対向面Crは、保持部3の保持部位3aに当接して、チャンバー10の第二室内面10bに対し支えられる。
この収容状態から室圧調整部5で第一空間部4の内圧を変圧室1の内圧よりも上昇させることによって、変動部2の変位部位2aとともに第一板状部材Bが第二板状部材Cに向け移動する。このため、第一板状部材Bの第一対向面Bf又は第二板状部材Cの第二対向面Cfのいずれか一方が凹凸部(非接合凹凸部Cu)を有する場合には、凹凸部(非接合凹凸部Cu)の凹凸表面形状に倣うように、他方が重なり合わされ、圧力差(流体)により第一板状部材Bが第二板状部材Cに向けて均等に加圧される。
また、室圧調整部5で変圧室1の内圧を第一空間部4の内圧よりも下降させることによって、変動部2の変位部位2aとともに第一板状部材Bが第一空間部4に向け移動する。このため、第一板状部材Bの第一対向面Bf及び第二板状部材Cの第二対向面Cfの両方が凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を有する場合には、第二板状部材Cの凹凸部(第二接合凹凸部C1)から第一板状部材Bの凹凸部(第一接合凹凸部B1)が引き剥がされる。
したがって、内圧差の制御変更で分離された凹凸部(非接合凹凸部Cu)の接合や追加押圧と、接合された凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)の分離との逆動作を行うことができる。
その結果、被成形物から型を離型する分離機能のみの従来のものに比べ、変圧室1と第一空間部4の内圧差の設定変更だけで、分離された凹凸部(非接合凹凸部Cu)の接合装置や追加押圧装置、又は接合された凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)の分離装置として利用でき、使用勝手に優れる。
特に、分離された凹凸部(非接合凹凸部Cu)の接合や追加押圧では、凹凸部(非接合凹凸部Cu)の表面形状に沿って第一板状部材Bを均等に加圧できる。このため、第一板状部材Bや第二板状部材Cに部分的な厚みムラがある場合、又は第一板状部材Bと第二板状部材Cの間に微小構造物Mを凹凸状に挟んで接合する場合でも、微小構造物Mなどの凸状部位のみに圧力が集中せず均一な加圧状態で接合可能になる。これにより、凸状部位の破損を防止でき、高精度な接合や追加押圧を達成できる。
According to the microstructure manufacturing apparatus A and the microstructure manufacturing method according to the embodiment of the present invention, the first plate-shaped member B and the second plate-shaped member C are accommodated in the transformer chamber 1. The first non-opposing surface Br of the plate-shaped member B comes into contact with the displacement portion 2a of the variable portion 2 in a deformable or movable manner. Therefore, the first plate-shaped member B can move in the thickness direction (Z direction) with respect to the first chamber surface 10a of the chamber 10. The second non-opposing surface Cr of the second plate-shaped member C comes into contact with the holding portion 3a of the holding portion 3 and is supported with respect to the second chamber surface 10b of the chamber 10.
From this accommodation state, the internal pressure of the first space portion 4 is raised above the internal pressure of the transformer chamber 1 by the chamber pressure adjusting portion 5, so that the first plate-shaped member B is made into the second plate-shaped member together with the displacement portion 2a of the fluctuating portion 2. Move toward C. Therefore, when either the first facing surface Bf of the first plate-shaped member B or the second facing surface Cf of the second plate-shaped member C has a concavo-convex portion (non-bonded concavo-convex portion Cu), the concavo-convex portion. The other is overlapped so as to follow the uneven surface shape of (non-joined uneven portion Cu), and the first plate-shaped member B is uniformly pressurized toward the second plate-shaped member C by the pressure difference (fluid).
Further, by lowering the internal pressure of the transformer chamber 1 from the internal pressure of the first space portion 4 by the chamber pressure adjusting portion 5, the first plate-shaped member B is directed toward the first space portion 4 together with the displacement portion 2a of the fluctuating portion 2. Moving. Therefore, both the first facing surface Bf of the first plate-shaped member B and the second facing surface Cf of the second plate-shaped member C have uneven portions (first joint uneven portion B1, second joint uneven portion C1). In this case, the concavo-convex portion (first joint concavo-convex portion B1) of the first plate-shaped member B is peeled off from the concavo-convex portion (second joint concavo-convex portion C1) of the second plate-shaped member C.
Therefore, the joining and additional pressing of the uneven portion (non-joined concave-convex portion Cu) separated by the control change of the internal pressure difference and the separation of the joined concave-convex portion (first joint concave-convex portion B1, second joint concave-convex portion C1). Can be reversed.
As a result, as compared with the conventional one having only the separation function of separating the mold from the object to be molded, the concavo-convex portion (non-junction concavo-convex portion) separated only by changing the setting of the internal pressure difference between the transformer chamber 1 and the first space portion 4. It can be used as a joining device for Cu), an additional pressing device, or a separating device for the joined uneven portions (first joint uneven portion B1, second joint uneven portion C1), and is excellent in usability.
In particular, in joining or additional pressing of the separated uneven portion (non-joined concave-convex portion Cu), the first plate-shaped member B can be uniformly pressurized along the surface shape of the uneven portion (non-joined concave-convex portion Cu). Therefore, when the first plate-shaped member B or the second plate-shaped member C has partial thickness unevenness, or when the microstructure M is unevenly formed between the first plate-shaped member B and the second plate-shaped member C. Even when joining by sandwiching between the two, the pressure is not concentrated only on the convex portion such as the microstructure M, and the joining can be performed in a uniform pressurized state. As a result, damage to the convex portion can be prevented, and high-precision joining and additional pressing can be achieved.

さらに、第一板状部材Bと第二板状部材Cが互いに凹凸状に接合する凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を有し、制御部9は、室圧調整部5の作動で変圧室1の内圧が第一空間部4の内圧よりも上昇して、変動部2の変位部位2aとともに第一板状部材Bを、第一空間部4に向け移動させることが好ましい。
この場合には、変圧室1の内圧を第一空間部4の内圧よりも上昇させることによって、変動部2の変位部位2aとともに第一板状部材Bが、第一空間部4に向け厚み方向(Z方向)へ移動する。
このため、第一板状部材Bの凹凸部(第一接合凹凸部B1)が第二板状部材Cの凹凸部(第二接合凹凸部C1)から引き剥がされる。
したがって、第一板状部材Bと第二板状部材Cの凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を形状変形(倒れ)させずに剥離することができる。
その結果、被成形物に転写した凹凸パターンから型の凹凸パターンを斜めに引き抜く従来のものに比べ、凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)の突出量が長くなっても、剥離に伴う形状変形を防止できる。
このため、ナノインプリントを含むインプリント成形などに用いられる場合には、凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)の凹凸パターンが破損ぜす、高精度な凹凸パターンを作製できる。
また、並列配置された微小素子などの微小部品Maを粘着チャックから剥離して微小部品Maの受け渡しを行う搬送装置などの場合には、微小部品Maが破損せず、高精度な受け渡しを行える。
Further, the control unit 9 has a concavo-convex portion (first joint concavo-convex portion B1, second joint concavo-convex portion C1) in which the first plate-shaped member B and the second plate-shaped member C are joined to each other in a concavo-convex manner. By the operation of the adjusting unit 5, the internal pressure of the transformer chamber 1 rises above the internal pressure of the first space portion 4, and the first plate-shaped member B is moved toward the first space portion 4 together with the displacement portion 2a of the fluctuating portion 2. Is preferable.
In this case, by raising the internal pressure of the transformer chamber 1 above the internal pressure of the first space portion 4, the first plate-shaped member B together with the displacement portion 2a of the fluctuating portion 2 is in the thickness direction toward the first space portion 4. Move in the (Z direction).
Therefore, the concavo-convex portion (first joint concavo-convex portion B1) of the first plate-shaped member B is peeled off from the concavo-convex portion (second joint concavo-convex portion C1) of the second plate-shaped member C.
Therefore, the concavo-convex portions (first joint concavo-convex portion B1, second joint concavo-convex portion C1) of the first plate-shaped member B and the second plate-shaped member C can be peeled off without deforming (falling).
As a result, the amount of protrusion of the concavo-convex portion (first joint concavo-convex portion B1, second joint concavo-convex portion C1) becomes longer than that of the conventional one in which the concavo-convex pattern of the mold is diagonally pulled out from the concavo-convex pattern transferred to the object to be molded. However, it is possible to prevent shape deformation due to peeling.
Therefore, when it is used for imprint molding including nanoimprint, it is possible to produce a highly accurate uneven pattern in which the uneven pattern of the uneven portion (first joint uneven portion B1, second joint uneven portion C1) is damaged. ..
Further, in the case of a transfer device or the like in which minute parts Ma such as minute elements arranged in parallel are peeled off from an adhesive chuck to deliver the minute parts Ma, the minute parts Ma are not damaged and high-precision delivery can be performed.

さらに、第一空間部4の内圧を下降させる第一内圧調整部6を備えることが好ましい。
この場合には、変圧室1の内圧上昇と同時に、第一内圧調整部6で第一空間部4の内圧を下降させることにより、変圧室1の内圧と第一空間部4の内圧との圧力差が更に大きくなる。
このため、変動部2を第一空間部4に向け引き寄せる引力が増大する。
したがって、互いに凹凸接合された第一板状部材Bと第二板状部材Cの凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)をスムーズに剥離することができる。
その結果、剥離能力の向上が図れる。
特に、室圧調整部5(室圧用駆動源や室圧用制御弁5b)又は第一内圧調整部6(第一駆動源や第一制御弁6b)のいずれか一方若しくは両方の作動制御により、変圧室1の内圧と第一空間部4の内圧を相対的に段階的調整した場合には、凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)をよりスムーズに剥離できる。
また、変圧室1の内圧と第一空間部4の内圧との圧力差で、変動部2の変位部位2aに対して、第一板状部材Bの第一非対向面Brが真空吸着することが可能になる。これにより、変圧室1の内圧と第一空間部4の内圧との圧力差で、変動部2の変位部位2aとともに第一空間部4に向け移動した第一板状部材Bを吸着保持できる。
Further, it is preferable to include a first internal pressure adjusting portion 6 for lowering the internal pressure of the first space portion 4.
In this case, at the same time as the internal pressure of the transformer chamber 1 rises, the internal pressure of the first space portion 4 is lowered by the first internal pressure adjusting unit 6, so that the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4 are reduced. The difference is even greater.
Therefore, the attractive force that attracts the variable portion 2 toward the first space portion 4 increases.
Therefore, the concavo-convex portions (first joint concavo-convex portion B1, second joint concavo-convex portion C1) of the first plate-shaped member B and the second plate-shaped member C that are concavo-convex-bonded to each other can be smoothly peeled off.
As a result, the peeling ability can be improved.
In particular, the transformer is transformed by operating control of either or both of the chamber pressure adjusting unit 5 (chamber pressure drive source and chamber pressure control valve 5b) or the first internal pressure adjusting unit 6 (first drive source and first control valve 6b). When the internal pressure of the chamber 1 and the internal pressure of the first space portion 4 are adjusted in a relatively stepwise manner, the uneven portions (first joint uneven portion B1, second joint uneven portion C1) can be peeled off more smoothly.
Further, due to the pressure difference between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4, the first non-opposing surface Br of the first plate-shaped member B is vacuum-sucked to the displacement portion 2a of the fluctuating portion 2. Becomes possible. As a result, the pressure difference between the internal pressure of the transformer chamber 1 and the internal pressure of the first space portion 4 can attract and hold the first plate-shaped member B that has moved toward the first space portion 4 together with the displacement portion 2a of the fluctuating portion 2.

さらに、チャンバー10の第二室内面10b及び保持部3の間に形成される気密状の第二空間部7と、第二空間部7の内圧を下降させる第二内圧調整部8と、を備えることが好ましい。
この場合には、変圧室1の内圧上昇と同時、又は変圧室1の内圧上昇開始前から、第一空間部4の内圧を下降させることで、変圧室1の内圧と第一空間部4の内圧との間に圧力差が生じる。
このため、保持部3の保持部位3aに対して第二板状部材Cの第二非対向面Crが圧力差で真空吸着される。これにより、保持部位3aに第二板状部材Cが移動不能に吸着保持される。
したがって、保持部3の保持部位3aに第二板状部材Cを確実に固定することができる。
その結果、第一板状部材Bと第二板状部材Cの凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を確実に剥離できる。
Further, an airtight second space portion 7 formed between the second chamber surface 10b and the holding portion 3 of the chamber 10 and a second internal pressure adjusting portion 8 for lowering the internal pressure of the second space portion 7 are provided. Is preferable.
In this case, the internal pressure of the transformer chamber 1 and the internal pressure of the first space 4 are reduced by lowering the internal pressure of the first space 4 at the same time as the internal pressure of the transformer chamber 1 rises or before the internal pressure of the transformer chamber 1 starts to rise. There is a pressure difference with the internal pressure.
Therefore, the second non-opposing surface Cr of the second plate-shaped member C is evacuated by the pressure difference with respect to the holding portion 3a of the holding portion 3. As a result, the second plate-shaped member C is immovably adsorbed and held on the holding portion 3a.
Therefore, the second plate-shaped member C can be securely fixed to the holding portion 3a of the holding portion 3.
As a result, the concavo-convex portions (first joint concavo-convex portion B1, second joint concavo-convex portion C1) of the first plate-shaped member B and the second plate-shaped member C can be reliably peeled off.

またさらに、第一板状部材Bと第二板状部材Cの間には、室圧調整部5から変圧室1に供給される流体5Fが侵入可能な隙間Eを有することが好ましい。
この場合には、変圧室1と第一空間部4の圧力差により、変動部2を第一空間部4に向け引き寄せる引力が発生するのと同時に、室圧調整部5から変圧室1に供給した陽圧の流体5Fが隙間Eに侵入して、第一板状部材Bと第二板状部材Cの凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)を相対的に押し離す斥力が発生する。
したがって、引力と斥力が相まって凹凸部(第一接合凹凸部B1,第二接合凹凸部C1)をよりスムーズに剥離することができる。
その結果、剥離能力の向上が更なる図れる。
Further, it is preferable that the first plate-shaped member B and the second plate-shaped member C have a gap E through which the fluid 5F supplied from the chamber pressure adjusting unit 5 to the transformer chamber 1 can enter.
In this case, due to the pressure difference between the transformer chamber 1 and the first space portion 4, an attractive force that attracts the fluctuating portion 2 toward the first space portion 4 is generated, and at the same time, the chamber pressure adjusting portion 5 supplies the transformer chamber 1. The positive pressure fluid 5F invades the gap E and relatively pushes the uneven portions (first joint uneven portion B1, second joint uneven portion C1) of the first plate-shaped member B and the second plate-shaped member C. Repulsive force to separate is generated.
Therefore, the concavo-convex portion (first joint concavo-convex portion B1, second joint concavo-convex portion C1) can be peeled off more smoothly due to the combination of the attractive force and the repulsive force.
As a result, the peeling ability can be further improved.

そして、第一板状部材B又は第二板状部材Cのいずれか一方が強接着面D3を有し、他方が弱接着面D4を介して着脱自在に並設される複数の微小構造体M1を有し、制御部9は、室圧調整部5の作動で第一空間部4の内圧が変圧室1の内圧よりも上昇して、第一板状部材Bが第二板状部材Cに向け移動し、これに続き変圧室1の内圧が第一空間部4の内圧よりも上昇して、第一板状部材Bが第一空間部4に向け移動するように制御することが好ましい。
この場合には、第一空間部4の内圧を変圧室1の内圧よりも上昇させることによって、第一板状部材Bが第二板状部材Cに向け移動する。このため、第一板状部材Bが第二板状部材Cと接近して、複数の微小構造体M1の表面(非接合凹凸部Cu)が強接着面D3と接合する。
その次に、変圧室1の内圧を第一空間部4の内圧よりも上昇させることによって、第一板状部材Bが、第一空間部4に向け移動する。このため、第一板状部材Bが第二板状部材Cから離れて、複数の微小構造体M1の裏面(接合部Mr)が弱接着面D4から引き剥がされる。
したがって、複数の微小構造体M1を第一板状部材B又は第二板状部材Cのいずれか一方から他方へ整列状態が変更されずに表裏反転して移し替えることができる。
その結果、複数の微小構造体M1が破損することなく、高精度な移し替えを行えるとともに、表裏反転によって移し替え前に接合された複数の微小構造体M1の裏面(接合部Mr)を露出させることができる。
Then, one of the first plate-shaped member B and the second plate-shaped member C has a strong adhesive surface D3, and the other is detachably arranged side by side via the weak adhesive surface D4. In the control unit 9, the internal pressure of the first space portion 4 rises above the internal pressure of the transformer chamber 1 by the operation of the chamber pressure adjusting unit 5, and the first plate-shaped member B becomes the second plate-shaped member C. It is preferable to control so that the internal pressure of the transformer chamber 1 rises higher than the internal pressure of the first space portion 4 and the first plate-shaped member B moves toward the first space portion 4.
In this case, by raising the internal pressure of the first space portion 4 to be higher than the internal pressure of the transformer chamber 1, the first plate-shaped member B moves toward the second plate-shaped member C. Therefore, the first plate-shaped member B approaches the second plate-shaped member C, and the surfaces (non-bonded uneven portion Cu) of the plurality of microstructures M1 are joined to the strong adhesive surface D3.
Next, by raising the internal pressure of the transformer chamber 1 above the internal pressure of the first space portion 4, the first plate-shaped member B moves toward the first space portion 4. Therefore, the first plate-shaped member B is separated from the second plate-shaped member C, and the back surfaces (joint portion Mr) of the plurality of microstructures M1 are peeled off from the weakly bonded surface D4.
Therefore, the plurality of microstructures M1 can be transferred from either one of the first plate-shaped member B or the second plate-shaped member C to the other by inverting the alignment state without changing the alignment state.
As a result, the transfer can be performed with high accuracy without damaging the plurality of microstructures M1, and the back surface (joint portion Mr) of the plurality of microstructures M1 joined before the transfer is exposed by front-back inversion. be able to.

なお、前示の実施形態(第一実施形態〜第七実施形態)において図示例では、第一板状部材B及び第二板状部材Cが矩形である場合のみを示したが、これに限定されず、矩形の他に円形などのであってもよい。
さらに、第二実施形態の図示例では、微小成形物M2の別タイプのみを示したが、これに限定されず、第一板状部材B又は第二板状部材Cのいずれか一方の全体が成形型Mbとなり、他方の全体が成形基板Mcとなる一体タイプであってもよい。
また、第四実施形態〜第六実施形態の図示例では、第二実施形態(分離装置)の変形例のみを示し、第七実施形態の図示例では、第三実施形態(転写装置)の変形例のみを示したが、これに限定されず、第四実施形態〜第七実施形態が図示していない第一実施形態(接合装置)や第二実施形態(分離装置)や第三実施形態(転写装置)であってもよい。
このような場合においても、前述した第一実施形態〜第七実施形態と同様な作用や利点が得られる。
In the illustrated example in the above-described embodiment (first embodiment to seventh embodiment), only the case where the first plate-shaped member B and the second plate-shaped member C are rectangular is shown, but the present invention is limited to this. Instead of being rectangular, it may be circular or the like.
Further, in the illustrated example of the second embodiment, only another type of the micromolded product M2 is shown, but the present invention is not limited to this, and the whole of either the first plate-shaped member B or the second plate-shaped member C is used. It may be an integral type in which the molding mold Mb is formed and the other whole is the molding substrate Mc.
Further, in the illustrated examples of the fourth embodiment to the sixth embodiment, only the modified example of the second embodiment (separation device) is shown, and in the illustrated example of the seventh embodiment, the modified example of the third embodiment (transfer device) is shown. Although only an example is shown, the present invention is not limited to this, and the first embodiment (joining device), the second embodiment (separation device), and the third embodiment (the fourth embodiment to the seventh embodiment) are not shown. It may be a transfer device).
Even in such a case, the same operations and advantages as those of the first to seventh embodiments described above can be obtained.

A 微小構造物製造装置 1 変圧室
2 変動部 2a 変位部位
3 保持部 3a 保持部位
4 第一空間部 5 室圧調整部
5F 流体 6 第一内圧調整部
7 第二空間部 8 第二内圧調整部
9 制御部 10a 第一室内面
10b 第二室内面 B 第一板状部材
B1 凹凸部(第一接合凹凸部) Bf 第一対向面
Br 第一非対向面 C 第二板状部材
C1 凹凸部(第二接合凹凸部) Cf 第二対向面
Cr 第二非対向面 Cu 凹凸部(非接合凹凸部)
D3 強接着面 D4 弱接着面
E 隙間
A Microstructure manufacturing equipment 1 Transformer chamber 2 Fluctuation part 2a Displacement part 3 Holding part 3a Holding part 4 First space part 5 Room pressure adjustment part 5F Fluid 6 First internal pressure adjustment part 7 Second space part 8 Second internal pressure adjustment part 9 Control unit 10a First chamber surface 10b Second chamber surface B First plate-shaped member B1 Concavo-convex part (first joint concavo-convex part) Bf First facing surface Br First non-facing surface C Second plate-shaped member C1 Concavo-convex part ( 2nd joint uneven part) Cf 2nd facing surface Cr 2nd non-facing surface Cu uneven part (non-joining uneven part)
D3 Strong adhesive surface D4 Weak adhesive surface E Gap

Claims (7)

互いに対向する第一板状部材の第一対向面又は第二板状部材の第二対向面のいずれか一方若しくは両方が有する凹凸部を接合又は分離させる微小構造物製造装置であって、
チャンバーの内部に形成されて前記第一板状部材及び前記第二板状部材が出し入れ自在に収容される変圧室と、
前記変圧室に収容された前記第一板状部材の第一非対向面と前記チャンバーの第一室内面との間に設けられる変動部と、
前記変圧室に収容された前記第二板状部材の第二非対向面と前記チャンバーの第二室内面との間に設けられる保持部と、
前記チャンバーの前記第一室内面及び前記変動部の間に前記変圧室と分離して気密状に設けられる第一空間部と、
前記変圧室又は前記第一空間部のどちらか一方の内圧を他方の内圧よりも上昇させる室圧調整部と、
前記室圧調整部を作動制御する制御部と、を備え、
前記変動部は、前記チャンバーの前記第一室内面に対して前記第一板状部材の前記第一非対向面とその厚み方向へ変形又は移動自在に当接する変位部位を有し、
前記保持部は、前記チャンバーの前記第二室内面に対して前記第二板状部材の前記第二非対向面を支える保持部位を有し、
前記制御部は、前記室圧調整部の作動による前記変圧室と前記第一空間部との圧力差で、前記変動部の前記変位部位とともに前記第一板状部材が、前記第二板状部材又は前記第一空間部に向け移動するように制御することを特徴とする微小構造物製造装置。
A microstructure manufacturing apparatus for joining or separating uneven portions of either or both of the first facing surface of a first plate-shaped member or the second facing surface of a second plate-shaped member facing each other.
A transformer chamber formed inside the chamber and accommodating the first plate-shaped member and the second plate-shaped member in and out of the chamber.
A variable portion provided between the first non-opposing surface of the first plate-shaped member housed in the transformer chamber and the first chamber surface of the chamber, and
A holding portion provided between the second non-opposing surface of the second plate-shaped member housed in the transformer chamber and the second chamber surface of the chamber, and
A first space portion that is separated from the transformer chamber and airtightly provided between the first chamber surface and the variable portion of the chamber.
A chamber pressure adjusting unit that raises the internal pressure of either the transformer chamber or the first space portion above the internal pressure of the other.
A control unit that controls the operation of the chamber pressure adjusting unit is provided.
The variable portion has a displacement portion that is deformably or movably abutted with the first non-opposing surface of the first plate-shaped member in the thickness direction thereof with respect to the first chamber surface of the chamber.
The holding portion has a holding portion that supports the second non-opposing surface of the second plate-like member with respect to the second chamber surface of the chamber.
In the control unit, the pressure difference between the transformer chamber and the first space portion due to the operation of the chamber pressure adjusting unit causes the first plate-shaped member to form the second plate-shaped member together with the displacement portion of the variable portion. Alternatively, a microstructure manufacturing apparatus characterized in that it is controlled to move toward the first space portion.
前記第一板状部材と前記第二板状部材が互いに凹凸状に接合する前記凹凸部を有し、
前記制御部は、前記室圧調整部の作動で前記変圧室の内圧が前記第一空間部の内圧よりも上昇して、前記変動部の前記変位部位とともに前記第一板状部材が、前記第一空間部に向け移動することを特徴とする請求項1記載の微小構造物製造装置。
It has the uneven portion in which the first plate-shaped member and the second plate-shaped member are joined to each other in a concave-convex shape.
In the control unit, the internal pressure of the transformer chamber rises above the internal pressure of the first space portion due to the operation of the chamber pressure adjusting unit, and the first plate-shaped member together with the displacement portion of the variable portion causes the first plate-like member. The microstructure manufacturing apparatus according to claim 1, wherein the device moves toward one space.
前記第一空間部の内圧を下降させる第一内圧調整部を備えることを特徴とする請求項1又は2記載の微小構造物製造装置。 The microstructure manufacturing apparatus according to claim 1 or 2, further comprising a first internal pressure adjusting unit for lowering the internal pressure of the first space portion. 前記チャンバーの前記第二室内面及び前記保持部の間に形成される気密状の第二空間部と、前記第二空間部の内圧を下降させる第二内圧調整部と、を備えることを特徴とする請求項1、2又は3記載の微小構造物製造装置。 It is characterized by including an airtight second space portion formed between the second chamber surface and the holding portion of the chamber, and a second internal pressure adjusting portion for lowering the internal pressure of the second space portion. The microstructure manufacturing apparatus according to claim 1, 2 or 3. 前記第一板状部材と前記第二板状部材の間には、前記室圧調整部から前記変圧室に供給される流体が侵入可能な隙間を有することを特徴とする請求項1、2、3又は4記載の微小構造物製造装置。 Claims 1, 2 and 1. The microstructure manufacturing apparatus according to 3 or 4. 前記第一板状部材又は前記第二板状部材のいずれか一方が強接着面を有し、他方が弱接着面を介して着脱自在に並設される複数の微小構造体を有し、
前記制御部は、前記室圧調整部の作動で前記第一空間部の内圧が前記変圧室の内圧よりも上昇して、前記第一板状部材が前記第二板状部材に向け移動し、これに続き前記変圧室の内圧が前記第一空間部の内圧よりも上昇して、前記第一板状部材が前記第一空間部に向け移動するように制御することを特徴とする請求項1記載の微小構造物製造装置。
Either one of the first plate-shaped member or the second plate-shaped member has a strong adhesive surface, and the other has a plurality of microstructures detachably arranged side by side via a weak adhesive surface.
In the control unit, the internal pressure of the first space portion rises above the internal pressure of the transformer chamber due to the operation of the chamber pressure adjusting unit, and the first plate-shaped member moves toward the second plate-shaped member. Following this, claim 1 is characterized in that the internal pressure of the transformer chamber rises above the internal pressure of the first space portion, and the first plate-shaped member is controlled to move toward the first space portion. The microstructure manufacturing apparatus according to the description.
互いに対向する第一板状部材の第一対向面又は第二板状部材の第二対向面のいずれか一方若しくは両方が有する凹凸部を接合又は分離させる微小構造物製造方法であって、
チャンバーの内部に形成された変圧室に前記第一板状部材及び前記第二板状部材を入れる搬入工程と、
前記第一板状部材を前記チャンバーの第一室内面に沿って位置決めし、前記第二板状部材を前記チャンバーの第二室内面に沿って位置決めする保持工程と、
前記変圧室の内圧を調整する室圧調整工程と、
前記第一板状部材及び前記第二板状部材を前記変圧室から取り出す搬出工程と、を含み、
前記保持工程では、前記第一板状部材の第一非対向面と前記第一室内面との間に設けられた変動部の変位部位に対して、前記第一板状部材の前記第一非対向面を、その厚み方向へ当接させ、前記変位部位の厚み方向への変形又は移動に伴って、前記第一非対向面が前記第一室内面に対し移動可能となるとともに、前記第一室内面及び前記変動部の間に第一空間部が前記変圧室と分離して気密状に設けられ、前記第二板状部材の第二非対向面と前記第二室内面との間に設けられた保持部の保持部位に対して、前記第二板状部材の前記第二非対向面を前記厚み方向へ当接させて支え、
前記室圧調整工程では、室圧調整部により前記変圧室又は前記第一空間部のどちらか一方の内圧を他方の内圧よりも上昇して、前記変動部の前記変位部位とともに前記第一板状部材が、前記第二板状部材又は前記第一空間部に向け移動させることを特徴とする微小構造物製造方法。
A method for manufacturing a microstructure in which uneven portions of either or both of the first facing surface of a first plate-shaped member or the second facing surface of a second plate-shaped member facing each other are joined or separated.
The carrying-in process of inserting the first plate-shaped member and the second plate-shaped member into the transformer chamber formed inside the chamber, and
A holding step of positioning the first plate-shaped member along the first chamber surface of the chamber and positioning the second plate-shaped member along the second chamber surface of the chamber.
The chamber pressure adjustment process for adjusting the internal pressure of the transformer chamber and
Including a step of taking out the first plate-shaped member and the second plate-shaped member from the transformer chamber, and the like.
In the holding step, the first non-opposite surface of the first plate-shaped member with respect to the displacement portion of the variable portion provided between the first non-opposing surface of the first plate-shaped member and the first chamber surface. the facing surface thereof in the thickness direction is brought into contact, the with the deformation or movement in the thickness direction of the displacement portion, the first non-facing surface movable with Do Rutotomoni to said first chamber surface, said second A first space portion is separated from the transformer chamber and airtightly provided between the indoor surface and the variable portion, and is provided between the second non-opposing surface of the second plate-shaped member and the second indoor surface. The second non-opposing surface of the second plate-shaped member is brought into contact with the holding portion of the provided holding portion in the thickness direction to support the holding portion.
In the chamber pressure adjusting step, the internal pressure of either the transformer chamber or the first space portion is raised above the internal pressure of the other by the chamber pressure adjusting portion, and the first plate shape is formed together with the displacement portion of the fluctuating portion. A method for manufacturing a microstructure, wherein the member is moved toward the second plate-shaped member or the first space portion.
JP2021521445A 2020-10-01 2021-03-11 Microstructure manufacturing equipment and microstructure manufacturing method Active JP6932291B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/037457 2020-10-01
PCT/JP2020/037457 WO2022070390A1 (en) 2020-10-01 2020-10-01 Separator and separation method
PCT/JP2021/009784 WO2022070465A1 (en) 2020-10-01 2021-03-11 Microstructure manufacturing device and microstructure manufacturing method

Publications (2)

Publication Number Publication Date
JP6932291B1 true JP6932291B1 (en) 2021-09-08
JPWO2022070465A1 JPWO2022070465A1 (en) 2022-04-07

Family

ID=77549930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021521445A Active JP6932291B1 (en) 2020-10-01 2021-03-11 Microstructure manufacturing equipment and microstructure manufacturing method

Country Status (4)

Country Link
JP (1) JP6932291B1 (en)
KR (1) KR102637392B1 (en)
CN (1) CN115315346B (en)
TW (1) TWI763593B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230235A (en) * 2006-03-01 2007-09-13 Hitachi Global Storage Technologies Netherlands Bv Method and apparatus for separating stamper from pattern formed substrate
JP2010258274A (en) * 2009-04-27 2010-11-11 Shin-Etsu Engineering Co Ltd Laminating method and device
JP2012045842A (en) * 2010-08-27 2012-03-08 Toshiba Mach Co Ltd Transfer device and transfer method
JP2012227430A (en) * 2011-04-21 2012-11-15 Hoya Corp Nanoimprint device and mold release method
WO2013076874A1 (en) * 2011-11-25 2013-05-30 信越エンジニアリング株式会社 Wafer transport apparatus and wafer assembly line

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504080B1 (en) * 2003-05-26 2005-07-27 한국기계연구원 Uv nanoimprint lithography using the selective added pressure
KR100913497B1 (en) * 2007-12-27 2009-08-25 한국산업기술대학교산학협력단 Apparatus and method for imprinting
KR101023440B1 (en) * 2008-10-29 2011-03-24 에이피시스템 주식회사 Imprinting apparatus
JP2012213889A (en) * 2011-03-31 2012-11-08 Hoya Corp Imprint device and demolding method
WO2015072572A1 (en) 2013-11-18 2015-05-21 Scivax株式会社 Mold release device and mold release method
TWI663472B (en) * 2014-07-25 2019-06-21 日商綜研化學股份有限公司 Manufacturing method of fine structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230235A (en) * 2006-03-01 2007-09-13 Hitachi Global Storage Technologies Netherlands Bv Method and apparatus for separating stamper from pattern formed substrate
JP2010258274A (en) * 2009-04-27 2010-11-11 Shin-Etsu Engineering Co Ltd Laminating method and device
JP2012045842A (en) * 2010-08-27 2012-03-08 Toshiba Mach Co Ltd Transfer device and transfer method
JP2012227430A (en) * 2011-04-21 2012-11-15 Hoya Corp Nanoimprint device and mold release method
WO2013076874A1 (en) * 2011-11-25 2013-05-30 信越エンジニアリング株式会社 Wafer transport apparatus and wafer assembly line

Also Published As

Publication number Publication date
CN115315346A (en) 2022-11-08
TWI763593B (en) 2022-05-01
KR102637392B1 (en) 2024-02-15
CN115315346B (en) 2023-06-06
KR20220138003A (en) 2022-10-12
JPWO2022070465A1 (en) 2022-04-07
TW202214423A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
US9638944B1 (en) Systems and methods for substrate lamination
JP5705937B2 (en) Bonding device manufacturing apparatus and manufacturing method
JP6211074B2 (en) Press device, vacuum frame, and press molding method
TW201408488A (en) Substrate bonding device and bonding method
JP5337620B2 (en) Workpiece adhesive holding device and vacuum bonding machine
KR102330225B1 (en) Vacuum bonding apparatus of bonding device
JP4417432B1 (en) Work transfer device and vacuum bonding method
JP6932291B1 (en) Microstructure manufacturing equipment and microstructure manufacturing method
JP2010221611A (en) Manufacturing method of laminator and sealing structure object
TW201838043A (en) Resin sealing device and resin sealing method
WO2022070465A1 (en) Microstructure manufacturing device and microstructure manufacturing method
US9981460B1 (en) Systems and methods for substrate lamination
JP4373494B1 (en) Vacuum bonding equipment
JP6049820B1 (en) Bonding device manufacturing apparatus and manufacturing method
TWI826983B (en) Transfer device and transfer method
US6820797B2 (en) System and method for seal formation
JP6374132B1 (en) Bonding device manufacturing apparatus and bonding device manufacturing method
JP5877264B1 (en) Bonding device manufacturing apparatus and manufacturing method
JP4420640B2 (en) Substrate bonding apparatus and substrate bonding method
US20040099715A1 (en) System and method for seal formation
JP7316650B2 (en) Joining method, joining device, jig used in joining device
JP2020029002A (en) Vacuum lamination system and vacuum lamination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210817

R150 Certificate of patent or registration of utility model

Ref document number: 6932291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250