JP6922110B1 - Crushing / stirring / mixing / kneading machine parts - Google Patents
Crushing / stirring / mixing / kneading machine parts Download PDFInfo
- Publication number
- JP6922110B1 JP6922110B1 JP2021020114A JP2021020114A JP6922110B1 JP 6922110 B1 JP6922110 B1 JP 6922110B1 JP 2021020114 A JP2021020114 A JP 2021020114A JP 2021020114 A JP2021020114 A JP 2021020114A JP 6922110 B1 JP6922110 B1 JP 6922110B1
- Authority
- JP
- Japan
- Prior art keywords
- phase
- mixing
- cermet
- crushing
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 41
- 238000004898 kneading Methods 0.000 title claims abstract description 37
- 238000003756 stirring Methods 0.000 title claims abstract description 36
- 239000011195 cermet Substances 0.000 claims abstract description 45
- 239000002245 particle Substances 0.000 claims abstract description 32
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 23
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 239000011812 mixed powder Substances 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 abstract description 20
- 230000005389 magnetism Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 abstract description 2
- 229910003178 Mo2C Inorganic materials 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 239000000463 material Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 12
- 230000005484 gravity Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000007885 magnetic separation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/04—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/10—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
【課題】軽量で、耐衝撃性、耐摩耗性に優れ、さらに磁性を有する粉砕・撹拌・混合・混練機部材を提供して、これら部材を長寿命化する。【解決手段】元素ごとの質量比が、Ti:20〜45%、Mo:5〜35%、W:6〜30%、C:5〜15%、Co:10〜50%、CoとNi合計で25超〜50%となるように原料を配合し、それらを混合して混合粉を得、この混合粉をプレス成形してプレス体を得、このプレス体を焼結して得られるサーメットから成る、粉砕・撹拌・混合・混練機部材である。このサーメットは、TiCNを主成分とするコア相2と、コア相の周囲を覆うように存在し、(Ti,Mo,W)(C,N)を主成分とするリム相3と、金属相4の3相を有し、断面組織観察でのコア相とリム相から成る硬質相の平均粒径が3μm未満であり、SEM観察により、WC相およびMo2C相を観察することができない。【選択図】図1PROBLEM TO BE SOLVED: To provide a crushing / stirring / mixing / kneading machine member which is lightweight, has excellent impact resistance and wear resistance, and has magnetism, and prolongs the life of these members. SOLUTION: The mass ratio of each element is Ti: 20 to 45%, Mo: 5 to 35%, W: 6 to 30%, C: 5 to 15%, Co: 10 to 50%, and the total of Co and Ni. The raw materials are mixed so as to be more than 25 to 50% in water, and they are mixed to obtain a mixed powder, and this mixed powder is press-molded to obtain a pressed body, and the cermet obtained by sintering this pressed body is used. It is a member of a crushing / stirring / mixing / kneading machine. This cermet exists so as to cover the periphery of the core phase 2 containing TiCN as the main component, the rim phase 3 containing (Ti, Mo, W) (C, N) as the main component, and the metal phase. It has 3 phases of 4, and the average particle size of the hard phase composed of the core phase and the rim phase in the cross-sectional structure observation is less than 3 μm, and the WC phase and the Mo2C phase cannot be observed by SEM observation. [Selection diagram] Fig. 1
Description
本発明は、耐衝撃性、耐摩耗性に優れたサーメットから成る、粉砕・撹拌・混合・混練機部材に関する。 The present invention relates to a crushing / stirring / mixing / kneading machine member made of a cermet having excellent impact resistance and wear resistance.
耐衝撃性、耐摩耗性に優れたサーメットに関しては、様々な材料設計手法が提案されている。 Various material design methods have been proposed for cermets having excellent impact resistance and wear resistance.
特許文献1には、減圧窒素雰囲気中での一時焼結、HIP処理、減圧窒素雰囲気中での最終熱処理の3段階の焼結方法により、ポアおよび結合相プールを消滅させ、TiN/TiCの比が3/7〜7/3でも高強度化したサーメットの製造方法が開示されている。このような炭窒化物系サーメットは、フライス切削などの切削工具用途に使用されている。 In Patent Document 1, the pores and the bound phase pool are eliminated by a three-step sintering method of temporary sintering in a reduced pressure nitrogen atmosphere, HIP treatment, and final heat treatment in a reduced pressure nitrogen atmosphere, and the TiN / TiC ratio is obtained. However, a method for producing a cermet having a high strength is disclosed even from 3/7 to 7/3. Such carbonitride-based cermets are used in cutting tool applications such as milling.
特許文献2では、微細組織が、硬質相からなるコアと、靱性を有する周辺組織であるリムの2相構造であった従来のサーメットに対して、中心コアの周囲に靱性の優れるWCに富んだ第3相を形成することで、より高靱性化されたサーメットが開示されている。このサーメットは、従来のサーメットと比較して、耐摩耗性及び硬度を低下させることなく、曲げ強度および破壊靭性を向上させ、工作機械用工具としては勿論のこと、耐摩耗性および靱性を要する部品、部材として広く適用することができる。
In
特許文献3では、窒化物量を増やすとともに、さらに硬質相粒径を比較的粗粒に制御し、さらに結合相を強化することによって、耐衝撃性、耐摩耗性、耐熱塑性変形性を高めたサーメットについて開示されている。その工夫により、断続的に激しい熱衝撃が加わる切削工具において、熱亀裂に起因する欠損による短寿命化という問題を解決している。
In
特許文献4では、TiCを5〜50%、Mo2C、TaC、VC、Cr3C2、NbC、ZrC、HfCの内1種ないしは2種以上を1〜25%、NiとCoを合量で5〜40%含み、かつ前記TiCの平均粒径を1.5〜15μm、WC粒径を3〜15μmとした熱間ガイドローラ用サーメットが開示されている。このサーメットは、粗大な硬質粒子により、熱間圧延の最大の問題であった表面亀裂の進展を抑制することができ、熱間ガイドローラの寿命を向上させている。 In Patent Document 4, TiC is 5 to 50%, one or more of Mo 2 C, TaC, VC, Cr 3 C 2 , NbC, ZrC, and HfC is 1 to 25%, and Ni and Co are combined. A cermet for a hot guide roller is disclosed, which contains 5 to 40% of the above, and has an average particle size of TiC of 1.5 to 15 μm and a WC particle size of 3 to 15 μm. In this cermet, the coarse hard particles can suppress the growth of surface cracks, which is the biggest problem of hot rolling, and improve the life of the hot guide roller.
特許文献5では、NiおよびCoを主成分とする結合相の格子定数を3.545Å以下に制御することにより、熱クラック耐性を向上させ、高速切削用工具の寿命を向上させることが開示されている。
また近年、軽量な高機能樹脂材料の需要が高まり、その特性向上のためにガラス繊維や無機粉末などのフィラーを高充填した強化樹脂材料の製造が増加している。それに伴って、粉砕・撹拌・混合・混練機部材の激しい摩耗による生産効率の低下が問題となっている。精密電子部品用樹脂においては、部材の摩耗による金属コンタミが課題であり、磁選による除去だけでなく、抜本的対策として混入源である部材摩耗を抑える改善が求められている。 Further, in recent years, the demand for lightweight high-performance resin materials has increased, and the production of reinforced resin materials highly filled with fillers such as glass fibers and inorganic powders has been increasing in order to improve the characteristics thereof. Along with this, there is a problem that the production efficiency is lowered due to severe wear of the crushing / stirring / mixing / kneading machine member. In resins for precision electronic parts, metal contamination due to wear of members is an issue, and not only removal by magnetic separation but also improvement of suppressing wear of members, which is a mixing source, is required as a drastic measure.
粉砕・撹拌・混合・混練機部材として、その多くは窒化鋼が用いられているが、より耐摩耗性が求められる用途に対しては合金工具鋼、更に過酷な使用条件の場合は超硬合金が適することが知られている。 Nitrided steel is often used as a member for crushing, stirring, mixing, and kneading machines, but alloy tool steel is used for applications that require more wear resistance, and cemented carbide is used for harsher usage conditions. Is known to be suitable.
特許文献6には、従来の合金工具鋼よりも耐摩耗性の高い超硬合金から成る複数枚のディスク構成部材を、放電プラズマ焼結加工により焼結接合することにより、複雑形状を有するニーディングディスクの研磨加工や切削加工を容易にし、耐摩耗性に優れたニーディングディスクの製造について開示されている。 Patent Document 6 describes kneading having a complicated shape by sintering and joining a plurality of disk components made of cemented carbide, which has higher wear resistance than conventional alloy tool steel, by discharge plasma sintering. Disclosed is the manufacture of a kneading disc that facilitates disc polishing and cutting and has excellent wear resistance.
特許文献7では、超硬合金の分割体を軸方向に加圧焼結することにより、細長い形状のスクリューやシリンダーであっても、変形なしに構成することが可能となり、その工夫により、長期にわたって連続使用可能な超硬合金製の成形用部材が開示されている。 In Patent Document 7, by pressure-sintering a cemented carbide split body in the axial direction, even an elongated screw or cylinder can be constructed without deformation. A cemented carbide molding member that can be used continuously is disclosed.
特許文献1に開示されるサーメットは、粉砕・撹拌・混合・混練機部材に適用した場合、金属相が比較的少ないことから、弾性変形による衝撃吸収が不十分となり、かつ素材自体の靱性も低いため、稼働中の部材同士の接触による衝撃で、破壊が起こるおそれがある。 When the cermet disclosed in Patent Document 1 is applied to a crushing / stirring / mixing / kneading machine member, it has a relatively small amount of metal phase, so that shock absorption due to elastic deformation is insufficient and the toughness of the material itself is low. Therefore, there is a risk of destruction due to the impact of contact between the members in operation.
特許文献2に開示されるサーメットには、WC単独粒子が存在するため、硬質なWC粒子が破壊の起点となりやすく、耐衝撃性に劣ることが懸念される。そのため、前述のように、粉砕・撹拌・混合・混練機部材稼働中の部材接触により、割れが発生する可能性がある。さらに比重の高いWCが多く含まれるため、部材重量が重くなり、回転する装置部材への適用時には、軸ぶれの発生、駆動装置への負荷増大などが懸念される。
Since the cermet disclosed in
特許文献3に開示されるサーメットは、切削工具への適用を目的としており、金属相量が少なく、更に金属相中にWC、Mo2Cの単独粒子が存在するため、粉砕・撹拌・混合・混練機部材として適用するためには、靭性および耐衝撃性が不十分であり使用することができない。
Cermet disclosed in
特許文献4に開示されるサーメットは、熱クラック抑制の目的でWC粗粒粉を添加しているが、アブレシブ摩耗が発生する粉砕・撹拌・混合・混練機部材においては、WC粗粒粉の欠落により、体積減少量が増加し、部材の寿命が短くなるという問題がある。 In the cermet disclosed in Patent Document 4, WC coarse-grained powder is added for the purpose of suppressing thermal cracks, but WC coarse-grained powder is missing in the crushing / stirring / mixing / kneading machine member in which abrasive wear occurs. As a result, there is a problem that the amount of volume reduction increases and the life of the member is shortened.
特許文献5に開示されるサーメットは、切削工具への適用を前提としているために、金属相量が少なく、耐衝撃性および靱性が不足しているため、粉砕・撹拌・混合・混練機部材としての用途には向いていない。
Since the cermet disclosed in
特許文献6や特許文献7に開示されるニーディングディスク、および成形用部材は、耐摩耗性が高い超硬合金を使用しているために、部材の寿命を向上させることが可能となった。しかしながら、従来の粉砕・撹拌・混合・混練機は、鉄鋼材料製の部材装着を前提に設計されており、超硬合金製部材は、その高い比重に起因する駆動装置側への負荷増大、回転軸のたわみなどから、鉄鋼材料部材からの置換え用途としては適さないという未解決の問題がある。 Since the kneading disc and the molding member disclosed in Patent Document 6 and Patent Document 7 are made of cemented carbide having high wear resistance, it is possible to improve the life of the member. However, conventional crushing / stirring / mixing / kneading machines are designed on the premise that members made of steel materials are mounted, and cemented carbide members increase the load on the drive unit side and rotate due to their high specific gravity. There is an unsolved problem that it is not suitable as a replacement application from steel material members due to the deflection of the shaft.
本発明は、上記の問題を解決するために成されたものであり、軽量で、耐衝撃性、耐摩耗性に優れ、さらに磁性を有する粉砕・撹拌・混合・混練機部材を提供して、これら部材を長寿命化することを課題とする。 The present invention has been made to solve the above problems, and provides a crushing / stirring / mixing / kneading machine member which is lightweight, has excellent impact resistance and wear resistance, and has magnetism. An object is to extend the life of these members.
本発明は、元素ごとの質量比が、
Ti:20〜45%
Mo:5〜35%
W:6〜30%
C:5〜15%
Co:10〜50%
CoとNi合計で25超〜50%
となるように、TiまたはTi化合物、MoまたはMo化合物、WまたはW化合物、CoまたはCo化合物、NiまたはNi化合物および炭素から任意に選択される粉末を原料とし、それらを湿式または乾式にて混合し、混合粉を得るステップ、混合粉を50〜300MPaの圧力でプレス成形してプレス体を得るステップ、プレス体を600〜1000℃の真空またはガス雰囲気中で仮焼結した後、1300〜1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップを経て得られ、TiCNを主成分とするコア相と、コア相の周囲を覆うように存在し、(Ti,Mo,W)(C,N)を主成分とするリム相と、金属相の3相を有し、断面組織観察でのコア相とリム相から成る硬質相の平均粒径が3μm未満であり、SEM観察により、WC相およびMo2C相を観察することができない、粉砕・撹拌・混合・混練機部材用のサーメットを提供することで、前記課題を解決した。
In the present invention, the mass ratio of each element is
Ti: 20-45%
Mo: 5-35%
W: 6 to 30%
C: 5 to 15%
Co: 10-50%
Co and Ni total over 25-50%
A powder arbitrarily selected from Ti or Ti compound, Mo or Mo compound, W or W compound, Co or Co compound, Ni or Ni compound and carbon is used as a raw material, and they are mixed wet or dry. Then, a step of obtaining a mixed powder, a step of press-molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body, a step of temporarily sintering the pressed body in a vacuum or a gas atmosphere at 600 to 1000 ° C., and then 1300 to 1700. It is obtained through the steps of sintering in any of the atmospheres of ° C, vacuum, reduction, inert gas, hydrogen or nitrogen, and exists so as to surround the core phase containing TiCN as a main component and the core phase. It has three phases, a rim phase containing (Ti, Mo, W) (C, N) as a main component and a metal phase, and the average particle size of the hard phase composed of the core phase and the rim phase in cross-sectional structure observation is 3 μm. less than, by SEM observation, it can not be observed WC phase and
本発明において得られた、磁性を有し、軽量で耐摩耗性、耐衝撃性を大幅に向上させたサーメットにより、損耗の激しい粉砕・撹拌・混合・混練機部材を長寿命化させることが可能となった。
粉砕・撹拌・混合・混練機部材としては、具体的には、二軸押出機用のスクリューエレメントやバレル、ピンミル装置の粉砕ピン、混合撹拌機のパドル、ビーズミルなどの粉体処理装置部材などに好適に用いることができる。
The cermet obtained in the present invention, which has magnetism, is lightweight, and has significantly improved wear resistance and impact resistance, can prolong the life of crushing, stirring, mixing, and kneading machine members that are severely worn. It became.
Specific examples of crushing / stirring / mixing / kneading machine members include screw elements and barrels for twin-screw extruders, crushing pins for pin mills, paddles for mixing and stirring machines, and powder processing device members for bead mills. It can be preferably used.
本発明の粉砕・撹拌・混合・混練機部材は、以下の内容にて実施できる。 The crushing / stirring / mixing / kneading machine member of the present invention can be carried out with the following contents.
まず、元素ごとの質量比が、
Ti:20〜45%
Mo:5〜35%
W:6〜30%
C:5〜15%
Co:10〜50%
CoとNi合計で25超〜50%
となるように、TiまたはTi化合物、MoまたはMo化合物、WまたはW化合物、CoまたはCo化合物、NiまたはNi化合物および炭素から任意に選択される粉末を原料とする。
例えば、Tiの化合物としてはTiC、TiN、TiCN、(Ti,Mo)(C,N)、(Ti,W)(C,N)のような炭化物、窒化物、炭窒化物、複合炭窒化物のいずれの形態であっても構わない。Mo、W、Co、Niについても同様である。
そして、それらを湿式または乾式にて混合し、混合粉を得、その混合粉を50〜300MPaの圧力でプレス成形してプレス体を得、そのプレス体を1300〜1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結することで、サーメットからなる粉砕・撹拌・混合・混練機部材を得る。このサーメットは、コア相とリム相と金属相の3相を有するが、具体的な各相の設計を以下に説明する。なお、以下の説明において元素ごとの質量比は、いずれも原料段階のものである。
First, the mass ratio for each element is
Ti: 20-45%
Mo: 5-35%
W: 6 to 30%
C: 5 to 15%
Co: 10-50%
Co and Ni total over 25-50%
As a raw material, a powder arbitrarily selected from Ti or Ti compound, Mo or Mo compound, W or W compound, Co or Co compound, Ni or Ni compound and carbon is used as a raw material.
For example, as a compound of Ti, carbides such as TiC, TiN, TiCN, (Ti, Mo) (C, N), (Ti, W) (C, N), nitrides, carbonitrides, composite carbonitrides It does not matter which form is used. The same applies to Mo, W, Co, and Ni.
Then, they are mixed wet or dry to obtain a mixed powder, and the mixed powder is press-molded at a pressure of 50 to 300 MPa to obtain a pressed body, and the pressed body is vacuumed, reduced, or not at 1300 to 1700 ° C. By sintering in an atmosphere of active gas, hydrogen or nitrogen, a crushing / stirring / mixing / kneading machine member made of cermet is obtained. This cermet has three phases, a core phase, a rim phase, and a metal phase, and the specific design of each phase will be described below. In the following description, the mass ratios for each element are those at the raw material stage.
(コア相・リム相の設計)
Cが5〜15%であることにより、焼結性が改善し微細なコア相とリム相から成る硬質相を形成する。Cが5%未満であると、十分な体積のコア相およびリム相が生成されず耐摩耗性が低下する。一方、Cを15%より多く添加した場合には、遊離炭素相が発生し、機械的特性(強度・硬さ・耐衝撃性)が大幅に低下する。
Nを添加する場合は、0を超え5%以内の範囲で任意に添加することができる。Nを添加することで、リム相の厚みが小さくなる傾向となり、耐摩耗性および耐衝撃性が向上する。また、Nを5%以下にすることで、焼結中に発生する窒素ガスによる合金中の気孔残存を抑制でき、機械的特性の向上を図ることができる。
さらに、C:N=7:3〜10:0であることが望ましい。C:N比率をこの範囲にすることで、金属相と、コア相とリム相から成る硬質相との良い濡れ性が保て、緻密性が向上する。
Moは5〜35%、Wは6〜30%、の範囲で混合する。コア相を形成するTiCNと、金属相を形成するCo、Niとの濡れ性は悪いが、Mo2CやWCを添加することにより生成されるリム相により、コア相とリム相から成る硬質相の濡れ性を改善することができる。これにより材料の焼結性が上がり、機械的特性を向上させることができる。
また、Wを添加することでその耐摩耗性をさらに向上させることができる。これは、コア相とリム相から成る硬質相がW原子により固溶強化され、アブレシブ摩耗時の硬質相の破壊が起こりにくくなるためである。
MoとWを合わせて35%以下にすることで、WとCo、MoとCo、またはWとMoとCoの合金を形成しなくなり、耐衝撃性が向上する。
(Core phase / rim phase design)
When C is 5 to 15%, the sinterability is improved and a hard phase composed of a fine core phase and a rim phase is formed. If C is less than 5%, a sufficient volume of core phase and rim phase will not be generated and wear resistance will decrease. On the other hand, when C is added in an amount of more than 15%, a free carbon phase is generated, and the mechanical properties (strength, hardness, impact resistance) are significantly lowered.
When N is added, it can be arbitrarily added in the range of more than 0 and within 5%. By adding N, the thickness of the rim phase tends to be reduced, and wear resistance and impact resistance are improved. Further, by setting N to 5% or less, it is possible to suppress residual pores in the alloy due to nitrogen gas generated during sintering, and it is possible to improve mechanical properties.
Further, it is desirable that C: N = 7: 3 to 10: 0. By setting the C: N ratio in this range, good wettability between the metal phase and the hard phase composed of the core phase and the rim phase can be maintained, and the denseness is improved.
Mo is mixed in the range of 5 to 35% and W is mixed in the range of 6 to 30%. The wettability between TiCN forming the core phase and Co and Ni forming the metal phase is poor, but the rim phase produced by adding Mo 2 C and WC is a hard phase consisting of a core phase and a rim phase. Wetness can be improved. As a result, the sinterability of the material is improved, and the mechanical properties can be improved.
Further, by adding W, the wear resistance can be further improved. This is because the hard phase composed of the core phase and the rim phase is solid-solved and strengthened by W atoms, and the hard phase is less likely to be destroyed during abrasive wear.
When Mo and W are combined to 35% or less, W and Co, Mo and Co, or W and Mo and Co alloys are not formed, and impact resistance is improved.
(金属相の設計)
CoとNiは合計で25超〜50%である。この範囲よりも金属量が少ない場合には、耐衝撃性が不十分となる。多い場合には耐摩耗性が低下し、粉砕・撹拌・混合・混練機部材の損耗が激しくなる。
また、Coは10〜50%とする。Niよりも優れた機械的特性(硬さ、耐摩耗性)を持つCoをこの範囲にすることで、粉砕・撹拌・混合・混練機部材の機械的特性を向上させ、長寿命化することができる。
さらに、10%以上のCoを含むサーメットは、磁選に必要とされる十分な磁性を有する。磁選は粉砕・撹拌・混合・混練機装置において、部材のチッピングなどによる材料中の異物検出時に使用される。
(Metal phase design)
Co and Ni total more than 25-50%. If the amount of metal is less than this range, the impact resistance becomes insufficient. If the amount is large, the wear resistance is lowered, and the crushing / stirring / mixing / kneading machine member is severely worn.
Co is 10 to 50%. By setting Co, which has better mechanical properties (hardness, wear resistance) than Ni, in this range, it is possible to improve the mechanical properties of crushing, stirring, mixing, and kneading machine members and extend their life. can.
Further, the cermet containing 10% or more Co has sufficient magnetism required for magnetic separation. Magnetic separation is used in a crushing / stirring / mixing / kneading machine device when detecting foreign matter in a material by chipping a member or the like.
本発明の粉砕・撹拌・混合・混練機部材は、一例として以下の製造方法で製造できる。
(製造方法)
本発明の粉砕・撹拌・混合・混練機部材を製造する場合には、次のステップ(工程)を含む。
すなわち、元素ごとの質量比が、
Ti:20〜45%
Mo:5〜35%
W:6〜30%
C:5〜15%
Co:10〜50%
CoとNi合計で25超〜50%
となるように、TiまたはTi化合物、MoまたはMo化合物、WまたはW化合物、CoまたはCo化合物、NiまたはNi化合物および炭素から任意に選択される粉末を原料とし、それらを湿式または乾式にて混合し、混合粉を得るステップと、
混合粉を50〜300MPaの圧力でプレス成形してプレス体を得るステップと、
プレス体を1300〜1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップである。
湿式混合の場合には、溶媒としてエタノールのような揮発性溶剤を使用し、スラリーは、真空静置乾燥、あるいは噴霧乾燥などにより乾燥させる。このとき、原料混合後のコア相およびリム相を形成する粒子の粒径は、0.6μm以下とすることが望ましい。
得られた微粒粉末に、成形バインダーとなる樹脂成分を混合し造粒を行う。造粒にはスプレードライを用いてもよい。
造粒した粉末は、金型プレス機、または静水圧プレス機により50〜300MPaでプレス成形を行う。成形後、必要に応じて中間加工を入れてもよい。
焼結条件は、はじめに600〜1000℃の真空またはガス雰囲気中で脱脂・仮焼結を行い、次に1300〜1700℃の真空またはガス雰囲気中で本焼結を行う。仮焼結、本焼結は連続して行ってもよい。さらに、必要に応じて熱間水圧プレスを行う。
最後に、機械加工、あるいは電気加工により最終形状に仕上げ、目的とする粉砕・撹拌・混合・混練機部材を得る。
The crushing / stirring / mixing / kneading machine member of the present invention can be manufactured by the following manufacturing method as an example.
(Production method)
The following steps are included in the production of the crushing / stirring / mixing / kneading machine member of the present invention.
That is, the mass ratio of each element is
Ti: 20-45%
Mo: 5-35%
W: 6 to 30%
C: 5 to 15%
Co: 10-50%
Co and Ni total over 25-50%
A powder arbitrarily selected from Ti or Ti compound, Mo or Mo compound, W or W compound, Co or Co compound, Ni or Ni compound and carbon is used as a raw material and mixed by a wet or dry method. And the steps to get the mixed powder,
The step of press-molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body,
The step of sintering the pressed body at 1300 to 1700 ° C. under any atmosphere of vacuum, reduction, inert gas, hydrogen or nitrogen.
In the case of wet mixing, a volatile solvent such as ethanol is used as a solvent, and the slurry is dried by vacuum static drying, spray drying, or the like. At this time, it is desirable that the particle size of the particles forming the core phase and the rim phase after mixing the raw materials is 0.6 μm or less.
Granulation is performed by mixing the obtained fine powder with a resin component to be a molding binder. Spray dry may be used for granulation.
The granulated powder is press-molded at 50 to 300 MPa with a die press or a hydrostatic press. After molding, intermediate processing may be added if necessary.
As for the sintering conditions, first, degreasing / temporary sintering is performed in a vacuum or gas atmosphere of 600 to 1000 ° C., and then main sintering is performed in a vacuum or gas atmosphere of 1300 to 1700 ° C. Temporary sintering and main sintering may be performed continuously. Further, hot hydraulic pressing is performed if necessary.
Finally, the final shape is finished by machining or electric processing to obtain the desired crushing / stirring / mixing / kneading machine member.
(粉砕・撹拌・混合・混練機部材に用いるサーメットの組織)
本発明に用いるサーメットは、図1にその断面組織1を模式的に示しているように、TiCNを主成分とするコア相2と、コア相2の周囲を覆うように存在し、(Ti,Mo,W)(C,N)を主成分とするリム相3と、金属相4の3相を有し、断面組織観察でのコア相とリム相から成る硬質相の平均粒径が3μm未満であり、サーメット中にはWC相およびMo2C相は原則的に含まない。WC相およびMo2C相がある場合は、SEM(走査型電子顕微鏡)観察において、金属相中にコア相・リム相以外に明度の異なる粒子形状で存在する。判断がつかない場合にはEPMA(電子線マイクロアナライザ)やEDX(エネルギー分散型X線分析)、XRD(X線回折)による分析を行い、WC相およびMo2C相の有無について総合的に判断する。イレギュラー的に観察される場合でも、1万倍の観察視野中に1μm以上の粒子が1個以下、同じく0.3μm以上の粒子が5個以下である。なお、本発明において「SEM観察により、WC相およびMo2C相を観察することができない」とは、前述の1万倍の観察視野中に1μm以上の粒子が1個以下、同じく0.3μm以上の粒子が5個以下である場合も含むものとする。
上記の構成とすることで、耐衝撃性、耐摩耗性の高い材料が得られる。
このサーメットの組織はSEMによる断面観察で確認される。
(Cermet structure used for crushing / stirring / mixing / kneading machine members)
As the cross-sectional structure 1 of the cermet used in the present invention is schematically shown in FIG. 1, the
With the above configuration, a material having high impact resistance and wear resistance can be obtained.
The structure of this cermet is confirmed by cross-sectional observation by SEM.
また、前記サーメットは以下の特徴を有する。
(コア相)
コア相は、TiCNを主成分とする硬質相であり、高い硬さを有する。
(リム相)
リム相はコア相の周囲を覆うように存在し、(Ti,Mo,W)(C,N) を主成分とする。図2に示すように、リム相には相対的にMo成分とW成分とが多い相と、相対的にTiが多い相の2相を有していてもよい。2相である場合には、リム相の硬さが向上し、より耐摩耗性が高くなる。
(粒径)
コア相とリム相から成る硬質相の平均粒径は3μm未満である。平均粒径は、サーメットの断面組織をSEM観察し、下記フルマンの式(数1)から算出することができる。
(Core phase)
The core phase is a hard phase containing TiCN as a main component and has high hardness.
(Rim phase)
The rim phase exists so as to cover the circumference of the core phase, and is mainly composed of (Ti, Mo, W) (C, N). As shown in FIG. 2, the rim phase may have two phases, a phase having a relatively large amount of Mo component and a W component and a phase having a relatively large amount of Ti component. In the case of two phases, the hardness of the rim phase is improved and the wear resistance is further increased.
(Particle size)
The average particle size of the hard phase composed of the core phase and the rim phase is less than 3 μm. The average particle size can be calculated from the following Fulman's formula (Equation 1) by observing the cross-sectional structure of the cermet by SEM.
コア相とリム相からなる硬質相の平均粒径を3μm未満にすることで、機械的特性と耐衝撃性が向上するため、粉砕・撹拌・混合・混練機稼働中の部材接触などによる衝撃が加わった際に破壊しにくい。特に、硬質相の平均粒径を1.5μm以下とすることで、さらに硬さが向上し、耐摩耗性も向上する。硬質相の平均粒径が3μm以上である場合には、アブレシブ摩耗時の粒子脱落の単位が大きくなることで耐摩耗性が著しく低下する。 By making the average particle size of the hard phase consisting of the core phase and the rim phase less than 3 μm, the mechanical properties and impact resistance are improved. Hard to destroy when joined. In particular, by setting the average particle size of the hard phase to 1.5 μm or less, the hardness is further improved and the wear resistance is also improved. When the average particle size of the hard phase is 3 μm or more, the unit of particle shedding during abrasive wear becomes large, and the wear resistance is remarkably lowered.
(比重)
本実施形態に係る粉砕・撹拌・混合・混練機部材は、比重9以下である。粉砕・撹拌・混合・混練機は、従来、鉄鋼材料製の部材装着を前提とした設計となっているため、部材の比重が9を超えると、回転軸のたわみの発生、駆動装置側への負荷増大などの原因となる。比重が8以下になると、鉄鋼材料と同等の扱いができ、さらに比重が7.5以下になると鉄鋼材料より軽くなり、装置設計の自由度を上げることができる。
(specific gravity)
The crushing / stirring / mixing / kneading machine member according to the present embodiment has a specific gravity of 9 or less. Conventionally, the crushing / stirring / mixing / kneading machine has been designed on the premise that a member made of steel material is mounted. Therefore, when the specific gravity of the member exceeds 9, the rotating shaft is bent and the drive device side is affected. It may cause an increase in load. When the specific gravity is 8 or less, it can be treated in the same manner as a steel material, and when the specific density is 7.5 or less, it is lighter than a steel material, and the degree of freedom in device design can be increased.
上記特徴を持つサーメットは、耐摩耗性、耐衝撃性が、超硬合金と同等に高い値でありながらも、比重が鉄鋼材料と同等であり、さらに磁性を有している。この材料を、粉砕・撹拌・混合・混練機部材として適用することで、部材同士の接触による破損や、使用時の部材の摩耗を抑制し、部材の長寿命化を達成できる。 The cermet having the above characteristics has wear resistance and impact resistance as high as those of cemented carbide, but has a specific gravity equivalent to that of steel material and is magnetic. By applying this material as a crushing / stirring / mixing / kneading machine member, it is possible to suppress damage due to contact between the members and wear of the member during use, and to achieve a long life of the member.
まず、表1の実施例1に示す原料粉末を、エタノールを溶媒としてアトライター、またはボールミルにより粉砕混合した。得られたスラリーを真空中で乾燥させ、バインダーとなるパラフィンを混合したのちプレス成形によりプレス体を作製した。
このプレス体を大気圧水素雰囲気下800℃で仮焼結を行い、更に真空雰囲気にて1400℃にて本焼結を行うことにより、本発明の粉砕・撹拌・混合・混練機部材に用いるサーメットを得た。
実施例1により得られたサーメットは、前述のフルマンの式により算出した平均粒径が1.12μmであった。
実施例2以降の実施例及び比較例は、1300〜1500℃の範囲内で最も高い密度が得られる最低温度で焼結した。他の条件は実施例1と同条件である。
また、比較例6を除くすべての実施例および比較例において、コア相とリム相から成る硬質相の平均粒径は、1.5μm未満であった。
さらに、SEM観察によりサーメット断面組織の構成成分を観察したところ、すべての実施例において、Mo2C相およびWC相の存在は確認できなかった。また、すべての実施例においてリム相中に、相対的にMo成分とW成分とが多い相が存在した。
サーメット組織全体の元素組成比率は、原料組成との乖離が大きく、また原料組成と焼結後のサーメットの成分比率の決定係数が低く、正確に定量することができなかった。参考までに表3に実施例1のサーメットについて、EPMAおよびEDXによる定量分析結果を示すが、原料組成との乖離が確認できる。この理由として、各構成元素同士の固溶体形成による格子状態の変化が影響していることが考えられる。上記非特許文献1にあるように、過去の研究においてもサーメット材料の合金組成の定量化が困難なことが知られており、正確な定量は難しい。
このように本発明において、当該物をその構造または特性により直接特定することは不可能であるか、またはおよそ非実際的であり、本発明には、いわゆる「不可能・非実際的事情」が存在する。
First, the raw material powders shown in Example 1 of Table 1 were pulverized and mixed by an attritor or a ball mill using ethanol as a solvent. The obtained slurry was dried in a vacuum, mixed with paraffin as a binder, and then press-molded to prepare a pressed body.
By temporarily sintering this pressed body at 800 ° C. in an atmospheric pressure hydrogen atmosphere and further performing main sintering at 1400 ° C. in a vacuum atmosphere, the cermet used for the crushing / stirring / mixing / kneading machine member of the present invention. Got
The cermet obtained in Example 1 had an average particle size of 1.12 μm calculated by the above-mentioned Fulman's formula.
Examples and Comparative Examples after Example 2 were sintered at the lowest temperature in which the highest density was obtained in the range of 1300 to 1500 ° C. Other conditions are the same as in Example 1.
Moreover, in all Examples and Comparative Examples except Comparative Example 6, the average particle size of the hard phase composed of the core phase and the rim phase was less than 1.5 μm.
Further, observation of the constituents of the cermet sectional structure by SEM observation, in all embodiments, the presence of
The element composition ratio of the entire cermet structure had a large deviation from the raw material composition, and the coefficient of determination of the raw material composition and the component ratio of the cermet after sintering was low, so that it could not be quantified accurately. For reference, Table 3 shows the results of quantitative analysis by EPMA and EDX for the cermet of Example 1, and the deviation from the raw material composition can be confirmed. It is considered that the reason for this is that the change in the lattice state due to the formation of a solid solution between the constituent elements has an effect. As described in Non-Patent Document 1 above, it is known that it is difficult to quantify the alloy composition of a cermet material even in past studies, and accurate quantification is difficult.
Thus, in the present invention, it is impossible or approximately impractical to directly identify the object by its structure or properties, and the present invention has so-called "impossible / impractical circumstances". exist.
続いて作製したサーメットの機械特性の評価を、以下に示す測定方法により実施した。
*比重・・・アルキメデス法(規格:JIS Z 8807)
*硬さ・・・ビッカース硬さ試験(規格:JIS Z 2244)
*耐摩耗性・・・ラバーホイール試験(規格:ASTM G65)
*耐衝撃性・・・シャルピー衝撃試験(規格:JIS Z 2242)
*磁性・・・飽和磁化測定
Subsequently, the mechanical properties of the produced cermet were evaluated by the measurement method shown below.
* Relative density: Archimedes method (standard: JIS Z 8807)
* Hardness: Vickers hardness test (Standard: JIS Z 2244)
* Abrasion resistance: Rubber wheel test (standard: ASTM G65)
* Impact resistance: Charpy impact test (standard: JIS Z 2242)
* Magnetism: Saturation magnetization measurement
本発明の実施例および比較例におけるサーメットの特性を表4に示す。
全ての実施例において、比重は目標の9以下に抑えられており、耐摩耗性に関しても超硬合金(JIS分類:V40相当材)を上回り、優れた特性を示した。また耐衝撃性についても、従来のサーメットでは実現が難しかった6J/cm2以上を達成した。 In all the examples, the specific gravity was suppressed to 9 or less, which was the target, and the wear resistance also exceeded that of cemented carbide (JIS classification: V40 equivalent material), and exhibited excellent characteristics. In addition, the impact resistance has achieved 6 J / cm 2 or more, which was difficult to achieve with conventional cermets.
実施例2と実施例6は、実施例1と比較して特に高い耐摩耗性を示した。
実施例2では比較的Moの添加量が多く、さらにWを共添加させることで硬さが向上し、実施例1と金属量が同等であるにもかかわらず高い耐摩耗性を示した。
実施例6では、シャルピー衝撃値は10J/cm2に満たないものの、耐摩耗性が超硬合金(JIS分類:V40相当材)と比較して200%を超えた。これは金属量を必要最低限に抑えることで、非常に高い耐摩耗性が発現した例である。
Examples 2 and 6 showed particularly high wear resistance as compared with Example 1.
In Example 2, the amount of Mo added was relatively large, and by further adding W, the hardness was improved, and despite the fact that the amount of metal was the same as that of Example 1, high wear resistance was exhibited.
In Example 6, although the Charpy impact value was less than 10 J / cm 2 , the wear resistance exceeded 200% as compared with the cemented carbide (JIS classification: V40 equivalent material). This is an example in which extremely high wear resistance is exhibited by keeping the amount of metal to the minimum necessary.
比較例1は、本発明よりもMoの添加量が多く、耐摩耗性については非常に高い値を示した。しかしながら、シャルピー衝撃値は低く、破壊の恐れがあるため、粉砕・撹拌・混合・混練機部材としては使用できない。
比較例2では、Wの添加量が過剰であるためにWC相を形成し、耐摩耗性が著しく低下した。
比較例3および比較例7では、金属相としてNiのみを使って作製した。この試料は、Mo、W、金属相量が範囲内であるにも関わらず、金属相がNiのみであることから、硬さ、耐摩耗性、磁性において低い値を示した。磁性の発現には、Coの添加が必須であるといえる。
比較例4のような、Mo、Wの添加量が少ない場合には、耐摩耗性は低い値を示した。
比較例5は、金属相量(CoとNiの合計)が24%と本発明の下限値よりも低い。主に工具用に用いられる一般的なサーメットと同様、耐摩耗性は高いが、破壊靭性や抗折力、シャルピー衝撃値は低い値となった。
比較例6は、実施例1と同じ原料を用い、十分に粉砕せずに作製した試料である。焼結後、コア相とリム相から成る硬質相の平均粒径は3μmを超えたため、硬さおよび耐衝撃性が低下した。
比較例8〜10は、金属相量は範囲内であるにもかかわらず、硬さ、耐摩耗性といった機械的特性の高いCo量が不十分であるために、耐摩耗性が低下した。磁性についても、超硬材料に比べて低い値を示した。
In Comparative Example 1, the amount of Mo added was larger than that of the present invention, and the wear resistance was very high. However, since the Charpy impact value is low and there is a risk of breakage, it cannot be used as a crushing / stirring / mixing / kneading machine member.
In Comparative Example 2, since the amount of W added was excessive, a WC phase was formed, and the wear resistance was significantly reduced.
In Comparative Example 3 and Comparative Example 7, only Ni was used as the metal phase. This sample showed low values in hardness, wear resistance, and magnetism because the metal phase was only Ni, although the amounts of Mo, W, and metal phases were within the range. It can be said that the addition of Co is indispensable for the development of magnetism.
When the amount of Mo and W added was small as in Comparative Example 4, the wear resistance showed a low value.
In Comparative Example 5, the amount of metal phase (total of Co and Ni) is 24%, which is lower than the lower limit of the present invention. Similar to general cermets mainly used for tools, it has high wear resistance, but its fracture toughness, bending force, and Charpy impact value are low.
Comparative Example 6 is a sample prepared using the same raw materials as in Example 1 without sufficient pulverization. After sintering, the average particle size of the hard phase composed of the core phase and the rim phase exceeded 3 μm, so that the hardness and impact resistance were lowered.
In Comparative Examples 8 to 10, although the amount of the metal phase was within the range, the amount of Co having high mechanical properties such as hardness and wear resistance was insufficient, so that the wear resistance was lowered. The magnetism also showed a lower value than that of cemented carbide materials.
図3に、実施例1のサーメットのSEM観察像を示している。最も色の濃い部分がコア相であり、次に色の濃い部分がリム相であり、最も色の薄い部分が金属相である。 FIG. 3 shows an SEM observation image of the cermet of Example 1. The darkest part is the core phase, the next darkest part is the rim phase, and the lightest part is the metal phase.
1 サーメットの断面組織
2 コア相
3 リム相
4 金属相
5 相対的にMoとWが多い相
1 Cross-sectional structure of
Claims (4)
Ti:20〜45%
Mo:5〜35%
W:6〜30%
C:5〜15%
Co:10〜50%
CoとNi合計で25超〜50%
となるように、TiまたはTi化合物、MoまたはMo化合物、WまたはW化合物、CoまたはCo化合物、NiまたはNi化合物および炭素から任意に選択される粉末を原料とし、
それらを湿式または乾式にて混合し、混合粉を得るステップ、
混合粉を50〜300MPaの圧力でプレス成形してプレス体を得るステップ、
プレス体を600〜1000℃の真空またはガス雰囲気中で仮焼結した後、1300〜1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップを経て得られるサーメットから成る、粉砕・撹拌・混合・混練機部材であって、
TiCNを主成分とするコア相と、コア相の周囲を覆うように存在し、(Ti,Mo,W)(C,N)を主成分とするリム相と、金属相の3相を有し、
断面組織観察でのコア相とリム相から成る硬質相の平均粒径が3μm未満であり、
SEM観察により、WC相およびMo2C相を観察することができない、サーメットから成る、粉砕・撹拌・混合・混練機部材。
The mass ratio of each element is
Ti: 20-45%
Mo: 5-35%
W: 6 to 30%
C: 5 to 15%
Co: 10-50%
Co and Ni total over 25-50%
As a raw material, a powder arbitrarily selected from Ti or Ti compound, Mo or Mo compound, W or W compound, Co or Co compound, Ni or Ni compound and carbon is used as a raw material.
Steps of mixing them wet or dry to obtain a mixed powder,
A step of press-molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body,
The press is temporarily sintered in a vacuum or gas atmosphere at 600 to 1000 ° C., and then sintered in a vacuum, reduction, inert gas, hydrogen or nitrogen atmosphere at 1300 to 1700 ° C.. It is a crushing / stirring / mixing / kneading machine member made of cermet gas.
It has three phases: a core phase containing TiCN as a main component, a rim phase containing (Ti, Mo, W) (C, N) as a main component, and a metal phase, which exists so as to cover the periphery of the core phase. ,
The average particle size of the hard phase consisting of the core phase and the rim phase in cross-sectional structure observation is less than 3 μm.
By SEM observation, it is impossible to observe the WC phase and Mo 2 C phase, cermet, pulverized and stirred and mixed-kneader member.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021005360.4T DE112021005360T5 (en) | 2020-10-09 | 2021-07-28 | PULVERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT |
PCT/JP2021/027829 WO2022074904A1 (en) | 2020-10-09 | 2021-07-28 | Pulverizing, stirring, mixing, and kneading machine members |
KR1020227046335A KR20230019161A (en) | 2020-10-09 | 2021-07-28 | Absence of grinding/agitation/mixing/kneading machine |
CN202180044645.3A CN115943222A (en) | 2020-10-09 | 2021-07-28 | Grinding, stirring, mixing and mixing machine component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020171069 | 2020-10-09 | ||
JP2020171069 | 2020-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6922110B1 true JP6922110B1 (en) | 2021-08-18 |
JP2022063199A JP2022063199A (en) | 2022-04-21 |
Family
ID=77269537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021020114A Active JP6922110B1 (en) | 2020-10-09 | 2021-02-10 | Crushing / stirring / mixing / kneading machine parts |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6922110B1 (en) |
KR (1) | KR20230019161A (en) |
CN (1) | CN115943222A (en) |
DE (1) | DE112021005360T5 (en) |
WO (1) | WO2022074904A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7157887B1 (en) | 2022-03-08 | 2022-10-20 | 日本タングステン株式会社 | Grinding, stirring, mixing, kneading machine parts |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7508155B1 (en) | 2022-11-03 | 2024-07-01 | 冨士ダイス株式会社 | Manufacturing method of lightweight hard alloys |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS613852A (en) | 1984-06-15 | 1986-01-09 | Mitsubishi Metal Corp | Manufacture of high strength cermet |
JPH0617531B2 (en) | 1986-02-20 | 1994-03-09 | 日立金属株式会社 | Toughness |
JPS63109139A (en) | 1986-10-23 | 1988-05-13 | Toshiba Tungaloy Co Ltd | Titanium carbide sintered alloy for cutting tool parts |
JPH0266135A (en) | 1988-08-31 | 1990-03-06 | Kobe Steel Ltd | Cermet for hot guide roll |
JPH06220605A (en) * | 1993-01-26 | 1994-08-09 | Toshiba Mach Co Ltd | High-resistance corrosion resistant and wear resistant member and its production |
JP3264064B2 (en) | 1993-10-14 | 2002-03-11 | 三菱マテリアル株式会社 | Cermet cutting tools for high speed milling |
JPH1110709A (en) | 1997-06-23 | 1999-01-19 | Sagara Kogyo Kk | Kneading disk and manufacture of kneading disk |
CN1312078C (en) * | 2004-10-29 | 2007-04-25 | 华中科技大学 | Submicron grain Ti(C,N)-base cermet and its prepn process |
JP5259549B2 (en) | 2009-10-26 | 2013-08-07 | 株式会社シルバーロイ | Carbide member for molding and molding machine equipped with the member |
CN107002186B (en) * | 2014-11-27 | 2019-02-15 | 京瓷株式会社 | Cermet and cutting element |
JP6603061B2 (en) * | 2015-07-29 | 2019-11-06 | 京セラ株式会社 | Cermet and cutting tools |
CN105734382B (en) * | 2016-01-29 | 2017-07-25 | 重庆文理学院 | Investigation for Super-fine Cermets material and preparation method thereof |
-
2021
- 2021-02-10 JP JP2021020114A patent/JP6922110B1/en active Active
- 2021-07-28 KR KR1020227046335A patent/KR20230019161A/en not_active Application Discontinuation
- 2021-07-28 WO PCT/JP2021/027829 patent/WO2022074904A1/en active Application Filing
- 2021-07-28 CN CN202180044645.3A patent/CN115943222A/en active Pending
- 2021-07-28 DE DE112021005360.4T patent/DE112021005360T5/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7157887B1 (en) | 2022-03-08 | 2022-10-20 | 日本タングステン株式会社 | Grinding, stirring, mixing, kneading machine parts |
DE102023000878A1 (en) | 2022-03-08 | 2023-09-14 | Nippon Tungsten Co., Ltd. | POWDERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT |
JP2023130938A (en) * | 2022-03-08 | 2023-09-21 | 日本タングステン株式会社 | Pulverizing, stirring, mixing, and kneading machine members |
Also Published As
Publication number | Publication date |
---|---|
DE112021005360T5 (en) | 2023-07-20 |
WO2022074904A1 (en) | 2022-04-14 |
JP2022063199A (en) | 2022-04-21 |
KR20230019161A (en) | 2023-02-07 |
CN115943222A (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100976731B1 (en) | Ultra-hard composite material and method for manufacturing the same | |
CN1312078C (en) | Submicron grain Ti(C,N)-base cermet and its prepn process | |
JP6439975B2 (en) | Cermet manufacturing method | |
JP2013543539A (en) | Method for producing a sintered composite | |
JP6922110B1 (en) | Crushing / stirring / mixing / kneading machine parts | |
JP5152770B1 (en) | Method for producing tough cemented carbide | |
JP4403286B2 (en) | Cemented carbide tool material and manufacturing method thereof | |
JP2004076049A (en) | Hard metal of ultra-fine particles | |
US11313017B2 (en) | Hard sintered body | |
JP2004292842A (en) | Cermet | |
JP7157887B1 (en) | Grinding, stirring, mixing, kneading machine parts | |
JP2006037160A (en) | Sintered compact | |
EP3480328B1 (en) | Super hard sintered body | |
JP6695566B2 (en) | Cemented carbide used as a tool for machining non-metallic materials | |
JP2006111947A (en) | Ultra-fine particle of cermet | |
JP5826138B2 (en) | Tough cemented carbide and coated cemented carbide | |
JP6819018B2 (en) | TiCN-based cermet cutting tool | |
JP2009209022A (en) | WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD | |
KR20210118398A (en) | lightweight cemented carbide | |
JP2017148895A (en) | Wc-based cemented carbide drill excellent in breakage resistance | |
JP4540791B2 (en) | Cermet for cutting tools | |
CN115386775B (en) | High-elasticity-modulus metal ceramic material and preparation method thereof | |
JP7508155B1 (en) | Manufacturing method of lightweight hard alloys | |
JP2020164991A (en) | Pressurized sintered body and its manufacturing method | |
JP2004035991A (en) | Titanium-aluminum compound sintered compact and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210210 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210210 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6922110 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |